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Preface

There has been a long-felt need for a book that gives a self-contained and
unified treatment of matrix differential calculus, specifically written for econo-
metricians and statisticians. The present book is meant to satisfy this need.
It can serve as a textbook for advanced undergraduates and postgraduates in
econometrics and as a reference book for practicing econometricians. Math-
ematical statisticians and psychometricians may also find something to their
liking in the book.

When used as a textbook it can provide a full-semester course. Reason-
able proficiency in basic matrix theory is assumed, especially with use of
partitioned matrices. The basics of matrix algebra, as deemed necessary for
a proper understanding of the main subject of the book, are summarized in
the first of the book’s six parts. The book also contains the essentials of mul-
tivariable calculus but geared to and often phrased in terms of differentials.

The sequence in which the chapters are being read is not of great conse-
quence. It is fully conceivable that practitioners start with Part Three (Differ-
entials: the practice) and, dependent on their predilections, carry on to Parts
Five or Six, which deal with applications. Those who want a full understand-
ing of the underlying theory should read the whole book, although even then
they could go through the necessary matrix algebra only when the specific
need arises.

Matrix differential calculus as presented in this book is based on differen-
tials, and this sets the book apart from other books in this area. The approach
via differentials is, in our opinion, superior to any other existing approach.
Our principal idea is that differentials are more congenial to multivariable
functions as they crop up in econometrics, mathematical statistics or psycho-
metrics than derivatives, although from a theoretical point of view the two
concepts are equivalent. When there is a specific need for derivatives they will
be obtained from differentials.

The book falls into six parts. Part One deals with matrix algebra. It lists
— and also often proves — items like the Schur, Jordan and singular-value
decompositions, concepts like the Hadamard and Kronecker products, the vec
operator, the commutation and duplication matrices, and the Moore-Penrose
inverse. Results on bordered matrices (and their determinants) and (linearly
restricted) quadratic forms are also presented here.

xiii
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Part Two, which forms the theoretical heart of the book, is entirely de-
voted to a thorough treatment of the theory of differentials, and presents
the essentials of calculus but geared to and phrased in terms of differentials.
First and second differentials are defined, ‘identification’ rules for Jacobian
and Hessian matrices are given, and chain rules derived. A separate chapter
on the theory of (constrained) optimization in terms of differentials concludes
this part.

Part Three is the practical core of the book. It contains the rules for
working with differentials, lists the differentials of important scalar, vector
and matrix functions (inter alia eigenvalues, eigenvectors and the Moore-
Penrose inverse) and supplies ‘identification’ tables for Jacobian and Hessian
matrices.

Part Four, treating inequalities, owes its existence to our feeling that econo-
metricians should be conversant with inequalities, such as the Cauchy-Schwarz
and Minkowski inequalities (and extensions thereof), and that they should
also master a powerful result like Poincaré’s separation theorem. This part is
to some extent also the case history of a disappointment. When we started
writing this book we had the ambition to derive all inequalities by means of
matrix differential calculus. After all, every inequality can be rephrased as the
solution of an optimization problem. This proved to be an illusion, due to the
fact that the Hessian matrix in most cases is singular at the optimum point.

Part Five is entirely devoted to applications of matrix differential calculus
to the linear regression model. There is an exhaustive treatment of estimation
problems related to the fixed part of the model under various assumptions
concerning ranks and (other) constraints. Moreover, it contains topics relat-
ing to the stochastic part of the model, viz. estimation of the error variance
and prediction of the error term. There is also a small section on sensitivity
analysis. An introductory chapter deals with the necessary statistical prelim-
inaries.

Part Six deals with maximum likelihood estimation, which is of course an
ideal source for demonstrating the power of the propagated techniques. In the
first of three chapters, several models are analysed, inter alia the multivariate
normal distribution, the errors-in-variables model and the nonlinear regression
model. There is a discussion on how to deal with symmetry and positive defi-
niteness, and special attention is given to the information matrix. The second
chapter in this part deals with simultaneous equations under normality con-
ditions. It investigates both identification and estimation problems, subject
to various (non)linear constraints on the parameters. This part also discusses
full-information maximum likelihood (FIML) and limited- information maxi-
mum likelihood (LIML) with special attention to the derivation of asymptotic
variance matrices. The final chapter addresses itself to various psychometric
problems, inter alia principal components, multimode component analysis,
factor analysis, and canonical correlation.

All chapters contain many exercises. These are frequently meant to be
complementary to the main text.

A large number of books and papers have been published on the theory and
applications of matrix differential calculus. Without attempting to describe
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their relative virtues and particularities, the interested reader may wish to con-
sult Dwyer and McPhail (1948), Bodewig (1959), Wilkinson (1965), Dwyer
(1967), Neudecker (1967, 1969), Tracy and Dwyer (1969), Tracy and Singh
(1972), McDonald and Swaminathan (1973), MacRae (1974), Balestra (1976),
Bentler and Lee (1978), Henderson and Searle (1979), Wong and Wong (1979,
1980), Nel (1980), Rogers (1980), Wong (1980, 1985), Graham (1981), Mc-
Culloch (1982), Schönemann (1985), Magnus and Neudecker (1985), Pollock
(1985), Don (1986), and Kollo (1991). The papers by Henderson and Searle
(1979) and Nel (1980) and Rogers’ (1980) book contain extensive bibliogra-
phies.

The two authors share the responsibility for Parts One, Three, Five and
Six, although any new results in Part One are due to Magnus. Parts Two and
Four are due to Magnus, although Neudecker contributed some results to Part
Four. Magnus is also responsible for the writing and organization of the final
text.

We wish to thank our colleagues F. J. H. Don, R. D. H. Heijmans, D. S. G.
Pollock and R. Ramer for their critical remarks and contributions. The great-
est obligation is owed to Sue Kirkbride at the London School of Economics
who patiently and cheerfully typed and retyped the various versions of the
book. Partial financial support was provided by the Netherlands Organization
for the Advancement of Pure Research (Z. W. O.) and the Suntory Toyota
International Centre for Economics and Related Disciplines at the London
School of Economics.

Cross-References . References to equations, theorems and sections are given
as follows: Equation (1) refers to an equation within the same section; (2.1)
refers to Equation (1) in Section 2 within the same chapter; and (3.2.1) refers
to Equation (1) in Section 2 of Chapter 3. Similarly, we refer to theorems
and sections within the same chapter by a single serial number (Theorem 2,
Section 5), and to theorems and sections in other chapters by double numbers
(Theorem 3.2, Section 3.5).

Notation. The notation is mostly standard, except that matrices and vec-
tors are printed in italic, not in bold face. Special symbols are used to denote
the derivative (matrix) D and the Hessian (matrix) H. The differential opera-
tor is denoted by d. A complete list of all symbols used in the text is presented
in the ‘Index of Symbols’ at the end of the book.

London/Amsterdam Jan R. Magnus
April 1987 Heinz Neudecker

Preface to the first revised printing

Since this book first appeared — now almost four years ago — many of our
colleagues, students and other readers have pointed out typographical errors
and have made suggestions for improving the text. We are particularly grate-
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ful to R. D. H. Heijmans, J. F. Kiviet, I. J. Steyn and G. Trenkler. We owe
the greatest debt to F. Gerrish, formerly of the School of Mathematics in the
Polytechnic, Kingston-upon-Thames, who read Chapters 1–11 with awesome
precision and care and made numerous insightful suggestions and constructive
remarks. We hope that this printing will continue to trigger comments from
our readers.

London/Tilburg/Amsterdam Jan R. Magnus
February 1991 Heinz Neudecker

Preface to the 1999 revised edition

A further seven years have passed since our first revision in 1991. We are
happy to see that our book is still being used by colleagues and students.
In this revision we attempted to reach three goals. First, we made a serious
attempt to keep the book up-to-date by adding many recent references and
new exercises. Secondly, we made numerous small changes throughout the
text, improving the clarity of exposition. Finally, we corrected a number of
typographical and other errors.

The structure of the book and its philosophy are unchanged. Apart from
a large number of small changes, there are two major changes. First, we in-
terchanged Sections 12 and 13 of Chapter 1, since complex numbers need to
be discussed before eigenvalues and eigenvectors, and we corrected an error in
Theorem 1.7. Secondly, in Chapter 17 on psychometrics, we rewrote Sections
8–10 relating to the Eckart-Young theorem.

We are grateful to Karim Abadir, Paul Bekker, Hamparsum Bozdogan,
Michael Browne, Frank Gerrish, Kaddour Hadri, Tõnu Kollo, Shuangzhe Liu,
Daan Nel, Albert Satorra, Kazuo Shigemasu, Jos ten Berge, Peter ter Berg,
Götz Trenkler, Haruo Yanai and many others for their thoughtful and con-
structive comments. Of course, we welcome further comments from our read-
ers.

Tilburg/Amsterdam Jan R. Magnus
March 1998 Heinz Neudecker

Preface to the 2007 third edition

After the appearance of the second (revised) edition in 1999, the complete
text has been completely retyped in LATEX by Josette Janssen with expert
advice from Jozef Pijnenburg, both at Tilburg University. In the process of
retyping the manuscript, many small changes were made to improve the read-
ability and consistency of the text, but the structure of the book was not
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changed. The English LATEX version was then used as the basis for the Rus-
sian translation:

Matrichnoe Differenzial’noe Ischislenie s Prilozhenijami
k Statistike i Ekonometrike,

published by Fizmatlit Publishing House, Moscow, 2002.
The current third edition is based on the same LATEX text. A number of

small further corrections have been made. The numbering of chapters, sec-
tions, and theorems corresponds to the second (revised) edition of 1999. But
the page numbers do not correspond.

This edition appears only as a electronic version, and can be downloaded
without charge from Jan Magnus’s website:

http://center.uvt.nl/staff/magnus.

Comments are, as always, welcome.

Notation. The LATEX edition follows the notation of the 1999 Revised Edi-
tion, with the following three exceptions. First, the symbol for the sum vector
(1, 1, . . . , 1)′ has been altered from a calligraphic s to ı (dotless i); secondly,
the symbol i for imaginary root, has been replaced by the more common i;
and thirdly, v(A), the vector indicating the essentially distinct components of
a symmetric matrix A, has been replaced by v(A).

Tilburg/Schagen Jan R. Magnus
January 2007 Heinz Neudecker
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CHAPTER 1

Basic properties of vectors and

matrices

1 INTRODUCTION

In this chapter we summarize some of the well-known definitions and theorems
of matrix algebra. Most of the theorems will be proved.

2 SETS

A set is a collection of objects, called the elements (or members) of the set.
We write x ∈ S to mean ‘x is an element of S’, or ‘x belongs to S’. If x does
not belong to S we write x /∈ S. The set that contains no elements is called the
empty set, denoted ∅. If a set has at least one element, it is called non-empty.

Sometimes a set can be defined by displaying the elements in braces. For
example A = {0, 1} or

IN = {1, 2, 3, . . .}. (1)

Notice that A is a finite set (contains a finite number of elements), whereas
IN is an infinite set. If P is a property that any element of S has or does not
have, then

{x : x ∈ S, x satisfies P} (2)

denotes the set of all the elements of S that have property P .
A set A is called a subset of B, written A ⊂ B, whenever every element

of A also belongs to B. The notation A ⊂ B does not rule out the possibility
that A = B. If A ⊂ B and A 6= B, then we say that A is a proper subset of
B.

If A and B are two subsets of S, we define

A ∪B, (3)

3
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the union of A and B, as the set of elements of S that belong to A or to B
(or to both), and

A ∩B, (4)

the intersection of A and B, as the set of elements of S that belong to both A
and B. We say that A and B are (mutually) disjoint if they have no common
elements. That is, if

A ∩B = ∅. (5)

The complement of A relative to B, denoted by B −A, is the set {x : x ∈ B,
but x /∈ A}. The complement of A (relative to S) is sometimes denoted Ac.

The Cartesian product of two sets A and B, written A×B, is the set of all
ordered pairs (a, b) such that a ∈ A and b ∈ B. More generally, the Cartesian
product of n sets A1, A2, . . . , An, written

n∏

i=1

Ai, (6)

is the set of all ordered n-tuples (a1, a2, . . . , an) such that ai ∈ Ai (i =
1, . . . , n).

The set of (finite) real numbers (the one-dimensional Euclidean space)
is denoted by IR. The n-dimensional Euclidean space IRn is the Cartesian
product of n sets equal to IR, i.e.

IRn = IR × IR × · · · × IR (n times). (7)

The elements of IRn are thus the ordered n-tuples (x1, x2, . . . , xn) of real
numbers x1, x2, . . . , xn.

A set S of real numbers is said to be bounded if there exists a number M
such that |x| ≤M for all x ∈ S.

3 MATRICES: ADDITION AND MULTIPLICATION

An m× n matrix A is a rectangular array of real numbers

A =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn


 . (1)

We sometimes write A = (aij). An m× n matrix can be regarded as a point

in IRm×n. The real numbers aij are called the elements of A.

An m × 1 matrix is a point in IRm×1 (that is, in IRm) and is called a
(column) vector of order m×1. A 1×n matrix is called a row vector (of order
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1 × n). The elements of a vector are usually called its components. Matrices
are always denoted by capital letters, vectors by lower-case letters.

The sum of two matrices A and B of the same order is defined as

A+B = (aij) + (bij) = (aij + bij). (2)

The product of a matrix by a scalar λ is

λA = Aλ = (λaij). (3)

The following properties are now easily proved:

A+B = B +A, (4)

(A+B) + C = A+ (B + C), (5)

(λ+ µ)A = λA+ µA, (6)

λ(A+B) = λA+ λB, (7)

λ(µA) = (λµ)A. (8)

A matrix whose elements are all zero is called a null matrix and denoted 0.
We have, of course,

A+ (−1)A = 0. (9)

If A is an m× n matrix and B an n× p matrix (so that A has the same
number of columns as B has rows), then we define the product of A and B as

AB =




n∑

j=1

aijbjk


 . (10)

Thus, AB is an m × p matrix and its ik-th element is
∑n

j=1 aijbjk. The
following properties of the matrix product can be established:

(AB)C = A(BC), (11)

A(B + C) = AB +AC, (12)

(A+B)C = AC +BC. (13)

These relations hold provided the matrix products exist.
We note that the existence of AB does not imply the existence of BA; and

even when both products exist they are not generally equal. (Two matrices A
and B for which

AB = BA (14)

are said to commute.) We therefore distinguish between pre-multiplication
and post-multiplication: a given m × n matrix A can be pre-multiplied by a
p×m matrix B to form the product BA; it can also be post-multiplied by an
n× q matrix C to form AC.
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4 THE TRANSPOSE OF A MATRIX

The transpose of an m×n matrix A = (aij) is the n×m matrix, denoted A′,
whose ij-th element is aji.

We have

(A′)′ = A, (1)

(A+B)′ = A′ +B′, (2)

(AB)′ = B′A′. (3)

If x is an n× 1 vector then x′ is a 1 × n row vector and

x′x =

n∑

i=1

x2
i . (4)

The (Euclidean) norm of x is defined as

‖x‖ = (x′x)1/2. (5)

5 SQUARE MATRICES

A matrix is said to be square if it has as many rows as it has columns. A
square matrix A = (aij) is said to be

lower triangular if aij = 0 (i < j),
strictly lower triangular if aij = 0 (i ≤ j),
unit lower triangular if aij = 0 (i < j) and aii = 1 (all i),
upper triangular if aij = 0 (i > j),
strictly upper triangular if aij = 0 (i ≥ j),
unit upper triangular if aij = 0 (i > j) and aii = 1 (all i),
idempotent if A2 = A.

A square matrix A is triangular if it is either triangular or upper triangu-
lar (or both).

A real square matrix A = (aij) is said to be

symmetric if A′ = A,
skew symmetric if A′ = −A.

For any square n× n matrix A = (aij) we define dgA or dg(A) as

dgA =




a11 0 . . . 0
0 a22 . . . 0
...

...
...

0 0 . . . ann


 (1)
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or, alternatively,

dgA = diag(a11, a22, . . . , ann). (2)

If A = dg(A), we say that A is diagonal. A particular diagonal matrix is the
identity matrix,

I =




1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1


 = (δij), (3)

where δij = 1 if i = j and δij = 0 if i 6= j (δij is called the Kronecker delta).
We have

IA = AI = A (4)

if A and I have the same order.
A real square matrix A is said to be orthogonal if

AA′ = A′A = I (5)

and its columns are orthonormal. A rectangular (not square) matrix can still
have the property that AA′ = I or A′A = I, but not both. Such a matrix is
called semi-orthogonal.

Any matrix B satisfying

B2 = A (6)

is called a square root of A, denoted A1/2. Such a matrix need not be unique.

6 LINEAR FORMS AND QUADRATIC FORMS

Let a be an n × 1 vector, A an n × n matrix and B an n ×m matrix. The
expression a′x is called a linear form in x, the expression x′Ax is a quadratic
form in x, and the expression x′By a bilinear form in x and y. In quadratic
forms we may, without loss of generality, assume that A is symmetric, because
if not then we can replace A by (A+A′)/2:

x′Ax = x′
(
A+A′

2

)
x. (1)

Thus, let A be a symmetric matrix. We say that A is

positive definite if x′Ax > 0 for all x 6= 0,
positive semidefinite if x′Ax ≥ 0 for all x,
negative definite if x′Ax < 0 for all x 6= 0,
negative semidefinite if x′Ax ≤ 0 for all x,
indefinite if x′Ax > 0 for some x and x′Ax < 0 for some x.
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It is clear that the matrices BB′ and B′B are positive semidefinite, and that
A is negative (semi)definite if and only if −A is positive (semi)definite. A
square null matrix is both positive and negative semidefinite.

The following two theorems are often useful.

Theorem 1

Let A (m × n), B (n × p) and C (n × p) be matrices and let x (n × 1) be a
vector. Then

(a) Ax = 0 ⇐⇒ A′Ax = 0,

(b) AB = 0 ⇐⇒ A′AB = 0,

(c) A′AB = A′AC ⇐⇒ AB = AC.

Proof. (a) Clearly Ax = 0 =⇒ A′Ax = 0. Conversely, if A′Ax = 0, then
(Ax)′(Ax) = x′A′Ax = 0 and hence Ax = 0. (b) This follows from (a). (c)
follows from (b) by substituting B − C for B in (b). 2

Theorem 2

Let A be an m× n matrix, B and C n× n matrices, B symmetric. Then

(a) Ax = 0 for all n× 1 vectors x if and only if A = 0,

(b) x′Bx = 0 for all n× 1 vectors x if and only if B = 0,

(c) x′Cx = 0 for all n× 1 vectors x if and only if C′ = −C.

Proof. The proof is easy and is left to the reader. 2

7 THE RANK OF A MATRIX

A set of vectors x1, . . . , xn is said to be linearly independent if
∑
αixi = 0

implies that all αi = 0. If x1, . . . , xn are not linearly independent, they are
said to be linearly dependent.

Let A be anm×nmatrix. The column rank ofA is the maximum number of
linearly independent columns it contains. The row rank of A is the maximum
number of linearly independent rows it contains. It may be shown that the
column rank of A is equal to its row rank. Hence the concept of rank is
unambiguous. We denote the rank of A by

r(A). (1)

It is clear that

r(A) ≤ min(m,n). (2)
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If r(A) = m, we say that A has full row rank. If r(A) = n, we say that A has
full column rank. If r(A) = 0, then A is the null matrix, and conversely, if A
is the null matrix, then r(A) = 0.

We have the following important results concerning ranks:

r(A) = r(A′) = r(A′A) = r(AA′), (3)

r(AB) ≤ min(r(A), r(B)), (4)

r(AB) = r(A) if B is square and of full rank, (5)

r(A +B) ≤ r(A) + r(B), (6)

and finally, if A is an m× n matrix and Ax = 0 for some x 6= 0, then

r(A) ≤ n− 1. (7)

The column space of A (m× n), denoted M(A), is the set of vectors

M(A) = {y : y = Ax for some x in IRn}. (8)

Thus, M(A) is the vector space generated by the columns of A. The dimension
of this vector space is r(A). We have

M(A) = M(AA′) (9)

for any matrix A.

8 THE INVERSE

Let A be a square matrix of order n × n. We say that A is non-singular if
r(A) = n, and that A is singular if r(A) < n.

If A is non-singular, there exists a non-singular matrix B such that

AB = BA = In. (1)

The matrix B, denoted A−1, is unique and is called the inverse of A. We have

(A−1)′ = (A′)−1, (2)

(AB)−1 = B−1A−1, (3)

if the inverses exist.
A square matrix P is said to be a permutation matrix if each row and each

column of P contains a single element 1, and the remaining elements are zero.
An n×n permutation matrix thus contains n ones and n(n− 1) zeros. It can
be proved that any permutation matrix is non-singular. In fact, it is even true
that P is orthogonal, that is,

P−1 = P ′ (4)

for any permutation matrix P .



10 Basic properties of vectors and matrices [Ch. 1

9 THE DETERMINANT

Associated with any n× n matrix A is the determinant |A| defined by

|A| =
∑

(−1)φ(j1,...,jn)
n∏

i=1

aiji (1)

where the summation is taken over all permutations (j1, . . . , jn) of the set of
integers (1, . . . , n), and φ(j1, . . . , jn) is the number of transpositions required
to change (1, . . . , n) into (j1, . . . , jn). (A transposition consists of interchang-
ing two numbers. It can be shown that the number of transpositions required
to transform (1, . . . , n) into (j1, . . . , jn) is always even or always odd, so that
(−1)φ(j1,...,jn) is consistently defined.)

We have

|AB| = |A||B|, (2)

|A′| = |A|, (3)

|αA| = αn|A| for any scalar α, (4)

|A−1| = |A|−1 if A is non-singular, (5)

|In| = 1. (6)

A submatrix of A is the rectangular array obtained from A by deleting rows
and columns. A minor is the determinant of a square submatrix of A. The
minor of an element aij is the determinant of the submatrix of A obtained by
deleting the i-th row and j-th column. The cofactor of aij , say cij , is (−1)i+j

times the minor of aij . The matrix C = (cij) is called the cofactor matrix of
A. The transpose of C is called the adjoint of A and will be denoted as A#.

We have

|A| =
n∑

j=1

aijcij =
n∑

j=1

ajkcjk (i, k = 1, . . . , n), (7)

AA# = A#A = |A|I, (8)

(AB)# = B#A#. (9)

For any square matrix A, a principal submatrix of A is obtained by deleting
corresponding rows and columns. The determinant of a principal submatrix
is called a principal minor.

Exercises

1. If A is non-singular, show that A# = |A|A−1.

2. Prove that the determinant of a triangular matrix is the product of its
diagonal elements.
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10 THE TRACE

The trace of a square n×n matrix A, denoted trA or tr(A), is the sum of its
diagonal elements:

trA =

n∑

i=1

aii. (1)

We have

tr(A+B) = trA+ trB, (2)

tr(λA) = λ trA if λ is a scalar, (3)

trA′ = trA, (4)

trAB = trBA. (5)

We note in (5) that AB and BA, though both square, need not be of the same
order.

Corresponding to the vector (Euclidean) norm

‖x‖ = (x′x)1/2 (6)

given in (4.5), we now define the matrix (Euclidean) norm as

‖A‖ = (trA′A)1/2. (7)

We have

trA′A ≥ 0 (8)

with equality if and only if A = 0.

11 PARTITIONED MATRICES

Let A be an m× n matrix. We can partition A as

A =

(
A11 A12

A21 A22

)
, (1)

where A11 is m1 × n1, A12 is m1 × n2, A21 is m2 × n1, A22 is m2 × n2, and
m1 +m2 = m, and n1 + n2 = n.

Let B (m × n) be similarly partitioned into submatrices Bij (i, j = 1, 2).
Then

A+B =

(
A11 +B11 A12 +B12

A21 +B21 A22 +B22

)
. (2)
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Now let C (n × p) be partitioned into submatrices Cij (i, j = 1, 2) such that
C11 has n1 rows (and hence C12 also has n1 rows and C21 and C22 have n2

rows). Then we may post-multiply A by C yielding

AC =

(
A11C11 +A12C21 A11C12 + A12C22

A21C11 +A22C21 A21C12 + A22C22

)
. (3)

The transpose of the matrix A given in (1) is

A′ =

(
A′

11 A′
21

A′
12 A′

22

)
. (4)

If the off-diagonal blocks A12 and A21 are both zero, and A11 and A22 are
square and non-singular, then A is also non-singular and its inverse is

A−1 =

(
A−1

11 0
0 A−1

22

)
. (5)

More generally, if A as given in (1) is non-singular and D = A22−A21A
−1
11 A12

is also non-singular, then

A−1 =

(
A−1

11 +A−1
11 A12D

−1A21A
−1
11 −A−1

11 A12D
−1

−D−1A21A
−1
11 D−1

)
. (6)

Alternatively, if A is non-singular and E = A11 −A12A
−1
22 A21 is non-singular,

then

A−1 =

(
E−1 −E−1A12A

−1
22

−A−1
22 A21E

−1 A−1
22 +A−1

22 A21E
−1A12A

−1
22

)
. (7)

Of course, if both D and E are non-singular, blocks in (6) and (7) can be
interchanged. The results (6) and (7) can be easily extended to a 3 × 3
matrix partition. We only consider the following symmetric case where two of
the off-diagonal blocks are null matrices.

Theorem 3

If the matrix
(
A B C
B′ D 0
C′ 0 E

)
(8)

is symmetric and non-singular, its inverse is given by




Q−1 −Q−1BD−1 −Q−1CE−1

−D−1B′Q−1 D−1 +D−1B′Q−1BD−1 D−1B′Q−1CE−1

−E−1C′Q−1 E−1C′Q−1BD−1 E−1 + E−1C′Q−1CE−1


 (9)
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where

Q = A−BD−1B′ − CE−1C′. (10)

Proof. The proof is left to the reader. 2

As to the determinants of partitioned matrices, we note that
∣∣∣∣
A11 A12

0 A22

∣∣∣∣ = |A11||A22| =

∣∣∣∣
A11 0
A21 A22

∣∣∣∣ (11)

if both A11 and A22 are square matrices.

Exercises

1. Find the determinant and inverse (if it exists) of

B =

(
A 0
a′ 1

)
.

2. If |A| 6= 0, prove that

∣∣∣∣
A b
a′ α

∣∣∣∣ = (α− a′A−1b)|A|.

3. If α 6= 0, prove that
∣∣∣∣
A b
a′ α

∣∣∣∣ = α|A − (1/α)ba′|.

12 COMPLEX MATRICES

If X and Y are real matrices of the same order, a complex matrix Z can be
defined as

Z = Z + iY, (1)

where i denotes the imaginary unit with the property i2 = −1. The complex
conjugate of Z, denoted Z∗, is defined as

Z∗ = X ′ − iY ′. (2)

If Z is real, then Z∗ = Z ′. If Z is a scalar, say ζ, we usually write ζ̄ instead
of ζ∗.

A square complex matrix Z is said to be Hermitian if Z∗ = Z (the complex
equivalent to a symmetric matrix) and unitary if Z∗Z = I (the complex
equivalent to an orthogonal matrix).
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We shall see in Theorem 4 that the eigenvalues of a real symmetric matrix
are real. In general, however, eigenvalues (and hence eigenvectors) are com-
plex. In this book, complex numbers appear only in connection with eigen-
values and eigenvectors of non-symmetric matrices (Chapter 8). A detailed
treatment is therefore omitted. Matrices and vectors are assumed to be real,
unless it is explicitly specified that they are complex.

13 EIGENVALUES AND EIGENVECTORS

Let A be a square matrix, say n× n. The eigenvalues of A are defined as the
roots of the characteristic equation

|λIn −A| = 0. (1)

Equation (1) has n roots, in general complex. Let λ be an eigenvalue of A.
Then there exist vectors x and y (x 6= 0, y 6= 0) such that

(λI −A)x = 0, y′(λI −A) = 0. (2)

That is,

Ax = λx y′A = λy′. (3)

The vectors x and y are called a (column) eigenvector and row eigenvector
of A associated with the eigenvalue λ. Eigenvectors are usually normalized in
some way to make them unique, for example by x′x = y′y = 1 (when x and
y are real).

Not all roots of the characteristic equation need to be different. Each root is
counted a number of times equal to its multiplicity. When a root (eigenvalue)
appears more than once it is called a multiple eigenvalue; if it appears only
once it is called a simple eigenvalue.

Although eigenvalues are in general complex, the eigenvalues of a real
symmetric matrix are always real.

Theorem 4

A real symmetric matrix has only real eigenvalues.

Proof. Let λ be an eigenvalue of a real symmetric matrix A and let x = u+ iv
be an associated eigenvector. Then

A(u + iv) = λ(u + iv) (4)

and hence

(u − iv)′A(u+ iv) = λ(u − iv)′(u + iv), (5)

which leads to

u′Au+ v′Av = λ(u′u+ v′v) (6)
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because of the symmetry of A. This implies that λ is real. 2

Let us prove the following three results, which will be useful to us later.

Theorem 5

If A is an n × n matrix and G is a non-singular n × n matrix, then A and
G−1AG have the same set of eigenvalues (with the same multiplicities).

Proof. From

λIn −G−1AG = G−1(λIn −A)G (7)

we obtain

|λIn −G−1AG| = |G−1||λIn −A||G| = |λIn −A| (8)

and the result follows. 2

Theorem 6

A singular matrix has at least one zero eigenvalue.

Proof. If A is singular then |A| = 0 and hence |λI −A| = 0 for λ = 0. 2

Theorem 7

An idempotent matrix has only eigenvalues 0 or 1. All eigenvalues of a unitary
matrix have unit modulus.

Proof. Let A be idempotent. Then A2 = A. Thus, if Ax = λx, then

λx = Ax = A2x = λAx = λ2x (9)

and hence λ = λ2, which implies λ = 0 or λ = 1.
If A is unitary, then A∗A = I. Thus, if Ax = λx, then

x∗A∗ = λ̄x∗, (10)

using the notation of Section 12. Hence

x∗x = x∗A∗Ax = λ̄λx∗x. (11)

Since x∗x 6= 0, we obtain λ̄λ = 1 and hence |λ| = 1. 2

An important theorem regarding positive definite matrices is stated below.

Theorem 8

A symmetric matrix is positive definite (positive semidefinite) if and only if
all its eigenvalues are positive (non-negative).
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Proof. If A is positive definite and Ax = λx, then x′Ax = λx′x. Now, x′Ax > 0
and x′x > 0 imply λ > 0. The converse will not be proved here. (It follows
from Theorem 13.) 2

Next, let us prove Theorem 9.

Theorem 9

Let A be m× n and let B be n×m (n ≥ m). Then the non-zero eigenvalues
of BA and AB are identical, and |Im −AB| = |In −BA|.

Proof. Taking determinants on both sides of the equality
(
Im −AB A

0 In

)(
Im 0
B In

)
=

(
Im 0
B In

)(
Im A
0 In −BA

)
, (12)

we obtain

|Im −AB| = |In −BA|. (13)

Now, let λ 6= 0. Then

|λIn −BA| = λn|In −B(λ−1A)|
= λn|Im − (λ−1A)B|
= λn−m|λIm −AB|. (14)

Hence the non-zero eigenvalues of BA are the same as the non-zero eigenval-
ues of AB, and this is equivalent to the statement in the theorem. 2

Without proof we state the following famous result.

Theorem 10 (Cayley-Hamilton)

Let A be an n× n matrix with eigenvalues λ1, . . . , λn. Then

n∏

i=1

(λiIn −A) = 0. (15)

Finally, we present the following result on eigenvectors.

Theorem 11

Eigenvectors associated with distinct eigenvalues are linearly independent.

Proof. Let Ax1 = λ1x1, Ax2 = λ2x2, and λ1 6= λ2. Assume that x1 and x2

are linearly dependent. Then there is an α 6= 0 such that x2 = αx1, and hence

αλ1x1 = αAx1 = Ax2 = λ2x2 = αλ2x1. (16)
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That is

α(λ1 − λ2)x1 = 0. (17)

Since α 6= 0 and λ1 6= λ2, (17) implies x1 = 0, a contradiction. 2

Exercise

1. Show that ∣∣∣∣
0 Im
Im 0

∣∣∣∣ = (−1)m.

14 SCHUR’S DECOMPOSITION THEOREM

In the next few sections we present three decomposition theorems: Schur’s
theorem, Jordan’s theorem and the singular-value decomposition. Each of
these theorems will prove useful later in this book. We first state Schur’s
theorem.

Theorem 12 (Schur decomposition)

Let A be an n × n matrix. Then there exist a unitary n × n matrix S (that
is, S∗S = In) and an upper triangular matrix M whose diagonal elements are
the eigenvalues of A, such that

S∗AS = M. (1)

The most important special case of Schur’s decomposition theorem is the
case where A is symmetric.

Theorem 13

Let A be a real symmetric n × n matrix. Then there exist an orthogonal
n× n matrix S (that is S′S = In) whose columns are eigenvectors of A and
a diagonal matrix Λ whose diagonal elements are the eigenvalues of A, such
that

S′AS = Λ. (2)

Proof. Using Theorem 12, there exists a unitary matrix S = R+ iT with real
R and T and an upper triangular matrix M such that S∗AS = M . Then,

M = S∗AS = (R− iT )′A(R+ iT )

= (R′AR + T ′AT ) + i(R′AT − T ′AR) (3)

and hence, using the symmetry of A,

M +M ′ = 2(R′AR+ T ′AT ). (4)
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It follows that M +M ′ is a real matrix and hence, since M is triangular, that
M is a real matrix. We thus obtain, from (3),

M = R′AR + T ′AT. (5)

Since A is symmetric, M is symmetric. But, since M is also triangular, M
must be diagonal. The columns of S are then eigenvectors of A and, since the
diagonal elements of M are real, S can be chosen to be real as well. 2

Exercises

1. Let A be a real symmetric n × n matrix with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn. Use Theorem 13 to prove that

λ1 ≤ x′Ax

x′x
≤ λn.

2. Hence show that, for any m× n matrix A,

‖Ax‖ ≤ µ‖x‖,
where µ2 denotes the largest eigenvalue of A′A.

3. Let A be an m×n matrix of rank r. Show that there exists an n×(n−r)
matrix S such that

AS = 0, S′S = In−r.

4. Let A be anm×n matrix of rank r. Let S be a matrix such that AS = 0.
Show that r(S) ≤ n− r.

15 THE JORDAN DECOMPOSITION

Schur’s theorem tells us that there exists, for every square matrix A, a unitary
(possibly orthogonal) matrix S which ‘transforms’ A into an upper triangular
matrix M , whose diagonal elements are the eigenvalues of A.

Jordan’s theorem similarly states that there exists a non-singular matrix,
say T , which transforms A into an upper triangular matrix M , whose diagonal
elements are the eigenvalues of A. The difference between the two decomposi-
tion theorems is that in Jordan’s theorem less structure is put on the matrix T
(non-singular, but not necessarily unitary) and more structure on the matrix
M .

Theorem 14 (Jordan decomposition)

Let A be an n× n matrix and denote by Jk(λ) a k × k matrix of the form

Jk(λ) =




λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . λ




(1)
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where J1(λ) = λ a so-called Jordan block. Then there exists a non-singular
n× n matrix T such that

T−1AT =




Jk1(λ1) 0 . . . 0
0 Jk2(λ2) . . . 0
...

...
...

0 0 . . . Jkr
(λr)


 (2)

with k1 + k2 + · · · + kr = n. The λi are the eigenvalues of A, not necessarily
distinct.

The most important special case of Theorem 14 is Theorem 15.

Theorem 15

Let A be an n× n matrix with distinct eigenvalues. Then there exist a non-
singular n×nmatrix T and a diagonal n×nmatrix Λ whose diagonal elements
are the eigenvalues of A, such that

T−1AT = Λ. (3)

Proof. Immediate from Theorem 14 (or Theorem 11). 2

Exercises

1. Show that (λIk − Jk(λ))
k = 0, and use this fact to prove Theorem 10.

2. Show that Theorem 15 remains valid when A is complex.

16 THE SINGULAR-VALUE DECOMPOSITION

The third important decomposition theorem is the singular-value decomposi-
tion.

Theorem 16 (singular-value decomposition)

Let A be a real m× n matrix with r(A) = r > 0. Then there exist an m× r
matrix S such that S′S = Ir, an n× r matrix T such that T ′T = Ir and an
r × r diagonal matrix Λ with positive diagonal elements, such that

A = SΛ1/2T ′. (1)

Proof. Since AA′ is a real m × m symmetric (in fact, positive semidefinite)
matrix of rank r (by (7.3)), its non-zero eigenvalues are all positive (Theorem
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8). From Theorem 13 we know that there exists an orthogonal m×m matrix
(S : S∗) such that

AA′S = SΛ, AA′S∗ = 0, SS′ + S∗S
′
∗ = Im, (2)

where Λ is an r × r diagonal matrix having these r positive eigenvalues as
diagonal elements. Define T = A′SΛ−1/2. Then we see that

A′AT = TΛ, T ′T = Ir. (3)

Thus, since (2) implies A′S∗ = 0 by Theorem 1(b), we have

A = (SS′ + S∗S
′
∗)A = SS′A = SΛ1/2(A′SΛ−1/2)′ = SΛ1/2T ′, (4)

which concludes the proof. 2

We see from (2) and (3) that the semi-orthogonal matrices S and T satisfy

AA′S = SΛ, A′AT = TΛ. (5)

Hence, Λ contains the r non-zero eigenvalues of AA′ (and of A′A) and S (by
construction) and T contain corresponding eigenvectors. A common mistake
in applying the singular-value decomposition is to find S, T and Λ from (5).
This is incorrect because, given S, T is not unique! The correct procedure is to
find S and Λ from AA′S = SΛ and then define T = A′SΛ−1/2. Alternatively,
we can find T and Λ from A′AT = TΛ and define S = ATΛ−1/2.

17 FURTHER RESULTS CONCERNING EIGENVALUES

Let us now prove the following theorems, all of which concern eigenvalues.

Theorem 17

Let A be a square n× n matrix with eigenvalues λ1, . . . , λn. Then

trA =

n∑

i=1

λi (1)

and

|A| =

n∏

i=1

λi. (2)

Proof. We write, using Theorem 12, S∗AS = M . Then

trA = trSMS∗ = trMS∗S = trM =
∑

i

λi (3)
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and

|A| = |SMS∗| = |S||M ||S∗| = |M | =
∏

i

λi, (4)

thus completing the proof. 2

Theorem 18

If A has r non-zero eigenvalues, then r(A) ≥ r.

Proof. We write again, using Theorem 12, S∗AS = M . We partition

M =

(
M1 M2

0 M3

)
, (5)

where M1 is a non-singular upper triangular r × r matrix and M3 is strictly
upper triangular. Since r(A) = r(M) ≥ r(M1) = r, the result follows. 2

The following example shows that it is indeed possible that r(A) > r. Let

A =

(
1 −1
1 −1

)
. (6)

Then r(A) = 1 and both eigenvalues of A are zero.

Theorem 19

Let A be an n× n matrix. If λ is a simple eigenvalue of A, then r(λI −A) =
n− 1. Conversely, if r(λI −A) = n− 1, then λ is an eigenvalue of A, but not
necessarily a simple eigenvalue.

Proof. Let λ1, . . . , λn be the eigenvalues of A. Then B = λI − A has eigen-
values λ − λi (i = 1, . . . , n) and, since λ is a simple eigenvalue of A,B has a
simple eigenvalue zero. Hence r(B) ≤ n− 1. Also, since B has n− 1 non-zero
eigenvalues, r(B) ≥ n− 1 (Theorem 18). Hence r(B) = n − 1. Conversely, if
r(B) = n − 1, then B has at least one zero eigenvalue and hence λ = λi for
at least one i. 2

Corollary

An n× n matrix with a simple zero eigenvalue has rank n− 1.

Theorem 20

If A is symmetric and has r non-zero eigenvalues, then r(A) = r.

Proof. Using Theorem 13, we have S′AS = Λ and hence

r(A) = r(SΛS′) = r(Λ) = r (7)
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and the result follows. 2

Theorem 21

If A is an idempotent matrix with r eigenvalues equal to one, then r(A) =
trA = r

Proof. By Theorem 12, S∗AS = M (upper triangular), where

M =

(
M1 M2

0 M3

)
(8)

with M1 a unit upper triangular r × r matrix and M3 a strictly upper trian-
gular matrix. Since A is idempotent, so is M and hence

(
M2

1 M1M2 +M2M3

0 M2
3

)
=

(
M1 M2

0 M3

)
. (9)

This implies that M1 is idempotent; it is non-singular, hence M1 = Ir (see
Exercise 1). Also, M3 is idempotent and all its eigenvalues are zero, hence
M3 = 0 (see Exercise 2), so that

M =

(
Ir M2

0 0

)
. (10)

Hence,

r(A) = r(M) = r(Ir : M2) = r. (11)

Also, by Theorem 17,

trA = (sum of eigenvalues of A) = r, (12)

thus completing the proof. 2

We note that in Theorem 21 the matrix A is not required to be symmetric.
If A is idempotent and symmetric, then it is positive semidefinite. Since its
eigenvalues are only 0 and 1, it then follows from Theorem 13 that A can be
written as

A = GG′, G′G = Ir (13)

where r denotes the rank of A.

Exercises

1. The only non-singular idempotent matrix is the identity matrix.

2. The only idempotent matrix whose eigenvalues are all zero is the null
matrix.
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3. If A is a positive semidefinite n × n matrix with r(A) = r, then there
exists an n× r matrix G such that

A = GG′, G′G = Λ (14)

where Λ is an r × r diagonal matrix containing the positive eigenvalues
of A.

18 POSITIVE (SEMI)DEFINITE MATRICES

Positive (semi)definite matrices were introduced in Section 6. We have already
seen that AA′ and A′A are both positive semidefinite and that the eigenvalues
of a positive (semi)definite matrix are all positive (non-negative) (Theorem
8). We now present some more properties of positive (semi)definite matrices.

Theorem 22

Let A be positive definite and B positive semidefinite. Then

|A+B| ≥ |A| (1)

with equality if and only if B = 0.

Proof. Let Λ be a positive definite diagonal matrix such that

S′AS = Λ, S′S = I. (2)

Then, SS′ = I and

A+B = SΛ1/2(I + Λ−1/2S′BSΛ−1/2)Λ1/2S′ (3)

and, hence, using (9.2),

|A+B| = |SΛ1/2||I + Λ−1/2S′BSΛ−1/2||Λ1/2S′|
= |SΛ1/2Λ1/2S′||I + Λ−1/2S′BSΛ−1/2|
= |A||I + Λ−1/2S′BSΛ−1/2|. (4)

If B = 0 then |A+B| = |A|. If B 6= 0, then the matrix Λ−1/2S′BSΛ−1/2 will
be positive semidefinite with at least one positive eigenvalue. Hence we have
|I + Λ−1/2S′BSΛ−1/2| > 1 and |A+B| > |A|. 2

Theorem 23

Let A be positive definite and B symmetric of the same order. Then there
exist a non-singular matrix P and a diagonal matrix Λ such that

A = PP ′, B = PΛP ′. (5)
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Proof. Let C = A−1/2BA−1/2. Since C is symmetric, there exist by Theorem
13 an orthogonal matrix S and a diagonal matrix Λ such that

S′CS = Λ, S′S = I. (6)

Now define

P = A1/2S. (7)

Then,

PP ′ = A1/2SS′A1/2 = A1/2A1/2 = A (8)

and

PΛP ′ = A1/2SΛS′A1/2 = A1/2CA1/2 = A1/2A−1/2BA−1/2A1/2 = B. (9)

(If B is positive semidefinite, so is Λ.) 2

For two symmetric matrices A and B we shall write A ≥ B (or B ≤ A)
if A− B is positive semidefinite, and A > B (or B < A) if A − B is positive
definite.

Theorem 24

Let A and B be positive definite n × n matrices. Then A > B if and only if
B−1 > A−1.

Proof. By Theorem 23 there exist a non-singular matrix P and a positive
definite diagonal matrix Λ = diag(λ1, . . . , λn) such that

A = PP ′, B = PΛP ′. (10)

Then

A−B = P (I − Λ)P ′, B−1 −A−1 = P ′−1
(Λ−1 − I)P−1. (11)

If A−B is positive definite, then I−Λ is positive definite and hence 0 < λi <
1 (i = 1, . . . , n). This implies that Λ−1 − I is positive definite and hence that
B−1 −A−1 is positive definite. 2

Theorem 25

Let A and B be positive definite matrices such that A−B is positive semidef-
inite. Then |A| ≥ |B| with equality if and only if A = B.

Proof. Let C = A−B. Then B is positive definite and C is positive semidefi-
nite. Thus, by Theorem 22, |B +C| ≥ |B| with equality if and only if C = 0,
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that is, |A| ≥ |B| with equality if and only if A = B. 2

A useful special case of Theorem 25 is Theorem 26.

Theorem 26

Let A be positive definite with |A| = 1. If I −A is also positive semidefinite,
then A = I.

Proof. This follows immediately from Theorem 25. 2

19 THREE FURTHER RESULTS FOR POSITIVE DEFINITE
MATRICES

Let us now prove Theorem 27.

Theorem 27

Let A be a positive definite n× n matrix, and let B be the (n+ 1) × (n+ 1)
matrix

B =

(
A b
b′ α

)
. (1)

Then, (i)

|B| ≤ α|A| (2)

with equality if and only if b = 0; and (ii) B is positive definite if and only if
|B| > 0.

Proof. Define the (n+ 1) × (n+ 1) matrix

P =

(
In −A−1b
0′ 1

)
. (3)

Then

P ′BP =

(
A 0
0′ α− b′A−1b

)
, (4)

so that

|B| = |P ′BP | = |A|(α − b′A−1b). (5)

(Compare Exercise 11.2.) Statement (i) of the theorem is an immediate conse-
quence of (5). To prove (ii) we note that |B| > 0 if and only if α− b′A−1b > 0
(from (5)), which is the case if and only if P ′BP is positive definite (from
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(4)). This in turn is true if and only if B is positive definite. 2

An immediate consequence of Theorem 27, proved by induction, is the
following.

Theorem 28

If A = (aij) is a positive definite n× n matrix, then

|A| ≤
n∏

i=1

aii (6)

with equality if and only if A is diagonal.

Another consequence of Theorem 27 is Theorem 29.

Theorem 29

A symmetric n × n matrix A is positive definite if and only if all principal
minors |Ak| (k = 1, . . . , n) are positive.

Note. The k× k matrix Ak is obtained from A by deleting the last n− k rows
and columns of A. Notice that An = A.

Proof. Let Ek = (Ik : 0) be a k×n matrix, so that Ak = EkAE
′
k. Let y be an

arbitrary k × 1 vector, y 6= 0. Then

y′Aky = (E′
ky)

′A(E′
ky) > 0 (7)

since E′
ky 6= 0 and A is positive definite. Hence Ak is positive definite, and,

in particular, |Ak| > 0.
The converse follows by repeated application of Theorem 27 (ii). 2

Exercises

1. If A is positive definite show that the matrix
(
A b
b′ b′A−1b

)

is positive semidefinite and singular, and find the eigenvector associated
with the zero eigenvalue.

2. Hence show that, for positive definite A,

x′Ax− 2b′x ≥ −b′A−1b

for every x, with equality if and only if x = A−1b.
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20 A USEFUL RESULT

If A is a positive definite n×n matrix, then, in accordance with Theorem 28,

|A| =

n∏

i=1

aii (1)

if and only if A is diagonal. If A is merely symmetric, then Equation (1),
while obviously necessary, is no longer sufficient for the diagonality of A. For
example, the matrix

A =

(
2 3 3
3 2 3
3 3 2

)
(2)

has determinant |A| = 8 (its eigenvalues are −1, −1 and 8), thus satisfying
(1), but A is not diagonal.

Theorem 30 gives a necessary and sufficient condition for the diagonality
of a symmetric matrix.

Theorem 30

A real symmetric matrix is diagonal if and only if its eigenvalues and its
diagonal elements coincide.

Proof. Let A = (aij) be a symmetric n × n matrix. The ‘only if’ part of the
theorem is trivial. To prove the ‘if’ part, assume that λi(A) = aii, i = 1, . . . , n,
and consider the matrix

B = A+ kI, (3)

where k > 0 is such that B is positive definite. Then

λi(B) = λi(A) + k = aii + k = bii (i = 1, . . . , n), (4)

and hence

|B| =

n∏

1

λi(B) =

n∏

i=1

bii. (5)

It then follows from Theorem 28 that B is diagonal, and hence that A is
diagonal. 2

MISCELLANEOUS EXERCISES

1. If A and B are square matrices such that AB = 0, A 6= 0, B 6= 0, then
prove that |A| = |B| = 0.
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2. If x and y are vectors of the same order, prove that x′y = tr yx′.

3. Let P and Q be square matrices and |Q| 6= 0. Show that
∣∣∣∣
P R
S Q

∣∣∣∣ = |Q||P −RQ−1S|.

4. Show that (I −AB)−1 = I +A(I −BA)−1B, if the inverses exist.

5. Show that

(αI −A)−1 − (βI −A)−1 = (β − α)(βI −A)−1(αI −A)−1.

6. If A is positive definite, show that A+A−1−2I is positive semidefinite.

7. For any symmetric matrices A and B, show that AB − BA is skew
symmetric.

8. Prove that the eigenvalues λi of (A+B)−1A, where A is positive semidef-
inite and B is positive definite, satisfy 0 ≤ λi < 1.

9. Let x and y be n× 1 vectors. Prove that xy′ has n− 1 zero eigenvalues
and one eigenvalue x′y.

10. Show that |I + xy′| = 1 + x′y.

11. Let µ = 1 + x′y. If µ 6= 0, show that (I + xy′)−1 = I − (1/µ)xy′.

12. Show that (I +AA′)−1A = A(I +A′A)−1.

13. Show that A(A′A)1/2 = (AA′)1/2A.

14. (Monotonicity of the entropic complexity.) Let An be a positive definite
n× n matrix and define

ϕ(n) =
n

2
log tr(An/n) − 1

2
log |An|.

Let An+1 be a positive definite (n+ 1) × (n+ 1) matrix such that

An+1 =

(
An an
a′n αn

)
.

Then,
ϕ(n+ 1) ≥ ϕ(n)

with equality if and only if

an = 0, αn = trAn/n

(Bozdogan 1990, 1994).

15. Let A be positive definite, X ′X = I, and B = XX ′A − AXX ′. Show
that

|X ′AX ||X ′A−1X | = |A+B|/|A|
(Bloomfield and Watson 1975).
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CHAPTER 2

Kronecker products, the vec

operator and the

Moore-Penrose inverse

1 INTRODUCTION

This chapter develops some matrix tools that will prove useful to us later. The
first of these is the Kronecker product, which transforms two matrices A =
(aij) and B = (bst) into a matrix C = (aijbst). The vec operator transforms
a matrix into a vector by stacking its columns one underneath the other.
We shall see that the Kronecker product and the vec operator are intimately
connected. Finally we discuss the Moore-Penrose inverse, which generalizes
the concept of the inverse of a non-singular matrix to singular square matrices
and rectangular matrices.

2 THE KRONECKER PRODUCT

Let A be an m×n matrix and B a p× q matrix. The mp×nq matrix defined
by




a11B . . . a1nB
...

...
am1B . . . amnB


 (1)

is called the Kronecker product of A and B and is written A⊗B.
Observe that, while the matrix product AB only exists if the number of

columns in A equals the number of rows in B or if either A or B is a scalar,
the Kronecker product A⊗B is defined for any pair of matrices A and B.

31
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The following three properties justify the name Kronecker product:

A⊗B ⊗ C = (A⊗B) ⊗ C = A⊗ (B ⊗ C), (2)

(A+B) ⊗ (C +D) = A⊗ C +A⊗D +B ⊗ C +B ⊗D, (3)

if A+B and C +D exist, and

(A⊗B)(C ⊗D) = AC ⊗BD, (4)

if AC and BD exist.
If α is a scalar, then

α⊗A = αA = Aα = A⊗ α. (5)

(This property can be used, for example, to prove that (A⊗ b)B = (AB)⊗ b,
by writing B = B⊗ 1.) Another useful property concerns two column vectors
a and b (not necessarily of the same order):

a′ ⊗ b = ba′ = b⊗ a′. (6)

The transpose of a Kronecker product is

(A⊗B)′ = A′ ⊗B′. (7)

If A and B are square matrices (not necessarily of the same order), then

tr(A⊗B) = (trA)(trB). (8)

If A and B are non-singular, then

(A⊗B)−1 = A−1 ⊗B−1. (9)

Exercises

1. Prove properties (2)–(9) above.

2. If A is a partitioned matrix,

A =

(
A11 A12

A21 A22

)
,

then A⊗B takes the form

A⊗B =

(
A11 ⊗B A12 ⊗B
A21 ⊗B A22 ⊗B

)
.
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3 EIGENVALUES OF A KRONECKER PRODUCT

Let us now demonstrate the following result.

Theorem 1

Let A be an m ×m matrix with eigenvalues λ1, λ2, . . . , λm, and let B be a
p×pmatrix with eigenvalues µ1, µ2, . . . , µp. Then the mp eigenvalues of A⊗B
are λiµj (i = 1, . . . ,m; j = 1, . . . , p).

Proof. By Schur’s theorem (Theorem 1.12) there exist non-singular (in fact,
unitary) matrices S and T such that

S−1AS = L, T−1BT = M, (1)

where L and M are upper triangular matrices whose diagonal elements are
the eigenvalues of A and B respectively. Thus

(S−1 ⊗ T−1)(A⊗B)(S ⊗ T ) = L⊗M. (2)

Since S−1 ⊗ T−1 is the inverse of S ⊗ T , it follows from Theorem 1.5 that
A⊗B and (S−1 ⊗T−1)(A⊗B)(S ⊗T ) have the same set of eigenvalues, and
hence that A ⊗ B and L ⊗M have the same set of eigenvalues. But L ⊗M
is an upper triangular matrix since both L and M are upper triangular; its
eigenvalues are therefore its diagonal elements λiµj . 2

Remark. If x is an eigenvector of A and y is an eigenvector of B, then x⊗ y is
clearly an eigenvector of A ⊗B. It is not generally true, however, that every
eigenvector of A⊗B is the Kronecker product of an eigenvector of A and an
eigenvector of B. For example, let

A = B =

(
0 1
0 0

)
, e1 =

(
1
0

)
, e2 =

(
0
1

)
. (3)

Both eigenvalues of A (and B) are zero and the only eigenvector is e1. The
four eigenvalues of A⊗ B are all zero (in concordance with Theorem 1), but
the eigenvectors of A⊗B are not just e1 ⊗ e1, but also e1 ⊗ e2 and e2 ⊗ e1.

Theorem 1 has several important corollaries. First, if A and B are posi-
tive (semi)definite, then A ⊗ B is positive (semi)definite. Secondly, since the
determinant of A⊗B is equal to the product of its eigenvalues, we obtain

|A⊗B| = |A|p|B|m, (4)

where A is anm×m matrix and B is a p×p matrix. Thirdly, we can obtain the
rank ofA⊗B from Theorem 1 as follows. The rank of A⊗B is equal to the rank
of AA′⊗BB′. The rank of the latter (symmetric, in fact positive semidefinite)
matrix equals the number of non-zero (in this case, positive) eigenvalues it
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possesses. According to Theorem 1, the eigenvalues of AA′ ⊗ BB′ are λiµj ,
where λi are the eigenvalues of AA′ and µj are the eigenvalues of BB′. Now,
λiµj is non-zero if and only if both λi and µj are non-zero. Hence, the number
of non-zero eigenvalues of AA′⊗BB′ is the product of the number of non-zero
eigenvalues of AA′ and the number of non-zero eigenvalues of BB′. Thus the
rank of A⊗B is

r(A ⊗B) = r(A)r(B). (5)

Exercise

1. Show that A⊗B is non-singular if and only if A and B are non-singular,
and relate this result to (2.9).

4 THE VEC OPERATOR

Let A be an m× n matrix and ai its j-th column. Then vecA is the mn× 1
vector

vecA =




a1

a2

...
an


 . (1)

Thus the vec operator transforms a matrix into a vector by stacking the
columns of the matrix one underneath the other. Notice that vecA is defined
for any matrix A, not just for square matrices. Also notice that vecA = vecB
does not imply A = B, unless A and B are matrices of the same order.

A very simple but often useful property is

veca′ = veca = a (2)

for any column vector a.
The basic connection between the vec operator and the Kronecker product

is

vecab′ = b⊗ a (3)

for any two column vectors a and b (not necessarily of the same order). This
follows because the j-th column of ab′ is bja. Stacking the columns of ab′ thus
yields b⊗ a.

The basic connection between the vec operator and the trace is

(vecA)′ vecB = trA′B, (4)

where A and B are matrices of the same order. This is easy to verify since
both the left side and the right side of Equation (4) are equal to

∑

i

∑

j

aijbij .
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Let us now generalize the basic properties (3) and (4). The generalization
of (3) is the following well-known result.

Theorem 2

Let A,B and C be three matrices such that the matrix product ABC is
defined. Then,

vecABC = (C′ ⊗A) vecB. (5)

Proof. Assume that B has q columns denoted b1, b2, . . . , bq. Similarly let
e1, e2, . . . , eq denote the columns of the q × q identity matrix Iq, so that

B =

q∑

j=1

bje
′
j .

Then, using (3),

vecABC = vec

q∑

j=1

Abje
′
jC =

q∑

j=1

vec(Abj)(C
′ej)

′

=

q∑

j=1

(C′ej ⊗Abj) = (C′ ⊗A)

q∑

j=1

(ej ⊗ bj)

= (C′ ⊗A)

q∑

j=1

vec bje
′
j = (C′ ⊗A) vecB, (6)

which completes the proof. 2

One special case of Theorem 2 is

vecAB = (B′ ⊗ Im) vecA = (B′ ⊗A) vec In = (Iq ⊗ A) vecB, (7)

where A is an m× n matrix and B is an n× q matrix. Another special case
arises when the matrix C in (5) is replaced by a vector. Then we obtain, using
(2),

ABd = (d′ ⊗A) vecB = (A⊗ d′) vecB′, (8)

where d is a q × 1 vector.
The equality (4) can be generalized as follows.

Theorem 3

Let A,B,C and D be four matrices such that the matrix product ABCD is
defined and square. Then,

trABCD = (vecD′)′(C′ ⊗A) vecB = (vecD)′(A⊗ C′) vecB′. (9)
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Proof. We have, using (4) and (5),

trABCD = trD(ABC) = (vecD′)′ vecABC

= (vecD′)′(C′ ⊗A) vecB. (10)

The second equality is proved in the same way starting from trABCD =
trD′(C′B′A′). 2

Exercises

1. For any m× n matrix A, prove that

vecA = (In ⊗A) vec In = (A′ ⊗ Im) vec Im.

2. If A,B and V are square matrices of the same order and V = V ′, prove
that

(vecV )′(A⊗B) vecV = (vecV )′(B ⊗A) vecV.

5 THE MOORE-PENROSE (MP) INVERSE

The inverse of a matrix is defined when the matrix is square and non-singular.
For many purposes it is useful to generalize the concept of invertibility to
singular matrices and, indeed, to non-square matrices. One such generalization
that is particularly useful because of its uniqueness is the Moore-Penrose (MP)
inverse.

Definition

An n×m matrix X is the MP inverse of a real m× n matrix A if

AXA = A, (1)

XAX = X, (2)

(AX)′ = AX, (3)

(XA)′ = XA. (4)

We shall denote the MP inverse of A as A+.

Exercises

1. What is the MP inverse of a non-singular matrix?

2. What is the MP inverse of a scalar?

3. What is the MP inverse of a null matrix?
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6 EXISTENCE AND UNIQUENESS OF THE MP INVERSE

Let us now demonstrate the following theorem.

Theorem 4

For each A,A+ exists and is unique.

Proof (uniqueness). Assume that two matrices B and C both satisfy the four
defining conditions. Then

AB = (AB)′ = B′A′ = B′(ACA)′ = B′A′C′A′

= (AB)′(AC)′ = ABAC = AC. (1)

Similarly,

BA = (BA)′ = A′B′ = (ACA)′B′ = A′C′A′B′

= (CA)′(BA)′ = CABA = CA. (2)

Hence,

B = BAB = BAC = CAC = C. (3)

Proof (existence). Let A be an m × n matrix with r(A) = r. If r = 0, then
A = 0 and A+ = 0 satisfies the four defining equations. Assume therefore
r > 0. According to Theorem 1.16 there exist semi-orthogonal matrices S and
T and a positive definite diagonal r × r matrix Λ such that

A = SΛ1/2T ′, S′S = T ′T = Ir . (4)

Now define

B = TΛ−1/2S′. (5)

Then,

ABA = SΛ1/2T ′TΛ−1/2S′SΛ1/2T ′ = SΛ1/2T ′ = A, (6)

BAB = TΛ−1/2S′SΛ1/2T ′TΛ−1/2S′ = TΛ−1/2S′ = B, (7)

AB = SΛ1/2T ′TΛ−1/2S′ = SS′ is symmetric, (8)

BA = TΛ−1/2S′SΛ1/2T ′ = TT ′ is symmetric. (9)

Hence B is the unique MP inverse of A. 2
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7 SOME PROPERTIES OF THE MP INVERSE

Having established that for any matrix A there exists one, and only one, MP
inverse A+, let us now derive some of its properties.

Theorem 5

(i) A+ = A−1 for non-singular A,

(ii) (A+)+ = A,

(iii) (A′)+ = (A+)′,

(iv) A+ = A if A is symmetric and idempotent,

(v) AA+ and A+A are idempotent,

(vi) A,A+, AA+ and A+A have the same rank,

(vii) A′AA+ = A′ = A+AA′,

(viii) A′A+′
A+ = A+ = A+A+′

A′,

(ix) (A′A)+ = A+A+′
, (AA′)+ = A+′

A+,

(x) A(A′A)+A′A = A = AA′(AA′)+A,

(xi) A+ = (A′A)+A′ = A′(AA′)+,

(xii) A+ = (A′A)−1A′ if A has full column rank,

(xiii) A+ = A′(AA′)−1 if A has full row rank,

(xiv) A = 0 ⇐⇒ A+ = 0,

(xv) AB = 0 ⇐⇒ B+A+ = 0,

(xvi) A+B = 0 ⇐⇒ A′B = 0,

(xvii) (A⊗B)+ = A+ ⊗B+.

Proof. (i)–(v), (xiv) and (xvii) are established by direct substitution in the
defining equations. To prove (vi), notice that each A,A+, AA+ and A+A
can be obtained from the others by pre- and post-multiplication by suitable
matrices. Thus their ranks must all be equal. (vii) and (viii) follow from the
symmetry of AA+ and A+A. (ix) is established by substitution in the defining
equations using (vii) and (viii). (x) follows from (ix) and (vii); (xi) follows from
(ix) and (viii); (xii) and (xiii) follow from (xi) and (i). To prove (xv), note that
B+A+ = (B′B)+B′A′(AA′)+, using (xi). Finally, to prove (xvi) we use (xi)
and (x) and write A+B = 0 ⇐⇒ (A′A)+A′B = 0 ⇐⇒ A′A(A′A)+A′B =
0 ⇐⇒ A′B = 0. 2

Exercises



Sec. 8 ] Further properties 39

1. Determine a+, where a is a column vector.

2. If r(A) = 1, show that A+ = (trAA′)−1A′.

3. Show that

(AA+)+ = AA+ and (A+A)+ = A+A.

4. If A is block diagonal, then A+ is also block diagonal. For example,

A =

(
A1 0
0 A2

)
if and only if A+ =

(
A+

1 0
0 A+

2

)
.

5. Show that the converse of (iv) does not hold. [Hint: Consider A = −I.]
6. Let A be an m×n matrix. If A has full row rank, show that AA+ = Im;

if A has full column rank, show that A+A = In.

7. If A is symmetric, then A+ is also symmetric and AA+ = A+A.

8. Show that (AT ′)+ = TA+ for any matrix T satisfying T ′T = I.

9. Prove the results of Theorem 5 using the singular-value decomposition.

10. If |A| 6= 0, then (AB)+ = B+(ABB+)+.

8 FURTHER PROPERTIES

In this section we discuss some further properties of the Moore-Penrose in-
verse. We first prove Theorem 6, which is related to Theorem 1.1.

Theorem 6

A′AB = A′C ⇐⇒ AB = AA+C.

Proof. If AB = AA+C, then

A′AB = A′AA+C = A′C, (1)

using Theorem 5(vii). Conversely, if A′AB = A′C, then

AA+C = A(A′A)+A′C = A(A′A)+A′AB = AB, (2)

using Theorem 5(xi) and (x). 2

Next, let us prove Theorem 7.

Theorem 7

If |BB′| 6= 0, then (AB)(AB)+ = AA+.
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Proof. Since |BB′| 6= 0, B has full row rank and BB+ = I (Exercise 7.6).
Then,

AB(AB)+ = (AB)+
′
(AB)′ = (AB)+

′
B′A′ = (AB)+

′
B′A′AA+

= (AB)+
′
(AB)′AA+ = AB(AB)+AA+ = AB(AB)+ABB+A+

= ABB+A+ = AA+, (3)

using the fact that A′ = A′AA+. 2

To complete this section we present the following two theorems on idem-
potent matrices.

Theorem 8

Let A = A′ = A2 and AB = B. Then A − BB+ is symmetric idempotent
with rank r(A) − r(B). In particular, if r(A) = r(B), then A = BB+.

Proof. Let C = A − BB+. Then C = C′, CB = 0 and C2 = C. Hence C is
idempotent. Its rank is

r(C) = trC = trA− trBB+ = r(A) − r(B). (4)

Clearly, if r(A) = r(B), then C = 0. 2

Theorem 9

Let A be a symmetric idempotent n × n matrix and let AB = 0. If r(A) +
r(B) = n, then A = In −BB+.

Proof. Let C = In − A. Then C is symmetric idempotent and CB = B.
Further r(C) = n − r(A) = r(B). Hence, by Theorem 8, C = BB+, that is,
A = In −BB+. 2

Exercises

1. Show that

X ′V −1X(X ′V −1X)+X ′ = X ′

for any positive definite matrix V .

2. Hence show that if M(R′) ⊂ M(X ′), then

R(X ′V −1X)+R′(R(X ′V −1X)+R′)+R = R

for any positive definite matrix V .



Sec. 9 ] The solution of linear equation systems 41

3. Let V be a positive semidefinite n × n matrix of rank r. Let Λ be an
r × r diagonal matrix with positive diagonal elements and let S be a
semi-orthogonal n× r matrix such that

V S = SΛ, S′S = Ir .

Then
V = SΛS′, V + = SΛ−1S′.

4. Show that the condition, in Theorem 7, that BB′ is non-singular is not
necessary. [Hint: Take B = A+.]

5. Prove Theorem 6 using the singular-value decomposition.

6. Show that ABB+(ABB+)+ = AB(AB)+.

9 THE SOLUTION OF LINEAR EQUATION SYSTEMS

An important property of the Moore-Penrose inverse is that it enables us to
find explicit solutions of a system of linear equations. We shall first prove
Theorem 10.

Theorem 10

The general solution of the homogeneous equation Ax = 0 is

x = (I −A+A)q, (1)

where q is an arbitrary vector of appropriate order.

Proof. Clearly, x = (I − A+A)q is a solution of Ax = 0. Also, any arbitrary
solution x of the equation Ax = 0 satisfies

x = (I −A+A)x, (2)

which demonstrates that there exists a vector q (namely x) such that x =
(I −A+A)q. 2

The solution of Ax = 0 is unique if, and only if, A has full column rank,
since this means that A′A is non-singular and hence that A+A = I. The
unique solution is, of course, x = 0. If the solution is not unique, then there
exist an infinite number of solutions given by (1).

The homogeneous equation Ax = 0 always has at least one solution,
namely x = 0. The inhomogeneous equation

Ax = b (3)

does not necessarily have any solution for x. If there exists at least one solu-
tion, we say that the Equation (3) is consistent.
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Theorem 11

Let A be a given m×n matrix and b a given m× 1 vector. The following four
statements are equivalent:

(a) the vector equation Ax = b has a solution for x,

(b) b ∈ M(A),

(c) r(A : b) = r(A),

(d) AA+b = b.

Proof. It is easy to show that (a), (b) and (c) are equivalent. Let us show that
(a) and (d) are equivalent, too. Suppose Ax = b is consistent. Then there ex-
ists an x̃ such that Ax̃ = b. Hence, b = Ax̃ = AA+Ax̃ = AA+b. Now suppose
that AA+b = b and let x̃ = A+b. Then Ax̃ = AA+b = b. 2

Having established conditions for the existence of a solution of the in-
homogeneous vector equation Ax = b, we now proceed to give the general
solution.

Theorem 12

A necessary and sufficient condition for the vector equation Ax = b to have a
solution is that

AA+b = b, (4)

in which case the general solution is

x = A+b+ (I −A+A)q, (5)

where q is an arbitrary vector of appropriate order.

Proof. That (4) is necessary and sufficient for the consistency of Ax = b
follows from Theorem 11. Let us show that the general solution is given by
(5). Assume AA+b = b and define

xo = x−A+b. (6)

Then, by Theorem 10,

Ax = b ⇐⇒ Ax = AA+b ⇐⇒ A(x−A+b) = 0 ⇐⇒ Axo = 0

⇐⇒ xo = (I −A+A)q ⇐⇒ x = A+b + (I −A+A)q (7)

and the result follows. 2
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The system Ax = b is consistent for every b if and only if A has full row
rank (since AA+ = I in that case). If the system is consistent, its solution is
unique if and only if A has full column rank. Clearly if A has full row rank
and full column rank then A is non-singular and the unique solution is A−1b.

We now apply Theorem 12 to the matrix equation AXB = C. This yields
the following theorem.

Theorem 13

A necessary and sufficient condition for the matrix equation AXB = C to
have a solution is that

AA+CB+B = C, (8)

in which case the general solution is

X = A+CB+ +Q−A+AQBB+, (9)

where Q is an arbitrary matrix of appropriate order.

Proof. Write the matrix equation AXB = C as a vector equation (B′ ⊗
A) vecX = vecC, and apply Theorem 12, remembering that (B′ ⊗ A)+ =

B+′ ⊗A+. 2

Exercises

1. The matrix equation AXB = C is consistent for every C if and only if
A has full row rank and B has full column rank.

2. The solution of AXB = C, if it exists, is unique if and only if A has full
column rank and B has full row rank.

3. The general solution of AX = 0 is X = (I −A+A)Q.

4. The general solution of XA = 0 is X = Q(I −AA+).

MISCELLANEOUS EXERCISES

1. (Alternative proof of the uniqueness of the MP inverse.) Let B and C
be two MP inverses of A. Let Z = C −B, and show that

(i) AZA = 0,

(ii) Z = ZAZ +BAZ + ZAB,

(iii) (AZ)′ = AZ,

(iv) (ZA)′ = ZA.
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Now show that (i) and (iii) imply AZ = 0 and that (i) and (iv) imply
ZA = 0. [Hint: If P = P ′ and P 2 = 0, then P = 0.] Conclude that
Z = 0.

2. Any matrix X that satisfies AXA = A is called a generalized inverse of
A and denoted A−. Show that A− exists and that

A− = A+ +Q−A+AQAA+, Q arbitrary.

3. Show that A−A is idempotent, but not, in general, symmetric. However,
if A−A is symmetric, then A−A = A+A and hence unique. A similar
result holds, of course, for AA−.

4. Show that A(A′A)−A′ = A(A′A)+A′ and hence is symmetric and idem-
potent.

5. Show that a necessary and sufficient condition for the equation Ax = b
to have a solution is that AA−b = b, in which case the general solution
is x = A−b+ (I −A−A)q where q is an arbitrary vector of appropriate
order. (Compare Theorem 12.)

6. Show that (AB)+ = B+A+ if A has full column rank and B has full
row rank.

7. Show that (A′A)2B = A′A if and only if A+ = B′A′.

8. If A and B are positive semidefinite and AB = BA, show that
(B1/2A+B1/2)+ = B+1/2AB+1/2 (Liu 1995).

9. Let b be an n × 1 vector with only positive elements b1, . . . , bn. Let
B = dg(b1, . . . , bn) and M = In − (1/n)ıı′, where ı denotes the n × 1
sum vector (1, 1, . . . , 1)′. Then, (B − bb′)+ = MB−1M (Tanabe and
Sagae 1992, Neudecker 1995).

10. If A and B are positive semidefinite, then A ⊗ A − B ⊗ B is positive
semidefinite if and only if A−B is positive semidefinite (Neudecker and
Satorra 1993).

11. If A and B are positive semidefinite, show that trAB ≥ 0 (see also
Exercise 11.5.1).

12. Let A be a symmetric m×m matrix, B an m×n matrix, C = AB and
M = Im − CC+. Prove that

(AC)+ = C+A+(Im − (MA+)+MA+)

(Abdullah, Neudecker and Liu 1992).

13. Let A,B and A−B be positive semidefinite matrices. Necessary and suf-
ficient for B+ −A+ to be positive semidefinite is r(A) = r(B) (Milliken
and Akdeniz 1977, Neudecker 1989b).
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14. For complex matrices we replace the transpose sign (′) by the complex
conjugate sign (*) in the definition and the properties of the MP inverse.
Show that these properties, thus amended, remain valid for complex
matrices.

BIBLIOGRAPHICAL NOTES

§2–§3. See MacDuffee (1933, pp. 81–84) for some early references on the Kro-
necker product. The original interest in the Kronecker product focused on the
determinantal result (3.4).
§4. The ‘vec’ notation was introduced by Koopmans, Rubin and Leipnik
(1950). Theorem 2 is due to Roth (1934).
§5–§8. The Moore-Penrose inverse was introduced by Moore (1920, 1935) and
rediscovered by Penrose (1955). There exists a large amount of literature on
generalized inverses, of which the Moore-Penrose inverse is one example. The
interested reader may wish to consult Rao and Mitra (1971), Pringle and
Rayner (1971), Boullion and Odell (1971), or Ben-Israel and Greville (1974).
§9. The results in this section are due to Penrose (1956).





CHAPTER 3

Miscellaneous matrix results

1 INTRODUCTION

In this final chapter of Part One we shall discuss some more specialized topics
which will be applied later in this book. These include some further results
on adjoint matrices (Sections 2 and 3), Hadamard products (Section 6), the
commutation and the duplication matrix (Sections 7–10) and some results
on the bordered Gramian matrix with applications to the solution of certain
matrix equations (Sections 13 and 14).

2 THE ADJOINT MATRIX

We recall from Section 1.9 that the cofactor cij of the element aij of any
square matrix A is (−1)i+j times the determinant of the submatrix obtained
from A by deleting row i and column j. The matrix C = (cij) is called the
cofactor matrix of A. The transpose of C is called the adjoint matrix of A and
we use the notation

A# = C′. (1)

We also recall the following two properties:

AA# = A#A = |A|I, (2)

(AB)# = B#A#. (3)

Let us now prove some further properties of the adjoint matrix.

Theorem 1

Let A be an n × n matrix (n ≥ 2), and let A# be the adjoint matrix of A.
Then

47
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(a) if r(A) = n, then

A# = |A|A−1, (4)

(b) if r(A) = n− 1, then

A# = (−1)k+1µ(A)
xy′

y′(Ak−1)+x
(5)

where k denotes the multiplicity of the zero eigenvalue of A (1 ≤ k ≤ n), µ(A)
is the product of the n − k non-zero eigenvalues of A (if k = n, we put
µ(A) = 1), and x and y are n× 1 vectors satisfying Ax = A′y = 0, and

(c) if r(A) ≤ n− 2, then

A# = 0. (6)

Before giving the proof of Theorem 1 we formulate the following two im-
portant corollaries.

Theorem 2

Let A be an n× n matrix (n ≥ 2). Then

r(A#) =

{
n if r(A) = n
1 if r(A) = n− 1
0 if r(A) ≤ n− 2.

(7)

Theorem 3

Let A be an n × n matrix (n ≥ 2) possessing a simple eigenvalue 0. Then
r(A) = n− 1, and

A# = µ(A)
xy′

y′x
(8)

where µ(A) is the product of the n− 1 non-zero eigenvalues of A, and x and
y satisfy Ax = A′y = 0.

A direct proof of Theorem 3 is given in the Miscellaneous Exercises 4 and
5 at the end of Chapter 8.

Exercises

1. Why is y′x 6= 0 in (8)?

2. Show that y′x = 0 in (5) if k ≥ 2.



Sec. 3 ] Proof of Theorem 1 49

3. Let A be an n× n matrix. Show that

(i) |A#| = |A|n−1 (n ≥ 2),

(ii) (αA)# = αn−1A# (n ≥ 2),

(iii) (A#)# = |A|n−2A (n ≥ 3).

3 PROOF OF THEOREM 1

If r(A) = n, the result follows immediately from (2.2). To prove that A# = 0
if r(A) ≤ n− 2, we express the cofactor cij as

cij = (−1)i+j |E′
iAEj |, (1)

where Ej is the n × (n − 1) matrix obtained from In by deleting column j.
Now, E′

iAEj is an (n− 1) × (n− 1) matrix whose rank satisfies

r(E′
iAEj) ≤ r(A) ≤ n− 2. (2)

It follows that E′
iAEj is singular and hence that cij = 0. Since this holds for

arbitrary i and j, we have C = 0 and thus A# = 0.
Finally, assume r(A) = n − 1. Let λ1, λ2, . . . , λn be the eigenvalues of A,

and assume

λ1 = λ2 = · · · = λk = 0, (3)

while the remaining n−k eigenvalues are non-zero. By Jordan’s decomposition
theorem (Theorem 1.14), there exists a non-singular matrix T such that

T−1AT = J, (4)

where

J =

(
J1 0
0 J2

)
. (5)

Here J1 is the k × k matrix

J1 =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0




(6)

and J2 is the (n− k) × (n− k) matrix

J2 =




λk+1 δk+1 0 . . . 0
0 λk+2 δk+2 . . . 0
...

...
...

...
0 0 0 . . . δn−1

0 0 0 . . . λn




(7)



50 Miscellaneous matrix results [Ch. 3

where δj(k + 1 ≤ j ≤ n− 1) can take the values zero or one only.
It is easy to see that every cofactor of J vanishes, with the exception of

the cofactor of the element in the (k, 1) position. Hence

J# = (−1)k+1µ(A)e1e
′
k, (8)

where e1 and ek are the first and k-th unit vectors of order n× 1, and

µ(A) =

n∏

j=k+1

λj . (9)

Using (2.3), (4) and (8), we obtain

A# = (TJT−1)# = (T−1)#J#T#

= TJ#T−1 = (−1)k+1µ(A)(Te1)(e
′
kT

−1). (10)

From (5)-(7) we have Je1 = 0 and e′kJ = 0′. Hence, using (4),

ATe1 = 0 and e′kT
−1A = 0′. (11)

Further, since r(A) = n− 1, the vectors x and y satisfying Ax = A′y = 0 are
unique up to a factor of proportionality. Hence

x = αTe1 and y′ = βe′kT
−1 (12)

for some real α and β. Now,

Ak−1Tek = TJk−1T−1Tek = TJk−1ek = Te1, (13)

and

e′1T
−1Ak−1 = e′1T

−1TJk−1T−1 = e′1J
k−1T−1 = e′kT

−1. (14)

It follows that

y′(Ak−1)+x = αβe′kT
−1(Ak−1)+Te1

= αβe′1T
−1Ak−1(Ak−1)+Ak−1Tek

= αβe′1T
−1Ak−1Tek = αβe′1J

k−1ek = αβ. (15)

Hence, from (12) and (15),

xy′

y′(Ak−1)+x
= (Te1)(e

′
kT

−1). (16)

Inserting (16) in (10) concludes the proof.



Sec. 4 ] Bordered determinants 51

4 BORDERED DETERMINANTS

The adjoint matrix also appears in the evaluation of the determinant of a
bordered matrix, as the following theorem demonstrates.

Theorem 4

Let A be an n× n matrix, and let x and y be n× 1 vectors. Then
∣∣∣∣
A x
y′ 0

∣∣∣∣ = −y′A#x. (1)

Proof. Let Ai be the (n − 1) × n matrix obtained from A by deleting row i,
and let Aij be the (n− 1) × (n− 1) matrix obtained from A by deleting row
i and column j. Then,

∣∣∣∣
A x
y′ 0

∣∣∣∣ =
∑

i

xi(−1)n+i+1

∣∣∣∣
Ai
y′

∣∣∣∣ =
∑

i,j

xi(−1)n+i+1yj(−1)n+j|Aij |

= −
∑

i,j

(−1)i+jxiyj |Aij | = −
∑

i,j

xiyjA
#
ji = −y′A#x, (2)

using (1.9.7). 2

As one of many special cases of Theorem 4, we mention Theorem 5.

Theorem 5

Let A be a symmetric n×n matrix (n ≥ 2) of rank r(A) = n− 1. Let u be an
eigenvector of A associated with the (simple) zero eigenvalue, so that Au = 0.
Then,

∣∣∣∣
A u
u′ α

∣∣∣∣ = −
(
n−1∏

i=1

λi

)
u′u, (3)

where λ1, . . . , λn−1 are the non-zero eigenvalues of A.

Proof. Without loss of generality we may take α = 0. The result then follows
immediately from Theorems 3 and 4. 2

Exercise

1. Prove that |A+ αıı′| = |A| + αı′A#ı (Rao and Bhimasankaram 1992).

5 THE MATRIX EQUATION AX = 0

In this section we will be concerned in finding the general solutions of the
matrix equation AX = 0, where A is an n× n matrix with rank n− 1.
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Theorem 6

Let A be an n×n matrix (possibly complex) with rank n− 1. Let u and v be
eigenvectors of A associated with the eigenvalue zero (not necessarily simple),
such that

Au = 0, v∗A = 0′. (1)

The general solution of the equation

AX = 0 (2)

is

X = uq′ (3)

where q is an arbitrary vector of appropriate order. Moreover, the general
solution of the equations

AX = 0, XA = 0 (4)

is

X = µuv∗ (5)

where µ is an arbitrary scalar.

Proof. If AX = 0, then it follows from the complex analogue of Exercise 1.14.4
that X = 0 or r(X) = 1. Since Au = 0 and r(X) ≤ 1, each column of X must
be a multiple of u, that is

X = uq′ (6)

for some vector q of appropriate order. Similarly, if XA = 0, then

X = pv∗ (7)

for some vector p of appropriate order. If AX = XA = 0, we obtain by
combining (6) and (7),

X = µuv∗ (8)

for some scalar µ. 2
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6 THE HADAMARD PRODUCT

If A = (aij) and B = (bij) are matrices of the same order, say m × n, then
we define the Hadamard product of A and B as

A⊙B = (aijbij). (1)

Thus, the Hadamard product A ⊙ B is also an m × n matrix and its ij-th
element is aijbij .

The following properties are immediate consequences of the definition:

A⊙B = B ⊙A, (2)

(A⊙B)′ = A′ ⊙B′, (3)

(A⊙B) ⊙ C = A⊙ (B ⊙ C), (4)

so that the brackets in (4) can be deleted without ambiguity. Further

(A+B) ⊙ (C +D) = A⊙ C +A⊙D +B ⊙ C +B ⊙D, (5)

A⊙ I = dgA, (6)

A⊙ J = A = J ⊙A, (7)

where J is a matrix consisting of ones only.
The following two theorems are of importance.

Theorem 7

Let A,B and C be m×n matrices, let ı = (1, 1 . . . , 1)′ be the n×1 sum vector
and let Γ = diag(γ1, γ2, . . . , γm) with γi =

∑n
j=1 aij . Then

(a) trA′(B ⊙ C) = tr(A′ ⊙B′)C, (8)

(b) ı′A′(B ⊙ C)ı = trB′ΓC. (9)

Proof. To prove (a) we note that A′(B ⊙ C) and (A′ ⊙ B′)C have the same
diagonal elements, namely

[A′(B ⊙ C)]ii =
∑

h

ahibhichi = [(A′ ⊙ B′)C]ii. (10)

To prove (b) we write

ı′A′(B ⊙ C)ı =
∑

i,j,h

ahibhjchj =
∑

j,h

γhbhjchj = trB′ΓC. (11)

This completes the proof. 2
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Theorem 8

Let A and B be square n×n matrices, let M be a diagonal n×n matrix, and
let m be an n× 1 vector such that

M = diag(µ1, µ2, . . . , µn), m = Mı. (12)

Then

(a) trAMB′M = m′(A⊙B)m, (13)

(b) trAB′ = ı′(A⊙B)ı, (14)

(c) MA⊙B′M = M(A⊙B′)M. (15)

Proof. To prove (a) we write

trAMB′M =
∑

i

(AMB′M)ii =
∑

i,j

µiµjaijbij = m′(A⊙B)m. (16)

Taking M = In, we obtain (b) as a special case of (a). Finally, we write

(MA⊙B′M)ij = (MA)ij(B
′M)ij = (µiaij)(µjbji)

= µiµj(A⊙B′)ij = (M(A⊙B′)M)ij , (17)

and this proves (c). 2

7 THE COMMUTATION MATRIX Kmn

Let A be an m× n matrix. The vectors vec A and vec A′ clearly contain the
same mn components, but in a different order. Hence there exists a unique
mn×mn permutation matrix which transforms vec A into vec A′. This matrix
is called the commutation matrix and is denoted Kmn or Km,n. (If m = n, we
often write Kn instead of Knn.) Thus

Kmn vec A = vec A′. (1)

Since Kmn is a permutation matrix it is orthogonal, i.e. K ′
mn = K−1

mn, see
(1.8.4). Also, pre-multiplying (1) by Knm gives KnmKmn vec A = vec A, so
that KnmKmn = Imn. Hence,

K ′
mn = K−1

mn = Knm. (2)

Further, using (2.4.2),

Kn1 = K1n = In. (3)

The key property of the commutation matrix (and the one from which it
derives its name) enables us to interchange (‘commute’) the two matrices of
a Kronecker product.
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Theorem 9

Let A be an m× n matrix, B a p× q matrix and b a p× 1 vector. Then

(a) Kpm(A⊗B) = (B ⊗A)Kqn, (4)

(b) Kpm(A⊗B)Knq = B ⊗A, (5)

(c) Kpm(A⊗ b) = b⊗A, (6)

(d) Kmp(b⊗A) = A⊗ b. (7)

Proof. Let X be an arbitrary q × n matrix. Then, by repeated application of
(1) and Theorem 2.2,

Kpm(A⊗B) vec X = Kpm vec BXA′ = vec AX ′B′

= (B ⊗A) vec X ′ = (B ⊗A)Kqn vec X. (8)

Since X is arbitrary, (a) follows. The remaining results are immediate conse-
quences of (a). 2

An important application of the commutation matrix is that it allows us
to transform the vec of a Kronecker product into the Kronecker product of
the vecs, a crucial property in the differentiation of Kronecker products.

Theorem 10

Let A be an m× n matrix and B a p× q matrix. Then

vec (A⊗B) = (In ⊗Kqm ⊗ Ip)(vec A⊗ vec B). (9)

Proof. Let ai(i = 1, . . . , n) and bj(j = 1, . . . , q) denote the columns of A and
B, respectively. Also, let ei(i = 1, . . . , n) and uj(j = 1, . . . , q) denote the
columns of In and Iq, respectively. Then we can write A and B as

A =

n∑

i=1

aie
′
i, B =

q∑

j=1

bju
′
j , (10)
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and we obtain

vec (A⊗B) =

n∑

i=1

q∑

j=1

vec (aie
′
i ⊗ bju

′
j)

=
∑

i,j

vec (ai ⊗ bj)(ei ⊗ uj)
′ =

∑

i,j

(ei ⊗ uj ⊗ ai ⊗ bj)

=
∑

i,j

(In ⊗Kqm ⊗ Ip)(ei ⊗ ai ⊗ uj ⊗ bj)

= (In ⊗Kqm ⊗ Ip)



(∑

i

vec aie
′
i

)
⊗


∑

j

vec bju
′
j






= (In ⊗Kqm ⊗ Ip)(vec A⊗ vec B), (11)

which completes the proof. 2

Closely related to the matrix Kn is the matrix 1
2 (In2 +Kn), denote Nn.

Some properties of Nn are given in Theorem 11.

Theorem 11

Let Nn = 1
2 (In2 +Kn). Then

(a) Nn = N ′
n = N2

n, (12)

(b) r(Nn) = trNn = 1
2n(n+ 1), (13)

(c) NnKn = Nn = KnNn. (14)

Proof. The proof is easy and is left to the reader. 2

Exercise

1. Let A(m× n) and B(p× q) be two matrices. Show that

vec (A⊗B) = (In ⊗G) vec A = (H ⊗ Ip) vec B,

where

G = (Kqm ⊗ Ip)(Im ⊗ vec B), H = (In ⊗Kqm)(vec A⊗ Iq).

8 THE DUPLICATION MATRIX Dn

Let A be a square n × n matrix. Then v(A) will denote the 1
2n(n + 1) × 1

vector that is obtained from vec A by eliminating all supradiagonal elements
of A. For example, if n = 3,

vec A = (a11, a21, a31, a12, a22, a32, a13, a23, a33)
′, (1)
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and

v(A) = (a11, a21, a31, a22, a32, a33)
′. (2)

In this way, for symmetric A, v(A) contains only the generically distinct el-
ements of A. Since the elements of vec A are those of v(A) with some rep-
etitions, there exists a unique n2 × 1

2n(n + 1) matrix which transforms, for
symmetric A, v(A) into vec A. This matrix is called the duplication matrix
and is denoted Dn. Thus,

Dnv(A) = vec A (A = A′). (3)

Let A = A′ and Dnv(A) = 0. Then vec A = 0, and so v(A) = 0. Since
the symmetry of A does not restrict v(A), it follows that the columns of Dn

are linearly independent. Hence Dn has full column rank 1
2n(n+ 1), D′

nDn is
non-singular, and D+

n , the Moore-Penrose inverse of Dn, equals

D+
n = (D′

nDn)
−1D′

n. (4)

Since Dn has full column rank, v(A) can be uniquely solved from (3) and
we have

v(A) = D+
n vec A (A = A′). (5)

Some further properties of Dn are easily derived from its definition (3).

Theorem 12

(a) KnDn = Dn, (6)

(b) DnD
+
n = 1

2 (In2 +Kn), (7)

(c) DnD
+
n (b ⊗A) = 1

2 (b⊗A+A⊗ b), (8)

for any n× 1 vector b and n× n matrix A.

Proof. Let X be a symmetric n× n matrix. Then

KnDnv(X) = Kn vec X = vec X = Dnv(X). (9)

Since the symmetry of X does not restrict v(X), we obtain (a). To prove (b),
let Nn = 1

2 (In2 +Kn). Then, from (a), NnDn = Dn. Now, Nn is symmetric

idempotent with r(Nn) = r(Dn) = 1
2n(n + 1) (Theorem 11(b)). Then, by

Theorem 2.8, Nn = DnD
+
n . Finally, (c) follows from (b) and the fact that

Kn(b ⊗A) = A⊗ b. 2

Much of the interest in the duplication matrix is due to the importance
of the matrices D+

n (A ⊗ A)Dn and D′
n(A ⊗ A)Dn, some of whose properties

follow below.
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Theorem 13

Let A be an n× n matrix. Then

(a) DnD
+
n (A⊗A)Dn = (A⊗ A)Dn, (10)

(b) DnD
+
n (A⊗A)D+

n
′
= (A⊗A)D+

n
′
, (11)

and if A is non-singular,

(c) (D+
n (A⊗A)Dn)−1 = D+

n (A−1 ⊗A−1)Dn, (12)

(d) (D′
n(A⊗A)Dn)−1 = D+

n (A−1 ⊗A−1)D+
n
′
. (13)

Proof. Let Nn = 1
2 (I +Kn). Then, since

DnD
+
n = Nn, Nn(A⊗A) = (A⊗A)Nn, (14)

NnDn = Dn, NnD
+
n
′
= D+

n
′
, (15)

we obtain (a) and (b). To prove (c) we write

D+
n (A⊗A)DnD

+
n (A−1 ⊗A−1)Dn = D+

n (A⊗A)Nn(A−1 ⊗A−1)Dn

= D+
n (A⊗A)(A−1 ⊗ A−1)NnDn = D+

nDn = I 1
2
n(n+1). (16)

Finally, to prove (d), we use (c) and D+
n = (D′

nDn)
−1D′

n and write

(D′
n(A⊗A)Dn)−1 = (D′

nDnD
+
n (A⊗A)Dn)

−1

= (D+
n (A⊗A)Dn)−1(D′

nDn)
−1 = D+

n (A−1 ⊗A−1)Dn(D
′
nDn)

−1 (17)

and the result follows. 2

Finally, we state, without proof, two further properties of the duplication
matrix which we shall need later.

Theorem 14

Let A be an n× n matrix. Then

(a) D′
n vec A = v(A +A′ − dgA), (18)

(b) |D+
n (A⊗A)D+

n
′| = 2−

1
2
n(n−1)|A|n+1. (19)

9 RELATIONSHIP BETWEEN Dn+1 AND Dn, I

Let A1 be a symmetric (n+1)×(n+1) matrix. We wish to expressD′
n+1(A1⊗

A1)Dn+1 and D+
n+1(A1 ⊗A1)D

+
n+1

′
as partitioned matrices. In particular, we
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wish to know whether D′
n(A⊗ A)Dn is a submatrix of D′

n+1(A1 ⊗A1)Dn+1

and whether D+
n (A⊗A)D+

n
′
is a submatrix of D+

n+1(A1 ⊗A1)D
+
n+1

′
when A

is the appropriate submatrix of A. The next theorem answers a slightly more
general question in the affirmative.

Theorem 15

Let

A1 =

(
α a′

a A

)
, B1 =

(
β b′

b B

)
,

where A and B are symmetric n× n matrices, a and b are n× 1 vectors and
α and β are scalars. Then

(i) D′
n+1(A1 ⊗B1)Dn+1 =

(
αβ αb′ + βa′ (a′ ⊗ b′)Dn

αb+ βa αB + βA+ ab′ + ba′ (a′ ⊗B + b′ ⊗A)Dn

D′
n(a⊗ b) D′

n(a⊗B + b⊗A) D′
n(A⊗B)Dn

)
,

(ii) D+
n+1(A1 ⊗B1)D

+
n+1

′
=




αβ 1
2 (αb′ + βa′) (a′ ⊗ b′)D+

n
′

1
2 (αb+ βa) 1

4 (αB + βA + ab′ + ba′) 1
2 (a′ ⊗B + b′ ⊗A)D+

n
′

D+
n (a⊗ b) 1

2D
+
n (a⊗B + b⊗A) D+

n (A⊗B)D+
n
′


 .

In particular,

(iii) D′
n+1Dn+1 =

(
1 0 0
0 2In 0
0 0 D′

nDn

)
,

(iv) D+
n+1D

+
n+1

′
= (D′

n+1Dn+1)
−1 =




1 0 0
0 1

2In 0
0 0 (D′

nDn)
−1


 .

Proof. Let X1 be an arbitrary symmetric (n+ 1)× (n+ 1) matrix partitioned
conformably with A1 and B1 as

X1 =

(
ξ x′

x X

)
. (1)

Then,

trA1X1B1X1 = (vec X1)
′(A1 ⊗B1)(vec X1)

= (v(X1))
′D′

n+1(A1 ⊗B1)Dn+1v(X1) (2)

and also

trA1X1B1X1 = αβξ2 + 2ξ(αb′x+ βa′x) + αx′Bx+ βx′Ax

+ 2(a′x)(b′x) + 2ξa′Xb+ 2(x′BXa+ x′AXb) + trAXBX, (3)
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which can be written as a quadratic form in v(X1), since

(v(X1))
′ = (ξ, x′, (v(X))′). (4)

The first result now follows from (2) and (3), and the symmetry of all matrices
concerned. By letting A1 = B1 = In+1, we obtain (iii) as a special case of
(i). (iv) follows from (iii). Pre- and post-multiplying (i) by (D′

n+1Dn+1)
−1 as

given in (iv) yields (ii). 2

10 RELATIONSHIP BETWEEN Dn+1 AND Dn, II

Related to Theorem 15 is the following result.

Theorem 16

Let

A1 =

(
α b′

a A

)
, (1)

where A is an n × n matrix (not necessarily symmetric), a and b are n × 1
vectors and α is a scalar. Then

D′
n+1 vec A1 =

(
α

a+ b
D′
n vec A

)
, D+

n+1 vec A1 =




α
1
2 (a+ b)
D+
n vec A


 . (2)

Proof. We have, using Theorem 14(a),

D′
n+1 vec A1 = v(A1 +A′

1 − dgA1)

=

(
α
a

v(A)

)
+

(
α
b

v(A′)

)
−
(

α
0

v(dgA)

)
=

(
α

a+ b
D′
n vec A

)
. (3)

Also, using Theorem 15(iv),

D+
n+1 vec A1 =




1 0 0
0 1

2In 0
0 0 (D′

nDn)
−1



(

α
a+ b

D′
n vec A

)

=




α
1
2 (a+ b)
D+
n vec A


 (4)

and the resul follows. 2

As a corollary of Theorem 16 we obtain Theorem 17.
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Theorem 17

Let A be an n× p matrix and b a p× 1 vector. Then

D′
n+1

(
b′

A
01

)
=

(
b′

A
02

)
, D+

n+1

(
b′

A
01

)
=




b′
1
2A
02


 , (5)

where 01 and 02 denote null matrices of orders n(n+1)× p and 1
2n(n+1)× p

respectively.

Proof. Let βi be the i-th component of b and let ai be the i-th column of
A (i = 1, . . . , p). Define the (n+ 1) × (n+ 1) matrices

Ci =

(
βi 0′

ai 0

)
(i = 1, . . . , p). (6)

Then, using Theorem 16,

vec Ci =

(
βi
ai
0

)
, D′

n+1 vec Ci =

(
βi
ai
0

)
, D+

n+1 vec Ci =




βi
1
2ai
0


 (7)

for i = 1, . . . , p. Now, noting that

(
b′

A
01

)
= (vec C1, vec C2, . . . , vec Cp), (8)

the result follows. 2

11 CONDITIONS FOR A QUADRATIC FORM TO BE POSI-
TIVE (NEGATIVE) SUBJECT TO LINEAR CONSTRAINTS

Many optimization problems take the form

maximize x′Ax (1)

subject to Bx = 0, (2)

and, as we shall see later (Theorem 7.12), this problem also arises when we
try to establish second-order conditions for Lagrange minimization (maxi-
mization). The following theorem is then of importance.

Theorem 18

Let A be a symmetric n × n matrix and B an m × n matrix with full row
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rank m. Let Arr denote the r × r matrix in the top left corner of A, and Br
the m × r matrix whose columns are the first r columns of B(r = 1, . . . , n).
Assume that |Bm| 6= 0. Define the (m+ r) × (m+ r) matrices

∆r =

(
0 Br
B′
r Arr

)
(r = 1, 2, . . . , n), (3)

and let Γ = (x ∈ IRn : x 6= 0, Bx = 0). Then

(i) x′Ax > 0 for all x ∈ Γ if and only if

(−1)m|∆r| > 0 (r = m+ 1, . . . , n), (4)

(ii) x′Ax < 0 for all x ∈ Γ if and only if

(−1)r|∆r| > 0 (r = m+ 1, . . . , n). (5)

Proof. We partition B and x conformably as

B = (Bm : B∗), x = (x′1, x
′
2)

′ (6)

where B∗ is an m× (n−m) matrix and x1 ∈ IRm, x2 ∈ IRn−m. The constraint
Bx = 0 can then be written as

Bmx1 +B∗x2 = 0. (7)

That is,

x1 +B−1
m B∗x2 = 0, (8)

or equivalently,

x = Qx2, Q =

(
−B−1

m B∗

In−m

)
. (9)

Hence we can write the constraint set Γ as

Γ = {x ∈ IRn : x = Qy, y 6= 0, y ∈ IRn−m}, (10)

and we see that x′Ax > 0(< 0) for all x ∈ Γ if and only if the (n−m)×(n−m)
matrix Q′AQ is positive definite (negative definite).

Next we investigate the signs of the n−m principal minors of Q′AQ. For
k = 1, 2, . . . , n−m, let Ek be the k × (n−m) selection matrix

Ek = (Ik : 0) (11)

and let Ck be the k × k matrix in the top left corner of Q′AQ. Then

Ck = EkQ
′AQE′

k. (12)
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We partition B∗ = (B∗1 : B∗2), where B∗1 is an m × k matrix and B∗2 an
m× (n−m− k) matrix, and define the (m+ k) × k matrix

Qk =

(
−B−1

m B∗1

Ik

)
. (13)

We then have

QE′
k =




−B−1
m B∗1 −B−1

m B∗2

Ik 0
0 In−m−k



(
Ik
0

)

=




−B−1
m B∗1

Ik
0


 =

(
Qk
0

)
(14)

and hence

Ck = (Q′
k : 0)

(
Am+k,m+k ∗

∗ ∗
)(

Qk
0

)
= Q′

kAm+k,m+kQk, (15)

where ∗’s indicate matrices the precise form of which is of no relevance. Now,
let Tk be the non-singular (m+ k) × (m+ k) matrix

Tk =

(
Bm B∗1

0 Ik

)
. (16)

Its inverse is

T−1
k =

(
B−1
m −B−1

m B∗1

0 Ik

)
(17)

and one verifies easily that

Bm+kT
−1
k = (Bm : B∗1)

(
B−1
m −B−1

m B∗1

0 Ik

)
= (Im : 0). (18)

Hence,

(
Im 0

0 T−1
k

′

)(
0 Bm+k

B′
m+k Am+k,m+k

)(
Im 0
0 T−1

k

)

=

(
0 Bm+kT

−1
k

T−1
k

′
B′
m+k T−1

k

′
Am+k,m+kT

−1
k

)
=

(
0 Im 0
Im ∗ ∗
0 ∗ Ck

)

=

(
Im 0 0
∗ Im ∗
∗ 0 Ck

)(
0 Im 0
Im 0 0
0 0 Ik

)
. (19)
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Taking determinants on both sides of (19) we obtain

|T−1
k |2|∆m+k| = (−1)m|Ck| (20)

(see Exercise 1.13.1), and hence

(−1)m|∆m+k| = |Tk|2|Ck| (k = 1, . . . , n−m). (21)

Thus, x′Ax > 0 for all x ∈ Γ, if and only if Q′AQ is positive definite, if and
only if |Ck| > 0 (k = 1, . . . , n − m), if and only if (−1)m|∆m+k| > 0 (k =
1, . . . , n−m).

Similarly, x′Ax < 0 for all x ∈ Γ, if and only if Q′AQ is negative definite, if
and only if (−1)k|Ck| > 0 (k = 1, . . . , n−m), if and only if (−1)m+k|∆m+k| >
0 (k = 1, . . . , n−m). 2

12 NECESSARY AND SUFFICIENT CONDITIONS FOR
r(A : B) = r(A) + r(B)

Let us now prove Theorem 19.

Theorem 19

Let A and B be two matrices with the same number of rows. Then the fol-
lowing seven statements are equivalent.

(i) M(A) ∩M(B) = {0},
(ii) r(AA′ +BB′) = r(A) + r(B),

(iii) A′(AA′ +BB′)+A is idempotent,

(iv) A′(AA′ +BB′)+A = A+A,

(v) B′(AA′ +BB′)+B is idempotent,

(vi) B′(AA′ +BB′)+B = B+B,

(vii) A′(AA′ +BB′)+B = 0.

Proof. (ii) =⇒ (i): Since r(AA′ + BB′) = r(A : B), (ii) implies r(A : B) =
r(A)+r(B). Hence the linear space spanned by the columns ofA and the linear
space spanned by the columns of B are disjoint, that is, M(A)∩M(B) = {0}.

(i) =⇒ (iii): We shall show that (i) implies that the eigenvalues of the ma-
trix (AA′+BB′)+AA′ are either zero or one. Then, by Theorem 1.9, the same
is true for the symmetric matrix A′(AA′ + BB′)+A, thus proving its idem-
potency. Let λ be an eigenvalue of (AA′ +BB′)+AA′, and x a corresponding
eigenvector, so that

(AA′ +BB′)+AA′x = λx. (1)
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Since

(AA′ +BB′)(AA′ +BB′)+A = A, (2)

we have

AA′x = (AA′ +BB′)(AA′ +BB′)+AA′x

= λ(AA′ +BB′)x, (3)

and hence

(1 − λ)AA′x = λBB′x. (4)

Now, since M(AA′) ∩M(BB′) = {0}, (4) implies

(1 − λ)AA′x = 0. (5)

Thus, AA′x = 0 implies λ = 0 by (1) and AA′x 6= 0 implies λ = 1 by (5).
Hence λ = 0 or λ = 1.

(iii) =⇒ (vii): If (iii) holds, then

A′(AA′ +BB′)+A = A′(AA +BB′)+AA′(AA′ +BB′)+A

= A′(AA′ +BB′)+(AA′ +BB′)(AA′ +BB′)+A

− A′(AA′ +BB′)+BB′(AA′ +BB′)+A

= A′(AA′ +BB′)+A−A′(AA′ +BB′)+BB′(AA′ +BB′)+A. (6)

Hence

A′(AA′ + BB′)+BB′(AA′ +BB′)+A = 0, (7)

which implies (vii).
(v) =⇒ (vii): This is proved similarly.
(vii) =⇒ (iv): If (vii) holds, then, using (2),

A = (AA′ +BB′)(AA′ +BB′)+A = AA′(AA′ +BB′)+A. (8)

Pre-multiplication with A+ gives (iv).
(vii) =⇒ (vi): This is proved similarly.
(iv) =⇒ (iii) and (vi) =⇒ (v): Trivial.
(vii) =⇒ (ii): We already know that (vii) implies (iv) and (vi). Hence

(
A′

B′

)
(AA′ +BB′)+(A : B) =

(
A+A 0

0 B+B

)
. (9)

The rank of the matrix on the left side of (9) is r(A : B); the rank of the
matrix on the right hand side is r(A+A) + r(B+B). It follows that

r(AA′ +BB′) = r(A : B) = r(A+A) + r(B+B) = r(A) + r(B). (10)

This completes the proof. 2
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13 THE BORDERED GRAMIAN MATRIX

Let A be a positive semidefinite n × n matrix and B an n × k matrix. The
symmetric (n+ k) × (n+ k) matrix

Z =

(
A B
B′ 0

)
, (1)

called a bordered Gramian matrix, is of great interest in optimization theory.
We first prove Theorem 20.

Theorem 20

Let N = A+BB′ and C = B′N+B. Then

(i) M(A) ⊂ M(N), M(B) ⊂ M(N), M(B′) = M(C),

(ii) NN+A = A, NN+B = B,

(iii) C+C = B+B, r(C) = r(B).

Proof. Let A = TT ′ and recall from (1.7.9) that M(Q) = M(QQ′) for any Q.
Then

M(A) = M(T ) ⊂ M(T : B) = M(TT ′ +BB′) = M(N), (2)

and similarly M(B) ⊂ M(N). Hence NN+A = A and NN+B = B. Next,
let N+ = FF ′ and define G = B′F . Then C = GG′. Using (ii) and the fact
that G′(GG′)(GG′)+ = G′ for any G, we obtain

B(I − CC+) = NN+B(I − CC+) = NFG′(I −GG′(GG′)+) = 0, (3)

and hence M(B′) ⊂ M(C). Since obviously M(C) ⊂ M(B′), we find that
M(B′) = M(C).

Finally, to prove (iii), we note that M(B′) = M(C) implies that the ranks
of B′ and C must be equal and hence that r(B) = r(C). We also have

(B′B+′
)C = (B′B+′

)(B′N+B) = B′N+B = C. (4)

As B′B+′
is symmetric idempotent and r(B′B+′

) = r(B′) = r(C), it follows

(by Theorem 2.8) that B′B+′
= CC+ and hence that B+B = C+′

C′ = C+C
(Exercise 2.7.7). 2

Next we obtain the Moore-Penrose inverse of Z.

Theorem 21

The Moore-Penrose inverse of Z is

Z+ =

(
D E
E′ −F

)
(5)
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where

D = N+ −N+BC+B′N+, (6)

E = N+BC+, (7)

F = C+ − CC+, (8)

and

N = A+BB′, C = B′N+B. (9)

Moreover,

ZZ+ = Z+Z =

(
NN+ 0

0 CC+

)
. (10)

Proof. Let G be defined by

G =

(
N+ −N+BC+B′N+ N+BC+

C+B′N+ −C+ + CC+

)
. (11)

Then ZG is equal to

(
AN+ −AN+BC+B′N+ +BC+B′N+ AN+BC+ −BC+ +BCC+

B′N+ −B′N+BC+B′N+ B′N+BC+

)

(12)

which in turn is equal to the block-diagonal matrix in (10). We obtain this
by replacing A by N − BB′, and using the definition of C and the results
NN+B = B and CC+B′ = B′ (see Theorem 20). Since Z and G are both
symmetric and ZG is also symmetric, it follows that ZG = GZ and so GZ
is also symmetric. To show that ZGZ = Z and GZG = G is straightforward.
This concludes the proof. 2

In the special case where M(B) ⊂ M(A), the results can be simplified.
This case is worth stating as a separate theorem.

Theorem 22

In the special case where M(B) ⊂ M(A), we have

AA+B = B, ΓΓ+ = B+B, (13)

where Γ = B′A+B. Furthermore,

Z+ =

(
A+ −A+BΓ+B′A+ A+BΓ+

Γ+B′A+ −Γ+

)
(14)
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and

ZZ+ = Z+Z =

(
AA+ 0

0 B+B

)
. (15)

Proof. We could prove the theorem as a special case of the previous results.
Below, however, we present a simple direct proof. The first statement of (13)
follows from M(B) ⊂ M(A). To prove the second statement of (13) we write
A = TT ′ with |T ′T | 6= 0 and B = TS, so that

Γ = B′A+B = S′T ′(TT ′)+TS = S′S. (16)

Then, using Theorem 2.7,

B+B = (TS)+(TS) = S+S = (S′S)+S′S = Γ+Γ = ΓΓ+. (17)

As a consequence we also have ΓΓ+B′ = B′. Now, let G be defined by

G =

(
A+ −A+BΓ+B′A+ A+BΓ+

Γ+B′A+ −Γ+

)
. (18)

Then,

ZG =

(
AA+ −AA+BΓ+B′A+ +BΓ+B′A+ AA+BΓ+ −BΓ+

B′A+ −B′A+BΓ+B′A+ B′A+BΓ+

)

=

(
AA+ 0

0 ΓΓ+

)
=

(
AA+ 0

0 B+B

)
, (19)

using the facts AA+B = B,ΓΓ+B′ = B′ and ΓΓ+ = B+B. To show that
G = Z+ is then straightforward. 2

14 THE EQUATIONS X1A+X2B
′ = G1, X1B = G2

The two matrix equations in X1 and X2,

X1A+X2B
′ = G1, (1)

X1B = G2, (2)

where A is positive semidefinite, can be written equivalently as

(
A B
B′ 0

)(
X ′

1
X ′

2

)
=

(
G′

1
G′

2

)
. (3)

The properties of the matrix Z studied in the previous section enable us to
solve these equations.
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Theorem 23

The matrix equation in X1 and X2,

(
A B
B′ 0

)(
X ′

1
X ′

2

)
=

(
G′

1
G′

2

)
, (4)

where A,B,G1 and G2 are given matrices (of appropriate orders) and A is
positive semidefinite, has a solution if and only if

M(G′
1) ⊂ M(A : B) and M(G′

2) ⊂ M(B′) (5)

in which case the general solution is

X1 = G1(N
+ −N+BC+B′N+) +G2C

+B′N+ +Q1(I −NN+) (6)

and

X2 = G1N
+BC+ +G2(I − C+) +Q2(I −B+B), (7)

where

N = A+BB′, C = B′N+B (8)

and Q1 and Q2 are arbitrary matrices of appropriate orders.
Moreover, if M(B) ⊂ M(A), then we may take N = A.

Proof. Let X = (X1 : X2), G = (G1 : G2) and

Z =

(
A B
B′ 0

)
. (9)

Then Equation (4) can be written as

ZX ′ = G′. (10)

A solution of (10) exists if and only if

ZZ+G′ = G′, (11)

and if a solution exists it takes the form

X ′ = Z+G′ + (I − Z+Z)Q′ (12)

where Q is an arbitrary matrix of appropriate order (Theorem 2.13).
Now, (11) is equivalent, by Theorem 21, to the two equations

NN+G′
1 = G′

1, CC+G′
2 = G′

2. (13)
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The two equations in (13) in their turn are equivalent to

M(G′
1) ⊂ M(N) = M(A : B) (14)

and

M(G′
2) ⊂ M(C) = M(B′), (15)

using Theorems 2.11 and 20. This proves (5).
Using (12) and the expression for Z+ in Theorem 21, we obtain the general

solutions

X ′
1 = (N+ −N+BC+B′N+)G′

1 +N+BC+G′
2 + (I −NN+)Q′

1 (16)

and

X ′
2 = C+B′N+G′

1 + (CC+ − C+)G′
2 + (I − CC+)P ′

= C+B′N+G′
1 + (I − C+)G′

2 + (I − CC+)(P ′ −G′
2)

= C+B′N+G′
1 + (I − C+)G′

2 + (I −B+B)Q′
2, (17)

using Theorem 20 (iii) and letting Q = (Q1 : P ) and Q2 = P −G2.
The special case where M(B) ⊂ M(A) follows from Theorem 22. 2

An important special case of Theorem 23 arises when we take G1 = 0.

Theorem 24

The matrix equation in X1 and X2,
(

A B
B′ 0

)(
X ′

1
X ′

2

)
=

(
0
G′

)
, (18)

where A,B and G are given matrices (of appropriate orders) and A is positive
semidefinite, has a solution if and only if

M(G′) ⊂ M(B′) (19)

in which case the general solution for X1 is

X1 = G(B′N+B)+B′N+ +Q(I −NN+) (20)

where N = A+BB′ and Q is arbitrary (of appropriate order).
Moreover, if M(B) ⊂ M(A), then the general solution can be written as

X1 = G(B′A+B)+B′A+ +Q(I −AA+). (21)

Proof. This follows immediately from Theorem 23. 2

Exercise

1. Give the general solution for X2 in Theorem 24.
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MISCELLANEOUS EXERCISES

1. D′
n = D+

n (In2 +Kn − dgKn) = D+
n (2In2 − dgKn).

2. D+
n = 1

2D
′
n(In2 + dgKn).

3. DnD
′
n = In2 +Kn − dgKn.

4. Let ei denote a unit vector of order m, that is, ei has unity in its i-th
position and zeros elsewhere. Let uj be a unit vector of order n. Define
the m2 ×m and n2 × n matrices

Wm = (vec e1e
′
1, . . . , vec eme

′
m), Wn = (vec u1u

′
1, . . . , vec unu

′
n).

Let A and B be m× n matrices. Prove that

A⊙B = W ′
m(A⊗B)Wn.
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CHAPTER 4

Mathematical preliminaries

1 INTRODUCTION

Chapters 4–7, which constitute Part Two of this monograph, consist of two
principal parts. The first part discusses differentials; the second part deals
with extremum problems.

The use of differentials in both applied and theoretical work is widespread,
but satisfactory treatment of differentials is not so widespread in textbooks
on economics and mathematics for economists. Indeed, some authors still
claim that dx and dy stand for ‘infinitesimally small changes in x and y’. The
purpose of Chapters 5 and 6 is therefore to provide a systematic theoretical
discussion of differentials.

We begin, however, by reviewing some basic concepts which will be used
throughout.

2 INTERIOR POINTS AND ACCUMULATION POINTS

Let c be a point in IRn and r a positive number. The set of all points x in IRn

whose distance from c is less than r is called an n-ball of radius r and centre
c, and is denoted by B(c) or B(c; r). Thus,

B(c; r) = {x : x ∈ IRn, ‖x− c‖ < r}. (1)

An n-ball B(c) is sometimes called a neighbourhood of c, denoted N(c). The
two words are used interchangeably.

Let S be a subset of IRn, and assume that c ∈ S and x ∈ IRn, not necessarily
in S. Then

(a) if there is an n-ball B(c), all of whose points belong to S, then c is called
an interior point of S;

(b) if every n-ball B(x) contains at least one point of S distinct from x,
then x is called an accumulation point of S;

75
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(c) if c ∈ S is not an accumulation point of S, then c is called an isolated
point of S;

(d) if every n-ball B(x) contains at least one point of S and at least one
point of IRn − S, then x is called a boundary point of S.

We further define:

(e) the interior of S, denoted
◦

S, as the set of all interior points of S;

(f) the derived set S, denoted S′, as the set of all accumulation points of S;

(g) the closure of S, denoted S̄, as S ∪ S′ (that is, to obtain S̄, we adjoin
all accumulation points of S to S);

(h) the boundary of S, denoted ∂S, as the set of all boundary points of S.

Theorem 1

Let S be a subset of IRn. If x ∈ IRn is an accumulation point of S, then every
n-ball B(x) contains infinitely many points of S.

Proof. Suppose there is an n-ball B(x) which contains only a finite number of
points of S distinct from x, say a1, a2, . . . , ap. Let

r = min
1≤i≤p

‖x− ai‖. (2)

Then r > 0, and the n-ball B(x; r) contains no point of S distinct from x.
This contradiction completes the proof. 2

Exercises

1. Show that x is a boundary point of a set S in IRn if and only if x is a
boundary point of IRn − S.

2. Show that x is a boundary point of a set S in IRn if and only if

(a) x ∈ S and x is an accumulation point of IRn − S, or

(b) x /∈ S and x is an accumulation point of S.

3 OPEN AND CLOSED SETS

A set S in IRn is said to be

(a) open, if all its points are interior points;

(b) closed, if it contains all its accumulation points;
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(c) bounded, if there is a real number r > 0 and a point c in IRn such that
S lies entirely within the n-ball B(c; r); and

(d) compact, if it is closed and bounded.

For example, let A be an interval in IR, that is, a set with the property that,
if a ∈ A, b ∈ A and a < b, then a < c < b implies c ∈ A. For a < b ∈ IR the
open intervals in IR are

(a, b), (a,∞), (−∞, b), IR; (1)

the closed intervals are

[a, b], [a,∞), (−∞, b], IR; (2)

the bounded intervals are

(a, b), [a, b], (a, b], [a, b); (3)

and the only type of compact interval is

[a, b]. (4)

This example shows that a set can be both open and closed. In fact, the only
sets in IRn which are both open and closed are ∅ and IRn. It is also possible
that a set is neither open nor closed as the ‘half-open’ interval (a, b] shows.

It is clear that S is open if and only if S =
◦

S, and that S is closed if and
only if S = S̄. An important example of an open set is the n-ball.

Theorem 2

Every n-ball is an open set in IRn.

Proof. Let B(c; r) be a given n-ball with radius r and centre c, and let x be
an arbitrary point of B(c; r). We have to prove that x is an interior point of
B(c; r), i.e. that there exists a δ > 0 such that B(x; δ) ⊂ B(c; r). Now, let

δ = r − ‖x− c‖. (5)

Then δ > 0, and, for any y ∈ B(x; δ),

‖y − c‖ ≤ ‖y − x‖ + ‖x− c‖ < δ + r − δ = r, (6)

so that y ∈ B(c; r). Thus B(x; δ) ⊂ B(c; r), and x is an interior point of
B(c; r). 2

The next theorem characterizes a closed set as the complement of an open
set.
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Theorem 3

A set S in IRn is closed if and only if its complement IRn − S is open.

Proof. Assume first that S is closed. Let x ∈ IRn−S. Then x /∈ S and, since S
contains all its accumulation points, x is not an accumulation point of S. Hence
there exists an n-ball B(x) which does not intersect S, i.e. B(x) ⊂ IRn−S. It
follows that x is an interior point of IRn − S, and hence that IRn − S is open.

To prove the converse, assume that IRn − S is open. Let x ∈ IRn be an
accumulation point of S. We must show that x ∈ S. Assume that x /∈ S.
Then x ∈ IRn − S, and since every point of IRn − S is an interior point, there
exists an n-ball B(x) ⊂ IRn − S. Hence B(x) contains no points of S thereby
contradicting the fact that x is an accumulation point of S. It follows that
x ∈ S, and hence that S is closed. 2

The next two theorems show how to construct further open and closed
sets from given ones.

Theorem 4

The union of any collection of open sets is open, and the intersection of a
finite collection of open sets is open.

Proof. Let F be a collection of open sets and let S denote their union,

S =
⋃

A∈F

A. (7)

Assume x ∈ S. Then there is at least one set of F , say A, such that x ∈ A.
Since A is open, x is an interior point of A, and hence of S. It follows that S
is open.

Next let F be a finite collection of open sets, F = {A1, A2, . . . , Ak}, and
let

T =
k⋂

j=1

Aj . (8)

Assume x ∈ T . (If T is empty, there is nothing to prove.) Then x belongs to
every set in F . Since each set in F is open, there exist k n-balls B(x; rj) ⊂
Aj , j = 1, . . . , k. Let

r = min
1≤j≤k

rj . (9)

Then x ∈ B(x; r) ⊂ T . Hence x is an interior point of T . It follows that T is
open. 2



Sec. 4 ] The Bolzano-Weierstrass theorem 79

Note. The intersection of an infinite collection of open sets need not be open.
For example,

⋂

n∈IN

(
− 1

n
,
1

n

)
= {0}. (10)

Theorem 5

The union of a finite collection of closed sets is closed, and the intersection of
any collection of closed sets is closed.

Proof. Let F be a finite collection of closed sets, F = {A1, A2, . . . , Ak}, and
let

S =

k⋃

j=1

Aj . (11)

Then,

IRn − S =
k⋂

j=1

(IRn −Aj). (12)

Since each Aj is closed, IRn −Aj is open (Theorem 3), and by Theorem 4, so
is their (finite) intersection

k⋂

j=1

(IRn −Aj). (13)

Hence IRn − S is open, and S is closed. The second statement is proved simi-
larly. 2

Finally, we present the following simple relation between open and closed
sets.

Theorem 6

If A is open and B is closed, then A−B is open and B −A is closed.

Proof. It is easy to see that A−B = A∩(IRn−B), the intersection of two open
sets. Hence, by Theorem 4,A−B is open. Similarly, sinceB−A = B∩(IRn−A),
the intersection of two closed sets, it is closed by Theorem 5. 2

4 THE BOLZANO-WEIERSTRASS THEOREM

Theorem 1 implies that a set cannot have an accumulation point unless it
contains infinitely many points to begin with. The converse, however, is not



80 Mathematical preliminaries [Ch. 4

true. For example IN is an infinite set without accumulation points. We shall
now show that infinite sets which are bounded always have an accumulation
point.

Theorem 7 (Bolzano-Weierstrass)

Every bounded infinite subset of IRn has an accumulation point in IRn.

Proof. Let us prove the theorem for n = 1. The case n > 1 is proved similarly.
Since S is bounded, it lies in some interval [−a, a]. Since S contains infinitely
many points, either [−a, 0] or [0, a] (or both) contain infinitely many points
of S. Call this interval [a1, b1]. Bisect [a1, b1] and obtain an interval [a2, b2]
containing infinitely many points of S. Continuing this process we find a
countable sequence of intervals [an, bn], n = 1, 2, . . .. The intersection

∞⋂

n=1

[an, bn]

of these intervals is a set consisting of only one point, say c (which may or
may not belong to S). We shall show that c is an accumulation point of S.
Let ǫ > 0, and consider the neighbourhood (c − ǫ, c + ǫ) of c. Then we can
find an n0 = n0(ǫ) such that [an0

, bn0
] ⊂ (c− ǫ, c+ ǫ). Since [an0

, bn0
] contains

infinitely many points of S, so does (c− ǫ, c+ ǫ). Hence c is an accumulation
point of S. 2

5 FUNCTIONS

Let S and T be two sets. If with each element x ∈ S there is associated exactly
one element y ∈ T , denoted f(x), then f is said to be a function from S to
T . We write

f : S → T, (1)

and say that f is defined on S with values in T . The set S is called the domain
of f . The set of all values of f ,

{y : y = f(x), x ∈ S}, (2)

is called the range of f , and is a subset of T .
A function φ : S → IR defined on a set S with values in IR is called real-

valued. A function f : S → IRm(m > 1) whose values are points in IRm is
called a vector function.

A real-valued function φ : S → IR, S ⊂ IR, is said to be increasing on S if
for every pair of points x and y in S,

φ(x) ≤ φ(y) wheneverx < y. (3)
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We say that φ is strictly increasing on S if

φ(x) < φ(y) wheneverx < y. (4)

(Strictly) decreasing functions are similarly defined. A function is (strictly)
monotonic on S if it is either (strictly) increasing or (strictly) decreasing on
S.

A vector function f : S → IRm, S ⊂ IRn is said to be bounded if there is a
real number M such that

‖f(x)‖ ≤M for allx inS. (5)

A function f : IRn → IRm is said to be affine if there exist an m×n matrix
A and an m× 1 vector b such that f(x) = Ax+ b for every x in IRn. If b = 0,
the function f is said to be linear.

6 THE LIMIT OF A FUNCTION

Definition 1

Let f : S → IRm be defined on a set S in IRn with values in IRm. Let c be
an accumulation point of S. Suppose there exists a point b in IRm with the
property that for every ǫ > 0 there is a δ > 0 such that

‖f(x) − b‖ < ǫ (1)

for all points x in S, x 6= c, for which

‖x− c‖ < δ. (2)

Then we say that the limit of f(x) is b, as x tends to c, and we write

lim
x→c

f(x) = b. (3)

Note. The requirement that c is an accumulation point of S guarantees that
there will be points x 6= c in S sufficiently close to c. However, c need not be
a point of S. Moreover, even if c ∈ S, we may have

f(c) 6= lim
x→c

f(x).

We have the following rules for calculating with limits of vector functions.

Theorem 8

Let f and g be two vector functions defined on S ⊂ IRn with values in IRm.
Let c be an accumulation point of S, and assume that

lim
x→c

f(x) = a, lim
x→c

g(x) = b. (4)

Then,
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(a) limx→c(f + g)(x) = a+ b,

(b) limx→c(λf)(x) = λa for every scalar λ,

(c) limx→c f(x)′g(x) = a′b,

(d) limx→c ‖f(x)‖ = ‖a‖.

Proof. The proof is left to the reader. 2

Exercises

1. Let φ : IR → IR be defined by φ(x) = x if x 6= 0, φ(0) = 1. Show that
φ(x) → 0 as x→ 0.

2. Let φ : IR − {0} → IR be defined by φ(x) = x sin(1/x) if x 6= 0. Show
that φ(x) → 0 as x→ 0.

7 CONTINUOUS FUNCTIONS AND COMPACTNESS

Let φ : S → IR be a real-valued function defined on a set S in IRn. Let c be a
point of S. Then we say that φ is continuous at c if for every ǫ > 0 there is a
δ > 0 such that

|φ(c+ u) − φ(c)| < ǫ (1)

for all points of c+u in S for which ‖u‖ < δ. If φ is continuous at every point
of S, we say that φ is continuous on S.

Continuity is discussed in more detail in Section 5.2. Here we only prove
the following important theorem.

Theorem 9

Let φ : S → IR be a real-valued function defined on a compact set S in IRn. If
φ is continuous on S, then φ is bounded on S.

Proof. Suppose that φ is not bounded on S. Then there exists, for every k ∈ IN,
an xk ∈ S such that |φ(xk)| ≥ k. The set

A = {x1, x2, . . .} (2)

contains infinitely many points, and A ⊂ S. Since S is a bounded set, so
is A. Hence, by the Bolzano-Weierstrass theorem (Theorem 7), A has an
accumulation point, say x0. Then x0 is also an accumulation point of S and
hence x0 ∈ S, since S is closed.

Now choose an integer p such that

p > 1 + |φ(x0)|, (3)
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and define the set Ap ⊂ A by

Ap = {xp, xp+1, . . .}, (4)

so that

|φ(x)| ≥ p for allx ∈ Ap. (5)

Since φ is continuous at x0, there exists an n-ball B(x0) such that

|φ(x) − φ(x0)| < 1 for allx ∈ S ∩B(x0). (6)

In particular,

|φ(x) − φ(x0)| < 1 for allx ∈ Ap ∩B(x0). (7)

The set Ap ∩ B(x0) is not empty. (In fact, it contains infinitely many points
because A ∩ B(x0) contains infinitely many points, see Theorem 1.) For any
x ∈ Ap ∩B(x0) we have

|φ(x)| < 1 + |φ(x0)| < p, (8)

using (7) and (3), and also, from (5),

|φ(x)| ≥ p. (9)

This contradiction shows that φ must be bounded on S. 2

8 CONVEX SETS

Definition 2

A subset S of IRn is called a convex set if, for every pair of points x and y in
S and every real θ satisfying 0 < θ < 1, we have

θx+ (1 − θ)y ∈ S. (1)

In other words, S is convex if the line segment joining any two points of S
lies entirely inside S (see Figure 1).

Convex sets need not be closed, open, or compact. A single point and the
whole space IRn are trivial examples of convex sets. Another example of a
convex set is the n-ball.

Theorem 10

Every n-ball in IRn is convex.
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Figure 1 Convex and non-convex sets in IR2

Proof. Let B(c; r) be an n-ball with radius r > 0 and centre c. Let x and y be
points in B(c; r) and let θ ∈ (0, 1). Then

‖θx+ (1 − θ)y − c‖ = ‖θ(x− c) + (1 − θ)(y − c)‖
≤ θ‖x− c‖ + (1 − θ)‖y − c‖ < θr + (1 − θ)r = r. (2)

Hence the point θx + (1 − θ)y lies in B(c; r). 2

Another important property of convex sets is the following.

Theorem 11

The intersection of any collection of convex sets is convex.

Proof. Let F be a collection of convex sets and let S denote their intersection,

S =
⋂

A∈F

A.

Assume x and y ∈ S. (If S is empty, or consists of only one point, there is
nothing to prove.) Then x and y belong to every set in F . Since each set in
F is convex, the point θx+ (1− θ)y, θ ∈ (0, 1), also belongs to every set in F ,
and hence to S. It follows that S is convex. 2

Note. The union of convex sets is usually not convex.

Definition 3

Let x1, x2, . . . , xk be k points in IRn. A point x ∈ IRn is called a convex com-
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bination of these points if there exist k real numbers λ1, λ2, . . . , λk such that

x =

k∑

i=1

λixi, λi ≥ 0 (i = 1, . . . , k),

k∑

i=1

λi = 1. (3)

Theorem 12

Let S be a convex set in IRn. Then every convex combination of a finite number
of points in S lies in S.

Proof (by induction). The theorem is clearly true for each pair of points in
S. Suppose it is true for all collections of k points in S. Let x1, . . . , xk+1 be
k + 1 arbitrary points in S, and let λ1, . . . , λk+1 be arbitrary real numbers

satisfying λi ≥ 0 (i = 1, . . . , k + 1) and
∑k+1

i=1 λi = 1. Define x =
∑k+1

i=1 λixi
and assume that λk+1 6= 1. (If λk+1 = 1, then x = xk+1 ∈ S.) Then we can
write x as

x = λ0y + λk+1xk+1 (4)

with

λ0 =

k∑

i=1

λi, y =

k∑

i=1

(λi/λ0)xi. (5)

By the induction hypothesis, y lies in S. Hence, by the definition of a convex
set, x ∈ S. 2

Exercises

1. Consider a set S in IRn with the property that, for any pair of points x
and y in S, their midpoint 1

2 (x+ y) also belongs to S. Show, by means
of a counter-example, that S need not be convex.

2. Show, by means of a counter-example, that the union of two convex sets
need not be convex.

3. Let S be a convex set in IRn. Show that S̄ and
◦

S are convex.

9 CONVEX AND CONCAVE FUNCTIONS

Let φ : S → IR be a real-valued function defined on a convex set S in IRn.
Then

(a) φ is said to be convex on S, if

φ(θx + (1 − θ)y) ≤ θφ(x) + (1 − θ)φ(y) (1)

for every pair of points x, y in S and every θ ∈ (0, 1) (see Figure 2);
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φ

Figure 2 A convex function

(b) φ is said to be strictly convex on S, if

φ(θx + (1 − θ)y) < θφ(x) + (1 − θ)φ(y) (2)

for every pair of points x, y in S, x 6= y, and every θ ∈ (0, 1);

(c) φ is said to be (strictly) concave if ψ ≡ −φ is (strictly) convex.

Note. It is essential in the definition that S is a convex set, since we require
that θx+ (1 − θ) y ∈ S if x, y ∈ S.

It is clear that a strictly convex (concave) function is convex (concave). Ex-
amples of strictly convex functions in one dimension are φ(x) = x2 and
φ(x) = ex (x > 0); the function φ(x) = log x (x > 0) is strictly concave.
These functions are continuous (and even differentiable) on their respective
domains. That these properties are not necessary is shown by the functions

φ(x) =

{
x2, if x > 0
1, if x = 0

(3)

(strictly convex on [0,∞) but discontinuous at the boundary point x = 0)
and

φ(x) = |x| (4)

(convex on IR but not differentiable at the interior point x = 0). Thus, a
convex function may have a discontinuity at a boundary point and may not
be differentiable at an interior point. However, every convex (and concave)
function is continuous on its interior.
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The following three theorems give further properties of convex functions.

Theorem 13

An affine function is convex as well as concave, but not strictly so.

Proof. Since φ is an affine function, we have

φ(x) = α+ a′x (5)

for some scalar α and vector a. Hence

φ(θx + (1 − θ)y) = θφ(x) + (1 − θ)φ(y) (6)

for every θ ∈ (0, 1). 2

Theorem 14

Let φ and ψ be two convex functions on a convex set S in IRn. Then

αφ+ βψ (7)

is convex (concave) on S, if α ≥ 0(≤ 0) and β ≥ 0(≤ 0).
Moreover, if φ is convex and ψ strictly convex on S, then αφ+βψ is strictly

convex (concave) on S if α ≥ 0(≤ 0) and β > 0(< 0).

Proof. The proof is a direct consequence of the definition and is left to the
reader. 2

Theorem 15

Every increasing convex (concave) function of a convex (concave) function
is convex (concave). Every strictly increasing convex (concave) function of a
strictly convex (concave) function is strictly convex (concave).

Proof. Let φ be a convex function defined on a convex set S in IRn, let ψ be
an increasing convex function of one variable defined on the range of φ and
let η(x) = ψ[φ(x)]. Then

η(θx + (1 − θ)y) = ψ[φ(θx + (1 − θ)y)] ≤ ψ[θφ(x) + (1 − θ)φ(y)]

≤ θψ[φ(x)] + (1 − θ)ψ[φ(y)] = θη(x) + (1 − θ)η(y), (8)

for every x, y ∈ S and θ ∈ (0, 1). (The first inequality follows from the con-
vexity of φ and the fact that ψ is increasing; the second inequality follows
from the convexity of ψ.) Hence η is convex. The other statements are proved
similarly. 2

Exercises
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1. Show that φ(x) = log x is strictly concave and φ(x) = x log x is strictly
convex on (0,∞). (Compare Exercise 7.8.1.)

2. Show that the quadratic form x′Ax (A = A′) is convex if and only
if A is positive semidefinite, and concave if and only if A is negative
semidefinite.

3. Show that the norm

φ(x) = ‖x‖ = (x2
1 + x2

2 + . . .+ x2
n)1/2

is convex.

4. An increasing function of a convex function is not necessarily convex.
Give an example.

5. Prove the following statements by providing an example.

(a) A strictly increasing, convex function of a convex function is con-
vex, but not necessarily strictly so.

(b) An increasing convex function of a strictly convex function is con-
vex, but not necessarily strictly so.

(c) An increasing, strictly convex function of a convex function is con-
vex, but not necessarily strictly so.

6. Show that φ(X) = tr X is both convex and concave on IRn×n.

7. If φ is convex on S ⊂ IR, xi ∈ S (i = 1, . . . , n), αi ≥ 0 (i = 1, . . . , n), and∑n
i=1 αi = 1, then

φ

(
n∑

i=1

αixi

)
≤

n∑

i=1

αiφ(xi).
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is Dieudonné (1969).
§9. The fact that convex and concave functions are continuous on their inte-
rior is discussed, for example, in Luenberger (1969, Section 7.9) and Fleming
(1977, Theorem 3.5).



CHAPTER 5

Differentials and

differentiability

1 INTRODUCTION

Let us consider a function f : S → IRm, defined on a set S in IRn with values
in IRm. If m = 1, the function is called real-valued (and we shall use φ instead
of f to emphasize this); if m ≥ 2, f is called a vector function. Examples of
vector functions are

f(x) =

(
x2

x3

)
, f(x, y) =

(
xy
x
y

)
, f(x, y, z) =

(
x+ y + z

x2 + y2 + z2

)
. (1)

Note that mmay be larger or smaller than n or equal to n. In the first example
n = 1,m = 2, in the second example n = 2,m = 3, and in the third example
n = 3,m = 2.

In this chapter, we extend the one-dimensional theory of differential cal-
culus (concerning real-valued functions φ : IR → IR) to functions from IRn to
IRm. The extension from real-valued functions of one variable to real-valued
functions of several variables is far more significant than the extension from
real-valued functions to vector functions. Indeed, for most purposes a vector
function can be viewed as a vector of m real-valued functions. Yet, as we
shall see shortly, there are good reasons to study vector functions rather than
merely real-valued functions.

Throughout this chapter, and indeed, throughout this book, we shall em-
phasize the fundamental idea of a differential rather than that of a derivative.

2 CONTINUITY

We first review the concept of continuity. Intuitively a function f is continuous
at a point c if f(x) can be made arbitrarily close to f(c) by taking x sufficiently

89
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close to c; in other words, if points close to c are mapped by f into points
close to f(c).

Definition 1

Let f : S → IRm be a function defined on a set S in IRn with values in IRm.
Let c be a point of S. Then we say that f is continuous at c if for every ǫ > 0
there exists a δ > 0 such that

‖f(c+ u) − f(c)‖ < ǫ (1)

for all points c + u in S for which ‖u‖ < δ. If f is continuous at every point
of S, we say f is continuous on S.

Definition 1 is a straightforward generalization of the definition in Section
4.7 concerning continuity of real-valued functions (m = 1). Note that f has to
be defined at the point c in order to be continuous at c. Some authors require
that c is an accumulation point of S, but this is not assumed here. If c is an
isolated point of S (a point of S which is not an accumulation point of S),
then every f defined at c will be continuous at c because for sufficiently small
δ there is only one point c + u in S satisfying ‖u‖ < δ, namely the point c
itself; then

‖f(c+ u) − f(c)‖ = 0 < ǫ. (2)

If c is an accumulation point of S, the definition of continuity implies that

lim
u→0

f(c+ u) = f(c). (3)

Geometrical intuition suggests that if f : S → IRm is continuous at c,
it must also be continuous near c. This intuition is wrong for two reasons.
First, the point c may be an isolated point of S, in which case there exists
a neighbourhood of c where f is not even defined. Secondly, even if c is an
accumulation point of S, it may be that every neighbourhood of c contains
points of S at which f is not continuous. For example, the real-valued function
φ : IR → IR defined by

φ(x) =

{
x (x rational),
0 (x irrational),

(4)

is continuous at x = 0, but at no other point.
If f : S → IRm, the formula

f(x) = (f1(x), . . . , fm(x))′ (5)

defines m real-valued functions fi : S → IR (i = 1, . . . ,m). These functions
are called the component functions of f and we write

f = (f1, f2, . . . , fm)′. (6)
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Theorem 1

Let S be a subset of IRn. A function f : S → IRm is continuous at a point c
in S if and only if each of its component functions is continuous at c.

If c is an accumulation point of a set S in IRn and f : S → IRm is continuous
at c, then we can write (3) as

f(c+ u) = f(c) +Rc(u), (7)

where

lim
u→0

Rc(u) = 0. (8)

We may call Equation (7) the Taylor formula of order zero. It says that
continuity at an accumulation point of S and ‘zero-order approximation’ (ap-
proximation of f(c + u) by a polynomial of degree zero, that is a constant)
are equivalent properties. In the next section we discuss the equivalence of
differentiability and first-order (that is linear) approximation.

Exercises

1. Prove Theorem 1.

2. Let S be a set in IRn. If f : S → IRm and g : S → IRm are continuous
on S, then so is the function f + g : S → IRm.

3. Let S be a set in IRn and T a set in IRm. Suppose that g : S → IRm

and f : T → IRp are continuous on S and T respectively, and that
g(x) ∈ T when x ∈ S. Then the composite function h : S → IRp defined
by h(x) = f(g(x)) is continuous on S.

4. Let S be a set in IRn. If the real-valued functions φ : S → IR, ψ : S → IR
and χ : S → IR − {0} are continuous on S, then so are the real-valued
functions φψ : S → IR and φ/χ : S → IR.

5. Let φ : (0, 1) → IR be defined by

φ(x) =

{
1/q (x rational, x = p/q),
0 (x irrational),

where p, q ∈ IN have no common factor. Show that φ is continuous at
every irrational point, and discontinuous at every rational point.

3 DIFFERENTIABILITY AND LINEAR APPROXIMATION

In the one-dimensional case, the equation

lim
u→0

φ(c+ u) − φ(c)

u
= φ′(c), (1)
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defining the derivative at c, is equivalent to the equation

φ(c+ u) = φ(c) + uφ′(c) + rc(u), (2)

where the remainder rc(u) is of smaller order than u as u→ 0, that is

lim
u→0

rc(u)

u
= 0. (3)

Equation (2) is called the first-order Taylor formula. If for the moment we
think of the point c as fixed and the increment u as variable, then the incre-
ment of the function, that is the quantity φ(c+u)−φ(c), consists of two terms,
namely a part uφ′(c) which is proportional to u and an ‘error’ which can be
made as small as we please relative to u by making u itself small enough.
Thus the smaller the interval about the point c which we consider, the more
accurately is the function φ(c+ u) – which is a function of u – represented by
its affine part φ(c) + uφ′(c). We now define the expression

dφ(c;u) = uφ′(c) (4)

as the (first) differential of φ at c with increment u.
The notation dφ(c;u) rather than dφ(c, u) emphasizes the different roles

of c and u. The first point, c, must be a point where φ′(c) exists, whereas the
second point, u, is an arbitrary point in IR.

Although the concept of differential is as a rule only used when u is small,
there is in principle no need to restrict u in any way. In particular, the dif-
ferential dφ(c;u) is a number which has nothing to do with infinitely small
quantities.

The differential dφ(c;u) is thus the linear part of the increment φ(c+u)−
φ(c). This is expressed geometrically by replacing the curve at point c by its
tangent.

Conversely, if there exists a quantity α, depending on c but not on u, such
that

φ(c+ u) = φ(c) + uα+ r(u), (5)

where r(u)/u tends to 0 with u, that is if we can approximate φ(c+ u) by an
affine function (in u) such that the difference between the function and the
approximation function vanishes to a higher order than the increment u, then
φ is differentiable at c. The quantity α must then be the derivative φ′(c). We
see this immediately if we rewrite Equation (5) in the form

φ(c+ u) − φ(c)

u
= α+

r(u)

u
(6)

and then let u tend to 0. Differentiability of a function and the possibility of
approximating a function by means of an affine function are therefore equiv-
alent properties.



Sec. 4 ] The differential of a vector function 93




x

u




φ (c+u)– φ (c)
d φ

φ(x )

c c+u

Figure 1 Geometric interpretation of the differential

4 THE DIFFERENTIAL OF A VECTOR FUNCTION

These ideas can be extended in a perfectly natural way to vector functions of
two or more variables.

Definition 2

Let f : S → IRm be a function defined on a set S in IRn. Let c be an interior
point of S, and let B(c; r) be an n-ball lying in S. Let u be a point in IRn

with ‖u‖ < r, so that c + u ∈ B(c; r). If there exists a real m × n matrix A,
depending on c but not on u, such that

f(c+ u) = f(c) +A(c)u + rc(u) (1)

for all u ∈ IRn with ‖u‖ < r and

lim
u→0

rc(u)

‖u‖ = 0, (2)

then the function f is said to be differentiable at c. The m×n matrix A(c) is
then called the (first) derivative of f at c, and the m× 1 vector

df(c;u) = A(c)u, (3)
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which is a linear function of u, is called the (first) differential of f at c (with
increment u). If f is differentiable at every point of an open subset E of S,
we say f is differentiable on (or in) E.

In other words, f is differentiable at the point c if f(c + u) can be ap-
proximated by an affine function of u. Note that a function f can only be
differentiated at an interior point or on an open set.

Example 1

Let φ : IR2 → IR be a real-valued function defined by φ(x, y) = xy2. Then

φ(x+ u, y + v) = (x+ u)(y + v)2

= xy2 + (y2u+ 2xyv) + (xv2 + 2yuv + uv2)

= φ(x, y) + dφ(x, y;u, v) + r(u, v) (4)

with

dφ(x, y;u, v) = (y2, 2xy)

(
u
v

)
(5)

and

r(u, v) = xv2 + 2yuv + uv2. (6)

Since r(u, v)/(u2 + v2)1/2 → 0 as (u, v) → (0, 0), φ is differentiable at every
point of IR2 and its derivative is (y2, 2xy), a row vector.

We have seen before (Section 2) that a function can be continuous at a
point c, but fails to be continuous at points near c; indeed, the function may
not even exist near c. If a function is differentiable at c, then it must exist in a
neighbourhood of c, but the function need not be differentiable or continuous
in that neighbourhood. For example, the real-valued function φ : IR → IR
defined by

φ(x) =

{
x2 (x rational),
0 (x irrational),

(7)

is differentiable (and continuous) at x = 0, but neither differentiable nor
continuous at any other point.

Let us return to Equation (1). It consists of m equations,

fi(c+ u) = fi(c) +

n∑

j=1

aij(c)uj + ric(u) (i = 1, . . . ,m) (8)

with

lim
u→0

ric(u)

‖u‖ = 0 (i = 1, . . . ,m). (9)
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Hence we obtain our next theorem.

Theorem 2

Let S be a subset of IRn. A function f : S → IRm is differentiable at an interior
point c of S if and only if each of its component functions fi is differentiable
at c. In that case, the i-th component of df(c;u) is dfi(c;u) (i = 1, . . . ,m).

In view of Theorems 1 and 2, it is not surprising to find that many of
the theorems on continuity and differentiation that are valid for real-valued
functions remain valid for vector functions. It appears therefore that we need
only study real-valued functions. This is not so, however, because in practi-
cal applications real-valued functions are often expressed in terms of vector
functions (and indeed, matrix functions). Another reason for studying vector
functions, rather than merely real-valued functions, is to obtain a meaningful
chain rule (Section 12).

If f : S → IRm, S ⊂ IRn, is differentiable on an open subset E of S, there
must exist real-valued functions aij : E → IR (i = 1, . . . ,m; j = 1, . . . , n) such
that (1) holds for every point of E. We have, however, no guarantee that, for
given f , any such function aij exists. We shall prove later (Section 10) that,
when f is suitably restricted, the functions aij exist. But first we prove that,
if such functions exist, they are unique.

Exercise

1. Let f : S → IRm and g : S → IRm be differentiable at a point c ∈ S ⊂
IRn. Then the function h = f + g is differentiable at c with dh(c;u) =
df(c;u) + dg(c;u).

5 UNIQUENESS OF THE DIFFERENTIAL

Theorem 3

Let f : S → IRm, S ⊂ IRn, be differentiable at a point c ∈ S with differential
df(c;u) = A(c)u. Suppose a second matrix A∗(c) exists such that df(c;u) =
A∗(c)u. Then A(c) = A∗(c).

Proof. From the definition of differentiability we have

f(c+ u) = f(c) +A(c)u + rc(u) (1)

and also

f(c+ u) = f(c) +A∗(c)u+ r∗c (u), (2)

where rc(u)/‖u‖ and r∗c (u)/‖u‖ both tend to 0 with u. Let B(c) = A(c) −
A∗(c). Subtracting (2) from (1) gives

B(c)u = r∗c (u) − rc(u). (3)
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Hence,

B(c)u

‖u‖ → 0 as u→ 0. (4)

For fixed u 6= 0 it follows that

B(c)(tu)

‖tu‖ → 0 as t→ 0. (5)

The left side of (5) is independent of t. Thus B(c)u = 0 for all u ∈ IRn. The
theorem follows. 2

6 CONTINUITY OF DIFFERENTIABLE FUNCTIONS

Next we prove that the existence of the differential df(c;u) implies conti-
nuity of f at c. In other words, that continuity is a necessary condition for
differentiability.

Theorem 4

If f is differentiable at c, then f is continuous at c.

Proof. Since f is differentiable, we write

f(c+ u) = f(c) +A(c)u + rc(u). (1)

Now, both A(c)u and rc(u) tend to 0 with u. Hence

f(c+ u) → f(c) as u→ 0 (2)

and the result follows. 2

The converse of Theorem 4 is, of course, false. For example, the function φ :
IR → IR defined by the equation φ(x) = |x| is continuous but not differentiable
at 0.

Exercise

1. Let φ : S → IR be a real-valued function defined on a set S in IRn,
and differentiable at an interior point c of S. Show that (a) there exists
a non-negative number M , depending on c but not on u, such that
|dφ(c;u)| ≤M‖u‖; (b) there exists a positive number η, again depending
on c but not on u, such that |rc(u)| < ‖u‖ for all u 6= 0 with ‖u‖ < η.
Conclude that (c) |φ(c + u) − φ(c)| < (1 + M)‖u‖ for all u 6= 0 with
‖u‖ < η. A function with this property is said to satisfy a Lipschitz
condition at c. Of course, if φ satisfies a Lipschitz condition at c, then
it must be continuous at c.
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7 PARTIAL DERIVATIVES

Before we develop the theory of differentials any further, we introduce an
important concept in multivariable calculus, the partial derivative.

Let f : S → IRm be a function defined on a set S in IRn with values in IRm,
and let fi : S → IR (i = 1, . . . ,m) be the i-th component function of f . Let
c be an interior point of S, and let ej be the j-th unit vector in IRn, that is
the vector whose j-th component is one and whose remaining components are
zero. Consider another point c + tej in IRn, all of whose components except
the j-th are the same as those of c. Since c is an interior point of S, c + tej
is, for small enough t, also a point of S. Now consider the limit

lim
t→0

fi(c+ tej) − fi(c)

t
. (1)

When this limit exists, it is called the partial derivative of fi with respect to
the j-th coordinate (or the j-th partial derivative of fi) at c and is denoted by
Djfi(c). (Other notations include [∂fi(x)/∂xj ]x=c or even ∂fi(c)/∂xj .) Partial
differentiation thus produces, from a given function fi, n further functions
D1fi, . . . ,Dnfi defined at those points in S where the corresponding limits
exist.

In fact, the concept of partial differentiation reduces the discussion of
real-valued functions of several variables to the one-dimensional case. We are
merely treating fi as a function of one variable at a time. Thus Djfi is the
derivative of fi with respect to the j-th variable, holding the other variables
fixed.

Theorem 5

If f is differentiable at c, then all partial derivatives Djfi(c) exist.

Proof. Since f is differentiable at c, there exists a real matrix A(c) with ele-
ments aij(c) such that, for all ‖u‖ < r,

f(c+ u) = f(c) +A(c)u + rc(u), (2)

where

rc(u)/‖u‖ → 0 as u→ 0. (3)

Since (2) is true for all ‖u‖ < r, it is true in particular if we choose u = tej
with |t| < r. This gives

f(c+ tej) = f(c) + tA(c)ej + rc(tej) (4)

where

rc(tej)/t→ 0 as t→ 0. (5)
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If we divide both sides of (4) by t and let t tend to 0, we find that

aij(c) = lim
t→0

fi(c+ tej) − fi(c)

t
. (6)

Since aij(c) exists, so does the limit on the right-hand side of (6). But, by (1),
this is precisely the partial derivative Djfi(c). 2

The converse of Theorem 5 is false. Indeed, the existence of the partial
derivatives with respect to each variable separately does not even imply con-
tinuity in all the variables simultaneously (although it does imply continuity
in each variable separately, by Theorem 4). Consider the following example
of a function of two variables:

φ(x, y) =

{
x+ y, if x = 0 or y = 0 or both,
1, otherwise.

(7)

This function is clearly not continuous at (0, 0), but the partial derivatives
D1φ(0, 0) and D2φ(0, 0) both exist. In fact,

D1φ(0, 0) = lim
t→0

φ(t, 0) − φ(0, 0)

t− 0
= lim

t→0

t

t
= 1 (8)

and, similarly, D2φ(0, 0) = 1.
A partial converse of Theorem 5 exists, however (Theorem 7).

Exercise

1. Show in the example given by (7) that D1φ and D2φ, while existing at
(0, 0), are not continuous there, and that every disc B(0) contains points
where the partials both exist and points where the partials both do not
exist.

8 THE FIRST IDENTIFICATION THEOREM

If f is differentiable at c, then a matrix A(c) exists such that for all ‖u‖ < r,

f(c+ u) = f(c) +A(c)u + rc(u), (1)

where rc(u)/‖u‖ → 0 as u → 0. The proof of Theorem 5 reveals that the
elements aij(c) of the matrix A(c) are, in fact, precisely the partial deriva-
tives Djfi(c). This, in conjunction with the uniqueness theorem (Theorem 3),
establishes the following central result.

Theorem 6 (first identification theorem)

Let f : S → IRm be a vector function defined on a set S in IRn, and differen-
tiable at an interior point c of S. Let u be a real n× 1 vector. Then

df(c;u) = (Df(c))u, (2)
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where Df(c) is an m×n matrix whose elements Djfi(c) are the partial deriva-
tives of f evaluated at c. Conversely, if A(c) is a matrix such that

df(c;u) = A(c)u (3)

for all real n× 1 vectors u, then A(c) = Df(c).

The m × n matrix Df(c) in (2), whose ij-th element is Djfi(c), is called
the Jacobian matrix of f at c. It is defined at each point where the partials
Djfi (i = 1, . . . ,m; j = 1, . . . , n) exist. (Hence the Jacobian matrix Df(c)
may exist even when the function f is not differentiable at c.) When m = n,
the determinant of the Jacobian matrix of f is called the Jacobian of f . The
transpose of the m× n Jacobian matrix Df(c) is an n×m matrix called the
gradient of f at c; it is denoted by ∇f(c). (The symbol ∇ is pronounced ‘del’.)
Thus

∇f(c) = (Df(c))′. (4)

In particular, when m = 1, the vector function f : S → IRm specializes to a
real-valued function φ : S → IR, the Jacobian matrix specializes to a 1×n row
vector Dφ(c) and the gradient specializes to an n× 1 column vector ∇φ(c).

The first identification theorem will be used throughout this book. Its
great practical value lies in the fact that if f is differentiable at c and we
have found a differential df at c, then the value of the partials at c can be
immediately determined.

Some caution is required when interpreting Equation (2). The right side
of (2) exists if (and only if) all the partial derivatives Djfi(c) exist. But this
does not mean that the differential df(c;u) exists if all partials exist. We know
that df(c;u) exists if and only if f is differentiable at c (Section 4). We also
know from Theorem 5 that the existence of all the partials is a necessary but
not a sufficient condition for differentiability. Hence, Equation (2) is only valid
when f is differentiable at c.

9 EXISTENCE OF THE DIFFERENTIAL, I

So far we have derived some theorems concerning differentials on the assump-
tion that the differential exists, or, what is the same, that the function is
differentiable. We have seen (Section 7) that the existence of all partial deriva-
tives at a point is necessary but not sufficient for differentiability (in fact, it
is not even sufficient for continuity).

What, then, is a sufficient condition for differentiability at a point? Before
we answer this question, we pose four preliminary questions in order to gain
further insight into the properties of differentiable functions.

(i) If f is differentiable at c, does it follow that each of the partials is
continuous at c?

(ii) If each of the partials is continuous at c, does it follow that f is differ-
entiable at c?
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(iii) If f is differentiable at c, does it follow that each of the partials exists
in some n-ball B(c)?

(iv) If each of the partials exists in some n-ball B(c), does it follow that f
is differentiable at c?

The answer to all four questions is, in general, ‘No’. Let us see why.

Example 2

Let φ : IR2 → IR be a real-valued function defined by

φ(x, y) =

{
x2[y + sin(1/x)], if x 6= 0,
0, if x = 0.

(1)

Then φ is differentiable at every point in IR2 with partial derivatives

D1φ(x, y) =

{
2x[y + sin(1/x)] − cos(1/x), if x 6= 0,
0, if x = 0,

(2)

and D2φ(x, y) = x2. We see that D1φ is not continuous at any point on the
y-axis, since cos(1/x) in (2) does not tend to a limit as x→ 0.

Example 3

Let A = {(x, y) : x = y, x > 0} be a subset of IR2, and let φ : IR2 → IR be
defined by

φ(x, y) =

{
x2/3, if (x, y) ∈ A,
0, if (x, y) /∈ A.

(3)

Then D1φ and D2φ are both zero everywhere except on A, where they are
not defined. Thus both partials are continuous at the origin. But φ is not
differentiable at the origin.

Example 4

Let φ : IR2 → IR be defined by

φ(x, y) =

{
x2 + y2, if x and y are rational,
0, otherwise.

(4)

Here φ is differentiable at only one point, namely the origin. The partial
derivative D1φ is zero at the origin and at every point (x, y) ∈ IR2 where y is
irrational; it is undefined elsewhere. Similarly, D2φ is zero at the origin and
every point (x, y) ∈ IR2 where x is irrational; it is undefined elsewhere. Hence
every disc with centre 0 contains points where the partials do not exist.
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Example 5

Let φ : IR2 → IR be defined by the equation

φ(x, y) =

{
x3/(x2 + y2), if (x, y) 6= (0, 0),
0, if (x, y) = (0, 0).

(5)

Here φ is continuous everywhere, both partials exist everywhere, but φ is not
differentiable at the origin.

10 EXISTENCE OF THE DIFFERENTIAL, II

Examples 2–5 show that neither the continuity of all partial derivatives at
a point c nor the existence of all partial derivatives in some n-ball B(c) is,
in general, a sufficient condition for differentiability. With this knowledge the
reader can now appreciate the following theorem.

Theorem 7

Let f : S → IRm be a function defined on a set S in IRn, and let c be an
interior point of S. If each of the partial derivatives Djfi exists in some n-ball
B(c) and is continuous at c, then f is differentiable at c.

Proof. In view of Theorem 2, it suffices to consider the case m = 1. The vector
function f : S → IRm then specializes to a real-valued function φ : S → IR.

Let r > 0 be the radius of the ball B(c), and let u be a point in IRn with
‖u‖ < r, so that c + u ∈ B(c). Expressing u in terms of its components we
have

u = u1e1 + · · · + unen, (1)

where ej is the j-th unit vector in IRn. Let v0 = 0, and define the partial sums

vk = u1e1 + · · · + ukek (k = 1, . . . , n). (2)

Thus vk is a point in IRn whose first k components are the same as those of u
and whose last n− k components are zero. Since ‖u‖ < r, we have ‖vk‖ < r,
so that c+ vk ∈ B(c) for k = 1, . . . , n.

We now write the difference φ(c+u)−φ(c) as a sum of n terms as follows:

φ(c+ u) − φ(c) =

n∑

j=1

(φ(c+ vj) − φ(c + vj−1)) . (3)

The k-th term in the sum is φ(c+ vk)−φ(c+ vk−1). Since B(c) is convex, the
line segment with endpoints c + vk−1 and c + vk lies in B(c). Further, since
vk = vk−1 + ukek, the two points c+ vk−1 and c+ vk differ only in their k-th
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component, and we can apply the one-dimensional mean-value theorem. This
gives

φ(c+ vk) − φ(c+ vk−1) = ukDkφ(c+ vk−1 + θkukek) (4)

for some θk ∈ (0, 1). Now, each partial derivative Dkφ is continuous at c, so
that

Dkφ(c + vk−1 + θkukek) = Dkφ(c) +Rk(vk, θk), (5)

where Rk(vk, θk) → 0 as vk → 0. Substituting (5) in (4) and then (4) in (3)
gives, after some rearrangement,

φ(c+ u) − φ(c) −
n∑

j=1

ujDjφ(c) =

n∑

j=1

ujRj(vj , θj). (6)

It follows that

∣∣∣∣∣∣
φ(c+ u) − φ(c) −

n∑

j=1

ujDjφ(c)

∣∣∣∣∣∣
≤ ‖u‖

n∑

j=1

|Rj |, (7)

where Rk → 0 as u→ 0, k = 1, . . . , n. 2

Note. Examples 2 and 4 in the previous section show that neither the ex-
istence of all partials in an n-ball B(c) nor the continuity of all partials at c
is a necessary condition for differentiability of f at c.

Exercises

1. Prove Equation (5).

2. Show that, in fact, only the existence of all the partials and continuity
of all but one of them is sufficient for differentiability.

3. The condition that the n partials be continuous at c, although sufficient,
is by no means a necessary condition for the existence of the differential
at c. Consider, for example, the case where φ can be expressed as a sum
of n functions,

φ(x) = φ1(x1) + · · · + φn(xn),

where φj is a function of the one-dimensional variable xj alone. Prove
that the mere existence of the partials D1φ, . . . ,Dnφ is sufficient for the
existence of the differential at c.
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11 CONTINUOUS DIFFERENTIABILITY

Let f : S → IRm be a function defined on an open set S in IRn. If all the
first-order partial derivatives Djfi(x) exist and are continuous at every point
x in S, then the function f is said to be continuously differentiable on S.

Notice that while we defined continuity and differentiability of a function
at a point, continuous differentiability is only defined on an open set. In view
of Theorem 7, continuous differentiability implies differentiability.

12 THE CHAIN RULE

A very important result is the so-called chain rule. In one dimension, the
chain rule gives a formula for differentiating a composite function h = g ◦ f
defined by the equation

(g ◦ f)(x) = g(f(x)). (1)

The formula states that

h′(c) = g′(f(c)) · f ′(c) (2)

and thus expresses the derivative of h in terms of the derivatives of g and f .
Its extension to the multivariable case is as follows.

Theorem 8 (chain rule)

Let S be a subset of IRn, and assume that f : S → IRm is differentiable at
an interior point c of S. Let T be a subset of IRm such that f(x) ∈ T for
all x ∈ S, and assume that g : T → IRp is differentiable at an interior point
b = f(c) of T . Then the composite function h : S → IRp defined by

h(x) = g(f(x)) (3)

is differentiable at c, and

Dh(c) = (Dg(b))(Df(c)). (4)

Proof. We put A = Df(c), B = Dg(b) and define the set Enr = {x : x ∈
IRn, ‖x‖ < r}. Since c ∈ S and b ∈ T are interior points, there is an r > 0
such that c + u ∈ S for all u ∈ Enr , and b + v ∈ T for all v ∈ Emr . We
may therefore define vector functions r1 : Enr → IRm, r2 : Emr → IRp and
R : Enr → IRp by

f(c+ u) = f(c) +Au+ r1(u), (5)

g(b+ v) = g(b) +Bv + r2(v), (6)

h(c+ u) = h(c) +BAu +R(u). (7)
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Since f is differentiable at c, and g is differentiable at b, we have

lim
u→0

r1(u)/‖u‖ = 0 and lim
v→0

r2(v)/‖v‖ = 0. (8)

We have to prove that

lim
u→0

R(u)/‖u‖ = 0. (9)

Defining a new vector function z : Enr → IRm by

z(u) = f(c+ u) − f(c), (10)

and using the definitions of R and h, we obtain

R(u) = g(b+ z(u)) − g(b) −Bz(u) +B[f(c+ u) − f(c) −Au], (11)

so that, in view of (5) and (6),

R(u) = r2(z(u)) +Br1(u). (12)

Now, let µA and µB be constants such that

‖Ax‖ ≤ µA‖x‖ and ‖By‖ ≤ µB‖y‖ (13)

for every x ∈ IRn and y ∈ IRm (see Exercise 2), and observe from (5) and (10)
that z(u) = Au+ r1(u). Repeated application of the triangle inequality then
shows that

‖R(u)‖ ≤ ‖r2(z(u))‖ + ‖Br1(u)‖

=
‖r2(z(u))‖
‖z(u)‖ · ‖Au+ r1(u)‖ + ‖Br1(u)‖

≤ ‖r2(z)‖
‖z‖ (µA‖u‖ + ‖r1(u)‖) + µB‖r1(u)‖. (14)

Dividing both sides of (14) by ‖u‖ yields

‖R(u)‖
‖u‖ ≤ µA

‖r2(z)‖
‖z‖ + µB

‖r1(u)‖
‖u‖ +

‖r1(u)‖
‖u‖ · ‖r2(z)‖‖z‖ . (15)

Now, r2(z)/‖z‖ → 0 as z → 0 by (8), and since z(u) tends to 0 with u, it
follows that r2(z)/‖z‖ → 0 as u → 0. Also by (8), r1(u)/‖u‖ → 0 as u → 0.
This shows that (9) holds. 2

Exercises

1. What is the order of the matrices A and B? Is the matrix product BA
defined?
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2. Show that the constants µA and µB in (13) exist. [Hint: Use Exercise
1.14.2.]

3. Write out the chain rule as a system of np equations

Djhi(c) =
m∑

k=1

Dkgi(b)Djfk(c)

where j = 1, . . . , n and i = 1, . . . , p.

13 CAUCHY INVARIANCE

The chain rule relates the partial derivatives of a composite function h = g ◦f
to the partial derivatives of g and f . We shall now discuss an immediate conse-
quence of the chain rule, which relates the differential of h to the differentials
of g and f . This result (known as Cauchy’s rule of invariance) is particularly
useful in performing computations with differentials.

Let h = g ◦ f be a composite function, as before, such that

h(x) = g(f(x)), x ∈ S. (1)

If f is differentiable at c and g is differentiable at b = f(c), then h is differen-
tiable at c with

dh(c;u) = (D(h(c))u. (2)

Using the chain rule, (2) becomes

dh(c;u) = (Dg(b))(Df(c))u

= (Dg(b))df(c;u) = dg(b; df(c;u)). (3)

We have thus proved the following.

Theorem 9 (Cauchy’s rule of invariance)

If f is differentiable at c and g is differentiable at b = f(c), then the differential
of the composite function h = g ◦ f is

dh(c;u) = dg(b; df(c;u)) (4)

for every u in IRn.

Cauchy’s rule of invariance justifies the use of a simpler notation for differ-
entials in practical applications, which adds greatly to the ease and elegance
of performing computations with differentials. We shall discuss notational
matters in more detail in Section 16.
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14 THE MEAN-VALUE THEOREM FOR REAL-VALUED
FUNCTIONS

The mean-value theorem for functions from IR to IR states that

φ(c+ u) = φ(c) + (Dφ(c+ θu))u (1)

for some θ ∈ (0, 1). This equation is, in general, false for vector functions.
Consider for example the vector function f : IR → IR2 defined by

f(t) =

(
t2

t3

)
. (2)

Then no value of θ ∈ (0, 1) exists such that

f(1) = f(0) + Df(θ), (3)

as can be easily verified. Several modified versions of the mean-value theorem
exist for vector functions, but here we only need the (straightforward) gener-
alization of the one-dimensional mean-value theorem to real-valued functions
of two or more variables.

Theorem 10 (mean-value theorem)

Let φ : S → IR be a real-valued function, defined and differentiable on an open
set S in IRn. Let c be a point of S, and u a point in IRn such that c+ tu ∈ S
for all t ∈ [0, 1]. Then

φ(c+ u) = φ(c) + dφ(c+ θu;u) (4)

for some θ ∈ (0, 1).

Proof. Consider the real-valued function ψ : [0, 1] → IR defined by the equation

ψ(t) = φ(c+ tu). (5)

Then ψ is differentiable at each point of (0, 1) and its derivative is given by

Dψ(t) = (Dφ(c + tu))u = dφ(c+ tu;u). (6)

By the one-dimensional mean-value theorem we have

ψ(1) − ψ(0)

1 − 0
= Dψ(θ) (7)

for some θ ∈ (0, 1). Thus

φ(c+ u) − φ(c) = dφ(c+ θu;u), (8)

thus completing the proof. 2

Exercise



Sec. 15 ] Matrix functions 107

1. Let φ : S → IR be a real-valued function, defined and differentiable on
an open interval S in IRn. If Dφ(c) = 0 for each c ∈ S, then φ is constant
on S.

15 MATRIX FUNCTIONS

Hitherto we have only considered vector functions. The following are examples
of matrix functions:

F (ξ) =

(
ξ 0
0 ξ2

)
, F (x) = xx′, F (X) = X ′. (1)

The first example maps a scalar ξ into a matrix, the second example maps a
vector x into a matrix xx′, and the third example maps a matrix X into its
transpose matrix X ′.

To extend the calculus of vector functions to matrix functions is straight-
forward. Let us consider a matrix function F : S → IRm×p defined on a set
S in IRn×q. That is, F maps an n × q matrix X in S into an m × p matrix
F (X).

Definition 3

Let F : S → IRm×p be a matrix function defined on a set S in IRn×q. Let C be
an interior point of S, and let B(C; r) ⊂ S be a ball with centre C and radius
r (also called a neighbourhood of C and denoted N(C). Let U be a point in
IRn×q with ‖U‖ < r, so that C + U ∈ B(C; r). If there exists a real mp× nq
matrix A, depending on C but not on U , such that

vecF (C + U) = vecF (C) +A(C) vecU + vecRC(U) (2)

for all U ∈ IRn×q with ‖U‖ < r and

lim
U→0

RC(U)

‖U‖ = 0, (3)

then the function F is said to be differentiable at C. The m × p matrix
dF (C;U) defined by

vec dF (C;U) = A(C) vecU (4)

is then called the (first) differential of F at C with increment U and the
mp× nq matrix A(C) is called the (first) derivative of F at C.

Note. Recall that the norm of a real matrix X is defined by

‖X‖ = (trX ′X)1/2 (5)

and a ball in IRn×q by

B(C; r) = {X : X ∈ IRn×q, ‖X − C‖ < r}. (6)
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In view of Definition 3, all calculus properties of matrix functions follow imme-
diately from the corresponding properties of vector functions because, instead
of the matrix function F , we can consider the vector function f : vecS → IRmp

defined by

f(vecX) = vecF (X). (7)

It is easy to see from (2) and (3) that the differentials of F and f are related
by

vec dF (C;U) = df(vecC; vecU). (8)

We then define the Jacobian matrix of F at C as

DF (C) = Df(vecC). (9)

This is an mp × nq matrix, whose ij-th element is the partial derivative of
the i-th component of vecF (X) with respect to the j-th element of vecX ,
evaluated at X = C.

The following three theorems are now straightforward generalizations of
Theorems 6, 8 and 9.

Theorem 11 (first identification theorem for matrix functions)

Let F : S → IRm×p be a matrix function defined on a set S in IRn×q, and
differentiable at an interior point C of S. Then

vec dF (C;U) = A(C) vecU (10)

for all U ∈ IRn×q if and only if

DF (C) = A(C). (11)

Theorem 12 (chain rule)

Let S be a subset of IRn×q, and assume that F : S → IRm×p is differentiable
at an interior point C of S. Let T be a subset of IRm×p such that F (X) ∈ T
for all X ∈ S, and assume that G : T → IRr×s is differentiable at an interior
point B = F (C) of T . Then the composite function H : S → IRr×s defined by

H(X) = G(F (X)) (12)

is differentiable at C, and

DH(C) = (DG(B))(DF (C)). (13)

Theorem 13 (Cauchy’s rule of invariance)

If F is differentiable at C and G is differentiable at B = F (C), then the
differential of the composite function H = G ◦ F is

dH(C;U) = dG(B; dF (C;U)) (14)
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for every U in IRn×q.

Exercise

1. Let S be a subset of IRn and assume that F : S → IRm×p is continuous
at an interior point c of S. Assume also that F (c) has full rank (that is,
F (c) has either full column rank p or full row rank m). Prove that F (x)
has locally constant rank that is, F (x) has full rank for all x in some
neighbourhood of x = c.

16 SOME REMARKS ON NOTATION

We remarked in Section 13 that Cauchy’s rule of invariance justifies the use of
a simpler notation for differentials in practical applications. (In the theoretical
Chapters 4-7 we shall not use this simplified notation.) Let us now see what
this simplification involves and how it is justified.

Let g : IRm → IRp be a given differentiable vector function and consider
the equation

y = g(t). (1)

We shall now use the symbol dy to denote the differential

dy = dg(t; dt). (2)

In this expression, dt (previously u) denotes an arbitrary vector in IRm, and
dy denotes the corresponding vector in IRp. Thus dt and dy are vectors of
variables.

Suppose now that the variables t1, t2, . . . , tm depend on certain other vari-
ables, say x1, x2, . . . , xn:

t = f(x) (3)

Substituting f(x) for t in (1), we obtain

y = g(f(x)) ≡ h(x), (4)

and therefore

dy = dh(x; dx). (5)

The double use of the symbol dy in (2) and (5) is justified by Cauchy’s rule
of invariance. This is easy to see: from (3) we have

dt = df(x; dx), (6)

where dx is an arbitrary vector in IRn. Then (5) gives (by Theorem 9)

dy = dg(f(x); df(x; dx)) = dg(t; dt) (7)
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using (3) and (6). We conclude that Equation (2) is valid even when t1, . . . , tm
depend on other variables x1, . . . , xn, although (6) shows that dt is then no
longer an arbitrary vector in IRm.

We can economize still further with notation by replacing y in (1) with g
itself, thus writing (2) as

dg = dg(t; dt) (8)

and calling dg the differential of g at t. This type of conceptually ambiguous
usage (of g as both function symbol and variable) will assist practical work
with differentials in Part 3.

Example 6

Let

y = φ(x) = ex
′x. (9)

Then

dy = dex
′x = ex

′x(dx′x) = ex
′x((dx)′x+ x′dx)

= (2ex
′xx′)dx. (10)

Example 7

Let

z = φ(β) = (y −Xβ)′(y −Xβ). (11)

Then, letting e = y −Xβ, we have

dz = de′e = 2e′de = 2e′d(y −Xβ)

= −2e′Xdβ = −2(y −Xβ)′Xdβ. (12)

MISCELLANEOUS EXERCISES

1. Consider a vector-valued function f(t) = (cos t, sin t)′, t ∈ IR. Show that
f(2π) − f(0) = 0, and that ‖Df(t)‖ = 1 for all t. Conclude that the
mean-value theorem does not hold for vector-valued functions.

2. Let S be an open subset of IRn and assume that f : S → IRm is differ-
entiable at each point of S. Let c be a point of S, and u a point in IRn

such that c + tu ∈ S for all t ∈ [0, 1]. Then for every vector a in IRm

there exists a θ ∈ (0, 1) such that

a′[f(c+ u) − f(c)] = a′(Df(c+ θu))u,

where Df denotes the m × n matrix of partial derivatives Djfi (i =
1, . . . ,m; j = 1, . . . , n). This is the mean-value theorem for vector func-
tions.
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3. Now formulate the correct mean-value theorem for the example in Ex-
ercise 1, and determine θ as a function of a.

BIBLIOGRAPHICAL NOTES

§1. See also Dieudonné (1969), Apostol (1974) and Binmore (1982). For a
discussion of the origins of the differential calculus, see Baron (1969).
§6. There even exist functions which are continuous everywhere without being
differentiable at any point. See Rudin (1964, p. 141) for an example of such a
function.
§14. For modified versions of the mean-value theorem, see Dieudonné (1969,
Section 8.5). Dieudonné regards the mean-value theorem as the most useful
theorem in analysis and argues (p. 148) that its real nature is exhibited by
writing it as an inequality, and not as an equality.





CHAPTER 6

The second differential

1 INTRODUCTION

In this chapter we discuss second-order partial derivatives, twice differentiabil-
ity and the second differential. Special attention is given to the relationship
between twice differentiability and second-order approximation. We define
the Hessian matrix (for vector functions) and find conditions for its (column)
symmetry. We also obtain a chain rule for Hessian matrices, and its analogue
for second differentials. Taylor’s theorem for real-valued functions is proved.
Finally, we discuss very briefly higher-order differentials, and show how the
calculus of vector functions can be extended to matrix functions.

2 SECOND-ORDER PARTIAL DERIVATIVES

Consider a vector function f : S → IRm defined on a set S in IRn with values
in IRm. Let fi : S → IR (i = 1, . . . ,m) be the i-th component function of f ,
and assume that fi has partial derivatives not only at an interior point c of
S, but also at each point of an open neighbourhood of c. Then we can also
consider their partial derivatives, i.e. we can consider the limit

lim
t→0

(Djfi)(c+ tek) − (Djfi)(c)

t
(1)

where ek is the k-th unit vector in IRn. When this limit exists, it is called
the (k, j)-th second-order partial derivative of fi at c and is denoted D

2
kjfi(c).

(Other notations include [∂2fi(x)/∂xk∂xj ]x=c or even ∂2fi(c)/∂xk∂xj .) Thus
D

2
kjfi is obtained by first partially differentiating fi with respect to the j-th

variable, and then partially differentiating the resulting function Djfi with
respect to the k-th variable.

Example 1

113
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Let φ : IR2 → IR be a real-valued function defined by the equation

φ(x, y) = xy2(x2 + y). (2)

The two (first-order) partial derivatives are given by the derivative

Dφ(x, y) = (3x2y2 + y3, 2x3y + 3xy2) (3)

and so the four second-order partial derivatives are

D
2
11φ(x, y) = 6xy2, D

2
12φ(x, y) = 6x2y + 3y2,

D
2
21φ(x, y) = 6x2y + 3y2, D

2
22φ(x, y) = 2x3 + 6xy.

(4)

Notice that in this example D
2
12φ = D

2
21φ, but this is not always the case.

The standard counter-example follows.

Example 2

Let φ : IR2 → IR be a real-valued function defined by

φ(x, y) =

{
xy(x2 − y2)/(x2 + y2), if (x, y) 6= (0, 0),
0, if (x, y) = (0, 0).

(5)

Here the function φ is differentiable on IR2, the first-order partial deriva-
tives are continuous on IR2 (even differentiable, except at the origin), and the
second-order partial derivatives exist at every point of IR2 (and are continuous
except at the origin). But

(D2
12φ)(0, 0) = 1, (D2

21φ)(0, 0) = −1. (6)

3 THE HESSIAN MATRIX

Earlier we defined a matrix which contains all the first-order partial deriva-
tives. This is the Jacobian matrix. We now define a matrix (called the Hessian
matrix ) which contains all second-order partial derivatives. We define this ma-
trix first for real-valued functions, then for vector functions.

Definition 1

Let φ : S → IR, S ⊂ IRn, be a real-valued function, and let c be a point of S
where the n2 second-order partials D

2
kjφ(c) exist. Then we define the n × n

Hessian matrix Hφ(c) by

Hφ(c) =




D
2
11φ(c) D

2
21φ(c) . . . D

2
n1φ(c)

D
2
12φ(c) D

2
22φ(c) . . . D

2
n2φ(c)

...
...

...
D

2
1nφ(c) D

2
2nφ(c) . . . D

2
nnφ(c)


 . (1)
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Note that the ij-th element of Hφ(c) is D
2
jiφ(c) and not D

2
ijφ(c).

Definition 2

Let f : S → IRm, S ⊂ IRn, be a vector function, and let c be a point of S
where the mn2 second-order partials D

2
kjfi(c) exist. Then we define the mn×n

Hessian matrix Hf(c) by

Hf(c) =




Hf1(c)
Hf2(c)

...
Hfm(c)


 . (2)

Referring to the examples in the previous section, we have for the function
in Example 1:

Hφ(x, y) =

(
6xy2 6x2y + 3y2

6x2y + 3y2 2x3 + 6xy

)
, (3)

and for the function in Example 2:

Hφ(0, 0) =

(
0 −1
1 0

)
. (4)

The first matrix is symmetric; the second is not. Sufficient conditions for
the symmetry of the Hessian matrix of a real-valued function are derived
in Section 7. The Hessian matrix of a vector function f cannot, of course,
be symmetric if m ≥ 2. We shall say that Hf(c) is column symmetric if
the Hessian matrix of each of its component functions fi (i = 1, . . . ,m) is
symmetric at c.

4 TWICE DIFFERENTIABILITY AND SECOND-ORDER
APPROXIMATION, I

Consider a real-valued function φ : S → IR which is differentiable at a point
c in S ⊂ IRn, i.e. there exists a vector a, depending on c but not on u, such
that

φ(c+ u) = φ(c) + a′u+ r(u), (1)

where

lim
u→0

r(u)

‖u‖ = 0. (2)

The vector a′, if it exists, is of course the derivative Dφ(c). Thus, differentia-
bility is defined by means of a first-order Taylor formula.
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Suppose now that there exists a symmetric matrix B, depending on c but
not on u, such that

φ(c+ u) = φ(c) + (Dφ(c))u +
1

2
u′Bu + r(u), (3)

where

lim
u→0

r(u)

‖u‖2
= 0. (4)

Equation (3) is called the second-order Taylor formula. The question naturally
arises whether it is appropriate to define twice differentiability as the existence
of a second-order Taylor formula. This question must be answered in the
negative. To see why, we consider the function φ : IR2 → IR defined by the
equation

φ(x, y) =

{
x3 + y3 (x and y rational),
0 (otherwise).

(5)

The function φ is differentiable at (0, 0), but at no other point in IR2. The
partial derivative D1φ is zero at the origin and at every point in IR2 where y
is irrational; it is undefined elsewhere. Similarly, D2φ is zero at the origin and
at every point in IR2 where x is irrational; it is undefined elsewhere. Hence,
neither of the partial derivatives is differentiable at any point in IR2. In spite
of this, a unique matrix B exists (the null matrix), such that the second-order
Taylor formula (3) holds at c = 0. Surely we do not want to say that φ is twice
differentiable at a point, when its partial derivatives are not differentiable at
that point!

5 DEFINITION OF TWICE DIFFERENTIABILITY

So, the existence of a second-order Taylor formula at a point c is not sufficient,
in general, for all partial derivatives to be differentiable at c. Neither is it
necessary. That is, the fact that all partials are differentiable at c does not, in
general, imply a second-order Taylor formula at that point. We shall return
to this issue in Section 9.

Motivated by these facts, we define twice differentiability in such a way
that it implies both the existence of a second-order Taylor formula and dif-
ferentiability of all the partials.

Definition 3

Let f : S → IRm be a function defined on a set S in IRn, and let c be an interior
point of S. If f is differentiable in some n-ball B(c) and each of the partial
derivatives Djfi is differentiable at c, then we say that f is twice differentiable
at c. If f is twice differentiable at every point of an open subset E of S, we
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say f is twice differentiable on E.

In the one-dimensional case (n = 1), the requirement that the derivatives
Dfi are differentiable at c necessitates the existence of Dfi(x) in a neighbour-
hood of c, and hence the differentiability of f itself in that neighbourhood.
But for n ≥ 2, the mere fact that each of the partials is differentiable at c,
necessitating as it does the continuity of each of the partials at c, involves
the differentiability of f at c, but not necessarily in the neighbourhood of
that point. Hence the differentiability of each of the partials at c is necessary
but not sufficient, in general, for f to be twice differentiable at c. However, if
the partials are differentiable not only at c, but also at each point of an open
neighbourhood of c, then f is twice differentiable in that neighbourhood. This
follows from Theorems 5.4 and 5.7. In fact, we have the following theorem.

Theorem 1

Let S be an open subset of IRn. Then f : S → IRm is twice differentiable on
S if and only if all partial derivatives are differentiable on S.

The non-trivial fact that twice differentiability implies (but is not implied
by) the existence of a second-order Taylor formula will be proved in Section
9.

Without difficulty we can prove the analogue of Theorems 5.1 and 5.2.

Theorem 2

Let S be a subset of IRn. A function f : S → IRm is twice differentiable at
an interior point c of S if and only if each of its component functions is twice
differentiable at c.

Let us summarize. If f is twice differentiable at c, then

(a) f is differentiable (and continuous) at c, and in a suitable neighbourhood
B(c),

(b) the first-order partials exist in B(c) and are differentiable (and contin-
uous) at c, and

(c) the second-order partials exist at c.

But

(d) the first-order partials need not be continuous at any point of B(c),
other than c itself,

(e) the second-order partials need not be continuous at c, and

(f) the second-order partials need not exist at any point of B(c), other than
c itself.
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Exercise

1. Show that the real-valued function φ : IR → IR defined by φ(x) = |x|x
is differentiable everywhere, but not twice differentiable at the origin.

6 THE SECOND DIFFERENTIAL

The second differential is simply the differential of the (first) differential,

d
2f = d(df). (1)

Since df is by definition a function of two sets of variables, say x and u, the
expression d(df), with whose help the second differential d

2f is determined,
requires some explanation. While performing the operation d(df) we always
consider df as a function of x alone by assuming u to be constant; further-
more, the same value of u is assumed for the first and second differential.

More formally, we propose the following definition.

Definition 4

Let f : S → IRm be twice differentiable at an interior point c of S ⊂ IRn. Let
B(c) be an n-ball lying in S such that f is differentiable at every point in
B(c), and let g : B(c) → IRm be defined by the equation

g(x) = df(x;u). (2)

Then the differential of g at c with increment u, i.e. dg(c;u), is called the
second differential of f at c (with increment u), and is denoted by d

2f(c;u).

We first settle the existence question.

Theorem 3

Let f : S → IRm be a function defined on a set S in IRn, and let c be an
interior point of S. If each of the first-order partial derivatives is continuous
in some n-ball B(c), and if each of the second-order partial derivatives exists
in B(c) and is continuous at c, then f is twice differentiable at c and the
second differential of f at c exists.

Proof. This is an immediate consequence of Theorem 5.7. 2

Let us now evaluate the second differential of a real-valued function φ :
S → IR, where S is a subset of IRn. On the assumption that φ is twice differ-
entiable at a point c ∈ S, we can define

ψ(x) = dφ(x;u) (3)
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for every x in a suitable n-ball B(c). Hence

ψ(x) =

n∑

j=1

ujDjφ(x) (4)

with partial derivatives

Diψ(x) =

n∑

j=1

ujD
2
ijφ(x) (i = 1, . . . , n), (5)

and first differential (at u)

dψ(x;u) =

n∑

i=1

uiDiψ(x) =

n∑

i,j=1

uiujD
2
ijφ(x). (6)

By definition, the second differential of φ equals the first differential of ψ, so
that

d
2φ(x;u) = u′(Hφ(x))u, (7)

where Hφ(x) is the n× n Hessian matrix of φ at x.
Equation (7) shows that, while the first differential of a real-valued function

φ is a linear function of u, the second differential is a quadratic form in u.
We now consider the uniqueness question. We are given a real-valued func-

tion φ, twice differentiable at c, and we evaluate its first and second differential
at c. We find

dφ(c;u) = a′u, d
2φ(c;u) = u′Bu. (8)

Suppose that another vector a∗ and another matrix B∗ exist such that also

dφ(c;u) = a∗′u, d
2φ(c;u) = u′B∗u. (9)

Then the uniqueness theorem for first differentials (Theorem 5.3) tells us that
a = a∗. But a similar uniqueness result does not hold, in general, for second
differentials. We can only conclude that

B +B′ = B∗ +B∗′, (10)

because, putting A = B − B∗, the fact that u′Au = 0 for every u does not
imply that A is the null matrix, but only that A is skew symmetric (A′ = −A);
see Theorem 1.2(c).

The symmetry of the Hessian matrix, which we will discuss in the next
section, is therefore of fundamental importance, because without it we could
not extract the Hessian matrix from the second differential.
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Before we turn to proving this result, we note that the second differential
of a vector function f : S → IRm, S ⊂ IRn, is easily obtained from (7). In fact,
we have

d
2f(c;u) =




d
2f1(c;u)

...
d
2fm(c;u)


 =




u′(Hf1(c))u
...

u′(Hfm(c))u




= (Im ⊗ u′)




Hf1(c)
...

Hfm(c)


 u, (11)

so that, in view of the definition of the Hessian matrix of a vector function
(Definition 2 in Section 3),

d
2f(c;u) = (Im ⊗ u′)(Hf(c))u. (12)

7 (COLUMN) SYMMETRY OF THE HESSIAN MATRIX

We have already seen (Section 3) that a Hessian matrix Hφ is not, in general,
symmetric. The next theorem gives us a sufficient condition for symmetry of
the Hessian matrix.

Theorem 4

Let φ : S → IR be a real-valued function defined on a set S in IRn. If φ is twice
differentiable at an interior point c of S, then the n× n Hessian matrix Hφ is
symmetric at c, i.e.

D
2
kjφ(c) = D

2
jkφ(c) (k, j = 1, . . . , n). (1)

Proof. Let B(c; r) be an n-ball such that for any point x in B(c; r) all partial

derivatives Djφ(x) exist. Let A(r) be the open interval (− 1
2r
√

2, 1
2r
√

2), and
t a point in A(r). We consider real-valued functions τij : A(r) → IR defined
by

τij(ζ) = φ(c+ tei + ζej) − φ(c+ ζej), (2)

where ei and ej are unit vectors in IRn. The functions τij are differentiable at
each point of A(r) with derivative

(Dτij)(ζ) = Djφ(c + tei + ζej) − Djφ(c+ ζej). (3)

Since Djφ is differentiable at c, we have the first-order Taylor formulae

Djφ(c + tei + ζej) = Djφ(c) + tD2
ijφ(c) + ζD2

jjφ(c) +Rij(t, ζ) (4)
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and

Djφ(c+ ζej) = Djφ(c) + ζD2
jjφ(c) + rj(ζ), (5)

where

lim
(t,ζ)→(0,0)

Rij(t, ζ)

(t2 + ζ2)1/2
= 0 lim

ζ→0

rj(ζ)

ζ
= 0. (6)

Hence (3) becomes

(Dτij)(ζ) = tD2
ijφ(c) +Rij(t, ζ) − rj(ζ). (7)

We now consider real-valued functions δij : A(r) → IR defined by

δij(ζ) = τij(ζ) − τij(0). (8)

By the one-dimensional mean-value theorem we have

δij(ζ) = ζ(Dτij)(θijζ) (9)

for some θij ∈ (0, 1). (Of course, the point θij depends on the value of ζ and
on the function δij .) Using (7) we thus obtain

δij(ζ) = ζtD2
ijφ(c) + ζ[Rij(t, θijζ) − rj(θijζ)]. (10)

Now, since δij(t) = δji(t), it follows that

D
2
ijφ(c) − D

2
jiφ(c) =

Rji(t, θjit) −Rij(t, θijt) + rj(θijt) − ri(θjit)

t
(11)

for some θij and θji in the interval (0,1). The left side of (11) is independent
of t; the right side tends to 0 with t, by (6). Hence D

2
ijφ(c) = D

2
jiφ(c). 2

Note. The requirement in Theorem 4 that φ is twice differentiable at c is
in fact stronger than necessary. The reader may verify that in the proof we
have merely used the fact that each of the partial derivatives Djφ is differen-
tiable at c.

The generalization of Theorem 4 to vector functions is simple.

Theorem 5

Let f : S → IRm be a function defined on a set S in IRn. If f is twice
differentiable at an interior point c of S, then the mn× n Hessian matrix Hf
is column symmetric at c, i.e.

D
2
kjfi(c) = D

2
jkfi(c) (k, j = 1, . . . , n; i = 1, . . . ,m). (12)

The column symmetry of Hf(c) is, as we recall from Section 3, equivalent to
the symmetry of each of the matrices Hfi(c), i.e. of the Hessian matrices of
the component functions fi.
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8 THE SECOND IDENTIFICATION THEOREM

We now have all the ingredients for the following theorem which states that
once we know the second differential, the Hessian matrix is uniquely deter-
mined (and vice versa).

Theorem 6 (second identification theorem for real-valued functions)

Let φ : S → IR be a real-valued function defined on a set S in IRn, and twice
differentiable at an interior point c of S. Let u be a real n× 1 vector. Then

d
2φ(c;u) = u′(Hφ(c))u, (1)

where Hφ(c) is the n×n symmetric Hessian matrix of φ with elements D
2
jiφ(c).

Furthermore, if B(c) is a matrix such that

d
2φ(c;u) = u′B(c)u (2)

for a real n× 1 vector u, then

Hφ(c) =
1

2
[B(c) +B(c)′]. (3)

In order to state the second identification theorem for vector functions, of
which Theorem 6 is a special case, we require some more notation.

Definition 5

Let A1, A2, . . . , Am be square n× n matrices, and let

A = (A1, A2, . . . , Am). (4)

Then we define the block-vec of A as the mn× n matrix

Av =




A1

A2

...
Am


 . (5)

As a result of Definition 5, if B1, B2, . . . , Bm are square matrices, then

B =




B1

B2

...
Bm


 ⇐⇒ (B′)v =




B′
1

B′
2
...
B′
m


 . (6)

Theorem 7 (second identification theorem)

Let f : S → IRm be a vector function defined on a set S in IRn, and twice
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differentiable at an interior point c of S. Let u be a real n× 1 vector. Then

d
2f(c;u) = (Im ⊗ u′)(Hf(c))u, (7)

where Hf(c) is the mn × n column symmetric Hessian matrix of f with ele-
ments D

2
kjfi(c). Furthermore, if B(c) is a matrix such that

d
2f(c;u) = (Im ⊗ u′)B(c)u (8)

for all real n× 1 vectors u, then

Hf(c) =
1

2
[B(c) + (B(c)′)v]. (9)

9 TWICE DIFFERENTIABILITY AND SECOND-ORDER
APPROXIMATION, II

In Section 5 the definition of twice differentiability was motivated, in part, by
the claim that it implies the existence of a second-order Taylor formula. Let
us now prove this assertion.

Theorem 8

Let f : S → IRm be a function defined on a set S in IRn. Let c be an interior
point of S, and let B(c; r) be an n-ball lying in S. Let u be a point in IRn

with ‖u‖ < r, so that c+ u ∈ B(c; r). If f is twice differentiable at c, then

f(c+ u) = f(c) + df(c;u) +
1

2
d
2f(c;u) + rc(u), (1)

where

lim
u→0

rc(u)

‖u‖2
= 0. (2)

Proof. It suffices to consider the case m = 1 (why?), in which case the vec-
tor function f specializes to a real-valued function φ. Let M = (mij) be a
symmetric n× n matrix, depending on c and u, such that

φ(c+ u) = φ(c) + dφ(c;u) +
1

2
u′Mu. (3)

Since φ is twice differentiable at c, there exists an n-ball B(c; ρ) ⊂ B(c; r) such
that φ is differentiable at each point of B(c; ρ). Let A(ρ) = {x : x ∈ IRn, ‖x‖ <
ρ}, and define a real-valued function ψ : A(ρ) → IR by the equation

ψ(x) = φ(c+ x) − φ(c) − dφ(c;x) − 1

2
x′Mx. (4)
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Note that M depends on u (and c), but not on x. Then

ψ(0) = ψ(u) = 0. (5)

Also, since φ is differentiable in B(c; ρ), ψ is differentiable in A(ρ), so that, by
the mean-value theorem (Theorem 5.10),

dψ(θu;u) = 0 (6)

for some θ ∈ (0, 1). Now, since each Djφ is differentiable at c, we have the
first-order Taylor formula

Djφ(c+ x) = Djφ(c) +

n∑

i=1

xiD
2
ijφ(c) +Rj(x), (7)

where

Rj(x)/‖x‖ → 0 as x→ 0. (8)

The partial derivatives of ψ are thus given by

Djψ(x) = Djφ(c+ x) − Djφ(c) −
n∑

i=1

ximij

=
n∑

i=1

xi
(
D

2
ijφ(c) −mij

)
+ Rj(x), (9)

using (4) and (7). Hence, by (6),

0 = dψ(θu;u) =

n∑

j=1

ujDjψ(θu)

= θ
n∑

i=1

n∑

j=1

uiuj
(
D

2
ijφ(c) −mij

)
+

n∑

j=1

ujRj(θu)

= θ
(
d
2φ(c;u) − u′Mu

)
+

n∑

j=1

ujRj(θu), (10)

so that

u′Mu = d
2φ(c;u) + (1/θ)

n∑

j=1

ujRj(θu). (11)

Substituting (11) in (3) and noting that

n∑

j=1

ujRj(θu)

θ‖u‖2
=

n∑

j=1

uj
‖u‖ · Rj(θu)‖θu‖ → 0 as u→ 0, (12)
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using (8), completes the proof. 2

The example in Section 4 shows that the existence of a second-order Taylor
formula at a point does not imply, in general, twice differentiability there (in
fact, not even differentiability of all partial derivatives).

It is worth remarking that, if in Theorem 8 we replace the requirement
that f is twice differentiable at c by the weaker condition that all first-order
partials of f are differentiable at c, the theorem remains valid for n = 1
(trivially) and n = 2, but not, in general, for n ≥ 3.

Exercise

1. Prove Theorem 8 for n = 2, assuming that all first-order partials of f are
differentiable at c, but without assuming that f is twice differentiable
at c.

10 CHAIN RULE FOR HESSIAN MATRICES

In one dimension the first and second derivatives of the composite function
h = g ◦ f , defined by the equation

(g ◦ f)(x) = g(f(x)), (1)

can be expressed in terms of the first and second derivatives of g and f as
follows:

h′(c) = g′(f(c)) · f ′(c) (2)

and

h′′(c) = g′′(f(c)) · (f ′(c))2 + g′(f(c)) · f ′′(c). (3)

The following theorem generalizes Equation (3) to vector functions of several
variables.

Theorem 9 (chain rule for Hessian matrices)

Let S be a subset of IRn, and assume that f : S → IRm is twice differentiable
at an interior point c of S. Let T be a subset of IRm such that f(x) ∈ T for
all x ∈ S, and assume that g : T → IRp is twice differentiable at an interior
point b = f(c) of T . Then the composite function h : S → IRp defined by

h(x) = g(f(x)) (4)

is twice differentiable at c, and

Hh(c) = (Ip ⊗ Df(c))′(Hg(b))Df(c) + (Dg(b) ⊗ In)Hf(c). (5)

Proof. Since g is twice differentiable at b, it is differentiable in some m-ball
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Bm(b). Also, since f is twice differentiable at c, we can choose an n-ball Bn(c)
such that f is differentiable in Bn(c), and f(x) ∈ Bm(b) for all x ∈ Bn(c).
Hence, by Theorem 5.8, h is differentiable in Bn(c). Further, since the partials
Djhi given by

Djhi(x) =

m∑

s=1

((Dsgi)(f(x))) ((Djfs)(x)) (6)

are differentiable at c (because the partials Dsgi are differentiable at b and
the partials Djfs are differentiable at c), the composite function h is twice
differentiable at c.

The second-order partials of hi evaluated at c are then given by

D
2
kjhi(c) =

m∑

s=1

m∑

t=1

(D2
tsgi(b))(Dkft(c))(Djfs(c))

+

m∑

s=1

(Dsgi(b))(D
2
kjfs(c)). (7)

Thus, the Hessian matrix of the i-th component function hi is

Hhi(c) =
m∑

s=1

m∑

t=1

(D2
tsgi(b))(Dft(c))

′(Dfs(c))

+

m∑

s=1

(Dsgi(b))(Hfs(c))

= (Df(c))′(Hgi(b))(Df(c)) + ((Dgi(b)) ⊗ In)(Hf(c)), (8)

and the result follows. 2

11 THE ANALOGUE FOR SECOND DIFFERENTIALS

The chain rule for Hessian matrices expresses the second-order partial deriva-
tives of the composite function h = g ◦ f in terms of the first-order and
second-order partial derivatives of g and f . The next theorem expresses the
second differential of h in terms of the first and second differentials of g and
f .

Theorem 10

If f is twice differentiable at c and g is twice differentiable at b = f(c), then
the second differential of the composite function h = g ◦ f is

d
2h(c;u) = d

2g(b; df(c;u)) + dg(b; d2f(c;u)) (1)

for every u in IRn.
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Proof. By Theorems 7 and 9, we have

d
2h(c;u) = (Ip ⊗ u′)(Hh(c))u

= (Ip ⊗ u′)(Ip ⊗ Df(c))′(Hg(b))(Df(c))u

+ (Ip ⊗ u′)(Dg(b) ⊗ In)(Hf(c))u. (2)

The first term at the right hand side of (2) is

(Ip ⊗ u′)(Ip ⊗ Df(c))′(Hg(b))(Df(c))u

= (Ip ⊗ (Df(c)u))′(Hg(b))(Df(c))u

= (Ip ⊗ df(c;u))′(Hg(b))df(c;u)

= d
2g(b; df(c;u)). (3)

The second term is

(Ip ⊗ u′)(Dg(b) ⊗ In)(Hf(c))u

= (Dg(b) ⊗ u′)(Hf(c))u

= (Dg(b))(Im ⊗ u′)(Hf(c))u

= dg(b; d2f(c;u)). (4)

The result follows. 2

The most important lesson to be learned from Theorem 10 is that the
second differential does not, in general, satisfy Cauchy’s rule of invariance. By
this we mean that, while the first differential of a composite function satisfies

dh(c;u) = dg(b; df(c;u)), (5)

by Theorem 5.9, it is not true, in general, that

d
2h(c;u) = d

2g(b; df(c;u)), (6)

unless f is an affine function. (A function f is called affine if f(x) = Ax + b
for some matrix A and vector b.) This case is of sufficient importance to state
as a separate theorem.

Theorem 11

If f is an affine function and g is twice differentiable at b = f(c), then the
second differential of the composite function h = g ◦ f is

d
2h(c;u) = d

2g(b; df(c;u)) (7)

for every u in IRn.

Proof. Since f is affine, d
2f(c;u) = 0. The result then follows from Theorem

10. 2
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12 TAYLOR’S THEOREM FOR REAL-VALUED FUNCTIONS

Let φ be a real-valued function defined on a subset S of IRn, and let c be an
interior point of S. If φ is continuous at c, then

φ(c+ u) = φ(c) +R(u), (1)

and the error R(u) made in this approximation will tend to zero as u→ 0.
If we make the stronger assumption that φ is differentiable in a neighbour-

hood of c, we obtain, by the mean-value theorem,

φ(c+ u) = φ(c) + dφ(c+ θu;u) (2)

for some θ ∈ (0, 1). This provides an explicit and very useful expression for
the error R(u) in (1).

If φ is differentiable at c, we also have the first-order Taylor formula

φ(c+ u) = φ(c) + dφ(c;u) + r(u), (3)

where r(u)/‖u‖ tends to zero as u→ 0. Naturally the question arises whether
it is possible to obtain an explicit form for the error r(u). The following result
(known as Taylor’s theorem) answers this question.

Theorem 12 (Taylor)

Let φ : S → IR be a real-valued function defined and twice differentiable on
an open set S in IRn. Let c be a point of S, and u a point in IRn such that
c+ tu ∈ S for all t ∈ [0, 1]. Then

φ(c+ u) = φ(c) + dφ(c;u) +
1

2
d
2φ(c+ θu;u) (4)

for some θ ∈ (0, 1).

Proof. As in the proof of the mean-value theorem (Theorem 5.10), we consider
a real-valued function ψ : [0, 1] → IR defined by

ψ(t) = φ(c+ tu). (5)

The hypothesis of the theorem implies that ψ is twice differentiable at each
point in (0, 1) with

Dψ(t) = dφ(c+ tu;u) (6)

and

D
2ψ(t) = d

2φ(c+ tu;u). (7)

By the one-dimensional Taylor theorem we have

ψ(1) = ψ(0) + Dψ(0) +
1

2
D

2ψ(θ) (8)
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for some θ ∈ (0, 1). Hence

φ(c+ u) = φ(c) + dφ(c;u) +
1

2
d
2φ(c+ θu;u), (9)

thus completing the proof. 2

13 HIGHER-ORDER DIFFERENTIALS

Higher-order differentials are defined recursively. Let f : S → IRm be a func-
tion defined on a set S in IRn, and let c be an interior point of S. If f is n− 1
times differentiable in some n-ball B(c) and each of the (n−1)th-order partial
derivatives is differentiable at c, then we say that f is n times differentiable
at c.

Now consider the function g : B(c) → IRm defined by the equation

g(x) = d
n−1f(x;u). (1)

Then we define the nth-order differential of f at c as

d
nf(c;u) = dg(c;u). (2)

We note from this definition that if f has an nth-order differential at c, then
f itself has all the differentials up to the (n − 1)th inclusive, not only at c,
but also in a neighbourhood of c.

Third- and higher-order differentials will play no role of significance in this
book.

14 MATRIX FUNCTIONS

As in the previous chapter, the extension to matrix functions is straightfor-
ward. Consider a matrix function F : S → IRm×p defined on a set S in
IRn×q. Corresponding to the matrix function F we define a vector function
f : vecS → IRmp by

f(vecX) = vecF (X). (1)

In Section 5.15 we defined the Jacobian matrix of F at C as the mp × nq
matrix

DF (C) = Df(vecC). (2)

We now define the Hessian matrix of F at C as

HF (C) = Hf(vecC). (3)
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This is an mnpq×nq matrix stacking the Hessian matrices of the mp compo-
nent functions Fst as follows:

HF (C) =




HF11(C)
...

HFm1(C)
...

HF1p(C)
...

HFmp(C)




. (4)

The matrices HFst(C) are nq × nq, and the ij-th element of HFst(C) is
the second-order partial derivative of Fst(X) with respect to the elements
of vecX , evaluated at X = C. That is, (HFst(C))ij = D

2
jiFst(C).

The second differential of F is the differential of the first differential:

d
2F = d(dF ). (5)

More precisely, if we let

G(X) = dF (X ;U) (6)

for all X in some ball B(C), then

d
2F (C;U) = dG(C;U). (7)

Since the differentials of F and f are related by

vec dF (C;U) = df(vecC; vecU), (8)

the second differentials are related by

vec d
2F (C;U) = d

2f(vecC; vecU). (9)

The following two theorems are now straightforward generalizations of
Theorems 7 and 10.

Theorem 13 (second identification theorem for matrix functions)

Let F : S → IRm×p be a matrix function defined on a set S in IRn×q, and
twice differentiable at an interior point C of S. Then

vec d
2F (C;U) = (Imp ⊗ vecU)′B(C) vecU (10)

for all U ∈ IRn×q if and only if

HF (C) =
1

2
[B(C) + (B(C)′)v]. (11)



Bibliographical notes 131

Note. Recall the notation (B(C)′)v from Definition 5 in Section 8.

Theorem 14

If F is twice differentiable at C and G is twice differentiable at B = F (C),
then the second differential of the composite function H = G ◦ F is

d
2H(C;U) = d

2G(B; dF (C;U)) + dG(B; d2F (C;U)) (12)

for every U in IRn×q.

BIBLIOGRAPHICAL NOTES

§9. The fact that, for n = 2, the requirement that f is twice differentiable at c
can be replaced by the weaker condition that all first-order partial derivatives
are differentiable at c, is proved in Young (1910, Section 23).





CHAPTER 7

Static optimization

1 INTRODUCTION

Static optimization theory is concerned with finding those points (if any) at
which a real-valued function φ, defined on a subset S of IRn, has a minimum
or a maximum.

Two types of problems will be investigated in this chapter:

(i) Unconstrained optimization (Sections 2–10) is concerned with the prob-
lem

min(max)
x∈S

φ(x), (1)

where the point at which the extremum occurs is an interior point of
S.

(ii) Optimization subject to constraints (Sections 11–16) is concerned with
the problem of optimizing φ subject tom non-linear equality constraints,
say g1(x) = 0, . . . , gm(x) = 0. Letting g = (g1, g2, . . . , gm)′ and

Γ = {x : x ∈ S, g(x) = 0}, (2)

the problem can be written as

min(max)
x∈Γ

φ(x), (3)

or, equivalently, as

min(max)
x∈S

φ(x) (4)

subject to g(x) = 0. (5)

We shall not deal with inequality constraints.

133



134 Static optimization [Ch. 7

2 UNCONSTRAINED OPTIMIZATION

In Sections 2-10 we wish to show how the one-dimensional theory of maxima
and minima of differentiable functions generalizes to functions of more than
one variable. We start with some definitions.

Let φ : S → IR be a real-valued function defined on a set S in IRn, and let
c be a point of S. We say that φ has a local minimum at c if there exists an
n-ball B(c) such that

φ(x) ≥ φ(c) for all x ∈ S ∩B(c). (1)

φ has a strict local minimum at c if we can choose B(c) such that

φ(x) > φ(c) for all x ∈ S ∩B(c), x 6= c. (2)

φ has an absolute minimum at c if

φ(x) ≥ φ(c) for all x ∈ S. (3)

φ has a strict absolute minimum at c if

φ(x) > φ(c) for all x ∈ S, x 6= c. (4)

The point c at which the minimum is attained is called a (strict) local mini-
mum point for φ, or a (strict) absolute minimum point for φ on S, depending
on the nature of the minimum.

If φ has a minimum at c, then the function ψ ≡ −φ has a maximum
at c. Each maximization problem can thus be converted to a minimization
problem (and vice versa). For this reason we lose no generality by treating
minimization problems only.

If c is an interior point of S, and φ is differentiable at c, then we say that
c is a critical point (stationary point) of φ if

dφ(c;u) = 0 for all u in IRn. (5)

The function value φ(c) is then called the critical value of φ at c.
A critical point is called a saddle point if every n-ball B(c) contains points

x such that φ(x) > φ(c) and other points such that φ(x) < φ(c). In other
words, a saddle point is a critical point which is neither a local minimum
point nor a local maximum point. Figure 1 illustrates some of these concepts.
The function φ is defined and continuous at [0, 5]. It has a strict absolute
minimum at x = 0, and a (not strict) absolute maximum at x = 1. There are
strict local minima at x = 2 and x = 5, and a strict local maximum at x = 3.
At x = 4 the derivative φ′ is zero, but this is not an extremum point of φ; it
is a saddle point.
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1 2 3 4 5

Figure 1 Unconstrained optimization in one variable

3 THE EXISTENCE OF ABSOLUTE EXTREMA

In the example of Figure 1 the function φ is continuous on the compact interval
[0, 5], and has an absolute minimum (at x = 0) and an absolute maximum (at
x = 1). That this is typical for continuous functions on compact sets is shown
by the following fundamental result.

Theorem 1 (Weierstrass)

Let φ : S → IR be a real-valued function defined on a compact set S in IRn.
If φ is continuous on S, then φ attains its maximum and minimum values on
S. Thus, there exist points c1 and c2 in S such that

φ(c1) ≤ φ(x) ≤ φ(c2) for all x ∈ S. (1)

Note. The Weierstrass theorem is an existence theorem. It tells us that certain
conditions are sufficient to ensure the existence of extrema. The theorem does
not tell us how to find these extrema.

Proof. By Theorem 4.9, φ is bounded on S. Hence the set

M = {m ∈ IR, φ(x) > m for all x ∈ S} (2)
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is not empty; indeed, M contains infinitely many points. Let

m0 = supM. (3)

Then,

φ(x) ≥ m0 for all x ∈ S. (4)

Now suppose that φ does not attain its infimum on S. Then

φ(x) > m0 for all x ∈ S (5)

and the real-valued function ψ : S → IR defined by

ψ(x) = (φ(x) −m0)
−1

(6)

is continuous (and positive) on S. Again by Theorem 4.9, ψ is bounded on S,
say by µ. Thus

ψ(x) ≤ µ for all x ∈ S, (7)

that is,

φ(x) ≥ m0 + 1/µ for all x ∈ S. (8)

It follows that m0+1/(2µ) is an element of M . But this is impossible, because
no element of M can exceed m0, the supremum of M . Hence, φ attains its
minimum (and similarly its maximum). 2

Exercises

1. The Weierstrass theorem is not, in general, correct if we drop any of the
conditions, as the following three counter-examples demonstrate.

(a) φ(x) = x, x ∈ (−1, 1), φ(−1) = φ(1) = 0,

(b) φ(x) = x, x ∈ (−∞,∞),

(c) φ(x) = x/(1 − |x|), x ∈ (−1, 1).

2. Consider the real-valued function φ : (0,∞) → IR defined by

φ(x) =

{
x, x ∈ (0, 2]
1, x ∈ (2,∞).

The set (0,∞) is neither bounded nor closed, and the function φ is not
continuous on (0,∞). Nevertheless, φ attains its maximum on (0,∞).
This shows that none of the conditions of the Weierstrass theorem are
necessary.
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4 NECESSARY CONDITIONS FOR A LOCAL MINIMUM

In the one-dimensional case, if a real-valued function φ, defined on an interval
(a, b), has a local minimum at an interior point c of (a, b), and if φ has a deriva-
tive at c, then φ′(c) must be zero. This result, which relates zero derivatives
and local extrema at interior points, can be generalized to the multivariable
case as follows.

Theorem 2

Let φ : S → IR be a real-valued function defined on a set S in IRn, and assume
that φ has a local minimum at an interior point c of S. If φ is differentiable
at c, then

dφ(c;u) = 0 (1)

for every u in IRn. If φ is twice differentiable at c, then also

d
2φ(c;u) ≥ 0 (2)

for every u in IRn.

Note 1. If φ has a local maximum (rather than a minimum) at c, then condi-
tion (2) is replaced by d

2φ(c;u) ≤ 0 for every u in IRn.

Note 2. The necessary conditions (1) and (2) are of course equivalent to the
conditions

∂φ(c)

∂x1
=
∂φ(c)

∂x2
= · · · =

∂φ(c)

∂xn
= 0 (3)

and

Hφ(c) =

(
∂2φ(c)

∂xi∂xj

)
is positive semidefinite. (4)

Note 3. The example φ(x) = x3 shows (at x = 0) that the converse of Theorem
2 is not true. The example φ(x) = |x| shows (again at x = 0) that φ can have
a local extremum without the derivative being zero.

Proof. Since φ has a local minimum at an interior point c, there exists an
n-ball B(c; δ) ⊂ S such that

φ(x) ≥ φ(c) for all x ∈ B(c; δ). (5)

Let u be a point in IRn, u 6= 0 and choose ǫ > 0 such that c + ǫu ∈ B(c, δ).
From the definition of differentiability, we have for every |t| < ǫ,

φ(c+ tu) = φ(c) + tdφ(c;u) + r(t), (6)
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where r(t)/t → 0 as t→ 0. Therefore

tdφ(c;u) + r(t) ≥ 0. (7)

Replacing t by −t in (7), we obtain

−r(t) ≤ tdφ(c;u) ≤ r(−t). (8)

Dividing by t 6= 0, and letting t → 0, we find dφ(c;u) = 0 for all u in IRn.
This establishes the first part of the theorem.

To prove the second part, assume that φ is twice differentiable at c. Then,
by the second-order Taylor formula (Theorem 6.8),

φ(c+ tu) = φ(c) + tdφ(c;u) +
1

2
t2d2φ(c;u) +R(t), (9)

where R(t)/t2 → 0. Therefore

1

2
t2d2φ(c;u) +R(t) ≥ 0. (10)

Dividing by t2 6= 0, and letting t→ 0, we find d
2φ(c;u) ≥ 0 for all u in IRn. 2

Exercises

1. Find the extreme value(s) of the following real-valued functions defined
on IR2, and determine whether they are minima or maxima:

(i) φ(x, y) = x2 + xy + 2y2 + 3,

(ii) φ(x, y) = −x2 + xy − y2 + 2x+ y,

(iii) φ(x, y) = (x− y + 1)2.

2. Answer the same questions as above for the following real-valued func-
tions defined for 0 ≤ x ≤ 2, 0 ≤ y ≤ 1:

(i) φ(x, y) = x3 + 8y3 − 9xy + 1,

(ii) φ(x, y) = (x− 2)(y − 1) exp(x2 + 1
4y

2 − x− y + 1).

5 SUFFICIENT CONDITIONS FOR A LOCAL MINIMUM:
FIRST-DERIVATIVE TEST

In the one-dimensional case, a sufficient condition for a differentiable function
φ to have a minimum at an interior point c is that φ′(c) = 0 and that there
exists an interval (a, b) containing c such that φ′(x) < 0 in (a, c) and φ′(x) > 0
in (c, b). (These conditions are not necessary, see Exercise 1.)

The multivariable generalization is as follows.
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Theorem 3 (the first-derivative test)

Let φ : S → IR be a real-valued function defined on a set S in IRn, and let c
be an interior point of S. If φ is differentiable in some n-ball B(c), and

dφ(x;x − c) ≥ 0 (1)

for every x in B(c), then φ has a local minimum at c. Moreover, if the in-
equality in (1) is strict for every x in B(c), x 6= c, then φ has a strict local
minimum at c.

Proof. Let u 6= 0 be a point in IRn such that c + u ∈ B(c). Then, by the
mean-value theorem for real-valued functions,

φ(c+ u) = φ(c) + dφ(c+ θu;u) (2)

for some θ ∈ (0, 1). Hence

θ (φ(c+ u) − φ(c)) = θ dφ(c+ θu;u)

= dφ(c+ θu; θu)

= dφ(c+ θu; c+ θu − c) ≥ 0. (3)

Since θ > 0, it follows that φ(c + u) ≥ φ(c). This proves the first part of the
theorem; the second part is proved in the same way. 2

Example 1

Let A be a positive definite (hence symmetric) n×n matrix, and let φ : IRn →
IR be defined by φ(x) = x′Ax. We find

dφ(x;u) = 2x′Au, (4)

and since A is non-singular, the only critical point is the origin x = 0. To
prove that this is a local minimum point, we compute

dφ(x;x − 0) = 2x′Ax > 0 (5)

for all x 6= 0. Hence φ has a strict local minimum at x = 0. (In fact, φ has a
strict absolute minimum at x = 0.) In this example the function φ is strictly
convex on IRn, so that the condition of Theorem 3 is automatically fulfilled.
We shall explore this in more detail in Section 7.

Exercises

1. Consider the function φ(x) = x2[2+sin(1/x)] when x 6= 0, and φ(0) = 0.
The function φ clearly has an absolute minimum at x = 0. Show that
the derivative is φ′(x) = 4x + 2x sin(1/x) − cos(1/x) when x 6= 0, and
φ′(0) = 0. Show further that we can find values of x arbitrarily close to
the origin such that xφ′(x) < 0. Conclude that the converse of Theorem
3 is, in general, not true.
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2. Consider the function φ : IR2 → IR given by φ(x, y) = x2 + (1 + x)3y2.
Prove that it has one local minimum (at the origin), no other critical
points and no absolute minimum.

6 SUFFICIENT CONDITIONS FOR A LOCAL MINIMUM:
SECOND-DERIVATIVE TEST

Another test for local extrema is based on the Hessian matrix.

Theorem 4 (the second-derivative test)

Let φ : S → IR be a real-valued function defined on a set S in IRn. Assume
that φ is twice differentiable at an interior point c of S. If

dφ(c;u) = 0 for all u in IRn (1)

and

d
2φ(c;u) > 0 for all u 6= 0 in IRn, (2)

then φ has a strict local minimum at c.

Proof. Since φ is twice differentiable at c, we have the second-order Taylor
formula (Theorem 6.8)

φ(c + u) = φ(c) + dφ(c;u) +
1

2
d
2φ(c;u) + r(u), (3)

where r(u)/‖u‖2 → 0 as u→ 0. Now, dφ(c;u) = 0. Further, since the Hessian
matrix Hφ(c) is positive definite by assumption, all its eigenvalues are positive
(Theorem 1.8). In particular, if λ denotes the smallest eigenvalue of Hφ(c),
then λ > 0 and (by Exercise 1.14.1)

d
2φ(c;u) = u′(Hφ(c))u ≥ λ‖u‖2. (4)

It follows that, for u 6= 0,

φ(c+ u) − φ(c)

‖u‖2
≥ λ

2
+
r(u)

‖u‖2
. (5)

Choose δ > 0 such that |r(u)|/‖u‖2 ≤ λ/4 for every u 6= 0 with ‖u‖ < δ. Then

φ(c+ u) − φ(c) ≥ (λ/4)‖u‖2 > 0 (6)

for every u 6= 0 with ‖u‖ < δ. Hence φ has a strict local minimum at c. 2

In other words, Theorem 4 tells us that the conditions

∂φ(c)

∂x1
=
∂φ(c)

∂x2
= · · · =

∂φ(c)

∂xn
= 0 (7)
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and

Hφ(c) =

(
∂2φ(c)

∂xi∂xj

)
is positive definite (8)

together are sufficient for φ to have a strict local minimum at c. If we replace
(8) by the condition that Hφ(c) is negative definite, then we obtain sufficient
conditions for a strict local maximum.

If the Hessian matrix Hφ(c) is neither positive definite nor negative defi-
nite, but is non-singular, then c cannot be a local extremum point (see The-
orem 2); thus c is a saddle point.

In the case where Hφ(c) is singular, we cannot tell whether c is a maximum
point, a minimum point, or a saddle point (see Exercise 3). This shows that
the converse of Theorem 4 is not true.

Example 2

Let φ : IR2 → IR be twice differentiable at a critical point c in IR2 of φ. Denote
the second-order partial derivatives by D11φ(c),D12φ(c) and D22φ(c), and let
∆ be the determinant of the Hessian matrix, i.e. ∆ = D11φ(c) · D22φ(c) −
(D12φ(c))2. Then Theorem 4 implies that

(i) if ∆ > 0 and D11φ(c) > 0, φ has a strict local minimum at c,

(ii) if ∆ > 0 and D11φ(c) < 0, φ has a strict local maximum at c,

(iii) if ∆ < 0, φ has a saddle point at c,

(iv) if ∆ = 0, φ may have a local minimum, maximum, or saddle point at c.

Exercises

1. Show that the function φ : IR2 → IR defined by φ(x, y) = x4 +y4−2(x−
y)2 has strict local minima at (

√
2,−

√
2) and (−

√
2,
√

2), and a saddle
point at (0, 0).

2. Show that the function φ : IR2 → IR defined by φ(x, y) = (y−x2)(y−2x2)
has a local minimum along each straight line through the origin, but
that φ has no local minimum at the origin. In fact, the origin is a saddle
point.

3. Consider the functions (i) φ(x, y) = x4 + y4, (ii) φ(x, y) = −x4 − y4 and
(iii) φ(x, y) = x3 + y3. For each of these functions show that the origin
is a critical point and that the Hessian matrix is singular at the origin.
Then prove that the origin is a minimum point, a maximum point and
a saddle point, respectively.

4. Show that the function φ : IR3 → IR defined by φ(x, y, z) = xy+ yz+ zx
has a saddle point at the origin, and no other critical points.
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5. Consider the function φ : IR2 → IR defined by φ(x, y) = x3 − 3xy2 + y4.
Find the critical points of φ and show that φ has two strict local minima
and one saddle point.

7 CHARACTERIZATION OF DIFFERENTIABLE CONVEX
FUNCTIONS

So far we have dealt only with local extrema. However, in the optimization
problems that arise in economics (among other disciplines) we are usually
interested in finding absolute extrema. The importance of convex (and con-
cave) functions in optimization comes from the fact that every local minimum
(maximum) of such a function is an absolute minimum (maximum). Before
we prove this statement (Theorem 8), let us study convex (concave) functions
in some more detail.

Recall that a set S in IRn is convex if for all x, y in S and all λ ∈ (0, 1),

λx + (1 − λ)y ∈ S, (1)

and a real-valued function φ, defined on a convex set S in IRn, is convex if for
all x, y ∈ S and all λ ∈ (0, 1),

φ(λx + (1 − λ)y) ≤ λφ(x) + (1 − λ)φ(y). (2)

If (2) is satisfied with strict inequality for x 6= y, then we call φ strictly convex.
If φ is (strictly) convex, then ψ ≡ −φ is (strictly) concave.

In this section we consider (strictly) convex functions that are differen-
tiable, but not necessarily twice differentiable. In the next section we consider
twice differentiable convex functions.

We first show that φ is convex if and only if at any point the tangent
hyperplane is below the graph of φ (or coincides with it).

Theorem 5

Let φ : S → IR be a real-valued function, defined and differentiable on an
open convex set S in IRn. Then φ is convex on S if and only if

φ(x) ≥ φ(y) + dφ(y;x − y) for every x, y ∈ S. (3)

Furthermore, φ is strictly convex on S if and only if the inequality in (3) is
strict for every x 6= y ∈ S.

Proof. Assume that φ is convex on S. Let x be a point of S, and let u be a
point in IRn such that x+ u ∈ S. Then the point x+ tu, t ∈ (0, 1), lies on the
line segment joining x and x+ u. Since φ is differentiable at x, we have

φ(x+ tu) = φ(x) + dφ(x; tu) + r(t), (4)
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where r(t)/t → 0 as t→ 0. Also, since φ is convex on S, we have

φ(x + tu) = φ((1 − t)x+ t(x + u)) ≤ (1 − t)φ(x) + tφ(x + u)

= φ(x) + t (φ(x + u) − φ(x)) . (5)

Combining (4) and (5) and dividing by t, we obtain

φ(x+ u) ≥ φ(x) + dφ(x;u) + r(t)/t. (6)

Let t→ 0 and (3) follows.
To prove the converse, assume that (3) holds. Let x and y be two points

in S, and let z be a point on the line segment joining x and y, that is,
z = tx+ (1 − t)y for some t ∈ [0, 1]. Using our assumption (3), we have

φ(x) − φ(z) ≥ dφ(z;x− z), φ(y) − φ(z) ≥ dφ(z; y − z). (7)

Multiply the first inequality in (7) with t and the second with (1 − t), and
add the resulting inequalities. This gives

t [φ(x) − φ(z)] + (1 − t)[φ(y) − φ(z)]

≥ dφ(z; t(x− z) + (1 − t)(y − z)) = 0, (8)

because

t(x− z) + (1 − t)(y − z) = tx+ (1 − t)y − z = 0. (9)

By rearranging, (8) simplifies to

φ(z) ≤ tφ(x) + (1 − t)φ(y), (10)

which shows that φ is convex.
Next assume that φ is strictly convex. Let x be a point of S, and let u be

a point in IRn such that x+u ∈ S. Since φ is strictly convex on S, φ is convex
on S. Thus,

φ(x + tu) ≥ φ(x) + t dφ(x;u) (11)

for every t ∈ (0, 1). Also, using the definition of strict convexity,

φ(x + tu) < φ(x) + t[φ(x + u) − φ(x)]. (12)

(This is (5) with strict inequality.) Combining (11) and (12) and dividing by
t, we obtain

dφ(x;u) ≤ φ(x+ tu) − φ(x)

t
< φ(x+ u) − φ(x), (13)

and the strict version of inequality (3) follows.
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Finally, the proof that the strict inequality (3) implies that φ is strictly
convex is the same as the proof that (3) implies that φ is convex, all inequal-
ities now being strict. 2

Another characterization of differentiable functions exploits the fact that,
in the one-dimensional case, the first derivative of a convex function is mono-
tonically non-decreasing. The generalization of this property to the multivari-
able case is contained in Theorem 6.

Theorem 6

Let φ : S → IR be a real-valued function, defined and differentiable on an
open convex set S in IRn. Then φ is convex on S if and only if

dφ(x;x − y) − dφ(y;x− y) ≥ 0 for every x, y ∈ S. (14)

Furthermore, φ is strictly convex on S if and only if the inequality in (14) is
strict for every x 6= y ∈ S.

Proof. Assume that φ is convex on S. Let x and y be two points in S. Then,
using Theorem 5,

dφ(x;x − y) = −dφ(x; y − x) ≥ φ(x) − φ(y)

≥ dφ(y;x− y). (15)

To prove the converse, assume that (14) holds. Let x and y be two distinct
points in S. Let L(x, y) denote the line segment joining x and y, that is,

L(x, y) = {tx+ (1 − t)y : 0 ≤ t ≤ 1}, (16)

and let z be a point in L(x, y). By the mean-value theorem there exists a point
ξ = αx + (1 − α)z, 0 < α < 1, on the line segment joining x and z (hence in
L(x, y)), such that

φ(x) − φ(z) = dφ(ξ;x − z). (17)

Noting that ξ − z = α(x− z) and assuming (14), we have

dφ(ξ, x− z) = (1/α)dφ(ξ; ξ − z)

≥ (1/α)dφ(z; ξ − z) = dφ(z;x− z). (18)

Further, if z = tx+ (1 − t)y, then x− z = (1 − t)(x− y). It follows that

φ(x) − φ(z) ≥ (1 − t)dφ(z;x− y). (19)

In precisely the same way we can show that

φ(z) − φ(y) ≤ tdφ(z;x− y). (20)
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From (19) and (20) we obtain

t[φ(x) − φ(z)] − (1 − t)[φ(z) − φ(y)] ≥ 0. (21)

By rearranging, (21) simplifies to

φ(z) ≤ tφ(x) + (1 − t)φ(y), (22)

which shows that φ is convex.
The corresponding result for φ strictly convex is obtained in precisely the

same way, all inequalities now being strict. 2

Exercises

1. Show that the function φ(x, y) = x + y(y − 1) is convex. Is φ strictly
convex?

2. Prove that φ(x) = x4 is strictly convex.

8 CHARACTERIZATION OF TWICE DIFFERENTIABLE
CONVEX FUNCTIONS

Both characterizations of differentiable convex functions (Theorems 5 and 6)
involved conditions on two points. For twice differentiable functions there is
a characterization that involves only one point.

Theorem 7

Let φ : S → IR be a real-valued function, defined and twice differentiable on
an open convex set S in IRn. Then φ is convex on S if and only if

d
2φ(x;u) ≥ 0 for all x ∈ S and u ∈ IRn. (1)

Furthermore, if the inequality in (1) is strict for all x ∈ S and u 6= 0 in IRn,
then φ is strictly convex on S.

Note 1. The ‘strict’ part of Theorem 7 is a one-way implication, and not
an equivalence, i.e. if φ is twice differentiable and strictly convex, then by (1)
the Hessian matrix Hφ(x) is positive semidefinite, but not necessarily positive
definite for every x. For example, the function φ(x) = x4 is strictly convex
but its second derivative φ′′(x) = 12x2 vanishes at x = 0.

Note 2. Theorem 7 tells us that φ is convex (strictly convex, concave, strictly
concave) on S if the Hessian matrix Hφ(x) is positive semidefinite (positive
definite, negative semidefinite, negative definite) for all x in S.

Proof. Let c be a point of S, and let u 6= 0 be a point in IRn such that c+u ∈ S.
By Taylor’s theorem, we have

φ(c+ u) = φ(c) + dφ(c;u) +
1

2
d
2φ(c+ θu;u) (2)
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for some θ ∈ (0, 1). If d
2φ(x;u) ≥ 0 for every x ∈ S, then in particular

d
2φ(c+ θu;u) ≥ 0, so that

φ(c+ u) ≥ φ(c) + dφ(c;u). (3)

Then, by Theorem 5, φ is convex on S.
If d

2φ(x;u) > 0 for every x ∈ S, then

φ(c+ u) > φ(c) + dφ(c;u), (4)

which shows, by Theorem 5, that φ is strictly convex on S.
To prove the ‘only if’ part of (1), assume that φ is convex on S. Let

t ∈ (0, 1). Then, by Theorem 5,

φ(c+ tu) ≥ φ(c) + tdφ(c;u). (5)

Also, by the second-order Taylor formula (Theorem 6.8),

φ(c+ tu) = φ(c) + tdφ(c;u) +
1

2
t2d2φ(c;u) + r(t), (6)

where r(t)/t2 → 0 as t → 0. Combining (5) and (6) and dividing by t2 we
obtain

1

2
d
2φ(c;u) ≥ −r(t)/t2. (7)

The left side of (7) is independent of t; the right side tends to zero as t → 0.
Hence d

2φ(c;u) ≥ 0. 2

Exercises

1. Repeat Exercise 4.9.1 using Theorem 7.

2. Show that the function φ(x) = xp, p > 1 is strictly convex on [0,∞).

3. Show that the function φ(x) = x′x, defined on IRn, is strictly convex.

4. Consider the CES (constant elasticity of substitution) production func-
tion

φ(x, y) = A[δx−ρ + (1 − δ)y−ρ]−1/ρ (A > 0, 0 ≤ δ ≤ 1, ρ 6= 0)

defined for x > 0 and y > 0. Show that φ is convex if ρ ≤ −1, and
concave if ρ ≥ −1 (and ρ 6= 0). What happens if ρ = −1?



Sec. 9 ] Sufficient conditions for an absolute minimum 147

9 SUFFICIENT CONDITIONS FOR AN ABSOLUTE MINIMUM

The convexity (concavity) of a function enables us to find the absolute min-
imum (maximum) of the function, since every local minimum (maximum) of
such a function is an absolute minimum (maximum).

Theorem 8

Let φ : S → IR be a real-valued function defined and differentiable on an open
convex set S in IRn, and let c be a point of S where

dφ(c;u) = 0 (1)

for every u ∈ IRn. If φ is (strictly) convex on S, then φ has a (strict) absolute
minimum at c.

Proof. If φ is convex on S, then by Theorem 5,

φ(x) ≥ φ(c) + dφ(c;x − c) = φ(c) (2)

for all x in S. If φ is strictly convex on S, then the inequality (2) is strict for
all x 6= c in S. 2

To check whether a given differentiable function is (strictly) convex, we
have four criteria at our disposal: the definition in Section 4.9, Theorems 5
and 6, and, if the function is twice differentiable, Theorem 7.

Exercises

1. Let a be an n× 1 vector and A a positive definite n× n matrix. Prove
that

a′x+ x′Ax ≥ −1

4
a′A−1a

for every x in IRn. For which value of x does the function φ(x) = a′x+
x′Ax attain its minimum value?

2. (More difficult.) If A is positive semidefinite, under what condition is it
true that

a′x+ x′Ax ≥ −1

4
a′A+a

for every x in IRn?

10 MONOTONIC TRANSFORMATIONS

To complete our discussion of unconstrained optimization we shall prove the
useful, if simple, fact that minimizing a function is equivalent to minimizing
a monotonically increasing transformation of that function.
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Theorem 9

Let S be a subset of IRn, and let φ : S → IR be a real-valued function defined
on S. Let T ⊂ IR be the range of φ (the set of all elements φ(x), for x ∈ S), and
let η : T → IR be a real-valued function defined on T . Define the composite
function ψ : S → IR by

ψ(x) = η(φ(x)). (1)

If η is increasing on T , and if φ has an absolute minimum (maximum) at a
point c of S, then ψ has an absolute minimum (maximum) at c.

If η in addition is strictly increasing on T , then φ has an absolute minimum
(maximum) at c if and only if ψ has an absolute minimum (maximum) at c.

Proof. Let η be an increasing function on T , and suppose that φ(x) ≥ φ(c)
for all x in S. Then

ψ(x) = η(φ(x)) ≥ η(φ(c)) = ψ(c) (2)

for all x in S. Next, let η be strictly increasing on T , and suppose that φ(x0) <
φ(c) for some x0 in S. Then

ψ(x0) = η(φ(x0)) < η(φ(c)) = ψ(c). (3)

Hence, if ψ(x) ≥ ψ(c) for all x in S, then φ(x) ≥ φ(c) for all x in S.
The case where φ has an absolute maximum is proved in the same way. 2

Note. Theorem 9 is clearly not affected by the presence of constraints. Thus,
minimizing a function subject to certain constraints is equivalent to minimiz-
ing a monotonically increasing transformation of that function subject to the
same constraints.

Exercise

1. Consider the likelihood function

L(µ, σ2) = (2πσ2)−n/2 exp

(
−1

2

n∑

i=1

(xi − µ)2/σ2

)
.

Use Theorem 9 to maximize L with respect to µ and σ2.

11 OPTIMIZATION SUBJECT TO CONSTRAINTS

Let φ : S → IR be a real-valued function defined on a set S in IRn. Hitherto
we have considered optimization problems of the type

minimize
x∈S

φ(x). (1)
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It may happen, however, that the variables x1, . . . , xn are subject to certain
constraints, say g1(x) = 0, . . . , gm(x) = 0. Our problem is now

maximize φ(x) (2)

subject to g(x) = 0, (3)

where g : S → IRm is the vector function g = (g1, g2, . . . , gm)′. This is known
as a constrained minimization problem (or a minimization problem subject to
equality constraints), and the most convenient way of solving it is, in general,
to use the Lagrange multiplier theory. In the remainder of this chapter we
shall study that important theory in some detail.

We start our discussion with some definitions. The subset of S on which
g vanishes, that is,

Γ = {x : x ∈ S, g(x) = 0}, (4)

is known as the opportunity set (constraint set). Let c be a point of Γ. We say
that φ has a local minimum at c under the constraint g(x) = 0 if there exists
an n-ball B(c) such that

φ(x) ≥ φ(c) for all x ∈ Γ ∩B(c). (5)

φ has a strict local minimum at c under the constraint g(x) = 0 if we can
choose B(c) such that

φ(x) > φ(c) for all x ∈ Γ ∩B(c), x 6= c. (6)

φ has an absolute minimum at c under the constraint g(x) = 0 if

φ(x) ≥ φ(c) for all x ∈ Γ. (7)

φ has a strict absolute minimum at c under the constraint g(x) = 0 if

φ(x) > φ(c) for all x ∈ Γ, x 6= c. (8)

12 NECESSARY CONDITIONS FOR A LOCAL MINIMUM
UNDER CONSTRAINTS

The next theorem gives a necessary condition for a constrained minimum to
occur at a given point.

Theorem 10 (Lagrange)

Let g : S → IRm be a function defined on a set S in IRn (n > m), and let c be
an interior point of S. Assume that

(i) g(c) = 0,

(ii) g is differentiable in some n-ball B(c),
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(iii) the m× n Jacobian matrix Dg is continuous at c, and

(iv) Dg(c) has full row rank m.

Further, let φ : S → IR be a real-valued function defined on S, and assume
that

(v) φ is differentiable at c, and

(vi) φ(x) ≥ φ(c) for every x ∈ B(c) satisfying g(x) = 0.

Then there exists a unique vector l in IRm satisfying the n equations

Dφ(c) − l′Dg(c) = 0. (1)

Note. If condition (vi) is replaced by

(vi)′ φ(x) ≤ φ(c) for every x ∈ B(c) satisfying g(x) = 0,

then the conclusion of the theorem remains valid.

Lagrange’s theorem establishes the validity of the following formal method
(‘Lagrange’s multiplier method’) for obtaining necessary conditions for an ex-
tremum subject to equality constraints. We first define the Lagrangian func-
tion ψ by

ψ(x) = φ(x) − l′g(x), (2)

where l is an m× 1 vector of constants λ1, . . . , λm, called the Lagrange mul-
tipliers. (One multiplier is introduced for each constraint. Notice that ψ(x)
equals φ(x) for every x that satisfies the constraint.) Next we differentiate ψ
with respect to x and set the result equal to 0. Together with the m con-
straints we obtain the following system of n + m equations (the first-order
conditions)

dψ(x;u) = 0 for every u in IRn,
g(x) = 0.

(3)

We then try to solve this system of n + m equations in n + m unknowns:
λ1, . . . , λm and x1, . . . , xn. The points x = (x1, . . . , xn)′ obtained in this way
are called critical points, and among them are any points of S at which con-
strained minima or maxima occur. (A critical point of the constrained prob-
lem is thus defined as ‘a critical point of the function φ(x) defined on the
surface g(x) = 0’, and not as ‘a critical point of φ(x) whose coordinates sat-
isfy g(x) = 0’. Any critical point in the latter sense is also a critical point in
the former, but not conversely.)

Of course, the question remains whether a given critical point actually
yields a minimum, maximum, or neither.
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Proof. Let us partition the m× n matrix Dg(c) as

Dg(c) = (D1g(c),D2g(c)), (4)

where D1g(c) is an m×m matrix, and D2g(c) is an m× (n−m) matrix. By
renumbering the variables (if necessary), we may assume that

|D1g(c)| 6= 0. (5)

We shall denote points x in S by (z; t), where z ∈ IRm and t ∈ IRn−m, so that
z = (x1, . . . , xm)′ and t = (xm+1, . . . , xn)′. Also, we write c = (z0; t0).

By the implicit function theorem (Theorem A.1 in the appendix to this
chapter) there exists an open set T in IRn−m containing t0, and a unique
function h : T → IRm such that

(i) h(t0) = z0,

(ii) g(h(t); t) = 0 for all t ∈ T , and

(iii) h is differentiable at t0.

Since h is continuous at t0 we can choose an (n − m)-ball T0 ⊂ T with
centre t0 such that

(h(t); t) ∈ B(c) for all t ∈ T0. (6)

Then the real-valued function ψ : T0 → IR defined by

ψ(t) = φ(h(t); t) (7)

has the property

ψ(t) ≥ ψ(t0) for all t ∈ T0, (8)

that is, ψ has a local (unconstrained) minimum at t0. Since h is differentiable
at t0 and φ is differentiable at (z0; t0), it follows that ψ is differentiable at t0.
Hence, by Theorem 2, its derivative vanishes at t0, and, using the chain rule,
we find

0 = Dψ(t0) = Dφ(c)

(
Dh(t0)
In−m

)
. (9)

Next, consider the vector function κ : T → IRm defined by

κ(t) = g(h(t); t). (10)

The function κ is identically zero on the set T . Therefore, all its partial deriva-
tives are zero on T . In particular, Dκ(t0) = 0. Further, since h is differentiable
at t0 and g is differentiable at (z0; t0), the chain rule yields

0 = Dκ(t0) = Dg(c)

(
Dh(t0)
In−m

)
. (11)
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Combining (10) and (12), we obtain

E

(
Dh(t0)
In−m

)
= 0, (12)

where E is the (m+ 1) × n matrix

E =

(
Dφ(c)
Dg(c)

)
=

(
D1φ(c) D2φ(c)
D1g(c) D2g(c)

)
. (13)

Equation (13) shows that the last n−m columns of E are linear combinations
of the first m columns. Hence r(E) ≤ m. But since D1g(c) is a submatrix of
E with rank m, the rank of E cannot be smaller than m. It follows that

r(E) = m. (14)

The m+ 1 rows of E are therefore linearly dependent. By assumption, the m
rows of Dg(c) are linearly independent. Hence Dφ(c) is a linear combination
of the m rows of Dg(c), that is,

Dφ(c) − l′Dg(c) = 0 (15)

for some l ∈ IRm. This proves the existence of l; its uniqueness follows imme-
diately from the fact that Dg(c) has full row rank. 2

Example 3

To solve the problem

minimize x′x (16)

subject to x′Ax = 1 (A positive definite) (17)

by Lagrange’s method, we introduce one multiplier λ and define the La-
grangian function

ψ(x) = x′x− λ(x′Ax− 1). (18)

Differentiating ψ with respect to x and setting the result equal to zero yields

x = λAx. (19)

To this we add the constraint

x′Ax = 1. (20)

Equations (20) and (21) are the first-order conditions, from which we shall
solve for x and λ. Pre-multiplying both sides of (20) by x′ gives

x′x = λx′Ax = λ, (21)
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using (21), and since x 6= 0 we obtain from (20)

Ax = (1/x′x)x. (22)

This shows that (1/x′x) is an eigenvalue of A. Let µ(A) be the largest eigen-
value of A. Then the minimum value of x′x under the constraint x′Ax = 1 is
1/µ(A). The value of x for which the minimum is attained is the eigenvector
of A associated with the eigenvalue µ(A).

Exercises

1. Consider the problem

minimize (x− 1)(y + 1)

subject to x− y = 0.

By using Lagrange’s method, show that the minimum point is (0,0) with
λ = 1. Next consider the Lagrangian function

ψ(x, y) = (x− 1)(y + 1) − 1(x− y),

and show that ψ has a saddle point at (0,0). That is, the point (0,0)
does not minimize ψ. (This shows that it is not correct to say that
minimizing a function subject to constraints is equivalent to minimizing
the Lagrangian function.)

2. Solve the following problems by using the Lagrange multiplier method:

(i) min(max) xy subject to x2 + xy + y2 = 1,

(ii) min(max) (y − z)(z − x)(x − y) subject to x2 + y2 + z2 = 2,

(iii) min(max) x2 + y2 + z2 − yz − zx− xy
subject to x2 + y2 + z2 − 2x+ 2y + 6z + 9 = 0.

3. Prove the inequality

(x1x2 . . . xn)
1/n ≤ x1 + x2 + · · · + xn

n

for all positive real numbers x1, . . . , xn. (Compare Section 11.4.)

4. Solve the problem

minimize x2 + y2 + z2

subject to 4x+ 3y + z = 25.

5. Solve the following utility maximization problem:

maximize xα1 x
1−α
2 (0 < α < 1)

subject to p1x1 + p2x2 = y (p1 > 0, p2 > 0, y > 0)

with respect to x1 and x2 (x1 > 0, x2 > 0).
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13 SUFFICIENT CONDITIONS FOR A LOCAL MINIMUM
UNDER CONSTRAINTS

In the previous section we obtained conditions that are necessary for a func-
tion to achieve a local minimum or maximum subject to equality constraints.
To investigate whether a given critical point actually yields a minimum, maxi-
mum, or neither, it is often practical to proceed on an ad hoc basis. If this fails,
the following theorem provides sufficient conditions to ensure the existence of
a constrained minimum or maximum at a critical point.

Theorem 11

Let φ : S → IR be a real-valued function defined on a set S in IRn, and
g : S → IRm(m < n) a vector function defined on S. Let c be an interior point
of S and let l be a point in IRm. Define the Lagrangian function ψ : S → IR
by the equation

ψ(x) = φ(x) − l′g(x), (1)

and assume that

(i) φ is differentiable at c,

(ii) g is twice differentiable at c,

(iii) the m× n Jacobian matrix Dg(c) has full row rank m,

(iv) (first-order conditions)

dψ(c;u) = 0 for all u in IRn,
g(c) = 0,

(2)

(v) (second-order condition)

d
2ψ(c;u) > 0 for all u 6= 0 satisfying dg(c;u) = 0. (3)

Then φ has a strict local minimum at c under the constraint g(x) = 0.

The difficulty in applying Theorem 11 lies, of course, in the verification of
the second-order condition. This condition requires that

u′Au > 0 for every u 6= 0 such that Bu = 0, (4)

where

A = Hφ(c) −
m∑

i=1

λiHgi(c), B = Dg(c). (5)
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Several sets of necessary and sufficient conditions exist for a quadratic form to
be positive definite under linear constraints, and one of these (the ‘bordered
determinantal criterion’) is discussed in Section 3.11. The following theorem
is therefore easily proved.

Theorem 12 (bordered determinantal criterion)

Assume that conditions (i)–(iv) of Theorem 11 are satisfied, and let ∆r be
the symmetric (m+ r) × (m+ r) matrix

∆r =

(
0 Br
B′
r Arr

)
(r = 1, . . . , n), (6)

where Arr is the r× r matrix in the top left corner of A, and Br is the m× r
matrix whose columns are the first r columns of B. Assume that |Bm| 6= 0.
(This can always be achieved by renumbering the variables, if necessary.) If

(−1)m|∆r| > 0 (r = m+ 1, . . . , n), (7)

then φ has a strict local minimum at c under the constraint g(x) = 0. If

(−1)r|∆r| > 0 (r = m+ 1, . . . , n), (8)

then φ has a strict local maximum at c under the constraint g(x) = 0.

Proof of Theorem 11. Let us define the sets

U(δ) = {u ∈ IRn : ‖u‖ < δ}, δ > 0 (9)

and

T = {u ∈ IRn : u 6= 0, c+ u ∈ S, g(c+ u) = 0}. (10)

We need to show that a δ > 0 exists such that

φ(c+ u) − φ(c) > 0 for all u ∈ T ∩ U(δ). (11)

By assumption, φ and g are twice differentiable at c, and therefore differen-
tiable at each point of an n-ball B(c) ⊂ S. Let δ0 be the radius of B(c). Since
ψ is twice differentiable at c, we have for every u ∈ U(δ0) the second-order
Taylor formula (Theorem 6.8)

ψ(c+ u) = ψ(c) + dψ(c;u) +
1

2
d
2ψ(c;u) + r(u), (12)

where r(u)/‖u‖2 → 0 as u → 0. Now, g(c) = 0 and dψ(c;u) = 0 (first-order
conditions). Further, g(c+ u) = 0 for u ∈ T . Hence (12) reduces to

φ(c+ u) − φ(c) =
1

2
d
2ψ(c;u) + r(u) for all u ∈ T ∩ U(δ0). (13)
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Next, since g is differentiable at each point of B(c), we may apply the mean-
value theorem to each of its components g1, . . . , gm. This yields, for every
u ∈ U(δ0),

gi(c+ u) = gi(c) + dgi(c+ θiu;u), (14)

where θi ∈ (0, 1), i = 1, . . . ,m. Again, gi(c) = 0 and, for u ∈ T, gi(c+ u) = 0.
Hence

dgi(c+ θiu;u) = 0 (i = 1, . . . ,m) for all u ∈ T ∩ U(δ0). (15)

Let us denote by ∆(u), u ∈ U(δ0), the m × n matrix whose ij-th element is
the j-th first-order partial derivative of gi evaluated at c+ θiu, that is,

∆ij(u) = Djgi(c+ θiu) (i = 1, . . . ,m; j = 1, . . . , n). (16)

(Notice that the rows of ∆ are evaluated as possibly different points.) Then
the m equations in (15) can be written as one vector equation

∆(u)u = 0 for all u ∈ T ∩ U(δ0). (17)

Since the functions Djgi are continuous at u = 0, the Jacobian matrix ∆ is
continuous at u = 0. By assumption ∆(0) has maximum rankm, and therefore
its rank is locally constant. That is, there exists a δ1 ∈ (0, δ0] such that

rank (∆(u)) = m for all u ∈ U(δ1) (18)

(see Exercise 5.15.1). Now, ∆(u) has n columns of which only m are linearly
independent. Hence by Exercise 1.14.3 there exists an n×(n−m) matrix Γ(u)
such that

∆(u)Γ(u) = 0, Γ′(u)Γ(u) = In−m for all u ∈ U(δ1). (19)

(The columns of Γ are of course n − m normalized eigenvectors associated
with the n −m zero eigenvalues of ∆′∆.) Further, since ∆ is continuous at
u = 0, so is Γ.

From (17)–(19) it follows that u must be a linear combination of the
columns of Γ(u), that is, there exists, for every u in T ∩ U(δ1), a vector
q ∈ IRn−m such that

u = Γ(u)q. (20)

If we denote by K(u) the symmetric (n−m) × (n−m) matrix

K(u) = Γ′(u)(Hψ(c))Γ(u), u ∈ U(δ1), (21)

and by λ(u) its smallest eigenvalue, then

d
2ψ(c;u) = u′(Hψ(c))u = q′Γ′(u)(Hψ(c))Γ(u)q

= q′K(u)q ≥ λ(u)q′q (Exercise 1.14.1)

= λ(u)q′Γ′(u)Γ(u)q = λ(u)‖u‖2 (22)
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for every u in T ∩U(δ1). Now, since Γ is continuous at u = 0, so is K and so
is λ. Hence we may write, for u in U(δ1),

λ(u) = λ(0) +R(u), (23)

where R(u) → 0 as u→ 0. Combining (13), (22) and (23), we obtain

φ(c+ u) − φ(c) ≥
(

1

2
λ(0) +

1

2
R(u) + r(u)/‖u‖2

)
‖u‖2 (24)

for every u in T ∩ U(δ1).
Let us now prove that λ(0) > 0. By assumption,

u′(Hψ(c))u > 0 for all u 6= 0 satisfying ∆(0)u = 0. (25)

For u ∈ U(δ1), the condition ∆(0)u = 0 is equivalent to u = Γ(0)q for some
q ∈ IRn−m. Hence (25) is equivalent to

q′Γ′(0)(Hψ(c))Γ(0)q > 0 for all q 6= 0. (26)

This shows that K(0) is positive definite, and hence that its smallest eigen-
value λ(0) is positive.

Finally, choose δ2 ∈ (0, δ1] such that
∣∣∣∣
1

2
R(u) + r(u)/‖u‖2

∣∣∣∣ ≤ λ(0)/4 (27)

for every u 6= 0 with ‖u‖ < δ2. Then (24) and (27) imply

φ(c+ u) − φ(c) ≥ (λ(0)/4)‖u‖2 > 0 (28)

for every u in T ∩ U(δ2). Hence φ has a strict local minimum at c under the
constraint g(x) = 0. 2

Example 4 (n = 2, m = 1)

Solve the problem

max(min) x2 + y2

subject to x2 + xy + y2 = 3.

Let λ be a constant, and define the Lagrangian function

ψ(x, y) = x2 + y2 − λ(x2 + xy + y2 − 3).

The first-order conditions are

2x− λ(2x+ y) = 0

2y − λ(x + 2y) = 0

x2 + xy + y2 = 3,
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from which we find the following four solutions: (1,1) and (-1,-1) with λ = 2
3 ;

and (
√

3,−
√

3) and (−
√

3,
√

3) with λ = 2. We now compute the bordered
Hessian matrix

∆(x, y) =

(
0 2x+ y x+ 2y

2x+ y 2 − 2λ −λ
x+ 2y −λ 2 − 2λ

)

whose determinant equals

|∆(x, y)| =
1

2
(3λ− 2)(x− y)2 − 9

2
(2 − λ)(x+ y)2.

For λ = 2
3 we find |∆(1, 1)| = |∆(−1,−1)| = −24, and for λ = 2 we find

|∆(
√

3,−
√

3)| = |∆(−
√

3,
√

3)| = 24. We thus conclude, using Theorem 12,

that (1,1) and (−1, −1) are strict local minimum points, and that (
√

3,−
√

3)

and (−
√

3,
√

3) are strict local maximum points. (These points are, in fact,
absolute extreme points, as is evident geometrically.)

Exercises

1. Discuss the second-order conditions for the constrained optimization
problems in Exercise 12.2.

2. Answer the same question as above for Exercises 12.4 and 12.5.

3. Compare Example 4 and solution method of Section 13 with Example
3 and the solution method of Section 12.

14 SUFFICIENT CONDITIONS FOR AN ABSOLUTE MINI-
MUM UNDER CONSTRAINTS

The Lagrange theorem (Theorem 10) gives necessary conditions for a local
(and hence also for an absolute) constrained extremum to occur at a given
point. In Theorem 11 we obtained sufficient conditions for a local constrained
extremum. To find sufficient conditions for an absolute constrained extremum,
we proceed as in the unconstrained case (Section 9), and impose appropriate
convexity (concavity) conditions.

Theorem 13

Let φ : S → IR be a real-valued function defined and differentiable on an open
convex set S in IRn, and let g : S → IRm(m < n) be a vector function defined
and differentiable on S. Let c be a point of S and let l be a point in IRm.
Define the Lagrangian function ψ : S → IR by the equation

ψ(x) = φ(x) − l′g(x), (1)
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and assume that the first-order conditions are satisfied, that is,

dψ(c;u) = 0 for all u in IRn, (2)

and

g(c) = 0. (3)

If ψ is (strictly) convex on S, then φ has a (strict) absolute minimum at c
under the constraint g(x) = 0.

Note. Under the same conditions, if ψ is (strictly) concave on S, then φ has
a (strict) absolute maximum at c under the constraint g(x) = 0.

Proof. If ψ is convex on S and dψ(c;u) = 0 for every u ∈ IRn, then ψ has an
absolute minimum at c (Theorem 8), that is,

ψ(x) ≥ ψ(c) for all x in S. (4)

Since ψ(x) = φ(x) − l′g(x), it follows that

φ(x) ≥ φ(c) + l′[g(x) − g(c)] for all x in S. (5)

But g(c) = 0 by assumption. Hence,

φ(x) ≥ φ(c) for all x in S satisfying g(x) = 0, (6)

that is, φ has an absolute minimum at c under the constraint g(x) = 0. The
case in which ψ is strictly convex is treated similarly. 2

Note. To prove that the Lagrangian function ψ is (strictly) convex or (strictly)
concave, we can use the definition in Section 4.9, Theorem 5 or Theorem 6,
or (if ψ is twice differentiable) Theorem 7. In addition we observe that

(a) if the constraints g1(x), . . . , gm(x) are all linear, and φ(x) is (strictly)
convex, then ψ(x) is (strictly) convex.

In fact, (a) is a special case of

(b) if the functions λ1g1(x), . . . , λmgm(x) are all concave (that is, for i =
1, 2, . . . ,m, either gi(x) is concave and λi ≥ 0, or gi(x) is convex and
λi ≤ 0) and if φ(x) is convex, then ψ(x) is convex; furthermore, if at
least one of these m+1 conditions is strict, then ψ(x) is strictly convex.

15 A NOTE ON CONSTRAINTS IN MATRIX FORM

Let φ : S → IR be a real-valued function defined on a set S in IRn×q, and
let G : S → IRm×p be a matrix function defined on S. We shall frequently
encounter the problem

minimize φ(X) (1)

subject to G(X) = 0. (2)
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This problem is, of course, mathematically equivalent to the case where X
and G are vectors rather than matrices, so all theorems remain valid. We
now introduce mp multipliers λij (one for each constraint gij(X) = 0, i =
1, . . . ,m; j = 1, . . . , p), and define the m × p matrix of Lagrange multipliers
L = (λij). The Lagrangian function then takes the convenient form

ψ(X) = φ(X) − trL′G(X). (3)

16 ECONOMIC INTERPRETATION OF LAGRANGE
MULTIPLIERS

Consider the constrained minimization problem

minimize φ(x) (1)

subject to g(x) = b, (2)

where φ is a real-valued function defined on an open set S in IRn, g is a vector
function defined on S with values in IRm(m < n) and b = (b1, . . . , bm)′ is a
given m×1 vector of constants (parameters). In this section we shall examine
how the optimal solution of this constrained minimization problem changes
when the parameters change.

We shall assume that

(i) φ and g are twice continuously differentiable on S,

(ii) (first-order conditions) there exist points x0 = (x01, . . . , x0n)
′ in S and

l0 = (λ01, . . . , λ0m)′ in IRm such that

Dφ(x0) = l′0Dg(x0) (3)

g(x0) = b. (4)

Now let

Bn = Dg(x0), Ann = Hφ(x0) −
m∑

i=1

λ0iHgi(x0), (5)

and define, for r = 1, 2, . . . , n, Br as the m× r matrix whose columns are the
first r columns of Bn, and Arr as the r × r matrix in the top left corner of
Ann. In addition to (i) and (ii) we assume that

(iii) |Bm| 6= 0, (6)

(iv) (second-order conditions)

(−1)m
∣∣∣∣

0 Br
B′
r Arr

∣∣∣∣ > 0 (r = m+ 1, . . . , n). (7)
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These assumptions are sufficient (in fact, more than sufficient) for the function
φ to have a strict local minimum at x0 under the constraint g(x) = b (see
Theorem 12).

The vectors x0 and l0 for which the first-order conditions (3) and (4) are
satisfied will, in general, depend on the parameter vector b. The question is
whether x0 and l0 are differentiable functions of b. Given assumptions (i)-(iv),
this question can be answered in the affirmative. By using the implicit function
theorem (Theorem A.2 in the appendix to this chapter), we can show that
there exists an m-ball B(0) with the origin as its centre, and unique functions
x∗ and l∗ defined on B(0) with values in IRn and IRm respectively, such that

(a) x∗(0) = x0, l
∗(0) = l0,

(b) Dφ(x∗(y)) = (l∗(y))′Dg(x∗(y)) for all y in B(0),

(c) g(x∗(y)) = b for all y in B(0),

(d) the functions x∗ and l∗ are continuously differentiable on B(0).

Now consider the real-valued function φ∗ defined on B(0) by the equation

φ∗(y) = φ(x∗(y)). (8)

We first differentiate both sides of (c). This gives

Dg(x∗(y))Dx∗(y) = Im, (9)

using the chain rule. Next we differentiate φ∗. Using (again) the chain rule,
(b) and (9), we obtain

Dφ∗(y) = Dφ(x∗(y))Dx∗(y)

= (l∗(y))′Dg(x∗(y))Dx∗(y)

= (l∗(y))′Im = (l∗(y))′. (10)

In particular, at y = 0,

∂φ∗(0)

∂bj
= λ0j (j = 1, . . . ,m). (11)

Thus the Lagrange multiplier λ0j measures the rate at which the optimal value
of the objective function changes with respect to a small change in the right-
hand side of the j-th constraint. For example, suppose we are maximizing a
firm’s profit subject to one resource limitation, then the Lagrange multiplier
λ0 is the extra profit that could be earned if the firm had one more unit of
the resource, and therefore represents the maximum price the firm is willing
to pay for this additional unit. For this reason λ0 is often referred to as a
shadow price.

Exercise
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1. In Exercise 12.2, find whether a small relaxation of the constraint will
increase or decrease the optimal function value. At what rate?

APPENDIX: THE IMPLICIT FUNCTION THEOREM

Let f : IRm+k → IRm be a linear function defined by

f(x; t) = Ax +Bt, (1)

where, as the notation indicates, points in IRm+k are denoted by (x; t) with

x ∈ IRm and t ∈ IRk. If the m×m matrix A is non-singular, then there exists
a unique function g : IRk → IRm such that

(a) g(0) = 0,

(b) f(g(t); t) = 0 for all t ∈ IRk,

(c) g is infinitely times differentiable on IRk.

This unique function is, of course,

g(t) = −A−1Bt. (2)

The implicit function theorem asserts that a similar conclusion holds for cer-
tain differentiable transformations which are not linear. In this appendix we
present, without proof, three versions of the implicit function theorem, each
one being useful in slightly different circumstances.

Theorem A.1

Let f : S → IRm be a vector function defined on a set S in IRm+k. Denote
points in S by (x; t) where x ∈ IRm and t ∈ IRk, and let (x0; t0) be an interior
point of S. Assume that

(i) f(x0; t0) = 0,

(ii) f is differentiable at (x0; t0),

(iii) f is differentiable with respect to x in some (m+ k)-ball B(x0; t0),

(iv) the m×m matrix J(x; t) = ∂f(x; t)/∂x′ is continuous at (x0; t0),

(v) |J(x0; t0)| 6= 0.

Then there exists an open set T in IRk containing t0, and a unique function
g : T → IRm such that

(a) g(t0) = x0,

(b) f(g(t); t) = 0 for all t ∈ T ,
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(c) g is differentiable at t0.

Theorem A.2

Let f : S → IRm be a vector function defined on an open set S in IRm+k, and
let (x0; t0) be a point of S. Assume that

(i) f(x0; t0) = 0,

(ii) f is continuously differentiable on S,

(iii) the m×m matrix J(x; t) = ∂f(x; t)/∂x′ is non-singular at (x0; t0).

Then there exists an open set T in IRk containing t0, and a unique function
g : T → IRm such that

(a) g(t0) = x0,

(b) f(g(t); t) = 0 for all t ∈ T ,

(c) g is continuously differentiable on T .

Theorem A.3

Let f : S → IRm be a vector function defined on a set S in IRm+k, and let
(x0; t0) be an interior point of S. Assume that

(i) f(x0; t0) = 0,

(ii) f is p ≥ 2 times differentiable at (x0; t0),

(iii) the m×m matrix J(x; t) = ∂f(x; t)/∂x′ is non-singular at (x0; t0).

Then there exists an open set T in IRk containing t0, and a unique function
g : T → IRm such that

(a) g(t0) = x0,

(b) f(g(t); t) = 0 for all t ∈ T ,

(c) g is p− 1 times differentiable on T and p times differentiable at t0.

BIBLIOGRAPHICAL NOTES

§1. Apostol (1974, Chapter 13) has a good discussion of implicit functions and
extremum problems. See also Luenberger (1969) and Sydsæter (1981, Chapter
5).
§9 and §14. For an interesting approach to absolute minima with applications
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in statistics, see Rolle (1996).
Appendix. There are many versions of the implicit function theorem, but The-
orem A.2 is what most authors would call ‘the’ implicit function theorem. See
Dieudonné (1969, Theorem 10.2.1) or Apostol (1974, Theorem 13.7). Theo-
rems A.1 and A.3 are less often presented. See, however, Young (1910, Section
38).
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CHAPTER 8

Some important differentials

1 INTRODUCTION

Now that we know what differentials are, and have adopted a convenient and
simple notation for them, our next step is to determine the differentials of
some important functions.

In this chapter, X always denotes a matrix (usually square) of real vari-
ables, and Z a matrix of complex variables. We shall discuss the differentials
of some scalar functions of X (eigenvalue, determinant), a vector function
of X (eigenvector) and some matrix functions of X (inverse, Moore-Penrose
inverse, adjoint matrix).

But first we must list the basic rules.

2 FUNDAMENTAL RULES OF DIFFERENTIAL CALCULUS

The following rules are easily verified. If u and v are real-valued differentiable
functions and α is a real constant, then we have

dα = 0, (1)

d(αu) = αdu, (2)

d(u+ v) = du+ dv, (3)

d(u− v) = du− dv, (4)

d(uv) = (du)v + udv, (5)

d

(u
v

)
=
vdu− udv

v2
(v 6= 0). (6)

167
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The differentials of the power function, logarithmic function and exponential
function are

duα = αuα−1
du, (7)

d log u = u−1
du (u > 0), (8)

deu = eudu, (9)

dαu = αu logαdu (α > 0). (10)

Note. The domain of definition of the power function uα depends on the arith-
metical nature of α. If α is a positive integer then uα is defined for all real
u; but if α is a negative integer or zero, the point u = 0 must be excluded. If
α is a rational fraction, e.g. α = p/q (where p and q are integers and we can
always assume that q > 0), then uα = q

√
up, so that the function is determined

for all values of u when q is odd, and only for u ≥ 0 when q is even. In cases
where α is irrational, the function is defined for u > 0.

Similar results hold if U and V are matrix functions, and A is a matrix of
real constants:

dA = 0, (11)

d(αU) = αdU, (12)

d(U + V ) = dU + dV, (13)

d(U − V ) = dU − dV, (14)

d(UV ) = (dU)V + UdV. (15)

For the Kronecker product and Hadamard product the analogue of (15) holds:

d(U ⊗ V ) = (dU) ⊗ V + U ⊗ dV, (16)

d(U ⊙ V ) = (dU) ⊙ V + U ⊙ dV. (17)

Finally we have

dU ′ = (dU)′, (18)

d vecU = vec dU, (19)

d trU = tr dU. (20)

For example, to prove (3), let φ(x) = u(x) + v(x). Then,

dφ(x;h) =
∑

j

hjDjφ(x) =
∑

j

hj (Dju(x) + Djv(x))

=
∑

j

hjDju(x) +
∑

j

hjDjv(x) = du(x;h) + dv(x;h). (21)
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As a second example, let us prove (15). Using only (3) and (5), we have

(d(UV ))ij = d(UV )ij = d

∑

k

uikvkj =
∑

k

d(uikvkj)

=
∑

k

[(duik)vkj + uikdvkj ]

=
∑

k

(duik)vkj +
∑

k

uikdvkj

= ((dU)V )ij + (UdV )ij . (22)

Hence (15) follows.

Exercises

1. Prove (16).

2. Show that d(UVW ) = (dU)VW + U(dV )W + UV (dW ).

3. Show that d(AXB) = A(dX)B, A and B constant.

4. Show that d trX ′X = 2 trX ′
dX .

5. Let u : S → IR be a real-valued function defined on an open subset S of
IRn. If u′u = 1 on S, then u′du = 0 on S.

3 THE DIFFERENTIAL OF A DETERMINANT

Let us now apply these rules to obtain a number of useful results. The first
of these is the differential of the determinant.

Theorem 1

Let S be an open subset of IRn×q. If the matrix function F : S → IRm×m (m ≥
2) is k times (continuously) differentiable on S, then so is the real-valued
function |F | : S → IR given by |F |(X) = |F (X)|. Moreover,

d|F | = trF#
dF, (1)

where F#(X) = (F (X))# denotes the adjoint matrix of F (X). In particular,

d|F | = |F | trF−1
dF (2)

at points X with r(F (X)) = m. Also,

d|F | = (−1)p+1µ(F )
v′(dF )u

v′(F p−1)+u
(3)

at points X with r(F (X)) = m − 1. Here p denotes the multiplicity of the
zero eigenvalue of F (X), 1 ≤ p ≤ m, µ(F (X)) is the product of the m − p
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non-zero eigenvalues of F (X) if p < m and µ(F (X)) = 1 if p = m, and the
m× 1 vectors u and v satisfy F (X)u = F ′(X)v = 0. And finally,

d|F | = 0 (4)

at points X with r(F (X)) ≤ m− 2.

Proof. Consider the real-valued function φ : IRm×m → IR defined by φ(Y ) =
|Y |. Clearly, φ is ∞ times differentiable at every point of IRm×m. If Y = (yij)
and cij is the cofactor of yij , then by (1.9.7),

φ(Y ) = |Y | =

m∑

i=1

cijyij , (5)

and since c1j , . . . , cmj do not depend on yij , we have

∂φ(Y )

∂yij
= cij . (6)

From these partial derivatives we obtain the differential

dφ(Y ) =

m∑

i=1

m∑

j=1

cijdyij = trY #
dY. (7)

Now, since the function |F | is the composite of φ and F , Cauchy’s rule of
invariance (Theorem 5.9) applies, and

d|F | = trF#
dF. (8)

The remainder of the theorem follows from Theorem 3.1. 2

It is worth stressing that at points where r(F (X)) = m− 1, F (X) must
have at least one zero eigenvalue. At points where F (X) has a simple zero
eigenvalue (and where, consequently, r(F (X)) = m− 1), (3) simplifies to

d|F | = µ(F )
v′(dF )u

v′u
, (9)

where µ(F (X)) is the product of the m− 1 non-zero eigenvalues of F (X).
We do not, at this point, derive the second- and higher-order differentials

of the determinant function. In Section 4 (Exercises 1 and 2) we obtain the
differentials of log |F | assuming that F (X) is non-singular. To obtain the
general result we need the differential of the adjoint matrix. A formula for the
first differential of the adjoint matrix will be obtained in Section 6.

Result (2), the case where F (X) is non-singular, is of great practical in-
terest. At points where |F (X)| is positive, its logarithm exists and we arrive
at the following theorem.
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Theorem 2

Let T+ denote the set

T+ = {Y : Y ∈ IRm×m, |Y | > 0}. (10)

Let S be an open subset of IRn×q. If the matrix function F : S → T+ is k
times (continuously) differentiable on S, then so is the real-valued function
log |F | : S → IR given by (log |F |)(X) = log |F (X)|. Moreover

d log |F | = trF−1
dF. (11)

Proof. Immediate from (2) in Theorem 1. 2

Exercises

1. Give an intuitive explanation of the fact that d|X | = 0 at points X ∈
IRn×n where r(X) ≤ n− 2.

2. Show that, if F (X) ∈ IRm×m and r(F (X)) = m−1 for every X in some
neighbourhood of X0, then d|F (X)| = 0 at X0.

3. Show that d log |X ′X | = 2 tr(X ′X)−1X ′
dX at every point where X has

full column rank.

4 THE DIFFERENTIAL OF AN INVERSE

The next theorem deals with the differential of the inverse function.

Theorem 3

Let T be the set of non-singular real m × m matrices, i.e. T = {Y : Y ∈
IRm×m, |Y | 6= 0}. Let S be an open subset of IRn×q. If the matrix function
F : S → T is k times (continuously) differentiable on S, then so is the matrix
function F−1 : S → T defined by F−1(X) = (F (X))−1, and

dF−1 = −F−1(dF )F−1. (1)

Proof. Let Aij(X) be the (m− 1) × (m− 1) submatrix of F (X) obtained by
deleting row i and column j of F (X). The typical element of F−1(X) can
then be expressed as

[F−1(X)]ij = (−1)i+j |Aji(X)|/|F (X)|. (2)
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Since both determinants |Aji| and |F | are k times (continuously) differentiable
on S, the same is true for their ratio and hence for the matrix function F−1.
To prove (1) we then write

0 = dI = dF−1F = (dF−1)F + F−1
dF, (3)

and post-multiply with F−1. 2

Let us consider the set T of non-singular real m×m matrices. T is an open
subset of IRm×m, so that for every Y0 ∈ T there exists an open neighbourhood
N(Y0) all of whose points are non-singular. This follows from the continuity of
the determinant function |Y |. Put differently, if Y0 is non-singular and {Ej}
is a sequence of real m×m matrices such that Ej → 0 as j → ∞, then

r(Y0 + Ej) = r(Y0) (4)

for every greater j than some fixed j0, and

lim
j→∞

(Y0 + Ej)
−1 = Y −1

0 . (5)

Exercises

1. Let T+ = {Y : Y ∈ IRm×m, |Y | > 0}. If F : S → T+, S ⊂ IRn×q, is twice
differentiable on S, then show that

d
2 log |F | = − tr(F−1

dF )2 + trF−1
d
2F.

2. Show that, for X ∈ T+, log |X | is ∞ times differentiable on T+, and

dr log |X | = (−1)r−1(r − 1)! tr(X−1
dX)r (r = 1, 2, . . .).

3. Let T = {Y : Y ∈ IRm×m, |Y | 6= 0}. If F : S → T, S ⊂ IRn×q, is twice
differentiable on S, then show

d
2F−1 = 2[F−1(dF )]2F−1 − F−1(d2F )F−1.

4. Show that, for X ∈ T, X−1 is ∞ times differentiable on T , and

d
rX−1 = (−1)rr!(X−1

dX)rX−1 (r = 1, 2, . . .).

5 DIFFERENTIAL OF THE MOORE-PENROSE INVERSE

Equation (4.4) above and Exercise 5.15.1 tell us that non-singular matrices
have locally constant rank. Singular matrices (more precisely matrices of less
than full row or column rank) do not share this property. Consider, for exam-
ple, the matrices

Y0 =

(
1 0
0 0

)
and Ej =

(
0 0
0 1/j

)
, (1)
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and let Y = Y (j) = Y0+Ej . Then r(Y0) = 1, but r(Y ) = 2 for all j. Moreover,
Y → Y0 as j → ∞, but

Y + =

(
1 0
0 j

)
(2)

does certainly not converge to Y +
0 , because it does not converge to anything.

It follows that (i) r(Y ) is not constant in any neighbourhood of Y0, and (ii)
Y + is not continuous at Y0. The following lemma shows that the conjoint
occurrence of (i) and (ii) is typical.

Lemma 1

Let Y0 ∈ IRm×p and let {Ej} be a sequence of real m× p matrices such that
Ej → 0 as j → ∞. Then

r(Y0 + Ej) = r(Y0) for every j ≥ j0 (3)

if and only if

lim
j→∞

(Y0 + Ej)
+ = Y +

0 . (4)

Lemma 1 tells us that if F : S → IRm×p, S ⊂ IRn×q, is a matrix function
defined and continuous on S, then F+ : S → IRp×m is continuous on S if and
only if r(F (X)) is constant on S. If F+ is to be differentiable atX0 ∈ S it must
be continuous at X0, hence of constant rank in some neighbourhood N(X0)
of X0. Provided that r(F (X)) is constant in N(X0), the differentiability of
F at X0 implies the differentiability of F+ at X0. In fact, we have the next
lemma.

Lemma 2

Let X0 be an interior point of a subset S of IRn×q. Let F : S → IRm×p be
a matrix function defined on S and k ≥ 1 times (continuously) differentiable
at each point of some neighbourhood N(X0) ⊂ S of X0. Then the following
three statements are equivalent:

(i) the rank of F (X) is constant on N(X0),

(ii) F+ is continuous on N(X0),

(iii) F+ is k times (continuously) differentiable on N(X0).

Having established the existence of differentiable Moore-Penrose (MP) in-
verses, we now want to find the relationship between dF+ and dF . First, we
find dF+F and dFF+; then we use these results to obtain dF+.

Theorem 4

Let S be an open subset of IRn×q, and let F : S → IRm×p be a matrix function
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defined and k ≥ 1 times (continuously) differentiable on S. If r(F (X)) is
constant on S, then F+F : S → IRp×p and FF+ : S → IRm×m are k times
(continuously) differentiable on S, and

dF+F = F+(dF )(Ip − F+F ) + (F+(dF )(Ip − F+F ))′ (5)

and

dFF+ = (Im − FF+)(dF )F+ + ((Im − FF+)(dF )F+)′. (6)

Proof. Let us demonstrate the first result, leaving the second as an exercise
for the reader.

Since the matrix F+F is idempotent and symmetric, we have

dF+F = d(F+FF+F ) = (dF+F )F+F + F+F (dF+F )

= F+F (dF+F ) + (F+F (dF+F ))′. (7)

To find dF+F it suffices therefore to find F (dF+F ). But this is easy, since
the equality

dF = d(FF+F ) = (dF )(F+F ) + F (dF+F ) (8)

can be rearranged as

F (dF+F ) = (dF )(I − F+F ). (9)

The result follows by inserting (9) into (7). 2

We now have all the ingredients for the main result.

Theorem 5

Let S be an open subset of IRn×q, and let F : S → IRm×p be a matrix function
defined and k ≥ 1 times (continuously) differentiable on S. If r(F (X)) is
constant on S, then F+ : S → IRp×m is k times (continuously) differentiable
on S, and

dF+ = −F+(dF )F+ + F+F+′
(dF ′)(Im − FF+)

+ (Ip − F+F )(dF ′)F+′
F+. (10)

Proof. The strategy of the proof is to express dF+ in dFF+ and dF+F , and
apply Theorem 4. We have

dF+ = d(F+FF+) = (dF+F )F+ + F+FdF+ (11)

and also

dFF+ = (dF )F+ + FdF+. (12)
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Inserting the expression for FdF+ from (12) into the last term of (11), we
obtain

dF+ = (dF+F )F+ + F+(dFF+) − F+(dF )F+. (13)

Application of Theorem 4 gives the desired result. 2

Exercises

1. Prove (6).

2. If F (X) is idempotent for everyX in some neighbourhood of a pointX0,
then F is said to be locally idempotent at X0. Show that F (dF )F = 0
at points where F is differentiable and locally idempotent.

3. If F is locally idempotent at X0 and continuous in a neighbourhood of
X0, then trF is differentiable at X0 with d(trF )(X0) = 0.

4. If F has locally constant rank at X0 and is continuous in a neighbour-
hood of X0, then trF+F and trFF+ are differentiable at X0 with
d(trF+F )(X0) = d(trFF+)(X0) = 0.

5. If F has locally constant rank at X0 and is differentiable in a neighbour-
hood of X0, then trFdF+ = − trF+

dF .

6 THE DIFFERENTIAL OF THE ADJOINT MATRIX

If Y is a real m×m matrix, then by Y # we denote the m×m adjoint matrix
of Y . Given an m × m matrix function F we now define an m ×m matrix
function F# by F#(X) = (F (X))#. The purpose of this section is to find the
differential on F#. We first prove Theorem 6.

Theorem 6

Let S be a subset of IRn×q, and let F : S → IRm×m(m ≥ 2) be a matrix
function defined on S. If F is k times (continuously) differentiable at a point
X0 of S, then so is the matrix function F# : S → IRm×m; and at X0,

(dF#)ij = (−1)i+j trEi(E
′
jFEi)

#E′
jdF (i, j = 1, . . . ,m), (1)

where Ei denotes the m×(m−1) matrix obtained from Im by deleting column
i.

Note. The matrix E′
jF (X)Ei is obtained from F (X) by deleting row j and

column i; the matrix Ei(E
′
jF (X)Ei)

#E′
j is obtained from (E′

jF (X)Ei)
# by

inserting a row of zeros between rows i − 1 and i, and a column of zeros
between columns j − 1 and j.
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Proof. Since, by definition (see Section 1.9),

(F#(X))ij = (−1)i+j |E′
jF (X)Ei|, (2)

we have from Theorem 1,

(dF#(X))ij = (−1)i+j tr(E′
jF (X)Ei)

#
d(E′

jF (X)Ei)

= (−1)i+j tr(E′
jF (X)Ei)

#E′
j(dF (X))Ei

= (−1)i+j trEi(E
′
jF (X)Ei)

#E′
jdF (X), (3)

and the result follows. 2

Recall from Theorem 3.2 that if Y = F (X) is an m×m matrix and m ≥ 2,
then the rank of Y # = F#(X) is given by

r(Y #) =

{
m, if r(Y ) = m,
1, if r(Y ) = m− 1,
0, if r(Y ) ≤ m− 2.

(4)

As a result, two special cases of Theorem 6 can be proved. The first relates
to the situation where F (X0) is non-singular.

Corollary 1

If F : S → IRm×m(m ≥ 2), S ⊂ IRn×q, is k times (continuously) differentiable
at a point X0 ∈ S where F (X0) is non-singular, then F# : S → IRm×m is also
k times (continuously) differentiable at X0, and the differential at that point
is given by

dF# = |F |[(trF−1
dF )F−1 − F−1(dF )F−1] (5)

or equivalently,

d vecF# = |F |[(vecF−1)(vec(F ′)−1)′ − (F ′)−1 ⊗ F−1]d vecF. (6)

Proof. To demonstrate this result as a special case of Theorem 6 is somewhat
involved, and is left to the reader. Much simpler is to write F# = |F |F−1 and
use the facts, established in Theorems 1 and 3, that d|F | = |F | trF−1

dF and
dF−1 = −F−1(dF )F−1. Details of the proof are left to the reader. 2

The second special case of Theorem 6 concerns points where the rank of
F (X0) does not exceed m− 3.

Corollary 2

Let F : S → IRm×m(m ≥ 3), S ⊂ IRn×q, be differentiable at a point X0 ∈ S.
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If r(F (X0)) ≤ m− 3, then

(dF#)(X0) = 0. (7)

Proof. Since the rank of the (m−1)× (m−1) matrix E′
jF (X0)Ei in Theorem

6 cannot exceed m − 3, it follows by (4) that its adjoint matrix is the null
matrix. Inserting (E′

jF (X0)Ei)
# = 0 in (1) gives (dF#)(X0) = 0. 2

There is another, more illuminating, proof of Corollary 2 — one which
does not depend on Theorem 6. Let Y0 ∈ IRm×m and assume Y0 is singular.
Then r(Y ) is not locally constant at Y0. In fact, if r(Y0) = r (1 ≤ r ≤ m− 1)

and we perturb one element of Y0, then the rank of Ỹ0 (the perturbed matrix)
will be r−1, r, or r+1. An immediate consequence of this simple observation

is that if r(Y0) does not exceed m− 3, then r(Ỹ0) will not exceed m− 2. But
this means that at points Y0 with r(Y0) ≤ m− 3,

(Ỹ0)
# = Y #

0 = 0, (8)

implying that the differential of Y # at Y0 must be the null matrix.

These two corollaries provide expressions for dF# at every point X where
r(F (X)) = m or r(F (X)) ≤ m−3. The remaining points to consider are those
where r(F (X)) is either m−1 or m−2. At such points we must unfortunately
use Theorem 6, which holds irrespective of rank considerations.

Only if we know that the rank of F (X) is locally constant can we say more.
If r(F (X)) = m − 2 for every X in some neighbourhood N(X0) of X0, then
F#(X) vanishes in that neighbourhood, and hence (dF#)(X) = 0 for every
X ∈ N(X0). More complicated is the situation where r(F (X)) = m−1 in some
neighbourhood of X0. A discussion of this case is postponed to Miscellaneous
Exercise 6 at the end of this chapter.

Exercise

1. The matrix function F : IRn×n → IRn×n defined by F (X) = X# is ∞
times differentiable on IRn×n, and (djF )(X) = 0 for every j ≤ n− 2 −
r(X).

7 ON DIFFERENTIATING EIGENVALUES AND EIGEN-
VECTORS

There are two problems involved in differentiating eigenvalues and eigenvec-
tors. The first problem is that the eigenvalues of a real matrix A need not, in
general, be real numbers – they may be complex. The second problem is the
possible occurrence of multiple eigenvalues.



178 Some important differentials [Ch. 8

To appreciate the first point, consider the real 2 × 2 matrix function

A(ǫ) =

(
1 ǫ

−ǫ 1

)
, ǫ 6= 0. (1)

The matrix A is not symmetric, and its eigenvalues are 1 ± iǫ. Since both
eigenvalues are complex, the corresponding eigenvectors must be complex as
well; in fact, they can be chosen as

(
1
i

)
and

(
1

−i
)
. (2)

We know however (Theorem 1.4), that if A is a real symmetric matrix, then
its eigenvalues are real and its eigenvectors can always be taken to be real.
Since the derivations in the real symmetric case are somewhat simpler, we
consider this case first.

Thus, let X0 be a real symmetric n× n matrix, and let u0 be a (normal-
ized) eigenvector associated with an eigenvalue λ0 of X0, so that the triple
(X0, u0, λ0) satisfies the equations

Xu = λu, u′u = 1. (3)

Since the n + 1 equations in (3) are implicit relations rather than explicit
functions, we must first show that there exist explicit unique functions λ =
λ(X) and u = u(X) satisfying (3) in a neighbourhood of X0 and such that
λ(X0) = λ0 and u(X0) = u0. Here the second (and more serious) problem
arises – the possible occurrence of multiple eigenvalues.

We shall see that the implicit function theorem (given in the appendix
to Chapter 7) implies the existence of a neighbourhood N(X0) ⊂ IRn×n of
X0 where the functions λ and u both exist and are ∞ times (continuously)
differentiable, provided λ0 is a simple eigenvalue of X0. If, however, λ0 is a
multiple eigenvalue of X0, then the conditions of the implicit function theo-
rem are not satisfied. The difficulty is illustrated by the following example.
Consider the real 2 × 2 matrix function

A(ǫ, δ) =

(
1 + ǫ δ
δ 1 − ǫ

)
. (4)

The matrix A is symmetric for every value of ǫ and δ; its eigenvalues are
λ1 = 1 +

√
(ǫ2 + δ2) and λ2 = 1 −

√
(ǫ2 + δ2). Both eigenvalue functions

are continuous in ǫ and δ, but clearly not differentiable at (0, 0). (Strictly
speaking we should also prove that λ1 and λ2 are the only two continuous
eigenvalue functions.) The conical surface formed by the eigenvalues of A(ǫ, δ)
has a singularity at ǫ = δ = 0 (Figure 1). For a fixed ratio ǫ/δ however, we can
pass from one side of the surface to the other going through (0, 0) without
noticing the singularity. This phenomenon is quite general and it indicates
the need to restrict our study of differentiability of multiple eigenvalues to
one-dimensional perturbations only. We shall delay a further discussion of
multiple eigenvalues to Section 12.
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Figure 1 The eigenvalue functions λ1,2 = 1 ±
√

(ǫ2 + δ2)

8 THE DIFFERENTIAL OF EIGENVALUES AND EIGEN-
VECTORS: SYMMETRIC CASE

Let us now demonstrate the following theorem.

Theorem 7

Let X0 be a real symmetric n×n matrix. Let u0 be a normalized eigenvector
associated with a simple eigenvalue λ0 of X0. Then a real-valued function λ
and a vector function u are defined for all X in some neighbourhood N(X0) ⊂
IRn×n of X0, such that

λ(X0) = λ0, u(X0) = u0, (1)

and

Xu = λu, u′u = 1 (X ∈ N(X0)). (2)

Moreover, the functions λ and u are ∞ times differentiable on N(X0), and
the differentials at X0 are

dλ = u′0(dX)u0 (3)

and

du = (λ0In −X0)
+(dX)u0. (4)
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Note. In order for λ (and u) to be differentiable at X0 we require λ0 to be
simple, but this does not, of course, exclude the possibility of multiplicities
among the remaining n− 1 eigenvalues of X0.

Proof. Consider the vector function f : IRn+1 × IRn×n → IRn+1 defined by the
equation

f(u, λ;X) =

(
(λIn −X)u
u′u− 1

)
, (5)

and observe that f is ∞ times differentiable on IRn+1 × IRn×n. The point
(u0, λ0;X0) in IRn+1 × IRn×n satisfies

f(u0, λ0;X0) = 0 (6)

and
∣∣∣∣
λ0In −X0 u0

2u′0 0

∣∣∣∣ 6= 0. (7)

We note that the determinant in (7) is non-zero if and only if the eigenvalue
λ0 is simple, in which case it takes the value of −2 times the product of the
n− 1 non-zero eigenvalues of λ0In −X0 (see Theorem 3.5).

The conditions of the implicit function theorem (Theorem A.3 in the
appendix to Chapter 7) thus being satisfied, there exist a neighbourhood
N(X0) ⊂ IRn×n of X0, a unique real-valued function λ : N(X0) → IR, and a
unique (apart from its sign) vector function u : N(X0) → IRn, such that

(a) λ and u are ∞ times differentiable on N(X0),

(b) λ(X0) = λ0, u(X0) = u0,

(c) Xu = λu, u′u = 1 for every X ∈ N(X0).

This completes the first part of our proof.
Let us now derive an explicit expression for dλ. From Xu = λu we obtain

(dX)u0 +X0du = (dλ)u0 + λ0du, (8)

where the differentials dλ and du are defined at X0. Pre-multiplying by u′0
gives

u′0(dX)u0 + u′0X0du = (dλ)u′0u0 + λ0u
′
0du. (9)

Since X0 is symmetric we have u′0X0 = λ0u
′
0. Hence

dλ = u′0(dX)u0, (10)

because the eigenvector u0 is normalized by u′0u0 = 1. The normalization
of u is not important here; it is important however, in order to obtain an
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expression for du. To this we now turn. Let Y0 = λ0In −X0 and rewrite (8)
as

Y0du = (dX)u0 − (dλ)u0. (11)

Pre-multiplying by Y +
0 we obtain

Y +
0 Y0du = Y +

0 (dX)u0, (12)

because Y +
0 u0 = 0 (Exercise 1). To complete the proof we need only show

that

Y +
0 Y0du = du. (13)

To prove (13), let

C0 = Y +
0 Y0 + u0u

′
0. (14)

The matrix C0 is symmetric idempotent (because Y0u0 = Y +
0 u0 = 0), so that

r(C0) = r(Y0) + 1 = n. Hence, C0 = In and

du = C0du = (Y +
0 Y0 + u0u

′
0)du = Y +

0 Y0du, (15)

since u′0du = 0 because of the normalization u′u = 1. (See Exercise 2.5.) This
shows that (13) holds, and concludes the proof. 2

Note 1. We have chosen to normalize the eigenvector u by u′u = 1, which
means that u is a point on the unit ball. This is, however, not the only pos-
sibility. Another normalization,

u′0u = 1, (16)

though less common, is in many ways more appropriate. The reason for this
will become clear when we discuss the complex case (Section 9). If the eigen-
vectors are normalized according to (16), then u is a point in the hyperplane
tangent (at u0) to the unit ball. In either case we obtain u′du = 0 at X = X0,
which is all that is needed in the proof.

Note 2. It is important to note that, while X0 is symmetric, the perturbations
are not assumed to be symmetric. For symmetric perturbations, application
of Theorem 2.2 and the chain rule immediately yields

dλ = (u′0 ⊗ u′0))Ddv(X), du = (u′0 ⊗ (λ0I −X0)
+)Ddv(X), (17)

where D is the duplication matrix (see Chapter 3).

Exercises

1. If A = A′, then Ab = 0 if and only if A+b = 0.
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2. Consider the symmetric 2 × 2 matrix

X0 =

(
1 0
0 −1

)
.

When λ0 = 1 show that, at X0,

dλ = dx11 and du =
1

2
(dx21)

(
0
1

)
,

and derive the corresponding result when λ0 = −1. Interpret these re-
sults.

3. Now consider the matrix function

A(ǫ) =

(
1 ǫ
ǫ −1

)
.

Plot a graph of the two eigenvalue functions λ1(ǫ) and λ2(ǫ), and show
that the derivative at ǫ = 0 vanishes. Also obtain this result directly
from the previous exercise.

4. Consider the symmetric matrix

X0 =




3 0 0
0 4

√
3

0
√

3 6


 .

Show that the eigenvalues ofX0 are 3 (twice) and 7, and prove that atX0

the differentials of the eigenvalue- and eigenvector-function associated
with the eigenvalue 7 are

dλ =
1

4
[dx22 + (dx23 + dx32)

√
3 + 3dx33]

and

du =
1

32




4 0 0 4
√

3 0 0
0 3 −

√
3 0 3

√
3 −3

0 −
√

3 1 0 −3
√

3


 dp(X)

where
p(X) = (x12, x22, x32, x13, x23, x33)

′.

9 THE DIFFERENTIAL OF EIGENVALUES AND EIGEN-
VECTORS: COMPLEX CASE

Precisely the same techniques as used in establishing Theorem 7 enable us to
establish Theorem 8.
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Theorem 8

Let λ0 be a simple eigenvalue (possibly complex) of a matrix Z0 ∈ Cn×n, the
set of complex n × n matrices, and let u0 be an associated eigenvector, so
that Z0u0 = λ0u0. Then a complex-valued function λ and a (complex) vector
function u are defined for all Z in some neighbourhood N(Z0) ∈ Cn×n of Z0,
such that

λ(Z0) = λ0, u(Z0) = u0, (1)

and

Zu = λu, u∗0u = 1 (Z ∈ N(Z0)). (2)

Moreover, the functions λ and u are ∞ times differentiable on N(Z0), and
the differentials at Z0 are

dλ =
v∗0(dZ)u0

v∗0u0
(3)

and

du = (λ0In − Z0)
+

(
In − u0v

∗
0

v∗0u0

)
(dZ)u0, (4)

where v0 is an eigenvector associated with the eigenvalue λ̄0 of Z∗
0 , so that

Z∗
0v0 = λ̄0v0.

Note. It seems natural to normalize u by v∗0u = 1 instead of u∗0u = 1. Such
a normalization does not, however, lead to a Moore-Penrose inverse in (4).
Another possible normalization, u∗u = 1, also leads to trouble, as the proof
shows.

Proof. The fact that the functions λ and u exist and are ∞ times differentiable
(i.e. analytic) in a neighbourhood of Z0 is proved in the same way as in
Theorem 7, using the complex analogue of Theorem 3.3 and Theorem 3.4,
instead of Theorem 3.5. To find dλ we differentiate both sides of Zu = λu,
and obtain

(dZ)u0 + Z0du = (dλ)u0 + λ0du, (5)

where du and dλ are defined at Z0. We now pre-multiply by v∗0 , and since
v∗0Z0 = λ0v

∗
0 and v∗0u0 6= 0 (why?), we obtain

dλ =
v∗0(dZ)u0

v∗0u0
. (6)
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To find du we again define Y0 = λ0I − Z0, and rewrite (5) as

Y0du = (dZ)u0 − (dλ)u0

= (dZ)u0 −
(
v∗0(dZ)u0

v∗0u0

)
u0

=

(
I − u0v

∗
0

v∗0u0

)
(dZ)u0. (7)

Pre-multiplying both sides of (7) by Y +
0 we obtain

Y +
0 Y0du = Y +

0

(
I − u0v

∗
0

v∗0u0

)
(dZ)u0. (8)

(Note that Y +
0 u0 6= 0 in general.) To complete the proof we must again show

that

Y +
0 Y0du = du. (9)

From Y0u0 = 0 we have u∗0Y
∗
0 = 0′ and hence u∗0Y

+
0 = 0′. Also, since u is

normalized by u∗0u = 1, we have u∗0du = 0. (Note that u∗u = 1 does not imply
u∗0du = 0.) Hence

u∗0(Y
+
0 : du) = 0′. (10)

It follows that

r(Y +
0 : du) = r(Y +

0 ) (11)

which implies (9). From (8) and (9), (4) follows. 2

Exercises

1. Show that v∗0u0 6= 0.

2. Given the conditions of Theorem 8, show that

dλ̄ =
u∗0(dZ)∗v0
u∗0v0

and

dv∗ = v∗0(dZ)

(
I − u0v

∗
0

v∗0u0

)
(λ0I − Z0)

+.

3. Show that
du = (λ0I − Z0)

+(dZ)u0

if and only if dλ = 0 or v0 is a multiple of u0.
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10 TWO ALTERNATIVE EXPRESSIONS FOR dλ

As we have seen, the differential (9.3) of the eigenvalue function associated
with a simple eigenvalue λ0 of a (complex) matrix Z0 can be expressed as

dλ = trP0dZ, P0 =
u0v

∗
0

v∗0u0
, (1)

where u0 and v0 are (right and left) eigenvectors of Z0 associated with λ0:

Z0u0 = λ0u0, v∗0Z0 = λ0v
∗
0 , u∗0u0 = v∗0v0 = 1. (2)

The matrix P0 is idempotent with r(P0) = 1.
Let us now express P0 in two other ways: first as a product of n − 1

matrices, and then as a weighted sum of the matrices I, Z0, . . . , Z
n−1
0 .

Theorem 9

Let λ1, λ2, . . . , λn be the eigenvalues of a matrix Z0 ∈ Cn×n, and assume that
λi is simple. Then a scalar function λ(i) exists, defined in a neighbourhood

N(Z0) ⊂ Cn×n of Z0, such that λ(i)(Z0) = λi and λ(i)(Z) is a (simple)
eigenvalue of Z for every Z ∈ N(Z0). Moreover, λ(i) is ∞ times differentiable
on N(Z0), and

dλ(i) = tr




n∏

j=1
j 6=i

(
λjI − Z0

λj − λi

)
dZ


 . (3)

If, in addition, we assume that all eigenvalues of Z0 are simple, then we may
also express dλ(i) as

dλ(i) = tr




n∑

j=1

vijZj−1
0 dZ


 (i = 1, . . . , n), (4)

where vij is the typical element of the inverse of the Vandermonde matrix

V =




1 1 . . . 1
λ1 λ2 . . . λn
...

...
...

λn−1
1 λn−1

2 . . . λn−1
n


 . (5)

Note. In expression (3) it is not demanded that the eigenvalues are all distinct,
nor that they are all non-zero. In (4), however, the eigenvalues are assumed
to be distinct. Still, one (but only one) eigenvalue may be zero.
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Proof. Consider the following two matrices of order n× n:

A = λiI − Z0 and B =
∏

j 6=i

(λjI − Z0). (6)

The Cayley-Hamilton theorem (Theorem 1.10) asserts that

AB = BA = 0. (7)

Further, since λi is a simple eigenvalue of Z0 and using the corollary to Theo-
rem 1.19, we find that r(A) = n− 1. Hence application of Theorem 3.6 shows
that

B = µu0v
∗
0 , (8)

where u0 and v∗0 are defined in (2), and µ is an arbitrary scalar.
To determine the scalar µ, we use Schur’s decomposition theorem (Theo-

rem 1.12) and write

S∗Z0S = Λ +R, S∗S = I, (9)

where Λ is a diagonal matrix containing λ1, λ2, . . . , λn on its diagonal, and R
is strictly upper triangular. Then,

trB = tr
∏

j 6=i

(λjI − Z0) = tr
∏

j 6=i

(λjI − Λ −R)

= tr
∏

j 6=i

(λjI − Λ) =
∏

j 6=i

(λj − λi). (10)

From (8) we also have

trB = µv∗0u0, (11)

and since v∗0u0 is non-zero, we find

µ =

∏
j 6=i(λj − λi)

v∗0u0
. (12)

Hence,

∏

j 6=i

(
λjI − Z0

λj − λi

)
=
u0v

∗
0

v∗0u0
, (13)

which by (1) is what we wanted to show.
Let us now prove (4). (See Miscellaneous Exercise 3 for an alternative

proof.) Since all eigenvalues of Z0 are now assumed to be distinct, there exists
by Theorem 1.15 a non-singular matrix T such that

T−1Z0T = Λ. (14)
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Therefore,

∑

j

vijZj−1
0 = T


∑

j

vijΛj−1


T−1. (15)

If we denote by Eii the n×nmatrix with a one in its i-th diagonal position
and zeros elsewhere, and by δik the Kronecker delta, then

∑

j

vijΛj−1 =
∑

j

vij

(∑

k

λj−1
k Ekk

)
=
∑

k


∑

j

vijλj−1
k


Ekk

=
∑

k

δikEkk = Eii, (16)

because
∑

j v
ijλj−1

k is the inner product of the i-th row of V −1 and the k-th
column of V , that is

∑

j

vijλj−1
k = δik. (17)

Inserting (16) in (15) yields

∑

j

vijZj−1
0 = TEiiT

−1 = (Tei)(e
′
iT

−1), (18)

where ei is the i-th unit vector. Since λi is a simple eigenvalue of Z0, we have

Tei = γu0 and e′iT
−1 = δv∗0 (19)

for some scalars γ and δ. Further,

1 = e′iT
−1Tei = γδv∗0u0. (20)

Hence,

∑

j

vijZj−1
0 = (Tei)(e

′
iT

−1) = γδu0v
∗
0 =

u0v
∗
0

v∗0u0
. (21)

This concludes the proof, using (1). 2

Exercise

1. Show that the elements in the first column of V −1 sum to one, and the
elements in any other column of V −1 sum to zero.
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11 SECOND DIFFERENTIAL OF THE EIGENVALUE
FUNCTION

One application of the differential of the eigenvector du is to obtain the second
differential of the eigenvalue: d

2λ. We consider first the case where X0 is a
real symmetric matrix.

Theorem 10

Under the same conditions as in Theorem 7, we have

d
2λ = 2u′0(dX)(λ0In −X0)

+(dX)u0. (1)

Proof. Twice differentiating both sides of Xu = λu, we obtain

2(dX)(du) +X0d
2u = (d2λ)u0 + 2(dλ)(du) + λ0d

2u, (2)

where all differentials are evaluated at X0. Pre-multiplying by u′0 gives

d
2λ = 2u′0(dX)(du), (3)

since u′0u0 = 1, u′0du = 0 and u′0X0 = λ0u
′
0. From Theorem 7 we have

du = (λ0I −X0)
+(dX)u0. Inserting this in (3) gives (1). 2

The case where Z0 is a complex n× n matrix is proved in a similar way.

Theorem 11

Under the same conditions as in Theorem 8, we have

d
2λ =

2v∗0(dZ)K0(λ0In − Z0)
+K0(dZ)u0

v∗0u0
, (4)

where

K0 = In − u0v
∗
0

v∗0u0
. (5)

Exercises

1. Show that (1) can be written as

d
2λ = 2(d vecX)′[(λ0I −X0)

+ ⊗ u0u
′
0]d vecX

and also as

d
2λ = 2(d vecX)′[u0u

′
0 ⊗ (λ0I −X0)

+]d vecX.

2. Show that if λ0 is the largest eigenvalue of X0, then d
2λ ≥ 0. Relate

this to the fact that the largest eigenvalue is convex on the space of real
symmetric matrices. (Compare Theorem 11.5.)

3. Similarly, if λ0 is the smallest eigenvalue of X0, show that d
2λ ≤ 0.
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12 MULTIPLE EIGENVALUES

The case of multiple eigenvalues is more difficult. In Section 7 we considered
the matrix function

A(ǫ, δ) =

(
1 + ǫ δ
δ 1 − ǫ

)
(1)

whose eigenvalues are not differentiable at (0,0), and we concluded that it
would be wise to restrict the study of multiple eigenvalues to matrix functions
of one parameter only.

In this section we briefly summarize some of Lancaster’s (1964) results.
We consider the eigenvalues of n×n matrices A whose elements are functions
of one parameter ζ, and we assume that (i) the elements of A(ζ) are analytic
functions in some neighbourhood of ζ0, (ii) the matrix A0 = A(ζ0) has simple
structure (i.e. all eigenvalues of A0 have only linear elementary divisors), and
(iii) if λ(ζ) is an eigenvalue of A(ζ), then λ(ζ) → λ(ζ0) as ζ → ζ0.

We shall denote by A(q)(ζ0) the q-th derivative of A(ζ) evaluated at ζ = ζ0.

Theorem 12

If A(q)(ζ0) is the first non-vanishing derivative of A(ζ) at ζ = ζ0, then the n
eigenvalues λ(ζ) of A(ζ) are differentiable at least q times at ζ0 and their first
q − 1 derivatives all vanish at ζ0.

Now let λ0 be an eigenvalue of A0 with multiplicity m. Let U0 be the
n×m matrix whose m columns span the subspace of eigenvectors associated
with λ0, that is A0U0 = λ0U0. Also, let V0 be the n × m matrix whose m
columns span the subspace of eigenvectors associated with the eigenvalue λ̄0

of A∗
0, that is A∗

0V0 = λ̄0V0. We can normalize the matrices U0 and V0 so that
V ∗

0 U0 = Im.

Theorem 13

If A(q)(ζ0) is the first non-vanishing derivative of A(ζ) at ζ = ζ0, then the
m derivatives λ(q)(ζ0) (of the m eigenvalues which coincide at ζ0) are the
eigenvalues of the matrix V ∗

0 A
(q)(ζ0)U0.

Note. Compare Theorem 13 with the expression for dλ in Theorem 8.

MISCELLANEOUS EXERCISES

1. In generalizing the fundamental rule dxk = kxk−1
dx to matrices, show

that it is not true, in general, that dXk = kXk−1
dX . It is true, however,

that
d trXk = k trXk−1

dX (k = 1, 2, . . .).

Prove that this also holds for real k ≥ 1 when X is positive semidefinite.
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2. Consider a point X0 with distinct eigenvalues λ1, λ2, . . . , λn. From the
fact that trXk =

∑
i λ

k
i , deduce that at X0,

d trXk = k
∑

i

λk−1
i dλi.

3. Conclude from the foregoing that at X0,

∑

i

λk−1
i dλi = trXk−1

0 dX (k = 1, 2, . . . , n).

Write this system of n equations as




1 1 . . . 1
λ1 λ2 . . . λn
...

...
...

λn−1
1 λn−1

2 . . . λn−1
n







dλ1

dλ2

...
dλn


 =




tr dX
trX0dX

...
trXn−1

0 dX


 .

Solve dλi. This provides an alternative proof of the second part of The-
orem 9.

4. At points X where the eigenvalues λ1, λ2, . . . , λn of X are distinct, show
that

d|X | =
∑

i


∏

j 6=i

λj


 dλi.

In particular, at points where one of the eigenvalues is zero,

d|X | =



n−1∏

j=1

λj


 dλn

where λn is the (simple) zero eigenvalue.

5. Use the previous exercise and the fact that d|X | = trX#
dX and dλn =

v′(dX)u/v′u, where X# is the adjoint matrix of X and Xu = X ′v = 0,
to show that

X# =



n−1∏

j=1

λj


 uv′

v′u

at points where λn = 0 is a simple eigenvalue. (Compare Theorem 3.3.)

6. Let F : S → IRm×m (m ≥ 2) be a matrix function, defined on a set S
in IRn×q and differentiable at a point X0 ∈ S. Assume that F (X) has
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a simple eigenvalue 0 at X0 and in a neighbourhood N(X0) ⊂ S of X0.
(This implies that r(F (X)) = m− 1 for every X ∈ N(X0).) Then

(dF#)(X0) = (trR0dF )F#
0 − F+

0 (dF )F#
0 − F#

0 (dF )F+
0 ,

where F#
0 = (F (X0))

# and F+
0 = (F (X0))

+. Show that R0 = F+
0 if

F (X0) is symmetric. What is R0 if F (X0) is not symmetric?

7. Let F : S → IRm×m (m ≥ 2) be a symmetric matrix function, defined
on a set S in IRn×q and differentiable at a point X0 ∈ S. Assume that
F (X) has a simple eigenvalue 0 at X0 and in a neighbourhood of X0.
Let F0 = F (X0). Then,

dF+(X0) = −F+
0 (dF )F+

0 .

8. Define the matrix function

exp(X) =

∞∑

k=0

1

k!
Xk

which is well-defined for every square matrix X , real or complex. Show
that

d exp(X) =

∞∑

k=0

1

(k + 1)!

k∑

j=0

Xj(dX)Xk−j

and in particular,

tr(d exp(X)) = tr(exp(X)(dX)).

9. Let Sn denote the set of n × n symmetric matrices whose eigenvalues
are smaller than one in absolute value. For X in Sn show that

(In −X)−1 =

∞∑

k=0

Xk.

10. For X in Sn define

log(In −X) = −
∞∑

k=0

1

k
Xk.

Show that

d log(In −X) = −
∞∑

k=0

1

k + 1

k∑

j=0

Xj(dX)Xk−j

and in particular,

tr(d log(In −X)) = − tr((In −X)−1
dX).
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CHAPTER 9

First-order differentials and

Jacobian matrices

1 INTRODUCTION

We begin this chapter with some notational issues. We shall argue very strongly
for a particular way of displaying the partial derivatives ∂fst(X)/∂xij of a ma-
trix function F (X), one which generalizes the notion of a Jacobian matrix of
a vector function to a Jacobian matrix of a matrix function.

The main tool in this chapter will be the first identification theorem (Theo-
rem 5.11), which tells us how to obtain the derivative (Jacobian matrix) from
the differential. Given a matrix function F (X) we then proceed as follows:
(i) compute the differential of F (X), (ii) vectorize to obtain d vecF (X) =
A(X)d vecX , and (iii) conclude that DF (X) = A(X).

The simplicity and elegance of this approach will be demonstrated by many
examples.

2 CLASSIFICATION

We shall consider scalar functions φ, vector functions f and matrix functions
F . Each of these may depend on one real variable ξ, a vector of real variables
x, or a matrix of real variables X . We thus obtain the classification of func-
tions and variables shown in Table 1.

Table 1 Classification of functions and variables

Scalar Vector Matrix
variable variable variable

Scalar function φ(ξ) φ(x) φ(X)
Vector function f(ξ) f(x) f(X)
Matrix function F (ξ) F (x) F (X)

193
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Examples

φ(ξ) : ξ2

φ(x) : a′x, x′Ax
φ(X) : a′Xb, trX ′X, |X |, λ(X) (eigenvalue)

f(ξ) : (ξ, ξ2)′

f(x) : Ax
f(X) : Xa, u(X) (eigenvector)

F (ξ) :

(
1 ξ
ξ ξ2

)

F (x) : xx′

F (X) : AXB, X2, X+

3 BAD NOTATION

If F is a differentiable m×p matrix function of an n×q matrix X of variables
then the question naturally arises how to order the mnpq partial derivatives
of F . Obviously, this can be done in many ways. The purpose of this section
is to convince the reader not to use the following notation, which, for reasons
unknown, has earned itself an undeserved popularity.

Definition 1

Let φ be a differentiable real-valued function of an n× q matrix X = (xij) of
real variables. Then the symbol ∂φ(X)/∂X denotes the n× q matrix

∂φ(X)

∂X
=




∂φ/∂x11 . . . ∂φ/∂x1q

...
...

∂φ/∂xn1 . . . ∂φ/∂xnq


 . (1)

Definition 2

Let F = (fst) be a differentiable m×p real matrix function of an n×q matrix
X of real variables. Then the symbol ∂F (X)/∂X denotes the mn×pq matrix

∂F (X)

∂X
=




∂f11/∂X . . . ∂f1p/∂X
...

...
∂fm1/∂X . . . ∂fmp/∂X


 . (2)

Before we criticize Definition 2, let us list some of its good points. Two
very pleasant properties are: (i) if F is a matrix function of just one variable ξ,
then ∂F (ξ)/∂ξ has the same order as F (ξ), and (ii) if φ is a scalar function of a
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matrix of variablesX , then ∂φ(X)/∂X has the same order asX . In particular,
if φ is a scalar function of a column vector x, then ∂φ/∂x is a column vector
and ∂φ/∂x′ a row vector. Another consequence of the definition is that it
allows us to order the mn partial derivatives of an m×1 vector function f(x),
where x is an n × 1 vector of variables, in four ways: namely as ∂f/∂x′ (an
m× n matrix), as ∂f ′/∂x (an n×m matrix), as ∂f/∂x (an mn× 1 vector),
or as ∂f ′/∂x′ (a 1 ×mn vector).

To see what is wrong with the definition, let us consider the identity func-
tion F (X) = X , where X is an n× q matrix of real variables. We obtain from
Definition 2

∂F (X)

∂X
= (vec In)(vec Iq)

′, (3)

a matrix of rank 1. The Jacobian matrix of the identity function is, of course,
Inq the nq×nq identity matrix. Hence Definition 2 does not give us the Jaco-
bian matrix of the function F , and, indeed, the rank of the Jacobian matrix
is not given by the rank of ∂F (X)/∂X . This implies — and this cannot be
stressed enough — that the matrix (2) displays the partial derivatives, but
nothing more. In particular, the determinant of ∂F (X)/∂X has no interpre-
tation, and (very important for practical work) a useful chain rule does not
exist.

There exists another definition, equally unsuitable, which is based not on
∂φ(X)/∂X , but on

∂F (X)

∂xij
=




∂f11(X)/∂xij · · · ∂f1p(X)/∂xij
...

...
∂fm1(X)/∂xij · · · ∂fmp(X)/∂xij


 . (4)

Definition 3

Let F be a differentiable m× p matrix function of an n× q matrix X = (xij)
of real variables. Then the symbol ∂F (X)//∂X denotes the mn× pq matrix

∂F (X)

∂X
=




∂F (X)/∂x11 · · · ∂F (X)/∂x1q

...
...

∂F (X)/∂xn1 · · · ∂F (X)/∂xnq


 . (5)

Definition 3 is equally as bad as Definition 2, except for one point in which
it has an advantage over Definition 2, namely that the expressions ∂F (X)/∂xij
are much easier to evaluate than ∂fst(X)/∂X , because the latter expressions
require us to disentangle the matrix function F (X).

After these critical remarks, let us turn quickly to the only natural and
viable generalization of the notion of a Jacobian matrix of a vector function
to a Jacobian matrix of a matrix function.

Exercises
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1. For the identity function F (X) = X , show that

∂F (X)

∂X
=
∂F (X)

∂X
= (vec In)(vec Iq)

′.

2. Let f : IRn → IRm be a differentiable vector function. Then show that

∂f(x)

∂x′
=
∂f(x)

∂x′
= Df(x),

an m× n matrix of partial derivatives.

3. Show that ∂F/∂X and ∂F//∂X stand in one-to-one relationship,

∂F (X)

∂X
= Knm

∂F (X)

∂X
Kpq

and
∂F (X)

∂X
= Kmn

∂F (X)

∂X
Kqp,

where K is the commutation matrix (Neudecker 1982).

4 GOOD NOTATION

Let φ be a scalar function of an n× 1 vector x. We have already encountered
the derivative of φ,

Dφ(x) = (D1φ(x), . . . ,Dnφ(x)) =
∂φ(x)

∂x′
. (1)

If f is an m× 1 vector function of x, then the derivative (or Jacobian matrix)
of f is the m× n matrix

Df(x) =
∂f(x)

∂x′
. (2)

Since (1) is just a special case of (2), the double use of the D-symbol is
permitted. Generalizing these concepts to matrix functions of matrices, we
arrive at the following definition.

Definition 4

Let F be a differentiable m× p real matrix function of an n× q matrix of real
variables X . The Jacobian matrix of F at X is the mp× nq matrix

DF (X) =
∂ vecF (X)

∂(vecX)′
. (3)
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Thus DF, Df and Dφ are all defined. The reader should compare (3) with the
equivalent expression in (5.15.9).

It is worthwhile noticing that DF (X) and ∂F (X)/∂X contain the same
mnpq partial derivatives, but in a different pattern. Indeed, the orders of the
two matrices are different (DF (X) is of the order mp× nq, while ∂F (X)/∂X
is of the order mn × pq), and, more important, their ranks are in general
different.

Since DF (X) is a straightforward matrix generalization of the traditional
definition of the Jacobian matrix ∂f(x)/∂x′, all properties of Jacobian matri-
ces are preserved. In particular, questions relating to functions with non-zero
Jacobian determinant at certain points remain meaningful.

Definition 4 reduces the study of matrix functions of matrices to the study
of vector functions of vectors, since it allows F (X) and X only in their vec-
torized forms vecF and vecX . As a result, the unattractive expressions

∂F (X)

∂X
,

∂F (x)

∂x
and

∂f(X)

∂X
(4)

are not needed. The same is, in principle, true for the expressions

∂φ(X)

∂X
and

∂F (ξ)

∂ξ
, (5)

since these can be replaced by

Dφ(X) =
∂φ(X)

∂(vecX)′
and DF (ξ) =

∂ vecF (ξ)

∂ξ
. (6)

However, the idea of arranging the partial derivatives of φ(X) and F (ξ) into
a matrix (rather than a vector) is rather appealing and sometimes useful, so
we retain the expressions (5).

Exercises

1. Let F be a differentiable matrix function of an n× q matrix of variables
X = (xij). Then

DF (X) =

n∑

i=1

q∑

j=1

(
vec

∂F (X)

∂xij

)
(vecEij)

′,

where Eij denotes an n× q matrix with a one in the ij-th position and
zeros elsewhere.

2. Show that

Dφ(X) =

(
vec

∂φ(X)

∂X

)′

and

DF (ξ) = vec
∂F (ξ)

∂ξ
.
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5 IDENTIFICATION OF JACOBIAN MATRICES

Our strategy to find the Jacobian matrix of a function will not be to evaluate
each of its partial derivatives, but rather to find the differential. In the case
of a differentiable vector function f(x), the first identification theorem (The-
orem 5.6) tells us that there exists a one-to-one correspondence between the
differential of f and its Jacobian matrix. More specifically, it states that

df(x) = A(x)dx (1)

implies and is implied by

Df(x) = A(x). (2)

Thus, once we know the differential, the Jacobian matrix is identified.
The extension to matrix functions is straightforward. The identification

theorem for matrix functions (Theorem 5.11) states that

d vecF (X) = A(X)d vecX (3)

implies and is implied by

DF (X) = A(X). (4)

Since computations with differentials are relatively easy, this identification
result is extremely useful. Given a matrix function F (X) we may therefore
proceed as follows: (i) compute the differential of F (X), (ii) vectorize to obtain
d vecF (X) = A(X)d vecX , and (iii) conclude that DF (X) = A(X).

Many examples in this chapter will demonstrate the simplicity and ele-
gance of this approach. Let us consider one now. Let F (X) = AXB, where A
and B are matrices of constants. Then

dF (X) = A(dX)B, (5)

and

d vecF (X) = (B′ ⊗A)d vecX, (6)

so that

DF (X) = B′ ⊗A. (7)

6 THE FIRST IDENTIFICATION TABLE

The identification theorem for matrix functions of matrix variables encom-
passes, of course, identification for matrix, vector and scalar functions of ma-
trix, vector and scalar variables. Table 2 lists these results.
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Table 2 The first identification table

Function Differential Derivative/Jacobian Order of D

φ(ξ) dφ = αdξ Dφ(ξ) = α 1 × 1
φ(x) dφ = a′dx Dφ(x) = a′ 1 × n
φ(X) dφ = trA′

dX Dφ(X) = (vecA)′ 1 × nq
= (vecA)′d vecX

f(ξ) df = a dξ Df(ξ) = a m× 1
f(x) df = A dx Df(x) = A m× n
f(X) df = A d vecX Df(X) = A m× nq

F (ξ) dF = A dξ DF (ξ) = vecA mp× 1
F (x) d vecF = A dx DF (x) = A mp× n
F (X) d vecF = A d vecX DF (X) = A mp× nq

In the first identification table, φ is a scalar function, f an m × 1 vector
function and F an m× p matrix function; ξ is a scalar, x an n× 1 vector and
X an n× q matrix; α is a scalar, a is a column vector and A is a matrix, each
of which may be a function of X,x or ξ.

7 PARTITIONING OF THE DERIVATIVE

Before the workings of the identification table are exemplified, we have to
settle one further question of notation. Let φ be a differentiable scalar function
of an n× 1 vector x. Suppose that x is partitioned as

x′ = (x′1, x
′
2). (1)

Then the derivative Dφ(x) is partitioned in the same way, and we write

Dφ(x) = (D1φ(x),D2φ(x)), (2)

where D1φ(x) contains the partial derivatives of φ with respect to x1, and
D2φ(X) contains the partial derivatives of φ with respect to x2. As a result,
if

dφ(x) = a′1(x)dx1 + a′2(x)dx2, (3)

then

D1φ(x) = a′1(x), D2φ(x) = a′2(x), (4)

and so

Dφ(x) = (a′1(x), a
′
2(x)). (5)
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8 SCALAR FUNCTIONS OF A VECTOR

Let us now give some examples. The two most important cases of a scalar
function of a vector x are the linear form a′x and the quadratic form x′Ax.

Let φ(x) = a′x, where a is a vector of constants. Then dφ(x) = a′dx, so
Dφ(x) = a′. Next, let φ(x) = x′Ax, where A is a square matrix of constants.
Then

dφ(x) = d(x′Ax) = (dx)′Ax+ x′Adx

= ((dx)′Ax)′ + x′Adx = x′A′
dx+ x′Adx

= x′(A+ A′)dx, (1)

so that Dφ(x) = x′(A+A′). Thus we obtain Table 3.

Table 3

φ(x) dφ(x) Dφ(x)
a′x a′dx a′

x′Ax x′(A+A′)dx x′(A+A′)

Notice that, if A is symmetric and φ(x) = x′Ax, then Dφ(x) = 2x′A.

Exercises

1. If φ(x) = a′f(x), then Dφ(x) = a′Df(x).

2. If φ(x) = (f(x))′g(x), then Dφ(x) = (g(x))′Df(x) + (f(x))′Dg(x).

3. If φ(x) = x′Af(x), then Dφ(x) = (f(x))′A′ + x′ADf(x).

4. If φ(x) = (f(x))′Af(x), then Dφ(x) = (f(x))′(A+A′)Df(x).

5. If φ(x) = (f(x))′Ag(x), then Dφ(x) = (g(x))′A′
Df(x)+(f(x))′ADg(x).

6. If φ(x) = x′1Ax2, where x = (x′1, x
′
2)

′, then D1φ(x) = x′2A
′, D2φ(x) =

x′1A and

Dφ(x) = x′
(

0 A
A′ 0

)
.

9 SCALAR FUNCTIONS OF A MATRIX, I: TRACE

There is certainly no lack of interesting examples of scalar functions of matri-
ces. In this section we shall investigate differentials of traces of some matrix
functions. Section 10 is devoted to determinants, and Section 11 to eigenval-
ues.

The simplest case is

d trX = tr dX = tr IdX, (1)
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implying

∂ trX

∂X
= I. (2)

More interesting is the trace of the (positive semidefinite) matrix function
X ′X . We have

d trX ′X = tr d(X ′X) = tr((dX)′X +X ′
dX)

= tr(dX)′X + trX ′
dX = 2 trX ′

dX. (3)

Hence,

∂ trX ′X

∂X
= 2X. (4)

Next consider the trace of X2, where X is square. This gives

d trX2 = tr dX2 = tr((dX)X +XdX) = 2 trXdX, (5)

and thus

∂ trX2

∂X
= 2X ′. (6)

In Table 4 we present straightforward generalizations of the three cases
just considered. The proofs are easy and are left to the reader.

Table 4

φ(X) dφ(X) Dφ(X)
trAX trA dX (vecA′)′

trXAX ′B tr(AX ′B +A′X ′B′)dX (vec(B′XA′ +BXA))′

trXAXB tr(AXB + BXA)dX (vec(B′X ′A′ +A′X ′B′))′

Exercises

1. Show that trBX ′, trXB, trX ′B, trBXC and trBX ′C can all be
written as trAX and determine their derivatives.

2. Show that

∂ trX ′AX/∂X = (A+A′)X,

∂ trXAX ′/∂X = X(A+A′),

∂ trXAX/∂X = X ′A′ +A′X ′.
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3. Show that
∂ trAX−1/∂X = −(X−1AX−1)′.

4. Use the previous results to find the derivatives of a′Xb, a′XX ′a and
a′X−1a.

5. Show that for square X ,

∂ trXp/∂X = p(X ′)p−1 (p = 1, 2, . . .).

6. If φ(X) = trF (X), then Dφ(X) = (vec I)′DF (X).

7. Determine the derivative of φ(X) = trF (X)AG(X)B.

8. Determine the derivative of φ(X,Z) = trAXBZ.

10 SCALAR FUNCTIONS OF A MATRIX, II: DETERMINANT

Recall that the differential of a determinant is given by

d|X | = |X | trX−1
dX, (1)

if X is a square non-singular matrix (Theorem 8.1). As a result, the derivative
is

|X |(vec(X−1)′)′, (2)

and

∂|X |
∂X

= |X |(X ′)−1. (3)

This is easily verified from the identification table.
Let us now employ Equation (1) to find the differential and derivative of

the determinant of some simple matrix functions of X . The first of these is
|XX ′|, where X is not necessarily a square matrix, but must have full row
rank in order to ensure that the determinant is non-zero (in fact, positive).
The differential is

d|XX ′| = |XX ′| tr(XX ′)−1
d(XX ′)

= |XX ′| tr(XX ′)−1((dX)X ′ +X(dX)′)

= |XX ′|[tr(XX ′)−1(dX)X ′ + tr(XX ′)−1X(dX)′]

= 2|XX ′| trX ′(XX ′)−1
dX. (4)

As a result,

∂|XX ′|
∂X

= 2|XX ′|(XX ′)−1X. (5)
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Similarly we find for |X ′X | 6= 0,

d|X ′X | = 2|X ′X | tr(X ′X)−1X ′
dX, (6)

so that

∂|X ′X |
∂X

= 2|X ′X |X(X ′X)−1. (7)

Finally, let us consider the determinant of X2, where X is non-singular.
Since |X2| = |X |2, we have

d|X2| = d|X |2 = 2|X |d|X | = 2|X |2 trX−1
dX. (8)

These results are summarized in Table 5, where each determinant is assumed
to be non-zero.

Table 5

φ(x) dφ(X) Dφ(X)
|X | |X | trX−1

dX |X |(vec(X−1)′)′

|XX ′| 2|XX ′| trX ′(XX ′)−1
dX 2|XX ′|(vec(XX ′)−1X)′

|X ′X | 2|X ′X | tr(X ′X)−1X ′
dX 2|X ′X |(vecX(X ′X)−1)′

|X2| 2|X |2 trX−1
dX 2|X |2(vec(X−1)′)′

Exercises

1. Show that ∂|AXB|/∂X = |AXB|A′(B′X ′A′)−1B′, if the inverse exists.

2. Let F (X) be a square non-singular matrix function of X , and G(X) =
C(F (X))−1A. Then

∂|F (X)|/∂X =

{ |F (X)|(GXB +G′XB′), if F (X) = AXBX ′C,
|F (X)|(BXG+B′XG′), if F (X) = AX ′BXC,
|F (X)|(GXB +BXG)′, if F (X) = AXBXC.

3. Generalize (3) and (8) for non-singular X to

∂|Xp|/∂X = p|X |p(X ′)−1,

a formula that holds for positive and negative integers.

4. Determine the derivative of φ(X) = log |X ′AX |, where A is positive
definite and X ′AX non-singular.

5. Determine the derivative of φ(X) = |AF (X)BG(X)C|, and verify (3),
(5), (7) and (8) as special cases.
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11 SCALAR FUNCTIONS OF A MATRIX, III: EIGENVALUE

Let X0 be a real symmetric n×n matrix, and let u0 be a normalized eigenvec-
tor associated with a simple eigenvalue λ0 of X0. Then we know from Section
8.8 that unique and differentiable functions λ = λ(X) and u = u(X) exist for
all X in a neighbourhood N(X0) of X0 satisfying

λ(X0) = λ0, u(X0) = u0 (1)

and

Xu(X) = λ(X)u(X), u(X)′u(X) = 1 (X ∈ N(X0)). (2)

The differential of λ at X0 is then

dλ = u′0(dX)u0. (3)

Hence we obtain the derivative

Dλ(X) =
∂λ

∂(vecX)′
= u′0 ⊗ u′0 (4)

and the gradient (a column vector!)

∇λ(X) = u0 ⊗ u0. (5)

We can also display the partial derivatives in a matrix:

∂λ

∂X
= u0u

′
0. (6)

12 TWO EXAMPLES OF VECTOR FUNCTIONS

Let us consider a set of variables y1, . . . , ym, and suppose that these are known
linear combinations of another set of variables x1, . . . , xn, so that

yi =
∑

j

aijxj (i = 1, . . . ,m). (1)

Then

y = f(x) = Ax, (2)

and since df(x) = Adx, we have for the Jacobian matrix

Df(x) = A. (3)

If, on the other hand, the yi are linearly related to variables xij such that

yi =
∑

j

ajxij (i = 1, . . . ,m), (4)
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then this defines a vector function

y = f(X) = Xa. (5)

The differential in this case is

df(X) = (dX)a = vec(dX)a = (a′ ⊗ I)d vecX (6)

and we find for the Jacobian matrix

Df(X) = a′ ⊗ I. (7)

Exercises

1. Show that the Jacobian matrix of the vector function f(x) = Ag(x) is
Df(x) = ADg(x), and generalize this to the case where A is a matrix
function of x.

2. Show that the Jacobian matrix of the vector function f(x) = (x′x)a
is Df(x) = 2ax′, and generalize this to the case where a is a vector
function of x.

3. Determine the Jacobian matrix of the vector function f(x) = ∇φ(x).
This matrix is, of course, the Hessian matrix of φ.

4. Show that the Jacobian matrix of the vector function f(X) = X ′a is
Df(X) = I ⊗ a′.

5. Under the conditions of Section 11, show that the derivative at X0 of
the eigenvector function u(X) is given by

Du(X) =
∂u(X)

∂(vecX)′
= u′0 ⊗ (λ0In −X0)

+.

13 MATRIX FUNCTIONS

An example of a matrix function of a vector of variables x is

F (x) = xx′. (1)

The differential is

dxx′ = (dx)x′ + x(dx)′, (2)

so that

d vecxx′ = (x ⊗ I)d vecx+ (I ⊗ x)d vecx′

= (I ⊗ x+ x⊗ I)dx. (3)
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Hence,

DF (x) = I ⊗ x+ x⊗ I. (4)

Next we consider four simple examples of matrix functions of a matrix or
variables X , where the order of X is n× q. First the identity function

F (X) = X. (5)

Clearly, d vecF (X) = d vecX , so that

DF (X) = Inq. (6)

More interesting is the transpose function

F (X) = X ′. (7)

We obtain

d vecF (X) = d vecX ′ = Knq d vecX. (8)

Hence,

DF (X) = Knq. (9)

The commutation matrix K is likely to play a role whenever the transpose of
a matrix of variables occurs. For example, when

F (X) = XX ′, (10)

then

dF (X) = (dX)X ′ +X(dX)′ (11)

and

d vecF (X) = (X ⊗ In)d vecX + (In ⊗X)d vecX ′

= (X ⊗ In)d vecX + (In ⊗X)Knq d vecX

= ((X ⊗ In) +Knn(X ⊗ In)) d vecX

= (In2 +Knn)(X ⊗ In)d vecX. (12)

Hence,

DF (X) = 2Nn(X ⊗ In), (13)

where Nn = 1
2 (In2 + Knn) is a symmetric idempotent matrix with rank

1
2n(n+ 1) (see Theorem 3.11).
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In a similar fashion we obtain from

F (X) = X ′X, (14)

d vecF (X) = (Iq2 +Kqq)(Iq ⊗X ′)d vecX, (15)

so that

DF (X) = 2Nq(Iq ⊗X ′). (16)

These results are summarized in Table 6, where X is an n× q matrix of vari-
ables.

Table 6

F (X) dF (X) DF (X)
X dX Inq
X ′ (dX)′ Knq

XX ′ (dX)X ′ +X(dX)′ 2Nn(X ⊗ In)
X ′X (dX)′X +X ′

dX 2Nq(Iq ⊗X ′)

If X is a non-singular n× n matrix, then the matrix function

F (X) = X−1 (17)

has differential

dF (X) = −X−1(dX)X−1. (18)

Taking vecs we obtain

d vecF (X) = −((X ′)−1 ⊗X−1)d vecX. (19)

Hence,

DF (X) = −(X ′)−1 ⊗X−1. (20)

Finally, if X is a square matrix of variables, then we can consider

F (X) = Xp (p = 1, 2, . . .). (21)

We take differentials,

dF (X) = (dX)Xp−1 +X(dX)Xp−2 + · · · +Xp−1(dX)

=

p∑

j=1

Xj−1(dX)Xp−j, (22)
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and vecs,

d vecF (X) =




p∑

j=1

(X ′)p−j ⊗Xj−1


 d vecX. (23)

Hence,

DF (X) =

p∑

j=1

(X ′)p−j ⊗Xj−1. (24)

The last two examples are summarized in Table 7.

Table 7

F (X) dF (X) DF (X) Conditions
X−1 −X−1(dX)X−1 −(X ′)−1 ⊗X−1 X non-singular
Xp

∑p
j=1X

j−1(dX)Xp−j
∑p
j=1(X

′)p−j ⊗Xj−1 X square, p ∈ IN

Exercises

1. Find the Jacobian matrix of the matrix functions AXB and AX−1B.

2. Find the Jacobian matrix of the matrix functions XAX ′, X ′AX, XAX
and X ′AX ′.

3. What is the Jacobian matrix of the Moore-Penrose inverse F (X) = X+

(see Section 8.5).

4. What is the Jacobian matrix of the adjoint matrix F (X) = X# (see
Section 8.6).

5. Let F (X) = AG(X)BH(X)C, where A,B and C are constant matrices.
Find the Jacobian matrix of F .

14 KRONECKER PRODUCTS

An interesting problem arises in the treatment of Kronecker products. Con-
sider the matrix function

F (X,Y ) = X ⊗ Y. (1)

The differential is easily found as

dF (X,Y ) = (dX) ⊗ Y +X ⊗ dY, (2)

and, upon taking vecs, we obtain

d vecF (X,Y ) = vec(dX ⊗ Y ) + vec(X ⊗ dY ). (3)
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In order to find the Jacobian of F we must find matrices A(Y ) and B(X)
such that

vec(dX ⊗ Y ) = A(Y )d vecX (4)

and

vec(X ⊗ dY ) = B(X)d vecY, (5)

in which case the Jacobian matrix of F (X,Y ) takes the partitioned form

DF (X,Y ) = (A(Y ) : B(X)). (6)

The crucial step here is to realize that we can express the vec of a Kronecker
product of two matrices in terms of the Kronecker product of their vecs, that
is

vec(X ⊗ Y ) = (Iq ⊗Krn ⊗ Ip)(vecX ⊗ vecY ), (7)

where it is assumed that X is an n × q matrix and Y is a p × r matrix (see
Theorem 3.10).

Using (7) we now write

vec(dX ⊗ Y ) = (Iq ⊗Krn ⊗ Ip)(d vecX ⊗ vecY )

= (Iq ⊗Krn ⊗ Ip)(Inq ⊗ vecY )d vecX. (8)

Hence,

A(Y ) = (Iq ⊗Krn ⊗ Ip)(Inq ⊗ vecY )

= Iq ⊗ ((Krn ⊗ Ip)(In ⊗ vecY )). (9)

In a similar fashion we find

B(X) = (Iq ⊗Krn ⊗ Ip)(vecX ⊗ Ipr)

= ((Iq ⊗Krn)(vecX ⊗ Ir)) ⊗ Ip. (10)

We thus obtain the useful formula

d vec(X ⊗ Y ) = (Iq ⊗Krn ⊗ Ip)[(Inq ⊗ vecY )d vecX

+ (vecX ⊗ Ipr)d vecY ], (11)

from which the Jacobian matrix of the matrix function F (X,Y ) = X ⊗ Y
follows:

DF (X,Y ) = (Iq ⊗Krn ⊗ Ip)(Inq ⊗ vecY : vecX ⊗ Ipr). (12)

Exercises
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1. Let F (X,Y ) = XX ′⊗Y Y ′, where X has n rows and Y has p rows (the
number of columns of X and Y is irrelevant). Show that

d vecF (X,Y ) = (In ⊗Kpn ⊗ Ip)[(Gn(X) ⊗ vecY Y ′)d vecX

+ (vecXX ′ ⊗Gp(Y ))d vecY ],

where
Gm(A) = (Im2 +Kmm)(A ⊗ Im)

for any matrix A having m rows. Compute DF (X,Y ).

2. Find the differential and the derivative of the matrix function F (X,Y ) =
X ⊙ Y (Hadamard product).

15 SOME OTHER PROBLEMS

Suppose we want to find the Jacobian matrix of the real-valued function
φ : IRn×q → IR given by

φ(X) =

n∑

i=1

q∑

j=1

x2
ij . (1)

We can, of course, obtain the Jacobian matrix by first calculating (easy, in
this case) the partial derivatives. More appealing, however, is to note that

φ(X) = trXX ′, (2)

from which we obtain

dφ(X) = 2 trX ′
dX (3)

and

∂φ(X)

∂X
= 2X. (4)

This example is, of course, very simple. But the idea of expressing a func-
tion of X in terms of the matrix X rather than in terms of the elements xij
is often important. Some more examples should clarify this.

Let φ(X) be defined as the sum of the n2 elements of X−1. Then, let ı be
the n× 1 sum vector (1, 1, . . . , 1)′ and write

φ(X) = ı′X−1ı (5)

from which we easily obtain

dφ(X) = − trX−1ıı′X−1
dX (6)
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and hence

∂φ(X)

∂X
= −(X ′)−1ıı′(X ′)−1. (7)

Consider another example. Let F (X) be the n × (n − 1) matrix function
of an n × n matrix of variables X defined as X−1 without its last column.
Then let En be the n× (n − 1) matrix obtained from the identity matrix In
by deleting its last column, i.e.

En =

(
In−1

0′

)
. (8)

With En so defined, we can express F (X) as

F (X) = X−1En. (9)

It is then simple to find

dF (X) = −X−1(dX)X−1En = −X−1(dX)F (X), (10)

and hence

DF (X) = −F ′(X) ⊗X−1. (11)

As a final example, consider the real-valued function φ(X) defined as the
ij-th element of X2. In this case we can write

φ(X) = e′iX
2ej , (12)

where ei and ej are unit vectors. Hence

dφ(X) = e′i(dX)Xej + e′iX(dX)ej

= tr(Xeje
′
i + eje

′
iX)dX, (13)

so that

∂φ(X)

∂X
= eie

′
jX

′ +X ′eie
′
j. (14)

BIBLIOGRAPHICAL NOTES
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CHAPTER 10

Second-order differentials and

Hessian matrices

1 INTRODUCTION

Whilst in Chapter 9 the main tool was the first identification theorem, in
the present chapter it is the second identification theorem (Theorem 6.13)
which plays the central role. The second identification theorem tells us how
to obtain the Hessian matrix from the second differential, and the purpose of
this chapter is to demonstrate its workings in practice.

2 THE HESSIAN MATRIX OF A MATRIX FUNCTION

For a scalar function φ of an n × 1 vector x, the Hessian matrix of φ at x
was introduced in Section 6.3 — it is the n×n matrix of second-order partial
derivatives D

2
jiφ(x) denoted by

Hφ(x) or
∂2φ(x)

∂x∂x′
. (1)

We note that

Hφ(x) =
∂

∂x′

(
∂φ(x)

∂x′

)′

= D(Dφ(x))′. (2)

For a vector function f : IRn → IRm we defined the Hessian matrix as the
stacked matrix

Hf(x) =




Hf1(x)
Hf2(x)

...
Hfm(x)


 . (3)

213
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Without much difficulty one verifies that

Hf(x) =
∂

∂x′
vec

(
∂f(x)

∂x′

)′

= D(Df(x))′. (4)

This suggests the following definition of the Hessian matrix of a matrix
function (compare Section 6.14).

Definition

Let F be a twice differentiable m× p matrix function of an n× q matrix X .
The Hessian matrix of F at X is the mnpq × nq matrix

HF (X) = D(DF (X))′. (5)

Exercises

1. Show that

HF (X) =
∂

∂(vecX)′
vec

(
∂ vecF (X)

∂(vecX)′

)′

.

2. Write HF (X) in terms of the Hessian matrices HFij(X) of its component
functions.

3. Evaluate D
2f(x) = D(Df(x)). Compare D

2f(x) with D(Df(x))′, and
conclude that the latter expression is more practical as a definition for
the Hessian matrix than the former.

3 IDENTIFICATION OF HESSIAN MATRICES

The second identification theorem (Theorem 6.6) allows us to identify the Hes-
sian matrix of a scalar function through its second differential. More precisely,
it tells us that

d
2φ(x) = (dx)′Bdx (1)

implies and is implied by

Hφ(x) =
1

2
(B +B′), (2)

where B may depend on x, but not on dx.
The second identification theorem for vector functions (Theorem 6.7) al-

lows us to identify the Hessian matrix of an m × 1 vector function f(x). If
B1, B2, . . . , Bm are square matrices and

B =




B1

B2

...
Bm


 , (3)
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then

d
2f(x) = (Im ⊗ dx)′Bdx (4)

implies and is implied by

Hf(x) =
1

2
(B + (B′)v), (5)

where B may depend on x, and

(B′)v =




B′
1

B′
2
...
B′
m


 . (6)

The extension to matrix functions is straightforward. The second identifi-
cation theorem for matrix functions (Theorem 6.13) states that

d
2 vecF (X) = (Imp ⊗ d vecX)′B d vecX (7)

implies and is implied by

HF (X) =
1

2
(B + (B′)v), (8)

where F (X) is an m× p matrix function of an n× q matrix of variables X ,

B =




B11

...
Bm1

...
B1p

...
Bmp




, (B′)v =




B11
′

...
Bm1

′

...
B′

1p
...

B′
mp




, (9)

and the Bij are square nq × nq matrices.

4 THE SECOND IDENTIFICATION TABLE

These considerations lead to Table 1.
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Table 1 The second identification table.

Function Second differential Hessian matrix
φ(ξ) d

2φ = β(dξ)2 Hφ(ξ) = β
φ(x) d

2φ = (dx)′B dx Hφ(x) = 1
2 (B +B′)

φ(X) d
2φ = (d vecX)′B d vecX Hφ(X) = 1

2 (B + B′)

f(ξ) d
2f = b(dξ)2 Hf(ξ) = b

f(x) d
2f = (Im ⊗ dx)′B dx Hf(x) = 1

2 (B + (B′)v)
f(X) d

2f = (Im ⊗ d vecX)′B d vecX Hf(X) = 1
2 (B + (B′)v)

F (ξ) d
2F = B(dξ)2 HF (ξ) = vecB

F (x) d
2 vecF = (Imp ⊗ dx)′B dx HF (x) = 1

2 (B + (B′)v)
F (X) d

2 vecF = (Imp ⊗ d vecX)′B d vecX HF (X) = 1
2 (B + (B′)v)

In the second identification table, φ is a scalar function, f an m×1 vector
function and F an m× p matrix function; ξ is a scalar, x an n× 1 vector and
X and n × q matrix; β is a scalar, b is a column vector and B is a matrix,
each of which may be a function of X, x or ξ. In the case of a vector function
f , we have

B =




B1

B2

...
Bm


 and (B′)v =




B′
1

B′
2
...
B′
m


 . (1)

In the case of a matrix function F , we have

B =




B11

...
Bm1

...
B1p

...
Bmp




and (B′)v =




B11
′

...
Bm1

′

...
B1p

′

...
B′
mp




. (2)

The matrices B1, B2, . . . , Bm (respectively, B11, . . . , Bmp) are square ma-
trices of order n × n if f (or F ) is a function of an n× 1 vector x; the order
of these matrices is nq × nq if f (or F ) is a function of an n× q matrix X .

Exercises

1. Evaluate the Hessian matrix of φ(x) = a′x and φ(x) = x′Ax.
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2. At every point where the n×n matrix X is non-singular, show that the
Hessian matrix of the real-valued function φ(X) = |X | is

Hφ(X) = |X |Kn(X
−1 ⊗ In)′ ((vec In)(vec In)′ − In2) (In ⊗X−1).

Show that Hφ(X) is non-singular for every n ≥ 2.

5 AN EXPLICIT FORMULA FOR THE HESSIAN MATRIX

It is sometimes difficult to find the Jacobian matrix or Hessian matrix of a
matrix function from the identification tables. In such cases it is convenient
to have an expression which gives the Jacobian matrix or Hessian matrix
explicitly in terms of the partial derivatives.

Let F be an m × p matrix function of an n × q matrix of variables X .
If q = 1, we write x instead of X . Let ei and es be n × 1 unit vectors with
a one in the i-th (s-th) place and zeros elsewhere, and let Eij and Est be
n × q matrices with a one in the ij-th (st-th) position and zeros elsewhere.
The Jacobian matrix of F (x) can be expressed as

DF (x) =

n∑

i=1

(
vec

∂F

∂xi

)
e′i (1)

and, as noted in Section 9.4 (Exercise 1), the Jacobian matrix of F (X) can
be expressed as

DF (X) =

n∑

i=1

q∑

j=1

(
vec

∂F

∂xij

)
(vecEij)

′. (2)

Similar expressions can be found for the Hessian matrix of F (x) and F (X).
We have in fact

HF (x) =

n∑

i=1

n∑

s=1

vec

(
∂2F

∂xs∂xi

)
⊗ Eis (3)

and

HF (X) =

n∑

i=1

q∑

j=1

n∑

s=1

q∑

t=1

(
vec

∂2F

∂xst∂xij

)
⊗ (vecEij)(vecEst)

′. (4)

The verification of these results is left to the reader.

6 SCALAR FUNCTIONS

In many cases the second differential of a real-valued function φ(X) takes one
of the two forms

trB(dX)′C(dX) or trB(dX)C(dX). (1)
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The following result will then prove useful.

Theorem 1

Let φ be a twice differentiable real-valued function of an n×q matrix X . Then
the following two relationships hold between the second differential and the
Hessian matrix of φ at X :

d
2φ(X) = trB(dX)′CdX ⇐⇒ Hφ(X) =

1

2
(B′ ⊗ C +B ⊗ C′)

and

d
2φ(X) = trB(dX)CdX ⇐⇒ Hφ(X) =

1

2
Kqn(B

′ ⊗ C + C′ ⊗B).

Proof. Using the fact, established in Theorem 2.3, that

trABCD = (vecB′)′(A′ ⊗ C) vecD, (2)

we obtain

trB(dX)′CdX = (d vecX)′(B′ ⊗ C)d vecX (3)

and

trB(dX)CdX = (d vecX ′)′(B′ ⊗ C)d vecX

= (d vecX)′Kqn(B
′ ⊗ C)d vecX. (4)

The result now follows from the second identification table. 2

Let us give three examples. First, consider the quadratic function

φ(X) = trX ′AX. (5)

Twice taking differentials, we obtain

d
2φ(X) = 2 tr(dX)′AdX, (6)

so that

Hφ(X) = I ⊗ (A+A′). (7)

As a second example, consider the real-valued function

φ(X) = trX−1, (8)

defined for every non-singular n× n matrix X . We have

dφ(X) = − trX−1(dX)X−1, (9)
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and therefore

d
2φ(X) = − tr(dX−1)(dX)X−1 − trX−1(dX)(dX−1)

= 2 trX−1(dX)X−1(dX)X−1 = 2 trX−2(dX)X−1
dX, (10)

so that the Hessian matrix becomes

Hφ(X) = Kn(X
′−2 ⊗X−1 +X ′−1 ⊗X−2). (11)

Finally, if λ0 is a simple eigenvalue of a real symmetric n×nmatrixX0 with
associated eigenvector u0, then there exists a twice differentiable ‘eigenvalue
function’ λ such that λ(X0) = λ0 (see Theorem 8.7). The second differential
at X0 is given in Theorem 8.10; it is

d
2λ = 2u′0(dX)(λ0I −X0)

+(dX)u0

= 2 tru0u
′
0(dX)(λ0I −X0)

+
dX. (12)

Hence the Hessian matrix is

Hλ(X) = Kn

(
u0u

′
0 ⊗ (λ0I −X0)

+ + (λ0I −X0)
+ ⊗ u0u

′
0

)
. (13)

Exercises

1. Show that the Hessian matrix of φ(X) = trAXBX ′ is Hφ(X) = B′ ⊗
A+B ⊗A′.

2. Show that the Hessian matrix of φ(X) = 1
2 trX2 is Hφ(X) = Kn if X

is an n× n matrix.

3. Determine the Hessian matrix of φ(X) = a′XX ′a.

4. At points where the n × n matrix X has a positive determinant, show
that the Hessian matrix of φ(X) = log |X | is

Hφ(X) = −Kn

(
(X ′)−1 ⊗X−1

)
.

7 VECTOR FUNCTIONS

Let us consider one example of a vector function, namely

f(x) = φ(x)a, (1)

where φ is a real-valued function of an n× 1 vector of variables x, and a is an
m× 1 vector of constants. The second differential is

d
2f(x) = d

2φ(x)a = ((dx)′(Hφ(x))(dx)) a

= a(dx)′(Hφ(x))dx = (a⊗ (dx)′)(Hφ(x))dx

= (Im ⊗ dx)′(a⊗ In)(Hφ(x))dx, (2)
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so that

Hf(x) = (a⊗ In)Hφ(x) (3)

according to the second identification table.

8 MATRIX FUNCTIONS, I

We shall consider two examples of Hessian matrices of a matrix function. The
first is a matrix function of an n× 1 vector x,

F (x) =
1

2
xx′. (1)

It is easy to obtain

d
2F (x) = (dx)(dx)′, (2)

from which we find

d
2 vecF (x) = vec(dx)(dx)′ = (In ⊗ dx)dx. (3)

We now use the fact that

dx = (In ⊗ (dx)′) vec In (4)

to obtain

In ⊗ dx = In ⊗ ((In ⊗ (dx)′) vec In)

= (In ⊗ In ⊗ (dx)′) (In ⊗ vec In) . (5)

Substituting (5) in (3) yields

d
2 vecF (x) = (In2 ⊗ dx)′(In ⊗ vec In)dx. (6)

The Hessian matrix then follows from the second identification table; it is

HF (x) =
1

2
(In ⊗ vec In + (In ⊗ vec In)′v) . (7)

Alternatively we can use Equation (5.3). We find

∂2F (x)

∂xs∂xi
=

1

2
(eie

′
s + ese

′
i) (8)
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and thus

HF (x) =
1

2

n∑

i=1

n∑

s=1

(vec(eie
′
s + ese

′
i)) ⊗ eie

′
s

=
1

2

n∑

i=1

n∑

s=1

(es ⊗ ei ⊗ e′s ⊗ ei + ei ⊗ es ⊗ e′s ⊗ ei)

=
1

2

n∑

i=1

n∑

s=1

(es ⊗ e′s ⊗ ei ⊗ ei + (Kn ⊗ In)(es ⊗ e′s ⊗ ei ⊗ ei))

=

(
1

2
(In2 +Kn) ⊗ In

)
(In ⊗ vec In). (9)

In this case, the second derivation is more straightforward than the first;
moreover, it leads to a more appealing (although of course equivalent) expres-
sion, namely (9) rather than (7).

Exercise

1. Show that (In ⊗ vec In)
′
v = (Kn ⊗ In)(In ⊗ vec In).

9 MATRIX FUNCTIONS, II

The second example is a matrix function of an n× q matrix X ,

F (X) =
1

2
XX ′. (1)

We find

∂F (X)

∂xij
=

1

2
(EijX

′ +XE′
ij) (2)

and thus

∂2F (X)

∂xst∂xij
=

1

2
(EijE

′
st + EstE

′
ij)

=
1

2
δjt(eie

′
s + ese

′
i), (3)
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where δjt denotes the Kronecker delta. Using Equation (4) of Section 5 we
obtain the Hessian matrix

HF (X) =
1

2

n∑

i=1

q∑

j=1

n∑

s=1

q∑

t=1

δjt (vec(eie
′
s + ese

′
i)) ⊗ (vecEij)(vecEst)

′

=
1

2

n∑

i=1

n∑

s=1

(vec(eie
′
s + ese

′
i)) ⊗

(
q∑

t=1

(vecEit)(vecEst)
′

)

=
1

2

n∑

i=1

n∑

s=1

(vec(eie
′
s + ese

′
i)) ⊗ Iq ⊗ eie

′
s

=
1

2

n∑

i=1

n∑

s=1

(Kn2,q ⊗ In) (Iq ⊗ (vec(eie
′
s + ese

′
i)) ⊗ eie

′
s)

= (Kn2,q ⊗ In)(Iq ⊗A), (4)

where A is the Hessian matrix derived in the previous section,

A =

(
1

2
(In2 +Kn) ⊗ In

)
(In ⊗ vec In). (5)
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CHAPTER 11

Inequalities

1 INTRODUCTION

Inequalities occur in many disciplines. In economics they occur primarily be-
cause economics is concerned with optimizing behaviour. In other words, we
often want to find an x∗ such that φ(x∗) ≥ φ(x) for all x in some set. The
equivalence of the inequality

φ(x) ≥ 0 for all x in S (1)

and the minimization problem

min
x∈S

φ(x) = 0 (2)

suggests that inequalities can often be tackled using differential calculus. We
shall see in this chapter that this method does not always lead to success, but
if it does we shall use it.

The chapter falls naturally into several parts. In Sections 1–4 we discuss
(matrix analogues of) the Cauchy-Schwarz inequality and the arithmetic-
geometric means inequality. Sections 5–14 are devoted to inequalities con-
cerning eigenvalues and contain inter alia Fischer’s min-max theorem and
Poincaré’s separation theorem. In Section 15 we prove Hadamard’s inequal-
ity. In Sections 16–23 we use Karamata’s inequality to prove a representation
theorem for (trAp)1/p, p > 1, A positive semidefinite, which in turn is used to
establish matrix analogues of the inequalities of Hölder and Minkowski. Sec-
tions 24 and 25 contain Minkowski’s determinant theorem. In Sections 26–28
several inequalities concerning the weighted means of order p are discussed.
Finally, in Sections 29–32, we turn to least-squares inequalities.

2 THE CAUCHY-SCHWARZ INEQUALITY

We begin our discussion of inequalities with the following fundamental result.

225
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Theorem 1 (Cauchy-Schwarz)

For any two vectors a and b of the same order we have

(a′b)2 ≤ (a′a)(b′b) (1)

with equality if and only if a and b are linearly dependent.

Let us give two proofs.

First proof. For any matrix A, trA′A ≥ 0 with equality if and only if A = 0,
see (1.10.8). Now define

A = ab′ − ba′. (2)

Then,

trA′A = 2(a′a)(b′b) − 2(a′b)2 ≥ 0 (3)

with equality if and only if ab′ = ba′, that is, if and only if a and b are linearly
dependent. 2

Second proof. If b = 0 the result is trivial. Assume therefore that b 6= 0,
and consider the matrix

M = I − (1/b′b)bb′. (4)

The matrix M is symmetric idempotent, and therefore positive semidefinite.
Hence,

(a′a)(b′b) − (a′b)2 = (b′b)a′Ma ≥ 0. (5)

Equality in (5) implies a′Ma = 0, and hence Ma = 0. That is, a = αb with
α = a′b/b′b. The result follows. 2

Exercises

1. If A is positive semidefinite, show that

(x′Ay)2 ≤ (x′Ax)(y′Ay)

with equality if and only if Ax and Ay are linearly dependent.

2. Hence show that, for A = (aij) positive semidefinite,

|aij | ≤ max
i

|aii|.
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3. Show that
(x′y)2 ≤ (x′Ax)(y′A−1y)

for every positive definite matrix A, with equality if and only if x and
A−1y are linearly dependent.

4. Given x 6= 0, define ψ(A) = (x′A−1x)−1 for A positive definite. Show
that

ψ(A) = min
y

y′Ay

(y′x)2
.

5. Prove Bergstrom’s inequality,

x′(A+B)−1x ≤ (x′A−1x)(x′B−1x)

x′(A−1 +B−1)x

for any positive definite matrices A and B. [Hint: Use the fact that
ψ(A+B) ≥ ψ(A) + ψ(B) where ψ is defined in Exercise 4.]

6. Show that

|(1/n)
∑

xi| ≤
(
(1/n)

∑
x2
i

)1/2

with equality if and only if x1 = x2 = · · · = xn.

7. If all eigenvalues of A are real, show that

|(1/n) trA| ≤
(
(1/n) trA2

)1/2

with equality if and only if the eigenvalues of the n×n matrix A are all
equal.

8. Prove the triangle inequality: ‖x+ y‖ ≤ ‖x‖ + ‖y‖.

3 MATRIX ANALOGUES OF THE CAUCHY-SCHWARZ
INEQUALITY

The Cauchy-Schwarz inequality can be extended to matrices in several ways.

Theorem 2

For any two real matrices A and B of the same order, we have

(trA′B)2 ≤ (trA′A)(trB′B) (1)

with equality if and only if one of the matrices A and B is a multiple of the
other; also

tr(A′B)2 ≤ tr(A′A)(B′B) (2)
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with equality if and only if AB′ = BA′; and

|A′B|2 ≤ |A′A||B′B| (3)

with equality if and only if A′A or B′B is singular, or B = AQ for some
non-singular matrix Q.

Proof. The first inequality follows from Theorem 1 by letting a = vecA and
b = vecB. To prove the second inequality, let X = AB′ and Y = BA′ and
apply (1) to the matrices X and Y . This gives

(trBA′BA′)2 ≤ (trBA′AB′)(trAB′BA′), (4)

from which (2) follows. The condition for equality in (2) is easily established.
Finally, to prove (3), assume that |A′B| 6= 0. (If |A′B| = 0, the result is

trivial.) Then both A and B have full column rank, so that A′A and B′B are
non-singular. Now define

G = B′A(A′A)−1A′B, H = B′(I −A(A′A)−1A′)B, (5)

and notice that G is positive definite and H positive semidefinite (because
I −A(A′A)−1A′ is idempotent). Since |G+H | ≥ |G| by Theorem 1.22, with
equality if and only if H = 0, we obtain

|B′B| ≥ |B′A(A′A)−1A′B| = |A′B|2|A′A|−1 (6)

with equality if and only if B′(I − A(A′A)−1A′)B = 0, that is, if and only if
(I −A(A′A)−1A′)B = 0. This concludes the proof. 2

Exercises

1. Show that tr(A′B)2 ≤ tr(AA′)(BB′) with equality if and only if A′B is
symmetric.

2. Prove Schur’s inequality trA2 ≤ trA′A with equality if and only if A is
symmetric. [Hint: Use the commutation matrix.]

4 THE THEOREM OF THE ARITHMETIC AND GEOMETRIC
MEANS

The most famous of all inequalities is the arithmetic-geometric mean inequal-
ity which was first proved (assuming equal weights) by Euclid. In its simplest
form it asserts that

xαy1−α ≤ αx+ (1 − α)y (0 < α < 1) (1)

for every non-negative x and y, with equality if and only if x = y. Let us
demonstrate the general theorem.



Sec. 4 ] The theorem of the arithmetic and geometric means 229

Theorem 3

For any two n × 1 vectors x = (x1, x2, . . . , xn)
′ and a = (α1, α2, . . . , αn)

′

satisfying xi ≥ 0, αi > 0,
∑n
i=1 αi = 1, we have

n∏

i=1

xαi

i ≤
n∑

i=1

αixi (2)

with equality if and only if x1 = x2 = · · · = xn.

Proof. Assume that xi > 0, i = 1, . . . , n (if at least one xi is zero the result is
trivially true), and define

φ(x) =

n∑

i=1

αixi −
n∏

i=1

xαi

i . (3)

We wish to show that φ(x) ≥ 0 for all positive x. Differentiating φ, we obtain

dφ =

n∑

i=1

αidxi −
n∑

i=1

αix
αi−1
i (dxi)

∏

j 6=i

x
αj

j

=

n∑

i=1


αi − (αi/xi)

n∏

j=1

x
αj

j


 dxi. (4)

The first-order conditions are therefore

(αi/xi)

n∏

j=1

x
αj

j = αi (i = 1, . . . , n), (5)

that is,

x1 = x2 = · · · = xn. (6)

At such points φ(x) = 0. Since
∏n
i=1 x

αi

i is concave, φ(x) is convex. Hence by
Theorem 7.8, φ has an absolute minimum (namely zero) at every point where
x1 = x2 = · · · = xn. 2

Exercises

1. Prove (1) by using the fact that the log-function is concave on (0,∞).

2. Use Theorem 3 to show that

|A|1/n ≤ (1/n) trA (7)

for every n× n positive semidefinite A. Also show that equality occurs
if and only if A = µI for some µ ≥ 0.
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3. Prove (7) directly for positive definite A by letting A = X ′X (X square)
and defining

φ(X) = (1/n) trX ′X − |X |2/n. (8)

Show that

dφ = (2/n) tr(X ′ − |X |2/nX−1)dX (9)

and

d
2φ = (2/n) tr(dX)′(dX)

+ (2/n)|X |2/n(tr(X−1
dX)2 − (2/n)(trX−1

dX)2). (10)

5 THE RAYLEIGH QUOTIENT

In the next few sections we shall investigate inequalities concerning eigenvalues
of real symmetric matrices. We shall adopt the convention to arrange the
eigenvalues λ1, λ2, . . . , λn of a real symmetric matrix A in increasing order,
so that

λ1 ≤ λ2 ≤ · · · ≤ λn. (1)

Our first result concerns the bounds of the Rayleigh quotient: x′Ax/x′x.

Theorem 4

For any real symmetric n× n matrix A,

λ1 ≤ x′Ax

x′x
≤ λn. (2)

Proof. Let S be an orthogonal n× n matrix such that

S′AS = Λ = diag(λ1, λ2, . . . , λn) (3)

and let y = S′x. Since

λ1y
′y ≤ y′Λy ≤ λny

′y, (4)

we obtain

λ1x
′x ≤ x′Ax ≤ λnx

′x, (5)

because x′Ax = y′Λy and x′x = y′y. 2
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Since the extrema of x′Ax/x′x can be achieved (by choosing x to be an
eigenvector associated with λ1 or λn), Theorem 4 implies that we may define
λ1 and λn as follows:

λ1 = min
x

x′Ax

x′x
, (6)

λn = max
x

x′Ax

x′x
. (7)

The representations (6) and (7) show that we can express λ1 and λn (two non-
linear functions of A) as an envelope of linear functions of A. This technique
is called quasilinearization: the right-hand sides of (6) and (7) are quasilinear
representations of λ1 and λn. We shall encounter some useful applications of
this technique in the next few sections.

Exercises

1. Use the quasilinear representations (6) and (7) to show that

λ1(A+B) ≥ λ1(A), λn(A+B) ≥ λn(A),

λ1(A) trB ≤ trAB ≤ λn(A) trB

for any n×n symmetric matrix A and positive semidefinite n×n matrix
B.

2. If A is a symmetric n× n matrix and Ak is a k× k principal submatrix
of A, then prove

λ1(A) ≤ λ1(Ak) ≤ λk(Ak) ≤ λn(A).

(A generalization of this result is given in Theorem 12.)

3. Show that

λ1(A+B) ≥ λ1(A) + λ1(B),

λn(A+B) ≤ λn(A) + λn(B)

for any two symmetric n× n matrices A and B. (See also Theorem 5.)

6 CONCAVITY OF λ1, CONVEXITY OF λn

As an immediate consequence of the definitions (5.6) and (5.7), let us prove
Theorem 5, thus illustrating the usefulness of quasilinear representations.

Theorem 5

For any two real symmetric matrices A and B of order n and 0 ≤ α ≤ 1,

λ1(αA + (1 − α)B) ≥ αλ1(A) + (1 − α)λ1(B),

λn(αA + (1 − α)B) ≤ αλn(A) + (1 − α)λn(B).



232 Inequalities [Ch. 11

Hence, λ1 is concave and λn convex on the space of real symmetric matrices.

Proof. Using the representation (5.6), we obtain

λ1(αA + (1 − α)B) = min
x

x′(αA+ (1 − α)B)x

x′x

≥ αmin
x

x′Ax

x′x
+ (1 − α)min

x

x′Bx

x′x
= αλ1(A) + (1 − α)λ1(B).

The analogue for λn is proved similarly. 2

7 VARIATIONAL DESCRIPTION OF EIGENVALUES

The representation of λ1 and λn given in (5.6) and (5.7) can be extended in
the following way.

Theorem 6

Let A be a real symmetric n×n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.
Let S = (s1, s2, . . . , sn) be an orthogonal n× n matrix which diagonalizes A,
so that

S′AS = diag(λ1, λ2, . . . , λn). (1)

Then, for k = 1, 2, . . . , n,

λk = min
R′

k−1
x=0

x′Ax

x′x
= max

T ′

k+1
x=0

x′Ax

x′x
, (2)

where

Rk = (s1, s2, . . . , sk), Tk = (sk, sk+1, . . . , sn). (3)

Moreover, if λ1 = λ2 = · · · = λk, then

x′Ax

x′x
= λ1 if and only if x =

k∑

i=1

αisi (4)

for some set of real numbers α1, . . . , αk not all zero. Similarly, if λl = λl+1 =
· · · = λn, then

x′Ax

x′x
= λn if and only if x =

n∑

j=l

αjsj (5)

for some set of real numbers αl, . . . , αn not all zero.
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Proof. Let us prove the first representation of λk in (2), the second being
proved in the same way.

As in the proof of Theorem 4, let y = S′x. Partitioning S and y as

S = (Rk−1, Tk), y =

(
y1
y2

)
, (6)

we may express x as

x = Sy = Rk−1y1 + Tky2. (7)

Hence,

Rk−1
′x = 0 ⇐⇒ y1 = 0 ⇐⇒ x = Tky2. (8)

It follows that

min
Rk−1

′x=0

x′Ax

x′x
= min

x=Tky2

x′Ax

x′x
= min

y2

y′2(T
′
kATk)y2
y′2y2

= λk, (9)

using Theorem 4 and the fact that T ′
kATk = diag(λk, λk+1, . . . , λn). The case

of equality is easily proved and is left to the reader. 2

Useful as the representations in (2) may be, there is one problem in using
them, namely that the representations are not quasilinear, because Rk−1 and
Tk+1 also depend on A. A quasilinear representation of the eigenvalues was
first obtained by Fischer in 1905.

8 FISCHER’S MIN-MAX THEOREM

We shall obtain Fischer’s result by using the following theorem, of interest in
itself.

Theorem 7

Let A be a real symmetric n×n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.
Let 1 ≤ k ≤ n. Then,

min
B′x=0

x′Ax

x′x
≤ λk (1)

for every n× (k − 1) matrix B, and

max
C′x=0

x′Ax

x′x
≥ λk (2)

for every n× (n− k) matrix C.
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Proof. Let B be an arbitrary n × (k − 1) matrix, and denote (normalized)
eigenvectors associated with the eigenvalues λ1, . . . , λn of A by s1, s2, . . . , sn.
Let R = (s1, s2, . . . , sk), so that

R′AR = diag(λ1, λ2, . . . , λk), R′R = Ik. (3)

Now consider the (k−1)×k matrix B′R. Since the rank of B′R cannot exceed
k − 1, its k columns are linearly dependent. Thus

B′Rp = 0 (4)

for some k × 1 vector p 6= 0. Then, choosing x = Rp, we obtain

min
B′x=0

x′Ax

x′x
≤ p′(R′AR)p

p′p
≤ λk, (5)

using (3) and Theorem 4. This proves (1). The proof of (2) is similar. 2

Let us now demonstrate Fischer’s famous min-max theorem.

Theorem 8 (Fischer)

Let A be a real symmetric n×n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.
Then λk (1 ≤ k ≤ n) may be defined as

λk = max
B′B=Ik−1

min
B′x=0

x′Ax

x′x
, (6)

or equivalently as

λk = min
C′C=In−k

max
C′x=0

x′Ax

x′x
, (7)

where, as the notation indicates, B is an n × (k − 1) matrix and C is an
n× (n− k) matrix.

Proof. Again we shall prove only the first representation, leaving the proof of
(7) as an exercise for the reader.

As in the proof of Theorem 6, let Rk−1 be a semi-orthogonal n× (k − 1)
matrix satisfying

ARk−1 = Rk−1Λk−1, R′
k−1Rk−1 = Ik−1, (8)

where

Λk−1 = diag(λ1, λ2, . . . , λk−1). (9)
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Then, defining

φ(B) = min
B′x=0

x′Ax

x′x
, (10)

we obtain

λk = φ(Rk−1) = max
B=Rk−1

φ(B) ≤ max
B′B=Ik−1

φ(B) ≤ λk, (11)

where the first equality follows from Theorem 6, and the last inequality from
Theorem 7. Hence,

λk = max
B′B=Ik−1

φ(B) = max
B′B=Ik−1

min
B′x=0

x′Ax

x′x
, (12)

thus completing the proof. 2

Exercises

1. Let A be a square n× n matrix (not necessarily symmetric). Show that
for every n× 1 vector x

(x′Ax)2 ≤ (x′AA′x)(x′x)

and hence
1

2

∣∣∣∣
x′(A+A′)x

x′x

∣∣∣∣ ≤
(
x′AA′x

x′x

)1/2

.

2. Use Exercise 1 and Theorems 6 and 7 to prove that

1

2
|λk(A+A′)| ≤ (λk(AA

′))1/2 (k = 1, . . . , n)

for every n × n matrix A. (This was first proved by Fan and Hoffman
(1955). Related inequalities are given in Amir-Moéz and Fass (1962).)

9 MONOTONICITY OF THE EIGENVALUES

The usefulness of the quasilinear representation of the eigenvalues in Theorem
8, as opposed to the representation in Theorem 6, is clearly brought out in
the proof of Theorem 9.

Theorem 9

For any symmetric matrix A and positive semidefinite matrix B,

λk(A+B) ≥ λk(A) (k = 1, 2, . . . , n). (1)

If B is positive definite, then the inequality is strict.
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Proof. For any n× (k − 1) matrix P we have

min
P ′x=0

x′(A+B)x

x′x
= min
P ′x=0

(
x′Ax

x′x
+
x′Bx

x′x

)

≥ min
P ′x=0

x′Ax

x′x
+ min
P ′x=0

x′Bx

x′x

≥ min
P ′x=0

x′Ax

x′x
+ min

x

x′Bx

x′x
≥ min

P ′x=0

x′Ax

x′x
, (2)

and hence, by Theorem 8,

λk(A+B) = max
P ′P=Ik−1

min
P ′x=0

x′(A+B)x

x′x

≥ max
P ′P=Ik−1

min
P ′x=0

x′Ax

x′x
= λk(A). (3)

If B is positive definite, the last inequality in (2) is strict, and so the inequality
in (3) is also strict. 2

Exercises

1. Prove Theorem 9 by means of the representation (8.7) rather than (8.6).

2. Show how an application of Theorem 6 fails to prove Theorem 9.

10 THE POINCARÉ SEPARATION THEOREM

In Section 8 we employed Theorems 6 and 7 to prove Fischer’s min-max
theorem. Let us now demonstrate another consequence of Theorems 6 and 7:
Poincaré’s separation theorem.

Theorem 10 (Poincaré)

Let A be a real symmetric n×n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn,
and let G be a semi-orthogonal n× k matrix (1 ≤ k ≤ n), so that G′G = Ik.
Then the eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µk of G′AG satisfy

λi ≤ µi ≤ λn−k+i (i = 1, 2, . . . , k). (1)

Note. For k = 1, Theorem 10 reduces to Theorem 4. For k = n, we obtain the
well-known result that the symmetric matrices A and G′AG have the same
set of eigenvalues, if G is orthogonal (see Theorem 1.5).

Proof. Let 1 ≤ i ≤ k and let R be a semi-orthogonal n× (i− 1) matrix whose
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columns are eigenvectors of A associated with λ1, λ2, . . . , λi−1. Then,

λi = min
R′x=0

x′Ax

x′x
≤ min

R′x=0
x=Gy

x′Ax

x′x
= min

R′Gy=0

y′G′AGy

y′y
≤ µi, (2)

using Theorems 6 and 7.
Next, let n − k + 1 ≤ j ≤ n, and let T be a semi-orthogonal n × (n − j)

matrix whose columns are eigenvectors of A associated with λj+1, . . . , λn.
Then we obtain in the same way

λj = max
T ′x=0

x′Ax

x′x
≥ max

T ′x=0
x=Gy

x′Ax

x′x
= max

T ′Gy=0

y′G′AGy

y′y
≥ µk−n+j . (3)

Choosing j = n− k + i (1 ≤ i ≤ k) in (3) thus yields µi ≤ λn−k+i. 2

11 TWO COROLLARIES OF POINCARÉ’S THEOREM

The Poincaré theorem is of such fundamental importance that we shall present
a number of special cases in this and the next two sections. The first of these
is not merely a special case, but an equivalent formulation of the same result:
see Exercise 2.

Theorem 11

Let A be a real symmetric n×n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn,
and let M be an idempotent symmetric n× n matrix of rank k (1 ≤ k ≤ n).
Denoting the eigenvalues of the n× n matrix MAM , apart from n− k zeros,
by µ1 ≤ µ2 ≤ · · · ≤ µk, we have

λi ≤ µi ≤ λn−k+i (i = 1, 2, . . . , k).

Proof. Immediate from Theorem 10 by writing M = GG′, G′G = Ik (see
(1.17.13)), and noting that GG′AGG′ and G′AG have the same eigenvalues,
apart from n− k zeros. 2

Another special case of Theorem 10 is Theorem 12.

Theorem 12

If A is a real symmetric n× n matrix and Ak is a k × k principal submatrix
of A, then

λi(A) ≤ λi(Ak) ≤ λn−k+i(A) (i = 1, . . . , k).

Proof. Let G be the n× k matrix

G =

(
Ik
0

)
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or a row permutation thereof. Then G′G = Ik and G′AG is a k × k principal
submatrix of A. The result now follows from Theorem 10. 2

Exercises

1. Let A be a real symmetric n × n matrix with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn, and let B be the real symmetric (n+ 1) × (n+ 1) matrix

B =

(
A b
b′ α

)
.

Then the eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µn+1 of B satisfy

µ1 ≤ λ1 ≤ µ2 ≤ λ2 ≤ · · · ≤ λn ≤ µn+1.

[Hint: Use Theorem 12.]

2. Obtain Theorem 10 as a special case of Theorem 11.

12 FURTHER CONSEQUENCES OF THE POINCARÉ
THEOREM

An immediate consequence of Poincaré’s inequality (Theorem 10) is the fol-
lowing theorem.

Theorem 13

For any real symmetric n× n matrix A with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn,

min
X′X=Ik

trX ′AX =

k∑

i=1

λi, (1)

max
X′X=Ik

trX ′AX =
k∑

i=1

λn−k+i. (2)

Proof. Denoting the k eigenvalues of X ′AX by µ1 ≤ µ2 ≤ · · · ≤ µk, we have
from Theorem 10,

k∑

i=1

λi ≤
k∑

i=1

µi ≤
k∑

i=1

λn−k+i. (3)

Noting that
∑k
i=1 µi = trX ′AX , and that the bounds in (3) can be attained

by suitable choices of X , the result follows. 2

An important special case of Theorem 13, which we shall use in Section
17, is the following.
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Theorem 14

Let A = (aij) be a real symmetric n × n matrix with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn. Then,

λ1 ≤ aii ≤ λn (i = 1, . . . , n), (4)

λ1 + λ2 ≤ aii + ajj ≤ λn−1 + λn (i 6= j = 1, . . . , n), (5)

and so on. In particular, for k = 1, 2, . . . , n,

k∑

i=1

λi ≤
k∑

i=1

aii ≤
k∑

i=1

λn−k+i. (6)

Proof. Theorem 13 implies that the inequality

k∑

i=1

λi ≤ trX ′AX ≤
k∑

i=1

λn−k+i (7)

is valid for every n× k matrix X satisfying X ′X = Ik. Taking X = (Ik, 0)′ or
a row permutation thereof, the result follows. 2

Exercise

1. Prove Theorem 13 directly from Theorem 6 without using Poincaré’s

theorem. [Hint: Write trX ′AX =
∑k
i=1 x

′
iAxi where X = (x1, . . . , xk).]

13 MULTIPLICATIVE VERSION

Let us now obtain the multiplicative versions of Theorems 13 and 14 for the
positive definite case.

Theorem 15

For any positive definite n×n matrix A with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn,

min
X′X=Ik

|X ′AX | =

k∏

i=1

λi, (1)

max
X′X=Ik

|X ′AX | =

k∏

i=1

λn−k+i. (2)
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Proof. As in the proof of Theorem 13, let µ1 ≤ µ2 ≤ · · · ≤ µk be the eigen-
values of X ′AX . Then Theorem 10 implies

k∏

i=1

λi ≤
k∏

i=1

µi ≤
k∏

i=1

λn−k+i. (3)

Since

k∏

i=1

µi = |X ′AX |, (4)

and the bounds in (3) can be attained by suitable choices of X , the result
follows. 2

Theorem 16

Let A = (aij) be a positive definite n× n matrix with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λn, and define

Ak =




a11 · · · a1k

...
...

ak1 · · · akk


 (k = 1, . . . , n). (5)

Then, for k = 1, 2, . . . , n,

k∏

i=1

λi ≤ |Ak| ≤
k∏

i=1

λn−k+i. (6)

Proof. Theorem 15 implies that the inequality

k∏

i=1

λi ≤ |X ′AX | ≤
k∏

i=1

λn−k+i (7)

is valid for every n × k matrix X satisfying X ′X = Ik. Taking X = (Ik, 0)′,
the result follows. 2

Exercises

1. Prove Theorem 16 using Theorem 12 rather than Theorem 15.

2. Use Theorem 16 to show that a symmetric n × n matrix A is positive
definite if and only if |Ak| > 0, k = 1, . . . , n. This gives an alternative
proof of Theorem 1.29.
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14 THE MAXIMUM OF A BILINEAR FORM

Theorem 6 together with the Cauchy-Schwarz inequality allows a generaliza-
tion from quadratic to bilinear forms.

Theorem 17

Let A be a m × n matrix with rank r ≥ 1. Let λ1 ≤ λ2 ≤ · · · ≤ λr denote
the positive eigenvalues of AA′ and let S = (s1, . . . , sr) be a semi-orthogonal
m× r matrix such that

AA′S = SΛ, S′S = Ir, Λ = diag(λ1, . . . , λr). (1)

Then, for k = 1, 2, . . . , r,

(x′Ay)2 ≤ λk (2)

for every x ∈ IRm and y ∈ IRn satisfying

x′x = 1, y′y = 1, s′ix = 0 (i = k + 1, . . . , r). (3)

Moreover, if λj = λj+1 = · · · = λk, and either λj−1 < λj or j = 1, then
equality in (2) occurs if and only if x = x∗ and y = y∗, where

x∗ =
k∑

i=j

αisi, y∗ = ±λ−1/2
k A′x∗ (4)

for some set of real numbers αj , . . . , αk satisfying
∑k
i=j α

2
i = 1. (If λk is a

simple eigenvalue of AA′, then j = k and x∗ and y∗ are unique, apart from
sign.) Moreover, y∗ is an eigenvector of A′A associated with the eigenvalue
λk, and

x∗ = ±λ−1/2
k Ay∗, s′iAy∗ = 0 (i = k + 1, . . . , r). (5)

Proof. Let x and y be arbitrary vectors in IRm and IRn respectively, satisfying
(3). Then

(x′Ay)2 ≤ x′AA′x ≤ λk, (6)

where the first inequality in Cauchy-Schwarz and the second follows from
Theorem 6.

Equality occurs if and only if y = γA′x for some γ 6= 0 (to make the first
inequality of (6) into an equality) and

x =

k∑

i=j

αisi (7)
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for some αj , . . . , αk satisfying
∑k

i=j α
2
i = 1 (because of the requirement that

x′x = 1). From (7) it follows that AA′x = λkx, so that

1 = y′y = γ2x′AA′x = γ2λk. (8)

Hence γ = ±λ−1/2
k and y = ±λ−1/2

k A′x.
Furthermore

Ay = ±λ−1/2
k AA′x = ±λ−1/2

k λkx = ±λ1/2
k x, (9)

implying

A′Ay = ±λ1/2
k A′x = λky, (10)

and also

s′iAy = ±λ1/2
k s′ix = 0 (i = k + 1, . . . , r). (11)

This concludes the proof. 2

15 HADAMARD’S INEQUALITY

The following inequality is a very famous one, and is due to Hadamard.

Theorem 18 (Hadamard)

For any real n× n matrix A = (aij),

|A|2 ≤
n∏

i=1




n∑

j=1

a2
ij


 (1)

with equality if and only if AA′ is a diagonal matrix or A contains a row of
zeros.

Proof. Assume that A is non-singular. Then AA′ is positive definite and hence,
by Theorem 1.28,

|A|2 = |AA′| ≤
n∏

i=1

(AA′)ii =
n∏

i=1




n∑

j=1

a2
ij


 (2)

with equality if and only if AA′ is diagonal. If A is singular, the inequality is
trivial, and equality occurs if and only if

∑
j a

2
ij = 0 for some i, that is, if and

only if A contains a row of zeros. 2
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16 AN INTERLUDE: KARAMATA’S INEQUALITY

Let x = (x1, x2, . . . , xn)′ and y = (y1, y2, . . . , yn)
′ be two n × 1 vectors. We

say that y is majorized by x and write

(y1, . . . , yn) ≺ (x1, . . . , xn), (1)

when the following three conditions are satisfied:

x1 + x2 + · · · + xn = y1 + y2 + · · · + yn, (2)

x1 ≤ x2 ≤ · · · ≤ xn, y1 ≤ y2 ≤ · · · ≤ yn, (3)

x1 + x2 + · · · + xk ≤ y1 + y2 + · · · + yk (1 ≤ k ≤ n− 1). (4)

Theorem 19 (Karamata)

Let φ be a real-valued convex function defined on an interval S in IR. If
(y1, . . . , yn) ≺ (x1, . . . , xn), then

n∑

i=1

φ(xi) ≥
n∑

i=1

φ(yi). (5)

If, in addition, φ is strictly convex on S, then equality in (5) occurs if and
only if xi = yi (i = 1, . . . , n).

Proof. The first part of the theorem is a well-known result (see Hardy, Little-
wood and Pólya 1952, Beckenbach and Bellman 1961). Let us prove the sec-
ond part, which investigates when equality in (5) can occur. Clearly, if xi = yi
for all i, then

∑n
i=1 φ(xi) =

∑n
i=1 φ(yi). To prove the converse, assume that

φ is strictly convex. We must then demonstrate the truth of the following
statement: if (y1, . . . , yn) ≺ (x1, . . . , xn) and

∑n
i=1 φ(xi) =

∑n
i=1 φ(yi), then

xi = yi (i = 1, . . . , n).
Let us proceed by induction. For n = 1 the statement is trivially true.

Assume the statement to be true for n = 1, 2, . . . , N − 1. Assume also that

(y1, . . . , yN ) ≺ (x1, . . . , xN ) and
∑N

i=1 φ(xi) =
∑n

i=1 φ(yi). We shall show that
xi = yi (i = 1, . . . , N).

Assume first that
∑k
i=1 xi <

∑k
i=1 yi (strict inequality) for k = 1, . . . , N−

1. Replace yi by zi where

z1 = y1 − ǫ, zi = yi (i = 2, . . . , N − 1), zN = yN + ǫ. (6)

Then, as we can choose ǫ > 0 arbitrarily small, (z1, . . . , zN) ≺ (x1, . . . , xN ).
Hence,

N∑

i=1

φ(xi) ≥
N∑

i=1

φ(zi). (7)
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y 1−ε y N+εy Ny 1

Figure 1 Diagram showing that φ(y1)−φ(y1−ǫ)
ǫ < φ(yN+ǫ)−φ(yN )

ǫ

On the other hand,

N∑

i=1

φ(xi) =

N∑

i=1

φ(yi)

=

N∑

i=1

φ(zi) + ǫ

(
φ(y1) − φ(y1 − ǫ)

ǫ
− φ(yN + ǫ) − φ(yN )

ǫ

)

<
N∑

i=1

φ(zi), (8)

which contradicts (7). (See Figure 1 to see how the inequality in (8) is ob-
tained.)

Next assume that
∑m
i=1 xi =

∑m
i=1 yi for some m (1 ≤ m ≤ N − 1). Then

(y1, . . . , ym) ≺ (x1, . . . , xm) and (ym+1, . . . , yN) ≺ (xm+1, . . . , xN ). The first
part of the theorem implies

m∑

i=1

φ(xi) ≥
m∑

i=1

φ(yi),

N∑

i=m+1

φ(xi) ≥
N∑

i=m+1

φ(yi), (9)

and since
∑N

i=1 φ(xi) =
∑N

i=1 φ(yi) by assumption, it follows that the ≥ signs
in (9) can be replaced by = signs. The induction hypothesis applied to the
sets (x1, . . . , xm) and (y1, . . . , ym) then yields xi = yi (i = 1, . . . ,m); the
induction hypothesis applied to the sets (xm+1, . . . , xN ) and (ym+1, . . . , yN )
yields xi = yi (i = m+ 1, . . . , N). 2
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17 KARAMATA’S INEQUALITY APPLIED TO EIGENVALUES

An important application of Karamata’s inequality is the next result, which
provides the basis of the analysis in the next few sections.

Theorem 20

Let A = (aij) be a real symmetric n×nmatrix with eigenvalues λ1, λ2, . . . , λn.
Then for any convex function φ we have

n∑

i=1

φ(λi) ≥
n∑

i=1

φ(aii). (1)

Moreover, if φ is strictly convex, then equality in (1) occurs if and only if A
is diagonal.

Proof. Without loss of generality we may assume that

λ1 ≤ λ2 ≤ · · · ≤ λn, a11 ≤ a22 ≤ · · · ≤ ann. (2)

Theorem 14 implies that (a11, . . . , ann) is majorized by (λ1, . . . , λn) in the
sense of Section 16. Karamata’s inequality (Theorem 19) then yields (1). For
strictly convex φ, Theorem 19 implies that equality in (1) holds if and only if
λi = aii for i = 1, . . . , n; and by Theorem 1.30, this is the case if and only if
A is diagonal. 2

Exercise

1. Prove Theorem 1.28 as a special case of Theorem 20. [Hint: Choose
φ(x) = − log x, x > 0.]

18 AN INEQUALITY CONCERNING POSITIVE SEMIDEFI-
NITE MATRICES

If A is positive semidefinite then, by Theorem 1.13, we can write A = SΛS′,
where Λ is diagonal with non-negative diagonal elements. We now define the
p-th power of A as Ap = SΛpS′. In particular, A1/2 (for positive semidefinite
A) is the unique positive semidefinite matrix SΛ1/2S′.

Theorem 21

Let A = (aij) be a positive semidefinite n× n matrix. Then

trAp ≥
n∑

i=1

apii (p > 1) (1)
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and

trAp ≤
n∑

i=1

apii (0 < p < 1) (2)

with equality if and only if A is diagonal.

Proof. Let p > 1 and define φ(x) = xp (x ≥ 0). The function φ is continuous
and strictly convex. Hence Theorem 20 implies that

trAp =

n∑

i=1

λpi (A) =

n∑

i=1

φ(λi(A)) ≥
n∑

i=1

φ(aii) =

n∑

i=1

apii (3)

with equality if and only if A is diagonal. Next, let 0 < p < 1, define ψ(x) =
−xp (x ≥ 0), and proceed in the same way to make the proof complete. 2

19 A REPRESENTATION THEOREM FOR (
∑
api )

1/p

As a preliminary to Theorem 23, let us prove Theorem 22.

Theorem 22

Let p > 1, q = p/(p− 1) and ai ≥ 0 (i = 1, . . . , n). Then

n∑

i=1

aixi ≤
(

n∑

i=1

api

)1/p

(1)

for every set of non-negative numbers x1, x2, . . . , xn satisfying
∑n

i=1 x
q
i = 1.

Equality in (1) occurs if and only if a1 = a2 = · · · = an = 0 or

xqi = api

/
n∑

j=1

apj (i = 1, . . . , n). (2)

Note. We call this theorem a representation theorem because (1) can be al-
ternatively written as

max
x∈S

n∑

i=1

aixi =

(
n∑

i=1

api

)1/p

(3)

where

S =

{
x = (x1, . . . , xn) : xi ≥ 0,

n∑

i=1

xqi = 1

}
. (4)



Sec. 19 ] A representation theorem for (
∑
api )

1/p
247

Proof. Let us consider the maximization problem

maximize

n∑

i=1

aixi (5)

subject to
n∑

i=1

xqi = 1. (6)

We form the Lagrangian function

ψ(x) =

n∑

i=1

aixi − λq−1

(
n∑

i=1

xqi − 1

)
, (7)

and differentiate. This yields

dψ(x) =

n∑

i=1

(ai − λxq−1
i )dxi. (8)

From (8) we obtain the first-order conditions

λxq−1
i = ai (i = 1, . . . , n), (9)

n∑

i=1

xqi = 1. (10)

Solving for xi and λ, we obtain

xi =

(
api

/∑

i

api

)1/q

(i = 1, . . . , n), (11)

λ =

(∑

i

api

)1/p

. (12)

Since q > 1, ψ(x) is concave; it follows from Theorem 7.13 that
∑
aixi has

an absolute maximum under the constraint (6) at every point where (11) is
satisfied. The constrained maximum is

∑

i

ai

(
api

/∑

i

api

)1/q

=
∑

i

api

/(∑

i

api

)1/q

=

(∑

i

api

)1/p

. (13)

This completes the proof. 2
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20 A REPRESENTATION THEOREM FOR (trAp)1/p

An important generalization of Theorem 22, which provides the basis for prov-
ing matrix analogues of the fundamental inequalities of Hölder and Minkowski
(Theorems 24 and 26), is given in Theorem 23.

Theorem 23

Let p > 1, q = p/(p−1) and let A 6= 0 be a positive semidefinite n×n matrix.
Then

trAX ≤ (trAp)1/p (1)

for every positive semidefinite n× n matrix X satisfying trXq = 1. Equality
in (1) occurs if and only if

Xq = (1/ trAp)Ap. (2)

Proof. Let X be an arbitrary positive semidefinite n × n matrix satisfying
trXq = 1. Let S be an orthogonal matrix such that S′XS = Λ, where Λ
is diagonal and has the eigenvalues of X as its diagonal elements. Define
B = (bij) = S′AS. Then

trAX = trBΛ =
∑

i

biiλi (3)

and

trXq = tr Λq =
∑

i

λqi . (4)

Hence, by Theorem 22,

trAX ≤
(∑

i

bpii

)1/p

. (5)

Since A is positive semidefinite, so is B, and Theorem 21 thus implies that
∑

i

bpii ≤ trBp. (6)

Combining (5) and (6) we obtain

trAX ≤ (trBp)1/p = (trAp)1/p. (7)

Equality in (5) occurs if and only if

λqi = bpii

/∑

i

bpii (i = 1, . . . , n) (8)
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and equality in (6) occurs if and only if B is diagonal. Hence, equality in (1)
occurs if and only if

Λq = Bp/ trBp, (9)

which is equivalent to (2). 2

21 HÖLDER’S INEQUALITY

In its simplest form Hölder’s inequality asserts that

xα1 y
1−α
1 + xα2 y

1−α
2 ≤ (x1 + x2)

α(y1 + y2)
1−α (0 < α < 1) (1)

for every non-negative x1, x2, y1, y2. This inequality can be extended in two
directions. We can show (by simple mathematical induction) that

m∑

i=1

xαi y
1−α
i ≤

(
m∑

i=1

xi

)α( m∑

i=1

yi

)1−α

(0 < α < 1) (2)

for every xi ≥ 0, yi ≥ 0; and also, arranging the induction differently, that

n∏

j=1

x
αj

j +

n∏

j=1

y
αj

j ≤
n∏

j=1

(xj + yj)
αj (3)

for every xj ≥ 0, yj ≥ 0, αj > 0,
∑n
j=1 αj = 1.

Combining (2) and (3), we obtain the following result.

Hölder’s inequality

Let X = (xij) be a non-negative m× n matrix (that is, a matrix all of whose
elements are non-negative), and let αj > 0 (j = 1, . . . , n),

∑n
j=1 αj = 1. Then

m∑

i=1

n∏

j=1

x
αj

ij ≤
n∏

j=1

(
m∑

i=1

xij

)αj

(4)

with equality if and only if either r(X) = 1 or one of the columns of X is the
null vector.

In this section we want to show how Theorem 23 can be used to obtain
the matrix analogue of (2).

Theorem 24

For any two positive semidefinite matrices A and B of the same order, A 6=
0, B 6= 0, and 0 < α < 1, we have

trAαB1−α ≤ (trA)α(trB)1−α, (5)
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with equality if and only if B = µA for some scalar µ > 0.

Proof. Let p = 1/α, q = 1/(1 − α) and assume B 6= 0. Now define

X =
B1/q

(trB)1/q
. (6)

Then trXq = 1, and hence Theorem 23 applied to A1/p yields

trA1/pB1/q ≤ (trA)1/p(trB)1/q , (7)

which is (5). According to Theorem 23, equality in (5) can occur only if
Xq = (1/ trA)A, that is, if B = µA for some µ > 0. 2

Exercises

1. Let A and B be positive semidefinite and 0 < α < 1. Define the sym-
metric matrix

C = αA+ (1 − α)B −Aα/2B1−αAα/2.

Show that trC ≥ 0 with equality if and only if A = B.

2. For every x > 0,

xα ≤ αx+ 1 − α (0 < α < 1)

xα ≥ αx+ 1 − α (α > 1 or α < 0)

with equality if and only if x = 1.

3. If A and B are positive semidefinite and commute (that is, AB = BA),
then the matrix C of Exercise 1 is positive semidefinite. Moreover, C is
non-singular (hence positive definite) if and only if A−B is non-singular.

4. Let p > 1 and q = p/(p−1). Show that for any two positive semidefinite
matrices A 6= 0 and B 6= 0 of the same order,

trAB ≤ (trAp)1/p(trBq)1/q

with equality if and only if B = µAp−1 for some µ > 0.

22 CONCAVITY OF log|A|

In Exercise 1 of the previous section we saw that

trAαB1−α ≤ tr(αA+ (1 − α)B) (0 < α < 1) (1)

for any pair of positive semidefinite matrices A andB. Let us now demonstrate
the multiplicative analogue of (1).
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Theorem 25

For any two positive semidefinite matrices A and B of the same order and
0 < α < 1, we have

|A|α|B|1−α ≤ |αA+ (1 − α)B| (2)

with equality if and only if A = B or |αA+ (1 − α)B| = 0.

Proof. If either A or B is singular, the result is obvious. Assume therefore that
A and B are both positive definite. Applying Exercise 2 of Section 21 to the
eigenvalues λ1, . . . , λn of the positive definite matrix B−1/2AB−1/2 yields

λαi ≤ αλi + (1 − α) (i = 1, . . . , n), (3)

and hence, multiplying both sides of (3) over i = 1, . . . , n,

|B−1/2AB−1/2|α ≤ |αB−1/2AB−1/2 + (1 − α)I|. (4)

From (4) we obtain

|A|α|B|1−α = |B||B−1/2AB−1/2|α ≤ |B||αB−1/2AB−1/2 + (1 − α)I|
= |B1/2(αB−1/2AB−1/2 + (1 − α)I)B1/2| = |αA+ (1 − α)B|. (5)

There is equality in (5) if and only if there is equality in (3), which occurs if
and only if every eigenvalue of B−1/2AB−1/2 equals one, that is, if and only
if A = B. 2

Another way of expressing the result of Theorem 25 is to say that the real-
valued function φ defined by φ(A) = log |A| is concave on the set of positive
definite matrices. This is seen by taking logarithms on both sides of (2). We
note, however, that the function ψ given by ψ(A) = |A| is neither convex nor
concave on the set of positive definite matrices. This is easily seen by taking

A =

(
1 0
0 1

)
, B =

(
1 + δ 0

0 1 + ǫ

)
(δ > −1, ǫ > −1). (6)

Then, for α = 1
2 ,

α|A| + (1 − α)|B| − |αA+ (1 − α)B| = δǫ/4, (7)

which can take positive or negative values depending on whether δ and ǫ have
the same or opposite signs.

Exercises
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1. Show that, for A positive definite

d
2 log |A| = − trA−1(dA)A−1(dA) < 0

for all dA 6= 0. (Compare Theorem 25.)

2. Show that the matrix inverse is ‘matrix convex’ on the set of positive
definite matrices. That is, show that the matrix

C(λ) = λA−1 + (1 − λ)B−1 − (λA+ (1 − λ)B)−1

is positive semidefinite for all positive definite A and B and 0 < λ < 1
(Moore 1973).

3. Furthermore, show that C(λ) is positive definite for all λ ∈ (0, 1) if and
only if |A−B| 6= 0 (Moore 1973).

4. Show that

x′(A+B)−1x ≤ (x′A−1x)(x′B−1x)

x′(A−1 +B−1)x
≤ x′A−1x+ x′B−1x

4

[Hint: Use Exercise 2 and Bergstrom’s inequality, Section 11.2.]

23 MINKOWSKI’S INEQUALITY

Minkowski’s inequality, in its most rudimentary form, states that

((x1 + y1)
p + (x2 + y2)

p)1/p ≤ (xp1 + xp2)
1/p + (yp1 + yp2)1/p (1)

for every non-negative x1, x2, y1, y2 and p > 1. As in Hölder’s inequality, (1)
can be extended in two directions. We have

(
m∑

i=1

(xi + yi)
p

)1/p

≤
(

m∑

i=1

xpi

)1/p

+

(
m∑

i=1

ypi

)1/p

(2)

for every xi ≥ 0, yi ≥ 0 and p > 1; and also






n∑

j=1

xj



p

+




n∑

j=1

yj



p


1/p

≤
n∑

j=1

(xpj + ypj )
1/p (3)

for every xj ≥ 0, yj ≥ 0 and p > 1. Notice that if in (3) we replace xj by

x
1/p
j , yj by y

1/p
j and p by 1/p, we obtain




n∑

j=1

(xj + yj)
p




1/p

≥




n∑

j=1

xpj




1/p

+




n∑

j=1

ypj




1/p

(4)
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for every xj ≥ 0, yj ≥ 0 and 0 < p < 1.
All these cases are contained in the following inequality.

Minkowski’s inequality

LetX = (xij) be a non-negativem×nmatrix (that is, xij ≥ 0 for i = 1, . . . ,m
and j = 1, . . . , n) and let p > 1. Then



m∑

i=1




n∑

j=1

xij



p


1/p

≤
n∑

j=1

(
m∑

i=1

xpij

)1/p

(5)

with equality if and only if r(X) = 1.

Let us now obtain, again by using Theorem 23, the matrix analogue of
(2).

Theorem 26

For any two positive semidefinite matrices A and B of the same order (A 6=
0, B 6= 0), and p > 1, we have

(tr(A+B)p)1/p ≤ (trAp)1/p + (trBp)1/p (6)

with equality if and only if A = µB for some µ > 0.

Proof. Let p > 1, q = p/(p− 1) and let

R = {X : X ∈ IRn×n, X positive semidefinite, trXq = 1}. (7)

An equivalent version of Theorem 23 then states that

max
R

trAX = (trAp)1/p (8)

for every positive semidefinite n× n matrix A. Using this representation, we
obtain

(tr(A+B)p)1/p = max
R

tr(A+B)X

≤ max
R

trAX + max
R

trBX

= (trAp)1/p + (trBp)1/p. (9)

Equality in (9) can occur only if the same X maximizes trAX, trBX and
tr(A + B)X , which implies, by Theorem 23, that Ap, Bp and (A + B)p are
proportional, and hence that A and B must be proportional. 2
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24 QUASILINEAR REPRESENTATION OF |A|1/n

In Section 4 we established (Exercise 2) that

(1/n) trA ≥ |A|1/n (1)

for every positive semidefinite n× n matrix A. The following theorem gener-
alizes this result.

Theorem 27

Let A 6= 0 be a positive semidefinite n× n matrix. Then

(1/n) trAX ≥ |A|1/n (2)

for every positive definite n× n matrix X satisfying |X | = 1, with equality if
and only if

X = |A|1/nA−1. (3)

Let us give two proofs.

First proof. Let A 6= 0 be positive semidefinite and X positive definite with
|X | = 1. Denote the eigenvalues of X1/2AX1/2 by λ1, . . . , λn. Then λi ≥
0 (i = 1, . . . , n), and Theorem 3 implies that

n∏

i=1

λ
1/n
i ≤ (1/n)

n∑

i=1

λi (4)

with equality if and only if λ1 = λ2 = · · · = λn. Rewriting (4) in terms of the
matrices A and X we obtain

|X1/2AX1/2|1/n ≤ (1/n) trX1/2AX1/2 (5)

and hence, since |X | = 1,

(1/n) trAX ≥ |A|1/n. (6)

Equality in (6) occurs if and only if all eigenvalues of X1/2AX1/2 are equal,
that is, if and only if

X1/2AX1/2 = µIn (7)

for some µ > 0. (Notice that µ = 0 cannot occur, because it would imply
A = 0, which we have excluded.) From (7) we obtain A = µX−1 and hence
X = µA−1. Taking determinants on both sides we find µ = |A|1/n since
|X | = 1. 2



Sec. 24 ] Quasilinear representation of |A|1/n 255

Second proof. In this proof we view the inequality (2) as the solution of the
following constrained minimization problem in X :

minimize (1/n) trAX (8)

subject to log |X | = 0, X positive definite, (9)

where A is a given positive semidefinite n × n matrix. To take into account
the positive definiteness of X we write X = Y Y ′ where Y is a square matrix
of order n; the minimization problem then becomes

minimize (1/n) trY ′AY (10)

subject to log |Y |2 = 0. (11)

To solve (10)–(11) we form the Lagrangian function

ψ(Y ) = (1/n) trY ′AY − λ log |Y |2 (12)

and differentiate. This yields

dψ(Y ) = (2/n) trY ′AdY − 2λ trY −1
dY

= 2 tr((1/n)Y ′A− λY −1)dY. (13)

From (13) we obtain the first-order conditions

(1/n)Y ′A = λY −1 (14)

|Y |2 = 1. (15)

Pre-multiplying both sides of (14) by n(Y ′)−1 gives

A = nλ(Y Y ′)−1, (16)

which shows that λ > 0 and A is non-singular. (If λ = 0, then A is the null
matrix; this case we have excluded from the beginning.) Taking determinants
in (16) we obtain, using (15),

nλ = |A|1/n. (17)

Inserting this in (16) and rearranging yields

Y Y ′ = |A|1/nA−1. (18)

Since trY ′AY is convex, log |Y |2 concave (Theorem 25) and λ > 0, it follows
that ψ(Y ) is convex. Hence Theorem 7.13 implies that (1/n) trY ′AY has
an absolute minimum under the constraint (11) at every point where (18) is
satisfied. The constrained minimum is

(1/n) trY ′AY = (1/n) tr |A|1/nA−1A = |A|1/n. (19)

This completes the second proof of Theorem 27. 2

Exercises
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1. Use Exercise 4.2 to prove that

(1/n) trAX ≥ |A|1/n|X |1/n

for every two positive semidefinite n×nmatrices A and X , with equality
if and only if A = 0 or X = µA−1 for some µ ≥ 0.

2. Hence obtain Theorem 27 as a special case.

25 MINKOWSKI’S DETERMINANT THEOREM

Using the quasilinear representation given in Theorem 27, let us establish
Minkowski’s determinant theorem.

Theorem 28

For any two positive semidefinite n× n matrices A 6= 0 and B 6= 0,

|A+ B|1/n ≥ |A|1/n + |B|1/n (1)

with equality if and only if |A+B| = 0 or A = µB for some µ > 0.

Proof. Let A and B be two positive semidefinite matrices, and assume that
A 6= 0, B 6= 0. If |A| = 0, |B| > 0, we clearly have |A + B| > |B|. If
|A| > 0, |B| = 0, we have |A+B| > |A|. If |A| = |B| = 0, we have |A+B| ≥ 0.
Hence, if A or B is singular, the inequality (1) holds, and equality occurs if
and only if |A+B| = 0.

Assume next that A and B are positive definite. Using the representation
in Theorem 27, we then have

|A+B|1/n = min
X

(1/n) tr(A+B)X

≥ min
X

(1/n) trAX + min
X

(1/n) trBX

= |A|1/n + |B|1/n, (2)

where the minimum is taken over all positive definite X satisfying |X | = 1.
Equality occurs only if the same X minimizes (1/n) trAX, (1/n) trBX and
(1/n) tr(A + B)X , which implies that A−1, B−1 and (A + B)−1 must be
proportional, and hence that A and B must be proportional. 2

26 WEIGHTED MEANS OF ORDER p

Definition

Let x be an n × 1 vector with positive components x1, x2, . . . , xn, and let a
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be an n× 1 vector of positive weights α1, α2, . . . , αn, so that

0 < αi < 1,

n∑

i=1

αi = 1. (1)

Then, for any real p 6= 0, the expression

Mp(x, a) =

(
n∑

i=1

αix
p
i

)1/p

(2)

is called the weighted mean of order p of x1, . . . , xn with weights α1, . . . , αn.

Note. This definition can be extended to non-negative x if we set Mp(x, a) = 0
in the case where p < 0 and one or more of the xi are zero. We shall, however,
confine ourselves to positive x.

The functional form defined by (2) occurs frequently in the economics
literature. For example, if we multiply Mp(x, a) by a constant, we obtain the
CES (constant elasticity of substitution) functional form.

Theorem 29

Mp(x, a) is (positively) linearly homogeneous in x, that is,

Mp(λx, a) = λMp(x, a) (3)

for every λ > 0.

Proof. Immediate from the definition. 2

One would expect a mean of n numbers to lie between the smallest and
largest of the n numbers. This is indeed the case here as we shall now demon-
strate.

Theorem 30

We have

min
1≤i≤n

xi ≤Mp(x, a) ≤ max
1≤i≤n

xi (4)

with equality if and only if x1 = x2 = · · · = xn.

Proof. We first prove the theorem for p = 1. Since

n∑

i=1

αi(xi −M1(x, a)) = 0, (5)
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we have either x1 = x2 = · · · = xn, or else xi < M1(x, a) for at least one
xi and M1(x, a) < xi for at least one other xi. This proves the theorem for
p = 1.

For p 6= 1, we let yi = xpi (i = 1, . . . , n). Then, since

min
1≤i≤n

yi ≤M1(y, a) ≤ max
1≤i≤n

yi, (6)

we obtain

min
1≤i≤n

xpi ≤ (Mp(x, a))
p ≤ max

1≤i≤n
xpi . (7)

This implies that (Mp(x, a))
p

lies between (minxi)
p and (maxxi)

p. 2

Let us next investigate the behaviour of Mp(x, a) when p tends to 0 or to
±∞.

Theorem 31

lim
p→0

Mp(x, a) =

n∏

i=1

xαi

i (8)

lim
p→∞

Mp(x, a) = maxxi (9)

lim
p→−∞

Mp(x, a) = minxi (10)

Proof. To prove (8) we let

φ(p) = log

(
n∑

i=1

αix
p
i

)
(11)

and ψ(p) = p, so that

logMp(x, a) = φ(p)/ψ(p). (12)

Then φ(0) = ψ(0) = 0, and

φ′(p) =

(
n∑

i=1

αix
p
i

)−1 n∑

j=1

αjx
p
j log xj , ψ′(p) = 1. (13)

By l’Hôpital’s rule,

lim
p→0

φ(p)

ψ(p)
= lim

p→0

φ′(p)

ψ′(p)
=
φ′(0)

ψ′(0)

n∑

j=1

αj log xj = log




n∏

j=1

x
αj

j


 , (14)
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and (8) follows. To prove (9), let

xk = max
1≤i≤n

xi (15)

(k is not necessarily unique). Then, for p > 0,

α
1/p
k xk ≤Mp(x, a) ≤ xk (16)

which implies (9). Finally, to prove (10), let q = −p and yi = 1/xi. Then

Mp(x, a) = (Mq(y, a))
−1 (17)

and hence

lim
p→−∞

Mp(x, a) = lim
q→∞

(Mq(y, a))
−1 =

(
max

1≤i≤n
yi

)−1

= min
1≤i≤n

xi. (18)

This completes the proof. 2

27 SCHLÖMILCH’S INEQUALITY

The limiting result (26.8) in the previous section suggests that it is convenient
to define

M0(x, a) =
n∏

i=1

xαi

i , (1)

since in that case Mp(x, a), regarded as a function of p, is continuous for every
p in IR. The arithmetic-geometric mean inequality (Theorem 3) then takes the
form

M0(x, a) ≤M1(x, a), (2)

and is a special case of the following result, due to Schlömilch.

Theorem 32 (Schlömilch)

If not all xi are equal, Mp(x, a) is a monotonically increasing function of p.
That is, if p < q, then

Mp(x, a) ≤Mq(x, a) (3)

with equality if and only if x1 = x2 = · · · = xn.

Proof. Assume that not all xi are equal. (If they are, the result is trivial.) We
show first that

dMp(x, a)/dp > 0 for all p 6= 0. (4)
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Define

φ(p) = log

(
n∑

i=1

αix
p
i

)
. (5)

Then Mp(x, a) = exp(φ(p)/p) and

dMp(x,a)/dp = p−2Mp(x, a)(pφ
′(p) − φ(p))

= p−2Mp(x, a)



(∑

i

αix
p
i

)−1∑

j

αjx
p
j log xpj − log

∑

i

αix
p
i




=
Mp(x, a)

p2
∑

i αix
p
i

(∑

i

αig(x
p
i ) − g

(∑

i

αix
p
i

))
, (6)

where the real-valued function g is defined for z > 0 by g(z) = z log z. Since
g is strictly convex (see Exercise 4.9.1), (4) follows. Hence Mp(x, a) is strictly
increasing on (−∞, 0) and (0,∞), and since Mp(x, a) is continuous at p = 0,
the result follows. 2

28 CURVATURE PROPERTIES OF Mp(x, a)

The curvature properties of the weighted means of order p follow from the
sign of the Hessian matrix.

Theorem 33

Mp(x, a) is a concave function of x for p ≤ 1 and a convex function of x for
p ≥ 1. In particular,

Mp(x, a) +Mp(y, a) ≤Mp(x+ y, a) (p < 1) (1)

and

Mp(x, a) +Mp(y, a) ≥Mp(x+ y, a) (p > 1) (2)

with equality if and only if x and y are linearly dependent.

Proof. Let p 6= 0, p 6= 1. (If p = 1, the result is obvious.) Let

φ(x) =
∑

i

αix
p
i , (3)

so that M(x) ≡Mp(x, a) = (φ(x))1/p. Then

dM(x) =
M(x)

pφ(x)
dφ(x), (4)

d
2M(x) =

(1 − p)M(x)

(pφ(x))2
(
(dφ(x))2 + (p/(1 − p))φ(x)d2φ(x)

)
. (5)
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Now, since

dφ(x) = p
∑

i

αix
p−1
i dxi, d

2φ(x) = p(p− 1)
∑

i

αix
p−2
i (dxi)

2, (6)

we obtain

d
2M(x) =

(1 − p)M(x)

(φ(x))2



(∑

i

αix
p−1
i dxi

)2

− φ(x)
∑

i

αix
p−2
i (dxi)

2


 . (7)

Let λi = αix
p−2
i (i = 1, . . . , n) and Λ the diagonal n×nmatrix with λ1, . . . , λn

on its diagonal. Then

d
2M(x) =

(1 − p)M(x)

(φ(x))2
((x′Λdx)2 − φ(x)(dx)′Λdx)

=
(p− 1)M(x)

(φ(x))2
(dx)′Λ1/2(φ(x)In − Λ1/2xx′Λ1/2)Λ1/2

dx. (8)

The matrix φ(x)I − Λ1/2xx′Λ1/2 is positive semidefinite, because all but one
of its eigenvalues equal φ(x), and the remaining eigenvalue is zero. (Note that
x′Λx = φ(x).) Hence d

2M(x) ≥ 0 for p > 1 and d
2M(x) ≤ 0 for p < 1. The

result then follows from Theorem 7.7. 2

Note. The second part of the theorem also follows from Minkowski’s inequal-

ity by writing α
1/p
i xi for xi and α

1/p
i yi for yi in (23.2) and (23.4).

Exercises

1. Show that p logMp(x, a) is a convex function of p.

2. Hence show that the function Mp ≡Mp(x, a) satisfies

Mp
p ≤

n∏

i=1

M δipi

pi

for every pi, where

p =

n∑

i=1

δipi, 0 < δi < 1,

n∑

i=1

δi = 1.

29 LEAST SQUARES

The last topic in this chapter on inequalities deals with least-squares prob-
lems. In Theorem 34 we wish to approximate a given vector d by a linear
combination of the columns of a given matrix A.
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Theorem 34 (least squares)

Let A be a given n× k matrix, and d a given n× 1 vector. Then

(Ax − d)′(Ax− d) ≥ d′(I −AA+)d (1)

for every x in IRk, with equality if and only if

x = A+d+ (I −A+A)q (2)

for some q in IRk.

Note. In the special case where A has full column rank k, we have A+ =
(A′A)−1A′ and hence a unique vector x∗ exists which minimizes (Ax−d)′(Ax−
d) over all x, namely

x∗ = (A′A)−1A′d. (3)

Proof. Consider the real-valued functions φ : IRk → IR defined by

φ(x) = (Ax− d)′(Ax− d). (4)

Differentiating φ we obtain

dφ = 2(Ax− d)′d(Ax− d) = 2(Ax− d)′Adx. (5)

Since φ is convex it has an absolute minimum at points x which satisfy dφ(x) =
0, that is,

A′Ax = A′d. (6)

Using Theorem 2.12 we see that Equation (6) is consistent, and that its general
solution is given by

x = (A′A)+A′d+ (I − (A′A)+A′A)q

= A+d+ (I −A+A)q. (7)

Hence Ax = AA+d, and the absolute minimum is

(Ax− d)′(Ax − d) = d′(I −AA+)d. (8)

This completes the proof. 2
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30 GENERALIZED LEAST SQUARES

As an immediate generalization of Theorem 34, let us prove Theorem 35.

Theorem 35 (generalized least squares)

Let A be a given n× k matrix, d a given n× 1 vector and B a given positive
semidefinite n× n matrix. Then

(Ax − d)′B(Ax − d) ≥ d′Cd (1)

with

C = B −BA(A′BA)+A′B (2)

for every x in IRk, with equality if and only if

x = (A′BA)+A′Bd+ (I − (A′BA)+A′BA)q (3)

for some q in IRk.

Proof. Let d0 = B1/2d and A0 = B1/2A, and apply Theorem 34. 2

Exercises

1. Consider the matrix C defined in (2). Show that (i) C is symmetric
and positive semidefinite, (ii) CA = 0, and (iii) C is idempotent if B is
idempotent.

2. Consider the solution for x in (3). Show that (i) x is unique if and only
if A′BA is non-singular, and (ii) Ax is unique if and only if r(A′BA) =
r(A).

31 RESTRICTED LEAST SQUARES

The next result determines the minimum of a quadratic form when x is subject
to linear restrictions.

Theorem 36 (restricted least squares)

Let A be a given n× k matrix, d a given n× 1 vector and B a given positive
semidefinite n × n matrix. Further, let R be a given m × k matrix and r a
given m× 1 vector such that RR+r = r. Then

(Ax− d)′B(Ax − d) ≥
(
d
r

)′ (
C11 C12

C′
12 C22

)(
d
r

)
(1)
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for every x in IRk satisfying Rx = r. Here

C11 = B +BAN+R′(RN+R′)+RN+A′B −BAN+A′B,

C12 = −BAN+R′(RN+R′)+, C22 = (RN+R′)+ − I, (2)

and N = A′BA+R′R. Equality occurs if and only if

x = x0 +N+R′(RN+R′)+(r −Rx0) + (I −N+N)q, (3)

where x0 = N+A′Bd and q is an arbitrary k × 1 vector.

Proof. Define the Lagrangian function

ψ(x) =
1

2
(Ax − d)′B(Ax− d) − l′(Rx− r), (4)

where l is an m × 1 vector of Langrange multipliers. Differentiating ψ we
obtain

dψ = x′A′BAdx− d′BAdx− l′Rdx. (5)

The first-order conditions are therefore

A′BAx−R′l = A′Bd, (6)

Rx = r, (7)

which we can write as one equation as
(
A′BA R′

R 0

)(
x
−l

)
=

(
A′Bd
r

)
. (8)

According to Theorem 3.23, Equation (8) in x and l has a solution if and only
if

A′Bd ∈ M(A′BA,R′) and r ∈ M(R), (9)

in which case the general solution for x is

x = [N+ −N+R′(RN+R′)+RN+]A′Bd

+ N+R′(RN+R′)+r + (I −NN+)q (10)

where N = A′BA+R′R and q is arbitrary.
The consistency conditions (9) being satisfied, the general solution for x

is given by (10) which we rewrite as

x = x0 +N+R′(RN+R′)+(r −Rx0) + (I −NN+)q, (11)

where x0 = N+A′Bd. Since ψ is convex (independent of the signs of the
components of l), constrained absolute minima occur at points x satisfying
(11). The value of the absolute minimum is obtained by inserting (11) in
(Ax− d)′B(Ax − d). 2

Exercises
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1. Let V be a given positive semidefinite matrix, and let A be a given
matrix and b a given vector such that b ∈ M(A). The class of solutions
to the problem

minimize x′V x

subject to Ax = b

is given by
x = V +

0 A′(AV +
0 A′)+b+ (I − V +

0 V0)q,

where V0 = V +A′A and q is an arbitrary vector. Moreover, if M(A′) ⊂
M(V ), then the solution simplifies to

x = V +A′(AV +A′)+b+ (I − V +V )q.

2. Hence show that
min
Ax=b

x′V x = b′Cb,

where C = (AV +
0 A′)+ − I. Also show that, if M(A′) ⊂ M(V ), the

matrix C simplifies to C = (AV +A′)+.

32 RESTRICTED LEAST SQUARES: MATRIX VERSION

Finally, let us prove the following matrix version of Theorem 36, which we
shall have opportunity to apply in Section 13.16.

Theorem 37

Let B be a given positive semidefinite matrix, and let W and R be given
matrices such that M(W ) ⊂ M(R). Then

trX ′BX ≥ trW ′CW (1)

for every X satisfying RX = W . Here

C = (RB+
0 R

′)+ − I, B0 = B +R′R. (2)

Equality occurs if and only if

X = B+
0 R

′(RB+
0 R

′)+W + (I −B0B
+
0 )Q, (3)

where Q is an arbitrary matrix of appropriate order.
Moreover, if M(R′) ⊂ M(B), then C simplifies to

C = (RB+R′)+ (4)

with equality occurring if and only if

X = B+R′(RB+R′)+W + (I −BB+)Q. (5)
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Proof. Consider the Lagrangian function

ψ(X) =
1

2
trX ′BX − trL′(RX −W ), (6)

where L is a matrix of Lagrange multipliers. Differentiating leads to

dψ(X) = trX ′BdX − trL′RdX. (7)

Hence we obtain the first-order conditions

BX = R′L, (8)

RX = W, (9)

which we write as one matrix equation
(
B R′

R 0

)(
X
−L

)
=

(
0
W

)
. (10)

According to Theorem 3.24, Equation (10) is consistent, because M(W ) ⊂
M(R); the solution for X is

X = B+
0 R

′(RB+
0 R

′)+W + (I −B0B
+
0 )Q (11)

in general, and

X = B+R′(RB+R′)+W + (I −BB+)Q (12)

if M(R′) ∈ M(B). Since ψ is convex, the constrained absolute minima occur
at points X satisfying (11) or (12). The value of the absolute minimum is
obtained by inserting (11) or (12) in trX ′BX . 2

Exercise

1. Let X be given by (3). Show that X ′a is unique if and only if a ∈ M(B :
R′).

MISCELLANEOUS EXERCISES

1. Show that log x ≤ x − 1 for every x > 0 with equality if and only if
x = 1.

2. Hence show that log |A| ≤ trA − n for every positive definite n × n
matrix A, with equality if and only if A = In.

3. Show that
|A+B|/|A| ≤ exp[tr(A−1B)]

where A and A + B are positive definite, with equality if and only if
B = 0.
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4. For any positive semidefinite n× n matrix A and n× 1 vector b,

0 ≤ b′(A+ bb′)+b ≤ 1

with equality if and only if b = 0 or b 6= M(A).

5. Let A be positive definite and B symmetric, both of order n. Then

min
1≤i≤n

λi(A
−1B) ≤ x′Bx

x′Ax
≤ max

1≤i≤n
λi(A

−1B)

for every x 6= 0.

6. Let A be a symmetric m×m matrix and let B be an m× n matrix of
rank n. Let C = (B′B)−1B′AB. Then

min
1≤i≤n

λi(C) ≤ x′Ax

x′x
≤ max

1≤i≤n
λi(C)

for every x ∈ M(B).

7. Let A be an m×n matrix with full column rank, and let ı be the m× 1
vector consisting of ones only. Assume that ı is the first column of A.
Then

x′(A′A)−1x ≥ 1/m

for every x satisfying x1 = 1, with equality if and only if x = (1/m)A′ı.

8. Let A be an m×n matrix of rank r. Let δ1, . . . , δr be the singular values
of A (that is, the positive square roots of the non-zero eigenvalues of
AA′), and let δ = δ1 + δ2 + · · · + δr. Then

−δ ≤ trAX ≤ δ

for every n×m matrix X satisfying X ′X = Im.

9. Let A be a positive definite n × n matrix and B an m × n matrix of
rank m. Then

x′Ax ≥ b′(BA−1B′)−1b

for every x satisfying Bx = b.
Equality occurs if and only if x = A−1B′(BA−1B′)−1b.

10. Let A be a positive definite n×n matrix and B an m×n matrix. Then

trX ′AX ≥ tr(BA−1B′)−1

for every n×m matrix X satisfying BX = Im, with equality if and only
if X = A−1B′(BA−1B′)−1.
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11. Let A and B be matrices of the same order, and assume that A has full
row rank. Define C = A′(AA′)−1B. Then

trX2 ≥ 2 trC(I −A+A)C′ + 2 trC2

for every symmetric matrix X satisfying AX = B, with equality if and
only if X = C + C′ − CA′(AA′)−1A.

12. For any symmetric matrix S, let µ(S) denote its largest eigenvalue in
absolute value. Then, for any positive semidefinite n× n matrix V and
m× n matrix A we have

(i) µ(AV A′) ≤ µ(V )µ(AA′),

(ii) µ(V )AA′ −AV A′ is positive semidefinite,

(iii) trAV A′ ≤ µ(V ) trAA′ ≤ (trV )(trAA′),

(iv) trV 2 ≤ µ(V ) trV ,

(v) tr(AV A′)2 ≤ µ2(V )µ(AA′) trAA′.

13. Let A and B be positive semidefinite matrices of the same order. Show
that √

trAB ≤ 1

2
(trA+ trB)

with equality if and only if A = B and r(A) ≤ 1 (Yang 1988, Neudecker
1992).

14. For any two matrices A and B of the same order,

(i) 2(AA′ +BB′) − (A+B)(A+B)′ is positive semidefinite,

(ii) µ[(A+B)(A +B)′] ≤ 2 (µ(AA′) + µ(BB′)),

(iii) tr(A+B)(A+B)′ ≤ 2(trAA′ + trBB′).

15. Let A,B and C be matrices of the same order. Show that

µ(ABC + C′B′A′) ≤ 2 (µ(AA′)µ(BB′)µ(CC′))
1/2

.

In particular, if A,B and C are symmetric,

µ(ABC + CBA) ≤ 2µ(A)µ(B)µ(C).

16. Let A be a positive definite n × n matrix with eigenvalues 0 < λ1 ≤
λ2 ≤ · · · ≤ λn. Show that the matrix

(λ1 + λn)In −A− (λ1λn)A
−1

is positive semidefinite with rank ≤ n − 2. [Hint: Use the fact that
x2 − (a+ b)x+ ab ≤ 0 for all x ∈ [a, b].]
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17. (Kantorovich inequality) Let A be a positive definite n× n matrix with
eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λn. Use the previous exercise to prove
that

1 ≤ (x′Ax)(x′A−1x) ≤ (λ1 + λn)2

4λ1λn

for every x ∈ IRn satisfying x′x = 1 (Kantorovich 1948, Greub and
Rheinboldt 1959).

18. For any two matrices A and B satisfying A′B = I, we have

B′B ≥ (A′A)−1, A′A ≥ (B′B)−1.

[Hint: Use the fact that I −A(A′A)−1A′ ≥ 0.]

19. Hence, for any positive definite n×n matrix A and n×k matrix X with
r(X) = k, we have

(X ′X)−1X ′AX(X ′X)−1 ≥ (X ′A−1X)−1.

20. (Kantorovich inequality, matrix version). Let A be a positive definite
matrix with eigenvalues 0 < λ1 ≤ λ2 ≤ · · · ≤ λn. Show that

(X ′A−1X)−1 ≤ X ′AX ≤ (λ1 + λn)2

4λ1λn
(X ′A−1X)−1

for every X satisfying X ′X = I.

21. (Bergstrom’s inequality, matrix version). Let A and B be positive defi-
nite and X of full column rank. Then

(X ′(A+B)−1X)−1 ≥ (X ′A−1X)−1 + (X ′B−1X)−1

(Marshall and Olkin 1979, pp. 469–473; and Neudecker and Liu 1995).

22. Let A and B be positive definite matrices of the same order. Show that

2(A−1 +B−1)−1 ≤ A1/2(A−1/2BA−1/2)1/2A1/2 ≤ 1

2
(A+B).

This provides a matrix version of the harmonic-geometric-arithmetic
mean inequality (Ando 1979, 1983).

23. Let A be positive definite and B symmetric such that |A+B| 6= 0. Prove
that

(A+B)−1B(A+B)−1 ≤ A−1 − (A+B)−1.

Prove further that the inequality is strict if and only if B is non-singular
(see Olkin 1983).
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24. Let A be positive definite and V1, V2, . . . , Vm positive semidefinite, all of
the same order. Then

m∑

i=1

(A+ V1 + · · · + Vi)
−1Vi(A+ V1 + · · · + Vi)

−1 ≤ A−1

(Olkin 1983).

25. Let A be a positive definite n× n matrix and let B1, . . . , Bm be n × r
matrices. Then

m∑

i=1

trB′
i(A+B1B

′
1 + · · · +BiB

′
i)

−2Bi < trA−1

(Olkin 1983).

26. Let the n× n matrix A have real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Show
that

(i) m− s(n− 1)1/2 ≤ λ1 ≤ m− s(n− 1)−1/2,

(ii) m+ s(n− 1)−1/2 ≤ λn ≤ m+ s(n− 1)1/2,

where
m = (1/n) trA, s2 = (1/n) trA2 −m2.

Equality holds on the left (right) of (i) if and only if equality holds on
the left (right) of (ii) if and only if the n−1 largest (smallest) eigenvalues
are equal (Wolkowicz and Styan 1980).
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CHAPTER 12

Statistical preliminaries

1 INTRODUCTION

The purpose of this chapter is to review briefly those statistical concepts and
properties that we shall use in the remainder of this book. No attempt is made
to be either exhaustive or rigorous.

It is assumed that the reader is familiar (however vaguely) with the con-
cepts of probability and random variables and has a rudimentary knowledge
of Riemann integration. Integrals are necessary in this chapter, but they will
not appear in any other chapter of the book.

2 THE CUMULATIVE DISTRIBUTION FUNCTION

If x is a real-valued random variable, we define the cumulative distribution
function F by

F (ξ) = Pr(x ≤ ξ). (1)

Thus, F (ξ) specifies the probability that the random variable x is at most
equal to a given number ξ.

It is clear that F is non-decreasing and that

lim
ξ→−∞

F (ξ) = 0, lim
ξ→∞

F (ξ) = 1. (2)

Similarly, if (x1, . . . , xn)
′ is an n × 1 vector of real random variables, we

define the cumulative distribution function F by

F (ξ1, ξ2, . . . , ξn) = Pr(x1 ≤ ξ1, x2 ≤ ξ2, . . . , xn ≤ ξn), (3)

which specifies the probability of the joint occurrence xi ≤ ξi for all i.

275
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3 THE JOINT DENSITY FUNCTION

Let F be the cumulative distribution function of a real-valued random variable
x. If there exists a non-negative real-valued (in fact, Lebesgue-measurable)
function f such that

F (ξ) =

∫ ξ

−∞

f(y)dy (1)

for all y ∈ IR, then we say that x is a continuous random variable and f is
called its density function. In this case the derivative of F exists and we have

dF (ξ)/dξ = f(ξ). (2)

(Strictly speaking, (2) is true except for a set of values of ξ of probability
zero.) The density function satisfies

f(ξ) ≥ 0,

∫ ∞

−∞

f(ξ)dξ = 1. (3)

In the case of a continuous n× 1 random vector (x1, . . . , xn)′, there exists
a non-negative real-valued function f such that

F (ξ1, ξ2, . . . , ξn) =

∫ ξ1

−∞

∫ ξ2

−∞

· · ·
∫ ξn

−∞

f(y1, y2, . . . , yn) dy1dy2 · · · dyn (4)

for all (y1, y2, . . . , yn) ∈ IRn, in which case

∂nF (ξ1, ξ2, . . . , ξn)

∂ξ1∂ξ2 · · · ∂ξn
= f(ξ1, ξ2, . . . , ξn) (5)

at all points in IRn (except possibly for a set of probability 0). The function
f defined by (4) is called the joint density function of (x1, . . . , xn).

In this and subsequent chapters we shall only be concerned with continuous
random variables.

4 EXPECTATIONS

The expectation (or expected value) of any function g of a random variable x
is defined as

Eg(x) =

∫ ∞

−∞

g(ξ)f(ξ)dξ, (1)

if the integral exists. More generally, let x = (x1, . . . , xn)
′ be a random n× 1

vector with joint density function f . Then the expectation of any function g
of x is defined as

Eg(x) =

∫ ∞

−∞

· · ·
∫ ∞

−∞

g(ξ1, . . . , ξn) f(ξ1, . . . , ξn) dξ1 · · · dξn (2)
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if the n-fold integral exists.
If G = (gij) is an m × p matrix function, then we define the expectation

of the matrix G as the m× p matrix of the expectations

EG(x) = (Egij(x)). (3)

Below we list some useful elementary facts about expectations when they
exist. The first of these is

EA = A (4)

where A is a matrix of constants. Next,

EAG(x)B = A(EG(x))B (5)

where A and B are matrices of constants and G is a matrix function. Finally,

E
∑

i

αiGi(x) =
∑

i

αiEGi(x) (6)

where the αi are constants and the Gi are matrix functions. This last property
characterizes expectation as a linear operator.

5 VARIANCE AND COVARIANCE

If x is a random variable, we define its variance as

V(x) = E(x− Ex)2. (1)

If x and y are two random variables with a joint density function, we define
their covariance as

C(x, y) = E(x− Ex)(y − Ey). (2)

If C(x, y) = 0, we say that x and y are uncorrelated.
We note the following facts about two random variables x and y and two

constants α and β:

V(x+ α) = V(x), (3)

V(αx) = α2V(x), (4)

V(x+ y) = V(x) + V(y) + 2C(x, y), (5)

C(αx, βy) = αβ C(x, y). (6)

If x and y are uncorrelated, we obtain as a special case of (5):

V(x+ y) = V(x) + V(y). (7)
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Let us now consider the multivariate case. We define the variance (matrix)
of an n× 1 random vector x as the n× n matrix

V(x) = E(x− Ex)(x − Ex)′. (8)

It is clear that the ij-th (i 6= j) element of V(x) is just the covariance between
xi and xj , and that the i-th diagonal element of V(x) is just the variance of
xi.

Theorem 1

Each variance matrix is symmetric and positive semidefinite.

Proof. Symmetry is obvious. To prove that V(x) is positive semidefinite, define
a real-valued random variable y = a′(x − Ex), where a is an arbitrary n × 1
vector. Then,

a′V(x)a = a′E(x − Ex)(x − Ex)′a = Ea′(x− Ex)(x − Ex)′a = Ey2 ≥ 0, (9)

and hence V(x) is positive semidefinite. 2

The determinant |V(x)| is sometimes called the generalized variance of x.
The variance matrix of an m×n random matrix X is defined as the mn×mn
variance matrix of vecX .

If x is a random n× 1 vector and y a random m× 1 vector, then we define
the covariance (matrix) between x and y as the n×m matrix

C(x, y) = E(x − Ex)(y − Ey)′. (10)

If C(x, y) = 0 we say that the two vectors x and y are uncorrelated.
The next two results generalize properties (3)–(7) to the multivariate case.

Theorem 2

Let x be a random n× 1 vector and define y = Ax+ b, where A is a constant
m× n matrix and b a constant m× 1 vector. Then

Ey = AEx + b, V(y) = AV(x)A′. (11)

Proof. The proof is left as an exercise for the reader. 2

Theorem 3

Let x and y be random n× 1 vectors and let z be a random m× 1 vector. Let
A (p× n) and B (q ×m) be matrices of constants. Then

V(x+ y) = V(x) + V(y) + C(x, y) + C(y, x), (12)

C(Ax,Bz) = AC(x, z)B′, (13)
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and, if x and y are uncorrelated,

V(x+ y) = V(x) + V(y). (14)

Proof. The proof is easy and again left as an exercise. 2

Finally, we present the following useful result regarding the expected value
of a quadratic form.

Theorem 4

Let x be a random n×1 vector with Ex = µ and V(x) = Ω. Let A be an n×n
matrix. Then

Ex′Ax = trAΩ + µ′Aµ. (15)

Proof. We have

Ex′Ax = E trx′Ax = E trAxx′

= tr EAxx′ = trA(Exx′)
= trA(Ω + µµ′) = trAΩ + µ′Aµ, (16)

which is the desired result. 2

Exercises

1. Show that x has a degenerate distribution if and only if V(x) = 0. (A
random vector x is said to have a degenerate distribution if Pr(x = ξ) =
1 for some ξ. If x has a degenerate distribution we also say that x = ξ
almost surely (a.s.) or with probability one.)

2. Show that V(x) is positive definite if and only if the distribution of a′x
is non-degenerate for all a 6= 0.

6 INDEPENDENCE OF TWO RANDOM VARIABLES

Let f(x, y) be the joint density function of two random variables x and y.
Suppose we wish to calculate a probability that concerns only x, say the
probability of the event

a < x < b, (1)

where a < b. We then have

Pr(a < x < b) = Pr(a < x < b, −∞ < y <∞)

=

∫ b

a

∫ ∞

−∞

f(x, y) dydx =

∫ b

a

fx(x) dx, (2)



280 Statistical preliminaries [Ch. 12

where

fx(x) =

∫ ∞

−∞

f(x, y) dy. (3)

is called the marginal density function of x. Similarly we define

fy(y) =

∫ ∞

−∞

f(x, y) dx (4)

as the marginal density function of y. We proceed to define the important
concept of independence.

Definition 1

Let f(x, y) be the joint density function of two random variables x and y
and let fx(x) and fy(y) denote the marginal density functions of x and y
respectively. Then we say that x and y are (stochastically) independent if

f(x, y) = fx(x)fy(y). (5)

The following result states that functions of independent variables are
uncorrelated.

Theorem 5

Let x and y be two independent random variables. Then, for any functions g
and h,

Eg(x)h(y) = (Eg(x))(Eh(y)) (6)

if the expectations exist.

Proof. We have

Eg(x)h(y) =

∫ ∞

−∞

∫ ∞

−∞

g(x)h(y)fx(x)fy(y) dx dy

=

(∫ ∞

−∞

g(x)fx(x) dx

)(∫ ∞

−∞

h(y)fy(y) dy

)

= Eg(x)Eh(y), (7)

which completes the proof. 2

As an immediate consequence of Theorem 5 we obtain Theorem 6.

Theorem 6

If two random variables are independent, they are uncorrelated.
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The converse of Theorem 6 is not, in general, true (see Exercise 1). A
partial converse is given in Theorem 8.

If x and y are random vectors rather than random variables, straightfor-
ward extensions of Definition 1 and Theorems 5 and 6 hold.

Exercise

1. Let x be a random variable with Ex = Ex3 = 0. Show that x and x2 are
uncorrelated, but not in general independent.

7 INDEPENDENCE OF n RANDOM VARIABLES

The notion of independence can be extended in an obvious manner to the case
of three or more random variables (vectors).

Definition 2

Let the random variables x1, . . . , xn have joint density function f(x1, . . . , xn)
and marginal density functions f1(x1), . . . , fn(xn), respectively. Then we say
that x1, . . . , xn are (mutually) independent if

f(x1, . . . , xn) = f1(x1) · · · fn(xn). (1)

We note that, if x1, . . . , xn are independent in the sense of Definition 2, they
are pairwise independent (that is, xi and xj are independent for all i 6= j), but
that the converse is not true. Thus pairwise independence does not necessarily
imply mutual independence.

Again the extension to random vectors is straightforward.

8 SAMPLING

Let x1, . . . , xn be independent random variables (vectors), each with the same
density function f(x). Then we say that x1, . . . , xn are independent and iden-
tically distributed (i.i.d.) or, equivalently, that they constitute a (random)
sample (of size n) from a distribution with density function f(x).

Thus, if we have a sample x1, . . . , xn from a distribution with density f(x),
the joint density function of the sample is

f(x1)f(x2) · · · f(xn).

9 THE ONE-DIMENSIONAL NORMAL DISTRIBUTION

The most important of all distributions — and the only one that will play a
role in the subsequent chapters of this book — is the normal distribution. Its
density function is defined as

f(x) =
1√

2πσ2
exp

(
−1

2

(x− µ)2

σ2

)
(1)
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for −∞ < x < ∞, where µ and σ2 are the parameters of the distribution. If
x is distributed as in (1), we write

x ∼ N (µ, σ2). (2)

If µ = 0 and σ2 = 1 we say that x is standard-normally distributed.
Without proof we present the following theorem.

Theorem 7

If x ∼ N (µ, σ2), then

Ex = µ, Ex2 = µ2 + σ2, (3)

Ex3 = µ(µ2 + 3σ2), Ex4 = µ4 + 6µ2σ2 + 3σ4, (4)

and hence

V(x) = σ2, V(x2) = 2σ4 + 4µ2σ2. (5)

10 THE MULTIVARIATE NORMAL DISTRIBUTION

A random n × 1 vector x is said to be normally distributed if its density
function is given by

f(x) = (2π)−n/2|Ω|−1/2 exp

(
−1

2
(x− µ)′Ω−1(x− µ)

)
(1)

for x ∈ IRn, where µ is an n× 1 vector and Ω a non-singular symmetric n×n
matrix.

It is easily verified that (1) reduces to the one-dimensional normal density
(9.1) in the case n = 1.

If x is distributed as in (1), we write

x ∼ N (µ,Ω) (2)

or, occasionally, if we wish to emphasize the dimension of x,

x ∼ Nn(µ,Ω). (3)

The parameters µ and Ω are just the expectation and variance matrix of x:

Ex = µ, V(x) = Ω. (4)

We shall present (without proof) five theorems concerning the multivariate
normal distribution which we shall need in the following chapters. The first
of these provides a partial converse of Theorem 6.
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Theorem 8

If x and y are normally distributed with C(x, y) = 0, then they are indepen-
dent.

Next, let us consider the marginal distributions associated with the mul-
tivariate normal distribution.

Theorem 9

The marginal distributions associated with a normally distributed vector are
also normal. That is, if x ∼ N (µ,Ω) is partitioned as

(
x1

x2

)
∼ N

[(
µ1

µ2

)
,

(
Ω11 Ω12

Ω21 Ω22

)]
, (5)

then the marginal distribution of x1 is N (µ1,Ω11) and the marginal distribu-
tion of x2 is N (µ2,Ω22).

A crucial property of the normal distribution is given in Theorem 10.

Theorem 10

An affine transformation of a normal vector is again normal. That is, if x ∼
N (µ,Ω) and y = Ax+ b where A has full row rank, then

y ∼ N (Aµ + b, AΩA′). (6)

If µ = 0 and Ω = In we say that x is standard-normally distributed and
we write

x ∼ N (0, In). (7)

Theorem 11

If x ∼ N (0, In), then x and x⊗ x are uncorrelated.

Proof. Noting that

Exixjxk = 0 for all i, j, k, (8)

the result follows. 2

Let us conclude this section with two results on quadratic forms in normal
variables, the first of which is a special case of Theorem 4.
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Theorem 12

If x ∼ Nn(µ,Ω) and A is a symmetric n× n matrix, then

Ex′Ax = trAΩ + µ′Aµ (9)

and

V(x′Ax) = 2 tr(AΩ)2 + 4µ′AΩAµ. (10)

Exercise

1. (Proof of (10)) Let x ∼ N (µ,Ω) and A = A′. Let T be an orthogonal
matrix and Λ a diagonal matrix such that

T ′Ω1/2AΩ1/2T = Λ (11)

and define

y = T ′Ω−1/2(x− µ), ω = T ′Ω1/2Aµ. (12)

Prove that

(a) y ∼ N (0, In),

(b) x′Ax = y′Λy + 2ω′y + µ′Aµ,

(c) y′Λy and ω′y are uncorrelated,

(d) V(y′Λy) = 2 trΛ2 = 2 tr(AΩ)2,

(e) V(ω′y) = ω′ω = µ′AΩAµ,

(f) V(x′Ax) = V(y′Λy) + V(2ω′y) = 2 tr(AΩ)2 + 4µ′AΩAµ.

11 ESTIMATION

Statistical inference asks the question: Given a sample, what can be inferred
about the population from which it was drawn? Most textbooks distinguish
between point estimation, interval estimation and hypothesis testing. In the
following we shall only be concerned with point estimation.

In the theory of point estimation we seek to select a function of the ob-
servations that will approximate a parameter of the population in some well-
defined sense. A function of the hypothetical observations used to approximate
a parameter (vector) is called an estimator. An estimator is thus a random
variable. The realized value of the estimator, i.e. the value taken when a
specific set of sample observations is inserted in the function, is called an
estimate.
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Let θ be the parameter (vector) in question and let θ̂ be an estimator of

θ. The sampling error of an estimator θ̂ is defined as

θ̂ − θ (1)

and, of course, we seek estimators whose sampling errors are small. The ex-
pectation of the sampling error,

E(θ̂ − θ), (2)

is called the bias of θ̂. An unbiased estimator is one whose bias is zero. The
expectation of the square of the sampling error,

E(θ̂ − θ)(θ̂ − θ)′, (3)

is called the mean squared error of θ̂, and denoted MSE (θ̂). We always have

MSE (θ̂) ≥ V(θ̂) (4)

with equality if and only if θ̂ is an unbiased estimator of θ.
Two constructive methods of obtaining estimators with desirable prop-

erties are the method of best linear (affine, quadratic) unbiased estimation
(introduced and employed in Chapters 13 and 14) and the method of maxi-
mum likelihood (Chapters 15–17).

MISCELLANEOUS EXERCISES

1. Let φ be a density function depending on a vector parameter θ and
define

f = ∂ logφ/∂θ, F =
∂2 logφ

∂θ∂θ′
, G =

∂ vecF

∂θ′
.

Show that

−EG = E((vecF + f ⊗ f)f ′) + E(f ⊗ F + F ⊗ f)

if differentiating under the integral sign is permitted (Lancaster 1984).

2. Let x1, . . . , xn be a sample from the Np(µ, V ) distribution, and let X be
the n×p matrix X = (x1, . . . , xn)′. Let A be a symmetric n×n matrix,
and define α = ı′Aı and β = ı′A2ı. Prove that

E(X ′AX) = (trA)V + αµµ′

V(vecX ′AX) = (I +Kp)
(
(trA2)(V ⊗ V ) + β(V ⊗ µµ′ + µµ′ ⊗ V )

)

(Neudecker 1985a).
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3. Let the p × 1 random vectors xi (i = 1, . . . , n) be independently dis-
tributed as Np(µi, V ). Let X = (x1, . . . , xn)

′ and M = (µ1, . . . , µn)
′.

Let A be an arbitrary n × n matrix, not necessarily symmetric. Prove
that

E(X ′AX) = M ′AM + (trA)V,

V(vecX ′AX) = (trA′A)(V ⊗ V ) + (trA2)Kpp(V ⊗ V )

+M ′A′AM ⊗ V + V ⊗M ′AA′M

+Kpp(M
′A2M ⊗ V + (V ⊗M ′A2M)′)

(Neudecker 1985b).

BIBLIOGRAPHICAL NOTES

Two good texts at the intermediate level are Mood, Graybill and Boes (1974)
and Hogg and Craig (1970). More advanced treatments can be found in Wilks
(1962), Rao (1973), or Anderson (1984).



CHAPTER 13

The linear regression model

1 INTRODUCTION

In this chapter we consider the general linear regression model

y = Xβ + ǫ, β ∈ B, (1)

where y is an n×1 vector of observable random variables,X is a non-stochastic
n× k matrix (n ≥ k) of observations of the regressors and ǫ is an n× 1 vector
of (non-observable) random disturbances with

Eǫ = 0, Eǫǫ′ = σ2V, (2)

where V is a known positive semidefinite n × n matrix and σ2 is unknown.
The k × 1 vector β of regression coefficients is supposed to be a fixed but
unknown point in the parameter space B. The problem is that of estimating
(linear combinations of) β on the basis of the vector of observations y.

To save space we shall denote the linear regression model by the triplet

(y,Xβ, σ2V ). (3)

We shall make varying assumptions about the rank of X and the rank of V .
We assume that the parameter space B is either the k-dimensional Eu-

clidean space

B = IRk, (4)

or a non-empty affine subspace of IRk, having the representation

B = {β : Rβ = r, β ∈ IRk}, (5)

where the matrix R and the vector r are non-stochastic. Of course, by putting
R = 0 and r = 0, we obtain (4) as a special case of (5); nevertheless, distin-
guishing between the two cases is useful.

287
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The purpose of this chapter is to derive the ‘best’ affine unbiased esti-
mator of (linear combinations of) β. The emphasis is on ‘derive’. We are not
satisfied with simply presenting an estimator and then showing its optimality;
rather we wish to describe a method by which estimators can be constructed.
The constructive device that we seek is the method of affine minimum-trace
unbiased estimation.

2 AFFINE MINIMUM-TRACE UNBIASED ESTIMATION

Let (y,Xβ, σ2V ) be the linear regression model and consider, for a given
matrix W , the parametric function Wβ. An estimator of Wβ is said to be
affine if it is of the form

Ay + c, (1)

where the matrix A and the vector c are fixed and non-stochastic. An unbiased
estimator of Wβ is an estimator, say Ŵβ, such that

E(Ŵβ) = Wβ for all β ∈ B. (2)

If there exists at least one affine unbiased estimator of Wβ (that is, if the class
of affine unbiased estimators is not empty), then we say that Wβ is estimable.
A complete characterization of the class of estimable functions is given in
Section 7. If Wβ is estimable, we are interested in the ‘best’ estimator among
its affine unbiased estimators. The following definition makes this concept
precise.

Definition 1

The best affine unbiased estimator of an estimable parametric function Wβ

is an affine unbiased estimator of Wβ, say Ŵβ, such that

V(Ŵβ) ≤ V(θ̂) (3)

for all affine unbiased estimators θ̂ of Wβ.

As yet there is no guarantee that there exists a best affine unbiased esti-
mator, nor that, if it exists, it is unique. In what follows we shall see that in
all cases considered such an estimator exists and is unique.

We shall find that when the parameter space B is the whole of IRk, then
the best affine unbiased estimator turns out to be linear (that is, of the form
Ay); hence the more common name ‘best linear unbiased estimator’ or BLUE.
However, when B is restricted, then the best affine unbiased estimator is in
general affine.

An obvious drawback of the optimality criterion (3) is that it is not oper-
ational — we cannot minimize a matrix. We can, however, minimize a scalar
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function of a matrix: its trace, its determinant, or its largest eigenvalue. The
trace criterion appears to be the most practical.

Definition 2

The affine minimum-trace unbiased estimator of an estimable parametric

function Wβ is an affine unbiased estimator of Wβ, say Ŵβ, such that

trV(Ŵβ) ≤ trV(θ̂) (4)

for all affine unbiased estimators θ̂ of Wβ.

Now, for any two square matrices B and C, if B ≥ C, then trB ≥ trC.
Hence the best affine unbiased estimator is also an affine minimum-trace un-
biased estimator, but not vice versa. If, therefore, the affine minimum-trace
unbiased estimator is unique (which is always the case in this chapter), then
the affine minimum-trace unbiased estimator is the best affine unbiased esti-
mator, unless the latter does not exist.

Thus the method of affine minimum-trace unbiased estimation is both
practical and powerful.

3 THE GAUSS-MARKOV THEOREM

Let us consider the simplest case, that of the linear regression model

y = Xβ + ǫ, (1)

where X has full column rank k and the disturbances ǫ1, ǫ2, . . . , ǫn are uncor-
related, i.e.

Eǫ = 0, Eǫǫ′ = σ2In. (2)

We shall first demonstrate the following proposition.

Proposition 1

Consider the linear regression model (y,Xβ, σ2I). The affine minimum-trace

unbiased estimator β̂ of β exists if and only if r(X) = k, in which case

β̂ = (X ′X)−1X ′y (3)

with variance matrix

V(β̂) = σ2(X ′X)−1. (4)

Proof. We seek an affine estimator β̂ of β, that is an estimator of the form

β̂ = Ay + c, (5)
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where A is a constant k × n matrix and c is a constant k × 1 vector. The
unbiasedness requirement is

β = E β̂ = AXβ + c for all β in IRk, (6)

which yields

AX = Ik, c = 0. (7)

The constraint AX = Ik can only be imposed if r(X) = k. Necessary, there-
fore, for the existence of an affine unbiased estimator of β is that r(X) = k.
It is sufficient, too, as we shall see.

The variance matrix of β̂ is

V(β̂) = V(Ay) = σ2AA′. (8)

Hence the affine minimum-trace unbiased estimator (that is, the estimator
whose sampling variance has minimum trace within the class of affine unbiased
estimators) is obtained by solving the deterministic problem

minimize
1

2
trAA′ (9)

subject to AX = I. (10)

To solve this problem we define the Lagrangian function ψ by

ψ(A) =
1

2
trAA′ − trL′(AX − I), (11)

where L is a k × k matrix of Lagrange multipliers. Differentiating ψ with
respect to A yields

dψ =
1

2
tr(dA)A′ +

1

2
trA(dA)′ − trL′(dA)X

= trA′
dA− trXL′

dA = tr(A′ −XL′)dA. (12)

The first-order conditions are therefore

A′ = XL′ (13)

AX = Ik. (14)

These equations are easily solved. From

Ik = X ′A′ = X ′XL′ (15)

we find L′ = (X ′X)−1, so that

A′ = XL′ = X(X ′X)−1. (16)
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Since ψ is strictly convex (why?), 1
2 trAA′ has a strict absolute minimum at

A = (X ′X)−1X ′ under the constraint AX = I (see Theorem 7.13). Hence

β̂ = Ay = (X ′X)−1X ′y (17)

is the affine minimum-trace unbiased estimator. Its variance matrix is

V(β̂) = (X ′X)−1X ′(V(y))X(X ′X)−1 = σ2(X ′X)−1. (18)

This completes the proof. 2

Proposition 1 shows that there exists a unique affine minimum-trace unbi-

ased estimator β̂ of β. Hence, if there exists a best affine unbiased estimator

of β, it can only be β̂.

Theorem 1 (Gauss-Markov)

Consider the linear regression model (y,Xβ, σ2I). The best affine unbiased

estimator β̂ of β exists if and only if r(X) = k, in which case

β̂ = (X ′X)−1X ′y (19)

with variance matrix

V(β̂) = σ2(X ′X)−1. (20)

Proof. The only candidate for the best affine unbiased estimator of β is the

affine minimum-trace unbiased estimator β̂ = (X ′X)−1X ′y. Consider an ar-

bitrary affine estimator β̃ of β which we write as

β̃ = β̂ + Cy + d. (21)

The estimator β̃ is unbiased if and only if

CX = 0, d = 0. (22)

Imposing unbiasedness, the variance matrix of β̃ is

V(β̃) = V(β̂ + Cy) = σ2[(X ′X)−1X ′ + C][X(X ′X)−1 + C′]

= σ2(X ′X)−1 + σ2CC′, (23)

which exceeds the variance matrix of β̂ by σ2CC′, a positive semidefinite ma-
trix. 2

Exercises
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1. Show that the function ψ defined in (11) is strictly convex.

2. Show that the constrained minimization problem

minimize 1
2x

′x
subject to Cx = b (consistent)

has a unique solution x∗ = C+b.

3. Problem (9) subject to (10) is equivalent to k separate minimization
problems. The i-th subproblem is

minimize 1
2a

′
iai

subject to X ′ai = ei,

where a′i is the i-th row of A and e′i is the i-th row of Ik. Show that

ai = X(X ′X)−1ei

is the unique solution, and compare this result with (16).

4. Consider the model (y,Xβ, σ2I). The estimator β̂ of β which, in the class

of affine unbiased estimators, minimizes the determinant of V(β̂) (rather

than its trace) is also β̂ = (X ′X)−1X ′y. There are however certain
disadvantages in using the minimum-determinant criterion instead of
the minimum-trace criterion. Discuss these possible disadvantages.

4 THE METHOD OF LEAST SQUARES

Suppose we are given an n× 1 vector y and an n× k matrix X with linearly
independent columns. The vector y and the matrix X are assumed to be
known (and non-stochastic). The problem is to determine the k × 1 vector b
that satisfies the equation

y = Xb. (1)

If X(X ′X)−1X ′y = y, then Equation (1) is consistent and has a unique
solution b∗ = (X ′X)−1X ′y. If X(X ′X)−1X ′y 6= y, then Equation (1) has no
solution. In that case we may seek a vector b∗ which, in a sense, minimizes
the ‘error’ vector

e = y −Xb. (2)

A convenient scalar measure of the ‘error’ would be

e′e = (y −Xb)′(y −Xb). (3)

It follows from Theorem 11.34 that

b∗ = (X ′X)−1X ′y (4)
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minimizes e′e over all b in IRk. The vector b∗ is called the least squares solution
and Xb∗ the least squares approximation to y. Thus b∗ is the ‘best’ choice for
b whether the equation y = Xb is consistent or not. If y = Xb is consistent,
then b∗ is the solution; if y = Xb is not consistent, then b∗ is the least squares
solution.

The surprising fact that the least squares solution and the Gauss-Markov
estimator are identical expressions has led to the unfortunate usage of the term
‘(ordinary) least squares estimator ’ meaning the Gauss-Markov estimator.
The method of least squares, however, is a purely deterministic method which
has to do with approximation, not with estimation.

Exercise

1. Show that the least squares approximation to y is y itself if and only if
the equation y = Xb is consistent.

5 AITKEN’S THEOREM

In Theorem 1 we considered the regression model (y,Xβ, σ2I), where the
random components y1, y2, . . . , yn of the vector y are uncorrelated (but not
identically distributed, since their expectations differ). A slightly more general
set-up, first considered by Aitken (1935), is the regression model (y,Xβ, σ2V ),
where V is a known positive definite matrix. In Aitken’s model the observa-
tions y1, . . . , yn are neither independent nor identically distributed.

Theorem 2 (Aitken)

Consider the linear regression model (y,Xβ, σ2V ), and assume that |V | 6= 0.

The best affine unbiased estimator Ŵβ of Wβ exists for every matrixW (with
k columns) if and only if r(X) = k, in which case

Ŵβ = W (X ′V −1X)−1X ′V −1y (1)

with variance matrix

V(Ŵβ) = σ2W (X ′V −1X)−1W ′. (2)

Note. In fact, Theorem 2 generalizes Theorem 1 in two ways. First, it is
assumed that the variance matrix of y is σ2V rather than σ2I. This then

leads to the best affine unbiased estimator β̂ = (X ′V −1X)−1X ′V −1y of β,

if r(X) = k. The estimator β̂ is usually called Aitken’s estimator (or the
generalized least squares estimator). Secondly, we prove that the best affine

unbiased estimator of an arbitrary linear combination of β, say Wβ, is Wβ̂.

Proof. Let Ŵβ = Ay + c be an affine estimator of Wβ. The estimator is
unbiased if and only if

Wβ = AXβ + c for all β in IRk, (3)
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that is, if and only if

AX = W, c = 0. (4)

The constraint AX = W implies r(W ) ≤ r(X). Since this must hold for every
matrix W, X must have full column rank k.

The variance matrix of Ŵβ is σ2AV A′. Hence the constrained minimiza-
tion problem is

minimize
1

2
trAV A′ (5)

subject to AX = W. (6)

Differentiating the appropriate Lagrangian function

ψ(A) =
1

2
trAV A′ − trL′(AX −W ), (7)

yields the first-order conditions

V A′ = XL′ (8)

AX = W. (9)

Solving these two matrix equations we obtain

L = W (X ′V −1X)−1 (10)

and

A = W (X ′V −1X)−1X ′V −1. (11)

Since the Lagrangian function is strictly convex, it follows that

Ŵβ = Ay = W (X ′V −1X)−1X ′V −1y (12)

is the affine minimum-trace unbiased estimator of Wβ. Its variance matrix is

V(Ŵβ) = σ2AV A′ = W (X ′V −1X)−1W ′. (13)

Let us now show that Ŵβ is not merely the affine minimum-trace unbiased
estimator of Wβ, but the best affine unbiased estimator. Let c be an arbitrary
column vector (such that W ′c is defined), and let β∗ = (X ′V −1X)−1X ′V −1y.
Then c′Wβ∗ is the affine minimum-trace unbiased estimator of c′Wβ. Let

θ̂ be an alternative affine unbiased estimator of Wβ. Then c′θ̂ is an affine
unbiased estimator of c′Wβ, and so

trV(c′θ̂) ≥ trV(c′Wβ∗), (14)
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that is,

c′(V(θ̂))c ≥ c′(V(Wβ∗))c. (15)

Since c is arbitrary, it follows that V(θ̂)− V(Wβ∗) is positive semidefinite. 2

The proof that W (X ′V −1X)−1X ′V −1y is the affine minimum-trace unbi-
ased estimator of Wβ is similar to the proof of Proposition 1. But the proof
that this estimator is indeed the best affine unbiased estimator of Wβ is es-
sentially different from the corresponding proof of Theorem 1, and much more
useful as a general device.

Exercise

1. Show that the model (y,Xβ, σ2V ), |V | 6= 0, is equivalent to the model
(V −1/2y, V −1/2Xβ, σ2I). Hence, as a special case of Theorem 1, obtain

Aitken’s estimator β̂ = (X ′V −1X)−1X ′V −1y.

6 MULTICOLLINEARITY

It is easy to see that Theorem 2 does not cover the topic completely. In fact,
complications of three types may occur, and we shall discuss each of these
in detail. The first complication is that the k columns of X may be linearly
dependent; the second complication arises if we have a priori knowledge that
the parameters satisfy a linear constraint of the form Rβ = r; and the third
complication is that the n× n variance matrix σ2V may be singular.

We shall take each of these complications in turn. Thus we assume in this
and the next section that V is non-singular and that no a priori knowledge
as to constraints of the form Rβ = r is available, but that X fails to have full
column rank. This problem (that the columns of X are linearly dependent) is
called multicollinearity.

If r(X) < k, then no affine unbiased estimator of β can be found, let alone
a best affine unbiased estimator. This is easy to see. Let the affine estimator
be

β̂ = Ay + c. (1)

Then unbiasedness requires

AX = Ik, c = 0, (2)

which is impossible if r(X) < k. Not all hope is lost, however. We shall show
that an affine unbiased estimator of Xβ always exists, and derive the best
estimator of Xβ in the class of affine unbiased estimators.

Theorem 3

Consider the linear regression model (y,Xβ, σ2V ), and assume that |V | 6= 0.
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Then the estimator

X̂β = X(X ′V −1X)+X ′V −1y (3)

is the best affine unbiased estimator of Xβ, and its variance matrix is

V(X̂β) = σ2X(X ′V −1X)+X ′. (4)

Proof. Let the estimator be X̂β = Ay + c. The estimator is unbiased if and
only if

Xβ = AXβ + c for all β in IRk, (5)

which implies

AX = X, c = 0. (6)

Notice that the equation AX = X always has a solution for A, whatever the

rank of X . The variance matrix of X̂β is

V(X̂β) = σ2AV A′. (7)

Hence we consider the following minimization problem:

minimize
1

2
trAV A′ (8)

subject to AX = X, (9)

the solution of which will yield the affine minimum-trace unbiased estimator
of Xβ. The appropriate Lagrangian function is

ψ(A) =
1

2
trAV A′ − trL′(AX −X). (10)

Differentiating (10) with respect to A yields the first-order conditions

V A′ = XL′ (11)

AX = X. (12)

From (11) we have A′ = V −1XL′. Hence

X = AX = LX ′V −1X. (13)

Equation (13) always has a solution for L (why?), but this solution is not
unique unless X has full rank. However LX ′ does have a unique solution,
namely

LX ′ = X(X ′V −1X)+X ′ (14)
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(see Exercise 2). Hence A also has a unique solution:

A = LX ′V −1 = X(X ′V −1X)+X ′V −1. (15)

It follows that X(X ′V −1X)+X ′V −1y is the affine minimum-trace unbiased
estimator of Xβ. Hence, if there is a best affine unbiased estimator of Xβ,
this is it.

Now consider an arbitrary affine estimator

[X(X ′V −1X)+X ′V −1 + C]y + d (16)

of Xβ. This estimator is unbiased if and only if CX = 0 and d = 0. Imposing
unbiasedness, the variance matrix is

σ2X(X ′V −1X)+X ′ + σ2CV C′, (17)

which exceeds the variance matrix of X(X ′V −1X)+X ′V −1y by σ2CV C′, a
positive semidefinite matrix. 2

Exercises

1. Show that the solution A in (15) satisfies AX = X .

2. Prove that (13) implies (14). [Hint: Post-multiply both sides of (13) by
(X ′V −1X)+X ′V −1/2.]

7 ESTIMABLE FUNCTIONS

Recall from Section 2 that, in the framework of the linear regression model
(y,Xβ, σ2V ), a parametric function Wβ is said to be estimable if there exists
an affine unbiased estimator of Wβ. In the previous section we saw that Xβ
is always estimable. We shall now show that any linear combination of Xβ is
also estimable and, in fact, that only linear combinations of Xβ are estimable.
Thus we obtain a complete characterization of the class of estimable functions.

Proposition 2

In the linear regression model (y,Xβ, σ2V ), the parametric function Wβ is
estimable if and only if M(W ′) ⊂ M(X ′).

Note. Proposition 2 holds true whatever the rank of V . If X has full column
rank k, then M(W ′) ⊂ M(X ′) is true for every W , in particular for W = Ik.
If r(X) < k, then M(W ′) ⊂ M(X ′) is not true for every W , and in particular
not for W = Ik.

Proof. Let Ay + c be an affine estimator of Wβ. Unbiasedness requires that

Wβ = E(Ay + c) = AXβ + c for all β in IRk, (1)
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which leads to

AX = W, c = 0. (2)

Hence the matrix A exists if and only if the rows of W are linear combinations
of the rows of X , that is, if and only if M(W ′) ⊂ M(X ′). 2

Let us now demonstrate Theorem 4.

Theorem 4

Consider the linear regression model (y,Xβ, σ2V ), and assume that |V | 6=
0. Then the best affine unbiased estimator Ŵβ of Wβ exists if and only if
M(W ′) ⊂ M(X ′), in which case

Ŵβ = W (X ′V −1X)+X ′V −1y (3)

with variance matrix

V(Ŵβ) = σ2W (X ′V −1X)+W ′. (4)

Proof. To prove that Ŵβ is the affine minimum-trace unbiased estimator of
Wβ, we proceed along the same lines as in the proof of Theorem 3. To prove
that this is the best affine unbiased estimator, we use the same argument as
in the corresponding part of the proof of Theorem 2. 2

Exercises

1. Let r(X) = r < k. Then there exists a k × (k − r) matrix C of full
column rank such that XC = 0. Show that Wβ is estimable if and only
if WC = 0.

2. (Season dummies) Let X ′ be given by

X ′ =




1 1 1 1 1 1 1 1 1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1


 ,

where all undesignated elements are zero. Show that Wβ is estimable if
and only if (1,−1,−1,−1)W ′ = 0.

3. Let β̃ be any solution of the equation X ′V −1Xβ = X ′V −1y. Then the
following three statements are equivalent:

(i) Wβ is estimable,

(ii) Wβ̃ is an unbiased estimator of Wβ,

(iii) Wβ̃ is unique.
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8 LINEAR CONSTRAINTS: THE CASE M(R′) ⊂ M(X ′)

Suppose now that we have a priori information consisting of exact linear
constraints on the coefficients,

Rβ = r, (1)

where the matrix R and the vector r are known. Some authors require that
the constraints are linearly independent, that is, that R has full row rank, but
this is not assumed here. Of course, we must assume that (1) is a consistent
equation, that is, r ∈ M(R) or equivalently

RR+r = r. (2)

To incorporate this extraneous information is clearly desirable, since the re-
sulting estimator will become more efficient.

In this section we discuss the special case where M(R′) ⊂ M(X ′); the
general solution is given in Section 9. This means, in effect, that we impose
linear constraints not on β but on Xβ. Of course, the condition M(R′) ⊂
M(X ′) is automatically fulfilled when X has full column rank.

Theorem 5

Consider the linear regression model (y,Xβ, σ2V ), where β satisfies the con-
sistent linear constraints Rβ = r. Assume that |V | 6= 0 and that M(R′) ⊂
M(X ′). Then the best affine unbiased estimator Ŵβ of Wβ exists if and only
if M(W ′) ⊂ M(X ′), in which case

Ŵβ = Wβ∗ +W (X ′V −1X)+R′[R(X ′V −1X)+R′]+(r −Rβ∗), (3)

where

β∗ = (X ′V −1X)+X ′V −1y. (4)

Its variance matrix is

V(Ŵβ) = σ2W (X ′V −1X)+W ′

− σ2W (X ′V −1X)+R′[R(X ′V −1X)+R′]+R(X ′V −1X)+W ′. (5)

Note. If X has full column rank, we have M(R′) ⊂ M(X ′) for every R,
M(W ′) ⊂ M(X ′) for every W (in particular for W = Ik) and X ′V −1X
is non-singular. If, in addition, R has full row rank, then Rβ = r is always
consistent and R(X ′V −1X)−1R′ is always non-singular.

Proof. We write the affine estimator of Wβ again as

Ŵβ = Ay + c. (6)
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Unbiasedness requires

Wβ = AXβ + c for all β satisfying Rβ = r. (7)

The general solution of Rβ = r is

β = R+r + (I −R+R)q, (8)

where q is an arbitrary k × 1 vector. Replacing β in (7) by its ‘solution’ (8),
we obtain

(W −AX)[R+r + (I −R+R)q] = c for all q, (9)

which implies

(W −AX)R+r = c (10)

and

(W −AX)(I −R+R) = 0. (11)

Solving W −AX from (11) gives

W −AX = BR (12)

where B is an arbitrary k ×m matrix. Inserting (12) in (10) yields

c = BRR+r = Br, (13)

using (2). It follows that the estimator (6) can be written as

Ŵβ = Ay +Br, (14)

while the unbiasedness condition boils down to

AX +BR = W. (15)

Equation (15) can only be satisfied if M(W ′) ⊂ M(X ′ : R′). Since M(R′) ⊂
M(X ′) by assumption, it follows that M(W ′) ⊂ M(X ′) is a necessary con-
dition for the existence of an affine unbiased estimator of Wβ.

The variance matrix of Ŵβ is σ2AV A′. Hence the relevant minimization
problem to find the affine minimum-trace unbiased estimator of Wβ is

minimize
1

2
trAV A′

subject to AX +BR = W. (16)

Let us define the Lagrangian function ψ by

ψ(A,B) =
1

2
trAV A′ − trL′(AX +BR−W ), (17)
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where L is a matrix of Lagrange multipliers. Differentiating ψ with respect to
A and B yields

dψ = trAV (dA)′ − trL′(dA)X − trL′(dB)R

= tr(V A′ −XL′)(dA) − trRL′(dB). (18)

Hence we obtain the first-order conditions

V A′ = XL′ (19)

RL′ = 0 (20)

AX +BR = W. (21)

From (19) we obtain

L(X ′V −1X) = AX. (22)

Regarding (22) as an equation in L, given A, we notice that it has a solution
for every A, because

X(X ′V −1X)+(X ′V −1X) = X. (23)

As in the passage from (6.13) to (6.14), this solution is not, in general, unique.
LX ′ however does have a unique solution:

LX ′ = AX(X ′V −1X)+X ′. (24)

Since M(R′) ⊂ M(X ′) and using (23) we obtain

0 = LR′ = AX(X ′V −1X)+R′

= (W −BR)(X ′V −1X)+R′ (25)

from (20) and (21). This leads to the equation in B,

BR(X ′V −1X)+R′ = W (X ′V −1X)+R′. (26)

Post-multiplying both sides of (26) by [R(X ′V −1X)+R′]+R, and using the
fact that

R(X ′V −1X)+R′[R(X ′V −1X)+R′]+R = R (27)

(see Exercise 2), we obtain

BR = W (X ′V −1X)+R′[R(X ′V −1X)+R′]+R. (28)

Equation (28) provides the solution for BR and, in view of (21), AX . From
these we could obtain (non-unique) solutions for A and B. But these explicit

solutions are not needed since we can write the estimator Ŵβ of Wβ as

Ŵβ = Ay +Br

= LX ′V −1y +BRR+r

= AX(X ′V −1X)+X ′V −1y +BRR+r, (29)
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using (19) and (24). Inserting the solutions for AX and BR in (29) we find

Ŵβ = Wβ∗ +W (X ′V −1X)+R′[R(X ′V −1X)+R′]+(r − Rβ∗). (30)

It is easy to derive the variance matrix of Ŵβ. Finally, to prove that Ŵβ is
not only the minimum-trace estimator but also the best estimator among the
affine unbiased estimators of Wβ, we use the same argument as in the proof
of Theorem 2. 2

Exercises

1. Prove that

R(X ′V −1X)+R′[R(X ′V −1X)+R′]+R(X ′V −1X)+ = R(X ′V −1X)+.

2. Show that M(R′) ⊂ M(X ′) implies R(X ′V −1X)+X ′V −1X = R, and
use this and Exercise 1 to prove (27).

9 LINEAR CONSTRAINTS: THE GENERAL CASE

Recall from Section 7 that a parametric function Wβ is called estimable if
there exists an affine unbiased estimator of Wβ. In Proposition 2 we estab-
lished the class of estimable functions Wβ for the linear regression model
(y,Xβ, σ2V ) without constraints on β. Let us now characterize the estimable
functions Wβ for the linear regression model, assuming that β satisfies certain
linear constraints.

Proposition 3

In the linear regression model (y,Xβ, σ2V ) where β satisfies the consistent
linear constraints Rβ = r, the parametric function Wβ is estimable if and
only if M(W ′) ⊂ M(X ′ : R′).

Proof. We can write the linear regression model with exact linear constraints
as

(
y
r

)
=

(
X
R

)
β + u (1)

with

Eu = 0, Euu′ = σ2

(
V 0
0 0

)
. (2)

Proposition 3 then follows from Proposition 2. 2

Not surprisingly, there are more estimable functions in the constrained
case than there are in the unconstrained case.
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Having established which functions are estimable, we now want to find the
‘best’ estimator for such functions.

Theorem 6

Consider the linear regression model (y,Xβ, σ2V ), where β satisfies the con-
sistent linear constraints Rβ = r. Assume that |V | 6= 0. Then the best affine

unbiased estimator Ŵβ of Wβ exists if and only if M(W ′) ⊂ M(X ′ : R′), in
which case

Ŵβ = Wβ∗ +WG+R′(RG+R′)+(r −Rβ∗), (3)

where

G = X ′V −1X +R′R and β∗ = G+X ′V −1y. (4)

Its variance matrix is

V(Ŵβ) = σ2WG+W ′ − σ2WG+R′(RG+R′)+RG+W ′. (5)

Proof. The proof is similar to the proof of Theorem 5. As there, the estimator
can be written as

Ŵβ = Ay +Br, (6)

and we obtain the following first-order conditions:

V A′ = XL′ (7)

RL′ = 0 (8)

AX +BR = W. (9)

From (7) and (8) we obtain

LG = AX, (10)

where G is the positive semidefinite matrix defined in (4). It is easy to prove
that

GG+X ′ = X ′, GG+R′ = R′. (11)

Post-multiplying both sides of (10) by G+X ′ and G+R′, respectively, we thus
obtain

LX ′ = AXG+X ′ (12)

and

0 = LR′ = AXG+R′, (13)
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in view of (8). Using (9) we obtain from (13) the following equation in B:

BRG+R′ = WG+R′. (14)

Post-multiplying both sides of (14) by (RG+R′)+R, we obtain, using (11),

BR = WG+R′(RG+R′)+R. (15)

We can now solve A as

A = LX ′V −1 = AXG+X ′V −1 = (W −BR)G+X ′V −1

= WG+X ′V −1 −BRG+X ′V −1

= WG+X ′V −1 −WG+R′(RG+R′)+RG+X ′V −1, (16)

using (7), (12), (9) and (16). The estimator Ŵβ of Wβ then becomes

Ŵβ = Ay +Br = Ay +BRR+r

= WG+X ′V −1y +WG+R′(RG+R′)+(r −RG+X ′V −1y). (17)

The variance matrix Ŵβ is easily derived. Finally, to prove that Ŵβ is the
best affine unbiased estimator of Wβ (and not merely the affine minimum-
trace unbiased estimator) we use the same argument that concludes the proof
of Theorem 2. 2

Exercises

1. Prove that Theorem 6 remains valid when we replace the matrix G by
Ḡ = X ′V −1X + R′ER, where E is a positive semidefinite matrix such
that M(R′) ⊂ M(Ḡ). Obtain Theorems 5 and 6 as special cases by
letting E = 0 and E = I, respectively.

2. We shall say that a parametric function Wβ is strictly estimable if there
exists a linear (rather than an affine) unbiased estimator of Wβ. Show
that, in the linear regression model without constraints, the parametric
function Wβ is estimable if and only if it is strictly estimable.

3. In the linear regression model (y,Xβ, σ2V ) where β satisfies the consis-
tent linear constraints Rβ = r, the parametric function Wβ is strictly
estimable if and only if M(W ′) ⊂ M(X ′ : R′N), where N = I − rr+.

4. Consider the linear regression model (y,Xβ, σ2V ), where β satisfies the
consistent linear constraints Rβ = r. Assume that |V | 6= 0. Then the
best linear unbiased estimator of a strictly estimable parametric func-

tion Wβ is Wβ̂, where

β̂ =
(
G+ −G+R′N(NRG+R′N)+NRG+

)
X ′V −1y

with
G = X ′V −1X +R′NR, N = I − rr+.
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10 LINEAR CONSTRAINTS: THE CASE M(R′) ∩M(X ′) = {0}

We have seen that if X fails to have full column rank, not all components
of β are estimable; only the components of Xβ (and linear combinations
thereof) are estimable. Proposition 3 tells us that we can improve this situ-
ation by adding linear constraints. More precisely, Proposition 3 shows that
every parametric function of the form

(AX +BR)β (1)

is estimable when β satisfies consistent linear constraints Rβ = r. Thus, if we
add linear constraints in such a way that the rank of (X ′ : R′) increases, then
more and more linear combinations of β will become estimable, until — when
(X ′ : R′) has full rank k — all linear combinations of β are estimable.

In Theorem 5 we considered the case where every row of R is a linear
combination of the rows of X , in which case r(X ′ : R′) = r(X ′), so that
the class of estimable functions remains the same. In this section we shall
consider the opposite situation where the rows of R are linearly independent
of the rows of X , i.e. M(R′)∩M(X ′) = {0}. We shall see that the best affine
unbiased estimator takes a particularly simple form.

Theorem 7

Consider the linear regression model (y,Xβ, σ2V ), where β satisfies the con-
sistent linear constraints Rβ = r. Assume that |V | 6= 0 and that M(R′) ∩
M(X ′) = {0}. Then the best affine unbiased estimator Ŵβ of Wβ exists if
and only if M(W ′) ⊂ M(X ′ : R′), in which case

Ŵβ = WG+(X ′V −1y +R′r), (2)

where

G = X ′V −1X +R′R. (3)

Its variance matrix is

V(Ŵβ) = σ2WG+W ′ − σ2WG+R′RG+W ′. (4)

Note. The requirement M(R′) ∩M(X ′) = {0} is equivalent to r(X ′ : R′) =
r(X) + r(R), see Theorem 3.19.

Proof. Since M(R′) ∩M(X ′) = {0}, it follows from Theorem 3.19 that

RG+R′ = RR+, (5)

XG+X ′ = X(X ′V −1X)+X ′, (6)
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and

RG+X ′ = 0. (7)

(In order to apply Theorem 3.19 let A = X ′V −1/2, B = R′.) Now define
β∗ = G+X ′V −1y. Then Rβ∗ = 0, and applying Theorem 6,

Ŵβ = Wβ∗ +WG+R′(RG+R′)+(r −Rβ∗)

= Wβ∗ +WG+R′RR+r = WG+(X ′V −1y +R′r). (8)

The variance matrix of Ŵβ is easily derived. 2

Exercises

1. Suppose that the conditions of Theorem 7 are satisfied and, in addition,
that r(X ′ : R′) = k. Then the best affine unbiased estimator of β is

β̂ = (X ′V −1X +R′R)−1(X ′V −1y +R′r).

2. Under the same conditions, show that an alternative expression for β̂ is

β̂ = [(X ′V −1X)2 +R′R]−1(X ′V −1XX ′V −1y +R′r).

[Hint: Choose W = I =
(
(X ′V −1X)2 +R′R

)−1 (
(X ′V −1X)2 +R′R

)
.]

3. (Generalization) Under the same conditions, show that

β̂ = (X ′EX +R′R)−1
(
X ′EX(X ′V −1X)+X ′V −1y +R′r

)
,

where E is a positive semidefinite matrix such that r(X ′EX) = r(X).

4. Obtain Theorem 4 as a special case of Theorem 7.

11 A SINGULAR VARIANCE MATRIX:
THE CASE M(X) ⊂ M(V )

So far we have assumed that the variance matrix σ2V of the disturbances is
non-singular. Let us now relax this assumption. Thus we consider the linear
regression model

y = Xβ + ǫ, (1)

with

Eǫ = 0, Eǫǫ′ = σ2V, (2)
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and V possibly singular. Pre-multiplication of the disturbance vector ǫ by
I − V V + leads to

(I − V V +)ǫ = 0 a.s., (3)

because the expectation and variance matrix of (I−V V +)ǫ both vanish. Hence
we can rewrite (1) as

y = Xβ + V V +ǫ, (4)

from which follows our next proposition.

Proposition 4 (consistency of the linear model)

In order for the linear regression model (y,Xβ, σ2V ) to be a consistent model,
it is necessary and sufficient that y ∈ M(X : V ) a.s.

Hence, in general, there are certain implicit restrictions on the dependent
variable y, which are automatically satisfied when V is non-singular.

Since V is symmetric and positive semidefinite, there exists an orthogonal
matrix (S : T ) and a diagonal matrix Λ with positive diagonal elements such
that

V S = SΛ, V T = 0. (5)

(If n′ denotes the rank of V , then the orders of the matrices S, T and Λ are
n × n′, n × (n − n′) and n′ × n′, respectively.) The orthogonality of (S : T )
implies that

S′S = I, T ′T = I, S′T = 0, (6)

and also

SS′ + TT ′ = I. (7)

Hence we can express V and V + as

V = SΛS′, V + = SΛ−1S′. (8)

After these preliminaries let us transform the regression model y = Xβ + ǫ
by means of the orthogonal matrix (S : T )′. This yields

S′y = S′Xβ + u, Eu = 0, Euu′ = σ2Λ, (9)

T ′y = T ′Xβ. (10)

The vector T ′y is degenerate (has zero variance matrix), so that the equation
T ′Xβ = T ′y may be interpreted as a set of linear constraints on β.

We conclude that the model (y,Xβ, σ2V ), where V is singular, is equiv-
alent to the model (S′y, S′Xβ, σ2Λ) where β satisfies the consistent (why?)
linear constraint T ′Xβ = T ′y.
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Thus, singularity of V implies some restrictions on the unknown parame-
ter β, unless T ′X = 0, or, equivalently, M(X) ⊂ M(V ). If we assume that
M(X) ⊂ M(V ), then the model (y,Xβ, σ2V ), where V is singular, is equiv-
alent to the unconstrained model (S′y, S′Xβ, σ2Λ), where Λ is non-singular,
so that Theorem 4 applies. These considerations lead to Theorem 8.

Theorem 8

Consider the linear regression model (y,Xβ, σ2V ), where y ∈ M(V ) a.s. As-

sume that M(X) ⊂ M(V ). Then the best affine unbiased estimator Ŵβ of
Wβ exists if and only if M(W ′) ⊂ M(X ′), in which case

Ŵβ = W (X ′V +X)+X ′V +y (11)

with variance matrix

V(Ŵβ) = σ2W (X ′V +X)+W ′. (12)

Exercises

1. Show that the equation T ′Xβ = T ′y in β has a solution if and only if
the linear model is consistent.

2. Show that T ′X = 0 if and only if M(X) ⊂ M(V ).

3. Show that M(X) ⊂ M(V ) implies r(X ′V +X) = r(X).

4. Obtain Theorems 1–4 as special cases of Theorem 8.

12 A SINGULAR VARIANCE MATRIX:
THE CASE r(X ′V +X) = r(X)

Somewhat weaker than the assumption M(X) ⊂ M(V ) made in the previous
section is the condition

r(X ′V +X) = r(X). (1)

With S and T as before, we shall show that (1) is equivalent to

M(X ′T ) ⊂ M(X ′S). (2)

(If M(X) ⊂ M(V ), then X ′T = 0, so that (2) is automatically satisfied.)
From V + = SΛ−1S′ we obtain X ′V +X = X ′SΛ−1S′X and hence

r(X ′V +X) = r(X ′S). (3)

Also, since (S : T ) is non-singular,

r(X) = r(X ′S : X ′T ). (4)
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It follows that (1) and (2) are equivalent conditions.
Writing the model (y,Xβ, σ2V ) in its equivalent form

S′y = S′Xβ + u, Eu = 0, Euu′ = σ2Λ, (5)

T ′y = T ′Xβ, (6)

and assuming that either (1) or (2) holds, we see that all conditions of Theorem
5 are satisfied. Thus we obtain Theorem 9.

Theorem 9

Consider the linear regression model (y,Xβ, σ2V ), where y ∈ M(X : V ) a.s.

Assume that r(X ′V +X) = r(X). Then the best affine estimator Ŵβ of Wβ
exists if and only if M(W ′) ⊂ M(X ′), in which case

Ŵβ = Wβ∗ +W (X ′V +X)+R′
0[R0(X

′V +X)+R′
0]

+(r0 −R0β
∗), (7)

where

R0 = T ′X, r0 = T ′y, β∗ = (X ′V +X)+X ′V +y, (8)

and T is a matrix of maximum rank such that V T = 0. The variance matrix
of Ŵβ is

V(Ŵβ) = σ2W (X ′V +X)+W ′

− σ2W (X ′V +X)+R′
0[R0(X

′V +X)+R′
0]

+R0(X
′V +X)+W ′. (9)

Exercises

1. M(X ′V +X) = M(X ′) if and only if r(X ′V +X) = r(X).

2. A necessary condition for r(X ′V +X) = r(X) is that the rank of X does
not exceed the rank of V . Show by means of a counter-example that
this condition is not sufficient.

3. Show that M(X ′) = M(X ′S).

13 A SINGULAR VARIANCE MATRIX:
THE GENERAL CASE, I

Let us now consider the general case of the linear regression model (y,Xβ, σ2V ),
where X may not have full column rank and V may be singular.

Theorem 10

Consider the linear regression model (y,Xβ, σ2V ), where y ∈ M(X : V ) a.s.
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The best affine unbiased estimator Ŵβ of Wβ exists if and only if M(W ′) ⊂
M(X ′), in which case

Ŵβ = Wβ∗ +WG+R′
0(R0G

+R′
0)

+(r0 −R0β
∗), (1)

where

R0 = T ′X, r0 = T ′y, G = X ′V +X +R′
0R0, β∗ = G+X ′V +y, (2)

and T is a matrix of maximum rank such that V T = 0. The variance matrix
of Ŵβ is

V(Ŵβ) = σ2WG+W ′ − σ2WG+R′
0(R0G

+R′
0)

+R0G
+W ′. (3)

Note. We give alternative expressions for (1) and (3) in Theorem 13.

Proof. Transform the model (y,Xβ, σ2V ) into the model (S′y, S′Xβ, σ2Λ),
where β satisfies the consistent linear constraint T ′Xβ = T ′y, and S and T
are defined in Section 11. Then |Λ| 6= 0, and the result follows from Theorem
6. 2

Exercises

1. Suppose that M(X ′S) ∩ M(X ′T ) = {0} in the model (y,Xβ, σ2V ).
Show that the best affine unbiased estimator of AXβ (which always
exists) is ACy, where

C = SS′X(X ′V +X)+X ′V + + TT ′XX ′T (T ′XX ′T )+T ′.

[Hint: Use Theorem 7.]

2. Show that the variance matrix of this estimator is

V(ACy) = σ2ASS′X(X ′V +X)+X ′SS′A′.

14 EXPLICIT AND IMPLICIT LINEAR CONSTRAINTS

Linear constraints on the parameter vector β arise in two ways. First, we
may possess a priori knowledge that the parameters satisfy certain linear
constraints

Rβ = r, (1)

where the matrix R and vector r are known and non-stochastic. These are
the explicit constraints.

Secondly, if the variance matrix σ2V is singular, then β satisfies the linear
constraints

T ′Xβ = T ′y a.s., (2)
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where T is a matrix of maximum column rank such that V T = 0. These are
the implicit constraints, due to the stochastic structure of the model. Implicit
constraints exist whenever T ′X 6= 0, that is, whenever M(X) 6⊂ M(V ).

Let us combine the two sets of constraints (1) and (2) as

R0β = r0 a.s., R0 =

(
T ′X
R

)
, r0 =

(
T ′y
r

)
. (3)

We do not require the matrix R0 to have full row rank; the constraints may
thus be linearly dependent. We must require, however, that the model is
consistent.

Proposition 5 (consistency of the linear model with constraints)

In order for the linear regression model (y,Xβ, σ2V ), where β satisfies the
constraints Rβ = r, to be a consistent model it is necessary and sufficient
that

(
y
r

)
∈ M

(
X V
R 0

)
a.s. (4)

Proof. We write the model (y,Xβ, σ2V ) together with the constraints Rβ = r
as

(
y
r

)
=

(
X
R

)
β + u, (5)

where

Eu = 0, Euu′ = σ2

(
V 0
0 0

)
. (6)

Proposition 5 then follows from Proposition 4. 2

The consistency condition (4) is equivalent (as, of course, it should be) to
the requirement that (3) is a consistent equation, i.e.

r0 ∈ M(R0). (7)

Let us see why. If (7) holds, then there exists a vector c such that

T ′y = T ′Xc, r = Rc. (8)

This implies that T ′(y −Xc) = 0 from which we solve

y −Xc = (I − TT ′)q, (9)

where q is arbitrary. Further, since

I − TT ′ = SS′ = SΛS′SΛ−1S′ = V V +, (10)
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we obtain

y = Xc+ V V +q, r = Rc, (11)

and hence (4). It is easy to see that the converse is also true, that is, (4)
implies (7).

The necessary consistency condition being established, let us now seek to
find the best affine unbiased estimator of a parametric function Wβ in the
model (y,Xβ, σ2V ), where X may fail to have full column rank, V may be
singular, and explicit constraints Rβ = r may be present.

We first prove a special case; the general result is discussed in the next
section.

Theorem 11

Consider the linear regression model (y,Xβ, σ2V ), where β satisfies the con-
sistent linear constraints Rβ = r, and

(
y
r

)
∈ M

(
X V
R 0

)
a.s. (12)

Assume that r(X ′V +X) = r(X) and M(R′) ⊂ M(X ′). Then the best affine

unbiased estimator Ŵβ of Wβ exists if and only if M(W ′) ⊂ M(X ′), in
which case

Ŵβ = Wβ∗ +W (X ′V +X)+R′
0[R0(X

′V +X)+R′
0]

+(r0 −R0β
∗), (13)

where

R0 =

(
T ′X
R

)
, r0 =

(
T ′y
r

)
, β∗ = (X ′V +X)+X ′V +y, (14)

and T is a matrix of maximum rank such that V T = 0. The variance matrix
of Ŵβ is

V(Ŵβ) = σ2W (X ′V +X)+W ′

− σ2W (X ′V +X)+R′
0[R0(X

′V +X)+R′
0]

+R0(X
′V +X)+W ′. (15)

Proof. We write the constrained model in its equivalent form

S′y = S′Xβ + u, Eu = 0, Euu′ = σ2Λ, (16)

where β satisfies the combined implicit and explicit constraints

R0β = r0. (17)
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From Section 12 we know that the three conditions

r(X ′V +X) = r(X), (18)

M(X ′T ) ⊂ M(X ′S) (19)

and

M(X ′S) = M(X ′) (20)

are equivalent. Hence the two conditions r(X ′V +X) = r(X) and M(R′) ⊂
M(X ′) are both satisfied if and only if

M(R′
0) ⊂ M(X ′S). (21)

The result then follows from Theorem 5. 2

15 THE GENERAL LINEAR MODEL, I

Now we consider the general linear model

(y,Xβ, σ2V ), (1)

where V is possibly singular, X may fail to have full column rank, and β
satisfies certain a priori (explicit) constraints Rβ = r. As before, we transform
the model into

(S′y, S′Xβ, σ2Λ), (2)

where Λ is a diagonal matrix with positive diagonal elements, and the param-
eter vector β satisfies

T ′Xβ = T ′y (implicit constraints) (3)

and

Rβ = r (explicit constraints), (4)

which we combine as

R0β = r0, R0 =

(
T ′X
R

)
, r0 =

(
T ′y
r

)
. (5)

The model is consistent (that is, the implicit and explicit linear constraints
are consistent equations) if and only if

(
y
r

)
∈ M

(
X V
R 0

)
a.s., (6)
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according to Proposition 5.
We want to find the best affine unbiased estimator of a parametric function

Wβ. According to Proposition 3, the class of affine unbiased estimators of Wβ
is not empty (that is, Wβ is estimable) if and only if

M(W ′) ⊂ M(X ′ : R′). (7)

Notice that we can apply Proposition 3 to model (1) subject to the explicit
constraints, or to model (2) subject to the explicit and implicit constraints;
in either case we find (7).

A direct application of Theorem 6 now yields the following theorem.

Theorem 12

Consider the linear regression model (y,Xβ, σ2V ), where β satisfies the con-
sistent linear constraints Rβ = r, and

(
y
r

)
∈ M

(
X V
R 0

)
a.s. (8)

The best affine unbiased estimator Ŵβ of Wβ exists if and only if M(W ′) ⊂
M(X ′ : R′), in which case

Ŵβ = Wβ∗ +WG+R′
0(R0G

+R′
0)

+(r0 −R0β
∗), (9)

where

R0 =

(
T ′X
R

)
, r0 =

(
T ′y
r

)
, (10)

G = X ′V +X + R′
0R0, β∗ = G+X ′V +y, (11)

and T is a matrix of maximum rank such that V T = 0. The variance matrix
of Ŵβ is

V(Ŵβ) = σ2WG+W ′ − σ2WG+R′
0(R0G

+R′
0)

+R0G
+W ′. (12)

Note. We give alternative expressions for (9) and (12) in Theorem 14.

16 A SINGULAR VARIANCE MATRIX:
THE GENERAL CASE, II

We have now discussed every single case and combination of cases. Hence we
could stop here. There is, however, an alternative route that is of interest, and
leads to different (although equivalent) expressions for the estimators.

The route we have followed is this: first we considered the estimation of a
parametric function Wβ with explicit restrictions Rβ = r, assuming that V
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is non-singular; then we transformed the model with singular V into a model
with non-singular variance matrix and explicit restrictions, thereby making
the implicit restrictions (due to the singularity of V ) explicit. Thus we have
treated the singular model as a special case of the constrained model.

An alternative procedure is to reverse this route, and to look first at the
model

(y,Xβ, σ2V ), (1)

where V is possibly singular (and X may not have full column rank). In the
case of a priori constraints Rβ = r we then consider

ye =

(
y
r

)
, Xe =

(
X
R

)
, (2)

in which case

σ2Ve = V(ye) = σ2

(
V 0
0 0

)
(3)

so that the extended model can be written as

(ye, Xeβ, σ
2Ve), (4)

which is in the same form as (1). In this set-up the constrained model is a
special case of the singular model.

Thus we consider the model (y,Xβ, σ2V ), where V is possibly singular, X
may have linearly dependent columns, but no explicit constraints are given.
We know, however, that the singularity of V implies certain constraints on β,
which we have called implicit constraints,

T ′Xβ = T ′y, (5)

where T is a matrix of maximum column rank such that V T = 0. In the
present approach, the implicit constraints need not be taken into account (they
are automatically satisfied, see Exercise 5), because we consider the whole V
matrix and the constraints are embodied in V .

According to Proposition 2, the parametric function Wβ is estimable if
and only if

M(W ′) ⊂ M(X ′). (6)

According to Proposition 4, the model is consistent if and only if

y ∈ M(X : V ) a.s. (7)

(Recall that (7) is equivalent to the requirement that the implicit constraint
(5) is a consistent equation in β.) Let Ay + c be the affine estimator of Wβ.
The estimator is unbiased if and only if

AXβ + c = Wβ for all β in IRk, (8)
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which implies

AX = W, c = 0. (9)

Since the variance matrix of Ay is σ2AV A′, the affine minimum-trace unbiased
estimator of Wβ is found by solving the problem

minimize trAV A′ (10)

subject to AX = W. (11)

Theorem 11.37 provides the solution

A∗ = W (X ′V +
0 X)+X ′V +

0 +Q(I − V0V
+
0 ), (12)

where V0 = V + XX ′ and Q is arbitrary. Since y ∈ M(V0) a.s., because of
(7), it follows that

A∗y = W (X ′V +
0 X)+X ′V +

0 y (13)

is the unique affine minimum-trace unbiased estimator of Wβ. If, in addition,
M(X) ⊂ M(V ), then A∗y simplifies to

A∗y = W (X ′V +X)+X ′V +y. (14)

Summarizing, we have proved our next theorem.

Theorem 13

Consider the linear regression model (y,Xβ, σ2V ), where y ∈ M(X : V ) a.s.

The best affine unbiased estimator Ŵβ of Wβ exists if and only if M(W ′) ⊂
M(X ′), in which case

Ŵβ = W (X ′V +
0 X)+X ′V +

0 y, (15)

where V0 = V +XX ′. Its variance matrix is

V(Ŵβ) = σ2W [(X ′V +
0 X)+ − I]W ′. (16)

Moreover, if M(X) ⊂ M(V ), then the estimator simplifies to

Ŵβ = W (X ′V +X)+X ′V +y (17)

with variance matrix

V(Ŵβ) = σ2W (X ′V +X)+W ′. (18)

Note. Theorem 13 gives another (but equivalent) expression for the estimator
of Theorem 10. The special case M(X) ⊂ M(V ) is identical to Theorem 8.

Exercises
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1. Show that V0V
+
0 X = X .

2. Show that X(X ′V +
0 X)(X ′V +

0 X)+ = X .

3. Let T be any matrix such that V T = 0. Then

T ′X(X ′V +
0 X) = T ′X = T ′X(X ′V +

0 X)+.

4. Suppose that we replace the unbiasedness condition (8) by

AXβ + c = Wβ for all β satisfying T ′Xβ = T ′y.

Show that this yields the same constrained minimization problem (10)
and (11) and hence the same estimator for Wβ.

5. Show that the best affine unbiased estimator of T ′Xβ is T ′y with V(T ′y) =
0. Conclude that the implicit constraints T ′Xβ = T ′y are automatically
satisfied and need not be imposed.

17 THE GENERAL LINEAR MODEL, II

Let us look at the general linear model

(y,Xβ, σ2V ), (1)

where V is possibly singular, X may fail to have full column rank and β
satisfies explicit a priori constraints Rβ = r. As discussed in the previous
section, we write the constrained model as

(ye, Xeβ, σ
2Ve), (2)

where

ye =

(
y
r

)
, Xe =

(
X
R

)
, Ve =

(
V 0
0 0

)
. (3)

Applying Theorem 13 to model (2) we obtain Theorem 14, which provides a
different (though equivalent) expression for the estimator of Theorem 12.

Theorem 14

Consider the linear regression model (y,Xβ, σ2V ), where β satisfies the con-
sistent linear constraints Rβ = r, and

(
y
r

)
∈ M

(
X V
R 0

)
a.s. (4)

The best affine unbiased estimator Ŵβ of Wβ exists if and only if M(W ′) ⊂
M(X ′ : R′), in which case

Ŵβ = W (X ′
eV

+
0 Xe)

+X ′
eV

+
0 ye, (5)
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where ye, Xe and Ve are defined in (3), and V0 = Ve + XeX
′
e. Its variance

matrix is

V(Ŵβ) = σ2W [(X ′
eV

+
0 Xe)

+ − I]W ′. (6)

18 GENERALIZED LEAST SQUARES

Consider the Gauss-Markov set-up (y,Xβ, σ2I) where r(X) = k. In Section

3 we obtained the best affine unbiased estimator of β, β̂ = (X ′X)−1X ′y (the
Gauss-Markov estimator), by minimizing a quadratic form (the trace of the
estimator’s variance matrix) subject to a linear constraint (unbiasedness). In
Section 4 we showed that the Gauss-Markov estimator can also be obtained
by minimizing (y −Xβ)′(y − Xβ) over all β in IRk. The fact that the prin-
ciple of least squares (which is not a method of estimation but a method of
approximation) produces best affine estimators is rather surprising and by no
means trivial.

We now ask whether this relationship stands up against the introduction
of more general assumptions such as |V | = 0, or r(X) < k. The answer to this
question is in the affirmative.

To see why, we recall from Theorem 11.35 that for a given positive semidef-
inite matrix A the problem

minimize (y −Xβ)′A(y −Xβ) (1)

has a unique solution for Wβ if and only if

M(W ′) ⊂ M(X ′A1/2), (2)

in which case

Wβ∗ = W (X ′AX)+X ′Ay. (3)

Choosing A = (V + XX ′)+ and comparing with Theorem 13 yields the fol-
lowing.

Theorem 15

Consider the linear regression model (y,Xβ, σ2V ), where y ∈ M(X : V ) a.s.
Let W be a matrix such that M(W ′) ⊂ M(X ′). Then the best affine unbiased

estimator of Wβ is Wβ̂, where β̂ minimizes

(y −Xβ)′(V +XX ′)+(y −Xβ). (4)

In fact we may, instead of (4), minimize the quadratic form

(y −Xβ)′(V +XEX ′)+(y −Xβ), (5)
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where E is a positive semidefinite matrix such that M(X) ⊂ M(V +XEX ′).

The estimator Wβ̂ will be independent of the actual choice of E. For E = I
the requirement M(X) ⊂ M(V + XX ′) is obviously satisfied; this leads to
Theorem 15. If M(X) ⊂ M(V ), which includes the case of non-singular V ,
we can choose E = 0 and minimize, instead of (4),

(y −Xβ)′V +(y −Xβ). (6)

In the case of a priori linear constraints, the following corollary applies.

Corollary 1

Consider the linear regression model (y,Xβ, σ2V ), where β satisfies the con-
sistent linear constraints Rβ = r, and

(
y
r

)
∈ M

(
X V
R 0

)
a.s. (7)

Let W be a matrix such that M(W ′) ⊂ M(X ′ : R′). Then the best affine

unbiased estimator of Wβ is Wβ̂, where β̂ minimizes

(
y −Xβ
r −Rβ

)′ (
V +XX ′ XR′

RX ′ RR′

)+(
y −Xβ
r −Rβ

)
. (8)

Proof. Define

ye =

(
y
r

)
, Xe =

(
X
R

)
, Ve =

(
V 0
0 0

)
, (9)

and apply Theorem 15 to the extended model (ye, Xeβ, σ
2Ve). 2

19 RESTRICTED LEAST SQUARES

Alternatively, we can use the method of restricted least squares.

Theorem 16

Consider the linear regression model (y,Xβ, σ2V ), where |V | 6= 0 and β sat-
isfies the consistent linear constraints Rβ = r. Let W be a matrix such that

M(W ′) ⊂ M(X ′ : R′). Then the best affine unbiased estimator of Wβ is Wβ̂,

where β̂ is a solution of the constrained minimization problem

minimize (y −Xβ)′V −1(y −Xβ) (1)

subject to Rβ = r. (2)
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Proof. From Theorem 11.36 we know that (y−Xβ)′V −1(y−Xβ) is minimized
over all β satisfying Rβ = r, where β takes the value

β̂ = β∗ +G+R′(RG+R′)+(r − Rβ∗) + (I −G+G)q, (3)

where

G = X ′V −1X +R′R, β∗ = G+X ′V −1y (4)

and q is arbitrary. Since M(W ′) ⊂ M(X ′ : R′) = M(G), we obtain the
unique expression

Wβ̂ = Wβ∗ +WG+R′(RG+R′)+(r −Rβ∗) (5)

which is identical to the best affine unbiased estimator of Wβ; see Theorem
6. 2

The model where V is singular can be treated as a special case of the
non-singular model with constraints.

Corollary 2

Consider the linear regression model (y,Xβ, σ2V ), where β satisfies the con-
sistent linear constraints Rβ = r, and

(
y
r

)
∈ M

(
X V
R 0

)
a.s. (6)

Let W be a matrix such that M(W ′) ⊂ M(X ′ : R′). Then the best affine

unbiased estimator of Wβ is Wβ̂, where β̂ is a solution of the constrained
minimization problem

minimize (y −Xβ)′V +(y −Xβ) (7)

subject to (I − V V +)Xβ = (I − V V +)y and Rβ = r. (8)

Proof. As in Section 11 we introduce the orthogonal matrix (S : T ) which
diagonalizes V :

(S : T )′V (S : T ) =

(
Λ 0
0 0

)
, (9)

where Λ is a diagonal matrix containing the positive eigenvalues of V . Trans-
forming the model (y,Xβ, σ2V ) by means of the matrix (S : T )′ yields the
equivalent model (S′y, S′Xβ, σ2Λ), where β now satisfies the (implicit) con-
straints T ′Xβ = T ′y in addition to the (explicit) constraints Rβ = r. Condi-
tion (6) shows that the combined constraints are consistent; see Section 14,
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Proposition 5. Applying Theorem 16 to the transformed model shows that

the best affine unbiased estimator of Wβ is Wβ̂ where β̂ is a solution of the
constrained minimization problem

minimize (S′y − S′Xβ)′Λ−1(S′y − S′Xβ) (10)

subject to T ′Xβ = T ′y and Rβ = r. (11)

It is easy to see that this constrained minimization problem is equivalent to
the constrained minimization problem (7)–(8). 2

Theorems 15 and 16 and their corollaries prove the striking and by no
means trivial fact that the principle of (restricted) least squares provides best
affine unbiased estimators.

Exercises

1. Show that the unconstrained problem

minimize (y −Xβ)′(V +XX ′)+(y −Xβ)

and the constrained problem

minimize (y −Xβ)′V +(y −Xβ)
subject to (I − V V +)Xβ = (I − V V +)y

have the same solution for β.

2. Show further that if M(X) ⊂ M(V ), both problems reduce to the
unconstrained problem of minimizing (y −Xβ)′V +(y −Xβ).

MISCELLANEOUS EXERCISES

Consider the model (y,Xβ, σ2V ). Recall from Section 12.11 that the mean

squared error (MSE) matrix of an estimator β̂ of β is defined as MSE(β̂) =

E(β̂ − β)(β̂ − β)′.

1. If β̂ is a linear estimator, say β̂ = Ay, show that

MSE(β̂) = (AX − I)ββ′(AX − I)′ + σ2AV A′.

2. Let φ(A) = tr MSE(β̂) and consider the problem of minimizing φ with
respect to A. Show that

dφ = 2 tr(dA)Xββ′(AX − I)′ + 2σ2 tr(dA)V A′,

and obtain the first-order condition

(σ2V +Xββ′X ′)A′ = Xββ′.
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3. Conclude that the matrix A which minimizes φ(A) is a function of the

unknown parameter vector β, unless β̂ is unbiased.

4. Show that

(σ2V +Xββ′X ′)(σ2V +Xββ′X ′)+Xβ = Xβ

and conclude that the first-order condition is a consistent equation in
A.

5. The matrices A which minimize φ(A) are then given by

A = ββ′X ′C+ +Q(I − CC+),

where C = σ2V +Xββ′X ′ and Q is an arbitrary matrix.

6. Show that CC+V = V , and hence that (I − CC+)ǫ = 0 a.s.

7. Conclude from Exercises 4 and 6 above that (I − CC+)y = 0 a.s.

8. The ‘estimator’ which, in the class of linear estimators, minimizes the
trace of the MSE matrix is therefore

β̂ = λβ

where
λ = β′X ′(σ2V +Xββ′X ′)+y.

9. Let µ = β′X ′(σ2V +Xββ′X ′)+Xβ. Show that

Eλ = µ, V(λ) = µ(1 − µ).

10. Show that 0 ≤ µ ≤ 1, so that β̂ will in general ‘underestimate’ β.

11. Discuss the usefulness of the ‘estimator’ β̂ = λβ in an iterative proce-
dure.
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CHAPTER 14

Further topics in the linear

model

1 INTRODUCTION

In the preceding chapter we derived the ‘best’ affine unbiased estimator of β
in the linear regression model (y,Xβ, σ2V ) under various assumptions about
the ranks of X and V . In this chapter we discuss some other topics relating
to the linear model.

Sections 2–7 are devoted to constructing the ‘best’ quadratic estimator of
σ2. The multivariate analogue is discussed in Section 8. The estimator

σ̂2 =
1

n− k
y′(I −XX+)y, (1)

known as the least squares estimator of σ2, is the best quadratic unbiased
estimator in the model (y,Xβ, σ2I). But if V(y) 6= σ2In, then σ̂2 in (1) will,
in general, be biased. Bounds for this bias which do not depend on X are
obtained in Sections 9 and 10.

The statistical analysis of the disturbances ǫ = y − Xβ is taken up in
Sections 11–14, where predictors that are best linear unbiased with scalar
variance matrix (BLUS) and with fixed variance matrix (BLUF) are derived.

Finally, we show how matrix differential calculus can be useful in sensitiv-
ity analysis. In particular, we study the sensitivities of the posterior moments
of β in a Bayesian framework.

2 BEST QUADRATIC UNBIASED ESTIMATION OF σ2

Let (y,Xβ, σ2V ) be the linear regression model. In the previous chapter we
considered the estimation of β as a linear function of the observation vector y.
Since the variance σ2 is a quadratic concept, we now consider the estimation

323
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of σ2 as a quadratic function of y, that is, a function of the form

y′Ay (1)

where A is non-stochastic and symmetric. Any estimator satisfying (1) is
called a quadratic estimator.

If, in addition, the matrix A is positive (semi)definite and AV 6= 0, and if
y is a continuous random vector, then

Pr(y′Ay > 0) = 1, (2)

and we say that the estimator is quadratic and positive (almost surely).
An unbiased estimator of σ2 is an estimator, say σ̂2, such that

E σ̂2 = σ2 for all β ∈ IRk and σ2 > 0. (3)

In (3) it is implicitly assumed that β and σ2 are not restricted (for example,
by Rβ = r) apart from the requirement that σ2 is positive.

We now propose the following definition.

Definition 1

The best quadratic (and positive) unbiased estimator of σ2 in the linear re-
gression model (y,Xβ, σ2V ) is a quadratic (and positive) unbiased estimator
of σ2, say σ̂2, such that

V(τ̂2) ≥ V(σ̂2) (4)

for all quadratic (and positive) unbiased estimators τ̂2 of σ2.

In the following two sections we shall derive the best quadratic unbiased
estimator of σ2 for the normal linear regression model where

y ∼ N (Xβ, σ2In), (5)

first requiring that the estimator is positive, then dropping this requirement.

3 THE BEST QUADRATIC AND POSITIVE UNBIASED
ESTIMATOR OF σ2

Our first result is the following well-known theorem.

Theorem 1

The best quadratic and positive unbiased estimator of σ2 in the normal linear
regression model (y,Xβ, σ2In) is

σ̂2 =
1

n− r
y′(I −XX+)y (1)
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where r denotes the rank of X .

Proof. We consider a quadratic estimator of y′Ay. To ensure that the estimator
is positive we write A = C′C. The problem is to determine an n × n matrix
C such that y′C′Cy is unbiased and has the smallest variance in the class of
unbiased estimators.

Unbiasedness requires

Ey′C′Cy = σ2 for all β and σ2, (2)

that is,

β′X ′C′CXβ + σ2 trC′C = σ2 for all β and σ2. (3)

This leads to the conditions

CX = 0, trC′C = 1. (4)

Given the condition CX = 0 we can write

y′C′Cy = ǫ′C′Cǫ (5)

where ǫ ∼ N(0, σ2In), and hence, by Theorem 12.12,

V(y′C′Cy) = 2σ4 tr(C′C)2. (6)

Our optimization problem thus becomes

minimize tr(C′C)2 (7)

subject to CX = 0 and trC′C = 1. (8)

To solve (7) and (8) we form the Lagrangian function

ψ(C) =
1

4
tr(C′C)2 − 1

2
λ(trC′C − 1) − trL′CX (9)

where λ is a Lagrange multiplier and L is a matrix of Lagrange multipliers.
Differentiating ψ gives

dψ =
1

2
trCC′C(dC)′ +

1

2
trC′CC′(dC)

− 1

2
λ (tr(dC)′C + trC′

dC) − trL′(dC)X

= trC′CC′
dC − λ trC′

dC − trXL′
dC, (10)

so that we obtain as our first-order conditions

C′CC′ = λC′ +XL′ (11)

trC′C = 1 (12)

CX = 0. (13)
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Pre-multiplying (11) with XX+ and using (13) gives

XL′ = 0. (14)

Inserting (14) in (11) gives

C′CC′ = λC′. (15)

Condition (15) implies that λ > 0. Also, defining

B = (1/λ)C′C, (16)

we obtain from (12), (13) and (15),

B2 = B (17)

trB = 1/λ (18)

BX = 0. (19)

Hence B is an idempotent symmetric matrix. Now, since by (12) and (15)

tr(C′C)2 = λ, (20)

it appears that we must choose λ as small as possible, that is, we must choose
the rank of B as large as possible. The only constraint on the rank of B is
(19), which implies that

r(B) ≤ n− r (21)

where r is the rank of X . Since we want to maximize r(B) we take

1/λ = r(B) = n− r. (22)

From (17), (19) and (21) we find, using Theorem 2.9,

B = In −XX+ (23)

and hence

A = C′C = λB =
1

n− r
(In −XX+). (24)

The result follows. 2

4 THE BEST QUADRATIC UNBIASED ESTIMATOR OF σ2

The estimator obtained in the preceding section is, in fact, the best in a wider
class of estimators: the class of quadratic unbiased estimators. In other words,
the constraint that σ̂2 be positive is not binding. We thus obtain the following
generalization of Theorem 1.
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Theorem 2

The best quadratic unbiased estimator of σ2 in the normal linear regression
model (y,Xβ, σ2In) is

σ̂2 =
1

n− r
y′(I −XX+)y (1)

where r denotes the rank of X .

Proof. Let σ̂2 = y′Ay be the quadratic estimator of σ2, and let ǫ = y−Xβ ∼
N (0, σ2In). Then

σ̂2 = β′X ′AXβ + 2β′X ′Aǫ+ ǫ′Aǫ (2)

so that σ̂2 is an unbiased estimator of σ2 for all β and σ2 if and only if

X ′AX = 0 and trA = 1. (3)

The variance of σ̂2 is

V(σ̂2) = 2σ4(trA2 + 2γ′X ′A2Xγ) (4)

where γ = β/σ. Hence the optimization problem becomes

minimize trA2 + 2γ′X ′A2Xγ (5)

subject to X ′AX = 0 and trA = 1. (6)

We notice that the function to be minimized in (5) depends on γ so that we
would expect the optimal value of A to depend on γ as well. This, however,
turns out not to be the case. We form the Lagrangian (taking into account
the symmetry of A, see Section 3.8)

ψ(v(A)) =
1

2
trA2 + γ′X ′A2Xγ − λ(trA− 1) − trL′X ′AX, (7)

where λ is a Lagrange multiplier and L is a matrix of Lagrange multipli-
ers. Since the constraint function X ′AX is symmetric, we may take L to be
symmetric too (see Exercise 17.9.2).

Differentiating ψ gives

dψ = trAdA+ 2γ′X ′A(dA)Xγ − λ tr dA− trLX ′(dA)X

= tr(A+Xγγ′X ′A+AXγγ′X ′ − λI −XLX ′)dA, (8)

so that the first-order conditions are

A− λIn +AXγγ′X ′ +Xγγ′X ′A = XLX ′ (9)

X ′AX = 0 (10)

trA = 1. (11)
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Pre- and post-multiplying (9) with XX+ gives, in view of (10),

−λXX+ = XLX ′. (12)

Inserting (12) in (9) we obtain

A = λM − P (13)

where

M = In −XX+ and P = AXγγ′X ′ +Xγγ′X ′A. (14)

Since trP = 0, because of (10), we have

trA = λ trM (15)

and hence

λ = 1/(n− r). (16)

Also, since

MP + PM = P, (17)

we obtain

A2 = λ2M + P 2 − λP (18)

so that

trA2 = λ2 trM + trP 2

= 1/(n− r) + 2(γ′X ′Xγ)(γ′X ′A2Xγ). (19)

The objective function (5) can now be written as

trA2 + 2γ′X ′A2Xγ = 1/(n− r) + 2(γ′X ′A2Xγ)(1 + γ′X ′Xγ), (20)

which is minimized for AXγ = 0, that is, for P = 0. Inserting P = 0 in (13)
and using (16) gives

A =
1

n− r
M, (21)

thus concluding the proof. 2
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5 BEST QUADRATIC INVARIANT ESTIMATION OF σ2

Unbiasedness, though a useful property for linear estimators in linear models,
is somewhat suspect for non-linear estimators. Another, perhaps more useful,
criterion is invariance. In the context of the linear regression model

y = Xβ + ǫ, (1)

let us consider, instead of β, a translation β − β0. Then (1) is equivalent to

y −Xβ0 = X(β − β0) + ǫ, (2)

and we say that a quadratic estimator y′Ay is invariant under translation of
β if

(y −Xβ0)
′A(y −Xβ0) = y′Ay for all β0. (3)

This, clearly, is the case if and only if

AX = 0. (4)

We can obtain (4) in another, though closely related, way if we assume that
the disturbance vector ǫ is normally distributed, ǫ ∼ N (0, σ2V ), V positive
definite. Then, by Theorem 12.12,

E(y′Ay) = β′X ′AXβ + σ2 trAV (5)

and

V(y′Ay) = 4σ2β′X ′AV AXβ + 2σ4 tr(AV )2, (6)

so that, under normality, the distribution of y′Ay is independent of β if and
only if AX = 0.

If the estimator is biased we replace the minimum variance criterion by
the minimum mean squared error criterion. Thus we obtain Definition 2.

Definition 2

The best quadratic (and positive) invariant estimator of σ2 in the linear re-
gression model (y,Xβ, σ2In) is a quadratic (and positive) estimator of σ2, say
σ̂2, which is invariant under translation of β, such that

E(τ̂2 − σ2)2 ≥ E(σ̂2 − σ2)2 (7)

for all quadratic (and positive) invariant estimators τ̂2 of σ2.

In Sections 6 and 7 we shall derive the best quadratic invariant estimator
of σ2, assuming normality, first requiring that σ̂2 is positive, then that σ̂2 is
merely quadratic.
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6 THE BEST QUADRATIC AND POSITIVE INVARIANT
ESTIMATOR OF σ2

Given invariance instead of unbiasedness we obtain Theorem 3 instead of
Theorem 1.

Theorem 3

The best quadratic and positive invariant estimator of σ2 in the normal linear
regression model (y,Xβ, σ2In) is

σ̂2 =
1

n− r + 2
y′(I −XX+)y (1)

where r denotes the rank of X .

Proof. Again, let σ̂2 = y′Ay be the quadratic estimator of σ2 and write A =
C′C. Invariance requires C′CX = 0, that is,

CX = 0. (2)

Letting ǫ = y −Xβ ∼ N (0, σ2In), the estimator for σ2 can be written as

σ̂2 = ǫ′C′Cǫ (3)

so that the mean squared error becomes

E(σ̂2 − σ2)2 = σ4(1 − trC′C)2 + 2σ4 tr(C′C)2. (4)

The minimization problem is thus

minimize (1 − trC′C)2 + 2 tr(C′C)2 (5)

subject to CX = 0. (6)

The Lagrangian is

ψ(C) =
1

4
(1 − trC′C)2 +

1

2
tr(C′C)2 − trL′CX, (7)

where L is a matrix of Lagrange multipliers, leading to the first-order condi-
tions

2C′CC′ − (1 − trC′C)C′ = XL′ (8)

CX = 0. (9)

Pre-multiplying both sides of (8) with XX+ gives, in view of (9),

XL′ = 0. (10)
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Inserting (10) in (8) gives

2C′CC′ = (1 − trC′C)C′. (11)

Now define

B =

(
2

1 − trC′C

)
C′C =

(
2

1 − trA

)
A. (12)

(Notice that trC′C 6= 1 (why?).) Then, from (9) and (11),

B2 = B (13)

BX = 0. (14)

We also obtain from (12),

trA =
trB

2 + trB
, trA2 =

trB2

(2 + trB)2
. (15)

Let ρ denote the rank of B. Then trB = trB2 = ρ and hence

1

4
(1 − trA)2 +

1

2
trA2 =

1

2(2 + ρ)
. (16)

The left-hand side of (16) is the function we wish to minimize. Therefore we
must choose ρ as large as possible, and hence, in view of (14),

ρ = n− r. (17)

From (13), (14) and (17) we find, using Theorem 2.9,

B = In −XX+ (18)

and hence

A =

(
1

2 + trB

)
B =

1

n− r + 2
(In −XX+). (19)

This concludes the proof. 2

7 THE BEST QUADRATIC INVARIANT ESTIMATOR OF σ2

A generalization of Theorem 2 is obtained by dropping the requirement that
the quadratic estimator of σ2 be positive. In this wider class of estimators we
find that the estimator of Theorem 3 is again the best (smallest mean squared
error), thus showing that the requirement of positiveness is not binding.

Comparing Theorems 2 and 4 we see that the best quadratic invariant
estimator has a larger bias (it underestimates σ2) but a smaller variance than
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the best quadratic unbiased estimator, and altogether a smaller mean squared
error.

Theorem 4

The best quadratic invariant estimator of σ2 in the normal linear regression
model (y,Xβ, σ2In) is

σ̂2 =
1

n− r + 2
y′(I −XX+)y (1)

where r denotes the rank of X .

Proof. Here we must solve the problem

minimize (1 − trA)2 + 2 trA2 (2)

subject to AX = 0. (3)

This is the same as in the proof of Theorem 3, except that A is only symmetric
and not necessarily positive definite. The Lagrangian is

ψ(v(A)) =
1

2
(1 − trA)2 + trA2 − trL′AX (4)

and the first-order conditions are

2A− (1 − trA)In =
1

2
(XL′ + LX ′) (5)

AX = 0. (6)

Pre-multiplying (5) with A gives, in view of (6),

2A2 − (1 − trA)A =
1

2
ALX ′. (7)

Post-multiplying (7) with XX+ gives, again using (6), ALX ′ = 0. Inserting
ALX ′ = 0 in (7) then shows that the matrix

B =

(
2

1 − trA

)
A (8)

is symmetric idempotent. Furthermore, by (6), BX = 0. The remainder of
the proof follows in the same way as in the proof of Theorem 3 (from (15)
onwards). 2

8 BEST QUADRATIC UNBIASED ESTIMATION:
MULTIVARIATE NORMAL CASE

Extending Definition 1 to the multivariate case we obtain Definition 3.
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Definition 3

Let y1, y2, . . . , yn be a random sample from an m-dimensional distribution
with positive definite variance matrix Ω. Let Y = (y1, y2, . . . , yn)

′. The best

quadratic unbiased estimator of Ω, say Ω̂, is a quadratic estimator (that is, an

estimator of the form Y ′AY where A is symmetric) such that Ω̂ is unbiased
and

V(vec Ψ̂) ≥ V(vec Ω̂) (1)

for all quadratic unbiased estimators of Ψ̂ of Ω.

We can now generalize Theorem 2 to the multivariate case. We see again
that the estimator is positive semidefinite, even though this was not required.

Theorem 5

Let y1, y2, . . . , yn be a random sample from the m-dimensional normal dis-
tribution with mean µ and positive definite variance matrix Ω. Let Y =
(y1, y2, . . . , yn)

′. The best quadratic unbiased estimator of Ω is

Ω̂ =
1

n− 1
Y ′

(
In − 1

n
ıı′
)
Y (2)

where, as always, ı = (1, 1, . . . , 1)′.

Proof. Consider a quadratic estimator Y ′AY . From Chapter 12 (Miscellaneous
Exercise 2) we know that

EY ′AY = (trA)Ω + (ı′Aı)µµ′ (3)

and

V(vecY ′AY ) = (I +Km)
(
(trA2)(Ω ⊗ Ω) + (ı′A2ı)(Ω ⊗ µµ′ + µµ′ ⊗ Ω)

)

= (I +Km)

(
1

2
(trA2)(Ω ⊗ Ω) + (ı′A2ı)(Ω ⊗ µµ′)

)
(I +Km).

(4)

The estimator Y ′AY is unbiased if and only if

(trA)Ω + (ı′Aı)µµ′ = Ω for all µ and Ω, (5)

that is,

trA = 1, ı′Aı = 0. (6)
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Let T 6= 0 be an arbitrary m×m matrix and let T̃ = T + T ′. Then

(vecT )′(V(vecY ′AY )) vecT

= (vec T̃ )′(
1

2
(trA2)(Ω ⊗ Ω) + (ı′A2ı)(Ω ⊗ µµ′)) vec T̃

=
1

2
(trA2)(tr T̃ΩT̃Ω) + (ı′A2ı)µ′T̃ΩT̃ µ

= α trA2 + βı′A2ı, (7)

where

α =
1

2
tr T̃ΩT̃Ω and β = µ′T̃ΩT̃ µ. (8)

Consider now the optimization problem

minimize α trA2 + βı′A2ı (9)

subject to trA = 1 and ı′Aı = 0, (10)

where α and β are fixed numbers. If the optimal matrix A, which minimizes
(9) subject to (10), does not depend on α and β — and this will turn out
to be the case — then this matrix A must be the best quadratic unbiased
estimator according to Definition 3.

Define the Lagrangian function

ψ(A) = α trA2 + βı′A2ı− λ1(trA− 1) − λ2ı
′Aı, (11)

where λ1 and λ2 are Lagrange multipliers. Differentiating ψ gives

dψ = 2α trAdA+ 2βı′A(dA)ı− λ1 tr dA− λ2ı
′(dA)ı

= tr[2αA+ β(ıı′A+Aıı′) − λ1I − λ2ıı
′]dA. (12)

Since the matrix in square brackets in (12) is symmetric, we do not have to
impose the symmetry condition on A. Thus we find the first-order conditions

2αA+ β(ıı′A+Aıı′) − λ1In − λ2ıı
′ = 0 (13)

trA = 1 (14)

ı′Aı = 0. (15)

Taking the trace in (13) yields

2α = n(λ1 + λ2). (16)

Pre- and post-multiplying (13) with ı gives

λ1 + nλ2 = 0. (17)
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Hence

λ1 =
2α

n− 1
, λ2 =

−2α

n(n− 1)
. (18)

Post-multiplying (13) with ı gives, in view of (17),

(2α+ nβ)Aı = 0. (19)

Since α > 0 (why?) and β ≥ 0 we obtain

Aı = 0 (20)

and hence

A =
1

n− 1

(
In − 1

n
ıı′
)
. (21)

As the objective function (9) is strictly convex, this solution provides the
required minimum. 2

9 BOUNDS FOR THE BIAS OF THE LEAST SQUARES
ESTIMATOR OF σ2, I

Let us again consider the linear regression model (y,Xβ, σ2V ) where X has
full column rank k and V is positive semidefinite.

If V = In, then we know from Theorem 2 that

σ̂2 =
1

n− k
y′(In −X(X ′X)−1X ′)y (1)

is the best quadratic unbiased estimator of σ2, also known as the least squares
(LS) estimator of σ2. If V 6= In, then (1) is no longer an unbiased estimator
of σ2, because, in general,

E σ̂2 =
σ2

n− k
tr(In −X(X ′X)−1X ′)V 6= σ2. (2)

If both V and X are known, we can calculate the relative bias

E σ̂2 − σ2

σ2
(3)

exactly. Here we are concerned with the case where V is known (at least in
structure, say first-order autocorrelation) while X is not known. Of course we
cannot calculate the exact relative bias in this case. We can, however, find a
lower and an upper bound for the relative bias of σ̂2 over all possible values
of X .
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Theorem 6

Consider the linear regression model (y,Xβ, σ2V ), where V is a positive
semidefinite n × n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, and X is
a non-stochastic n×k matrix of rank k. Let σ̂2 be the least squares estimator
of σ2,

σ̂2 =
1

n− k
y′(In −X(X ′X)−1X ′)y. (4)

Then

n−k∑

i=1

λi ≤
(n− k)E σ̂2

σ2
≤

n∑

i=k+1

λi. (5)

Proof. Let M = I −X(X ′X)−1X ′. Then

E σ̂2 =
σ2

n− k
trMV =

σ2

n− k
trMVM. (6)

Now, M is an idempotent symmetric n×n matrix of rank n−k. Let us denote
the eigenvalues of MVM , apart from k zeros, by

µ1 ≤ µ2 ≤ · · · ≤ µn−k. (7)

Then, by Theorem 11.11,

λi ≤ µi ≤ λk+i (i = 1, 2, . . . , n− k) (8)

and hence

n−k∑

i=1

λi ≤
n−k∑

i=1

µi ≤
n−k∑

i=1

λk+i (9)

and the result follows. 2

10 BOUNDS FOR THE BIAS OF THE LEAST SQUARES
ESTIMATOR OF σ2, II

Suppose now that X is not completely unknown. In particular, suppose that
the regression contains a constant term, so that X contains a column of ones.
Surely this additional information must lead to a tighter interval for the rel-
ative bias of σ̂2. Theorem 7 shows that this is indeed the case. Somewhat
surprisingly perhaps only the upper bound of the relative bias is affected, not
the lower bound.
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Theorem 7

Consider the linear regression model (y,Xβ, σ2V ), where V is a positive
semidefinite n × n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn, and X is
a non-stochastic n × k matrix of rank k. Assume that X contains a column
ı = (1, 1, . . . , 1)′. Let A = In− (1/n)ıı′ and let 0 = λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗n be the
eigenvalues of AV A. Let σ̂2 be the least squares estimator of σ2, that is

σ̂2 =
1

n− k
y′(In −X(X ′X)−1X ′)y. (1)

Then

n−k∑

i=1

λi ≤
(n− k)E σ̂2

σ2
≤

n∑

i=k+1

λ∗i . (2)

Proof. Let M = In − X(X ′X)−1X ′. Since MA = M we have MVM =
MAVAM and hence

E σ̂2 =
σ2

n− k
trMVM =

σ2

n− k
trMAV AM. (3)

We obtain, just as in the proof of Theorem 6,

n−k∑

i=2

λ∗i ≤ trMAV AM ≤
n∑

i=k+1

λ∗i . (4)

We also have, by Theorem 6,

n−k∑

i=1

λi ≤ trMAV AM ≤
n∑

i=k+1

λi. (5)

In order to select the smallest upper bound and largest lower bound we use
the inequality

λi ≤ λ∗i+1 ≤ λi+1 (i = 1, . . . , n− 1), (6)

which follows from Theorem 11.11. We then find

n−k∑

i=2

λ∗i ≤
n−k∑

i=2

λi ≤
n−k∑

i=1

λi (7)

and

n∑

i=k+1

λ∗i ≤
n∑

i=k+1

λi, (8)
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so that

n−k∑

i=1

λi ≤ trMAV AM ≤
n∑

i=k+1

λ∗i . (9)

The result follows. 2

11 THE PREDICTION OF DISTURBANCES

Let us write the linear regression model (y,Xβ, σ2In) as

y = Xβ + ǫ, Eǫ = 0, Eǫǫ′ = σ2In. (1)

We have seen how the unknown parameters β and σ2 can be optimally es-
timated by linear or quadratic functions of y. We now turn our attention to
the ‘estimation’ of the disturbance vector ǫ. Since ǫ (unlike β) is a random
vector, it cannot, strictly speaking, be estimated. Furthermore, ǫ (unlike y) is
unobservable.

If we try to find an observable random vector, say e, which approximates
the unobservable ǫ as closely as possible in some sense, it is appealing to
minimize

E(e− ǫ)′(e− ǫ) (2)

subject to the constraints

(i) (linearity) e = Ay for some square matrix A, (3)

(ii) (unbiasedness) E(e− ǫ) = 0 for all β. (4)

This leads to the best linear unbiased predictor of ǫ,

e = (I −XX+)y, (5)

which we recognize as the least squares residual vector (see Exercises 1 and
2).

A major drawback of the best linear unbiased predictor given in (5) is that
its variance matrix is non-scalar. In fact,

V(e) = σ2(I −XX+), (6)

whereas the variance matrix of ǫ, which e hopes to resemble, is σ2In. This
drawback is especially serious if we wish to use e in testing the hypothesis
V(ǫ) = σ2In.

For this reason we wish to find a predictor of ǫ (or more generally, Sǫ)
which, in addition to being linear and unbiased, has a scalar variance matrix.

Exercises



Sec. 12 ] Best linear unbiased predictors with scalar variance matrix 339

1. Show that the minimization problem (2) subject to (3) and (4) amounts
to

minimize trA′A− 2 trA
subject to AX = 0.

2. Solve this problem and show that the minimizer Â satisfies

Â = I −XX+.

3. Show that, while ǫ is unobservable, certain linear combinations of ǫ are
observable. In fact, show that c′ǫ is observable if and only if X ′c = 0, in
which case c′ǫ = c′y.

12 BEST LINEAR UNBIASED PREDICTORS WITH SCALAR
VARIANCE MATRIX

Thus motivated, we propose the following definition of the predictor of Sǫ
that is best linear unbiased with scalar variance matrix (BLUS).

Definition 4

Consider the linear regression model (y,Xβ, σ2I). Let S be a given m × n
matrix. A random m× 1 vector w will be called a BLUS predictor of Sǫ if

E(w − Sǫ)′(w − Sǫ) (1)

is minimized subject to the constraints

(i) (linearity) w = Ay for some m× n matrix A,

(ii) (unbiasedness) E(w − Sǫ) = 0 for all β,

(iii) (scalar variance matrix) V(w) = σ2Im.

Our next task, of course, is to find the BLUS predictor of Sǫ.

Theorem 8

Consider the linear regression model (y,Xβ, σ2I) and let M = I −XX+. Let
S be a given m× n matrix such that

r(SMS′) = m. (2)

Then the BLUS predictor of Sǫ is

(SMS′)−1/2SMy, (3)
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where (SMS′)−1/2 is the positive definite square root of (SMS′)−1.

Proof. We seek a linear predictor w of Sǫ, that is a predictor of the form

w = Ay (4)

where A is a constant m × n matrix. Unbiasedness of the prediction error
requires

0 = E(Ay − Sǫ) = AXβ for all β in IRk, (5)

which yields

AX = 0. (6)

The variance matrix of w is

Eww′ = σ2AA′. (7)

In order to satisfy condition (iii) of Definition 4, we thus require

AA′ = I. (8)

Under the constraints (6) and (8), the prediction error variance is

V(Ay − Sǫ) = σ2(I + SS′ −AS′ − SA′). (9)

Hence the BLUS predictor of Sǫ is obtained by minimizing the trace of (9)
with respect to A subject to the constraints (6) and (8). This amounts to
solving the problem

maximize tr(AS′) (10)

subject to AX = 0 and AA′ = I. (11)

We define the Lagrangian function

ψ(A) = trAS′ − trL′
1AX − 1

2
trL2(AA

′ − I) (12)

where L1 and L2 are matrices of Lagrange multipliers and L2 is symmetric.
Differentiating ψ with respect to A yields

dψ = tr(dA)S′ − trL′
1(dA)X − 1

2
trL2(dA)A′ − 1

2
trL2A(dA)′

= trS′
dA− trXL′

1dA− trA′L2dA. (13)

The first-order conditions are

S′ = XL′
1 +A′L2 (14)

AX = 0 (15)

AA′ = I. (16)



Sec. 13 ] Best linear unbiased predictors with fixed variance matrix, I 341

Pre-multiplying (14) with XX+ yields

XL′
1 = XX+S′ (17)

because X+A′ = 0 in view of (15). Inserting (17) in (14) gives

MS′ = A′L2. (18)

Also, pre-multiplying (14) with A gives

AS′ = SA′ = L2 (19)

in view of (15) and (16) and the symmetry of L2. Pre-multiplying (18) with
S and using (19) we find

SMS′ = L2
2 (20)

and hence

L2 = (SMS′)1/2. (21)

It follows from (10) and (19) that our objective is to maximize the trace of L2.
Therefore we must choose in (21) the positive definite square root of SMS′.
Inserting (21) in (18) yields

A = (SMS′)−1/2SM. (22)

The result follows. 2

13 BEST LINEAR UNBIASED PREDICTORS WITH FIXED
VARIANCE MATRIX, I

We can generalize the BLUS approach in two directions. First, we may assume
that the variance matrix of the linear unbiased predictor is not scalar, but
some fixed known positive semidefinite matrix, say Ω. This is useful, because
for many purposes the requirement that the variance matrix of the predictor is
scalar is unnecessary; it is sufficient that the variance matrix does not depend
on X .

Secondly, we may wish to generalize the criterion function to

E(w − Sǫ)′Q(w − Sǫ), (1)

where Q is some given positive definite matrix.

Definition 5

Consider the linear regression model (y,Xβ, σ2V ) where V is a given positive
definite n × n matrix. Let S be a given m × n matrix, Ω a given positive
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semidefinite m×m matrix and Q a given positive definite m×m matrix. A
random m× 1 vector w will be called a BLUF (Ω, Q) predictor of Sǫ if

E(w − Sǫ)′Q(w − Sǫ) (2)

is minimized subject to the constraints

(i) (linearity) w = Ay for some m× n matrix A,

(ii) (unbiasedness) E(w − Sǫ) = 0 for all β,

(iii) (fixed variance matrix) V(w) = σ2Ω.

In Theorem 9 we consider the first generalization where the criterion func-
tion is unchanged, but where the variance matrix of the predictor is assumed
to be some fixed known positive semidefinite matrix.

Theorem 9

Consider the linear regression model (y,Xβ, σ2I) and let M = I −XX+. Let
S be a given m× n matrix and Ω a given positive semidefinite m×m matrix
such that

r(SMS′Ω) = r(Ω). (3)

Then the BLUF (Ω, Im) predictor of Sǫ is

PZ−1/2P ′SMy, Z = P ′SMS′P, (4)

where P is a matrix with full column rank satisfying PP ′ = Ω and Z−1/2 is
the positive definite square root of Z−1.

Proof. Proceeding as in the proof of Theorem 8, we seek a linear predictor Ay
of Sǫ such that

trV(Ay − Sǫ) (5)

is minimized subject to the conditions

E(Ay − Sǫ) = 0 for all β in IRk (6)

and

V(Ay) = σ2Ω. (7)

This leads to the maximization problem

maximize trAS′ (8)

subject to AX = 0 and AA′ = Ω. (9)
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The first-order conditions are

S′ = XL′
1 +A′L2 (10)

AX = 0 (11)

AA′ = Ω, (12)

where L1 and L2 are matrices of Lagrange multipliers and L2 is symmetric.
Pre-multiplying (10) with XX+ and A, respectively, yields

XL′
1 = XX+S′ (13)

and

AS′ = ΩL2, (14)

in view of (11) and (12). Inserting (13) in (10) gives

MS′ = A′L2. (15)

Hence,

SMS′ = SA′L2 = L2ΩL2 = L2PP
′L2 (16)

using (15), (14) and the fact that Ω = PP ′. This gives

P ′SMS′P = (P ′L2P )2 (17)

and hence

P ′L2P = (P ′SMS′P )1/2. (18)

By assumption, the matrix P ′SMS′P is positive definite. Also, it follows
from (8) and (14) that we must maximize the trace of P ′L2P , so that we
must choose the positive definite square root of P ′SMS′P .

So far the proof is very similar to the proof of Theorem 8. However, con-
trary to that proof we now cannot obtain A directly from (15) and (18).
Instead, we proceed as follows. From (15), (12) and (18) we have

AMS′P = AA′L2P = PP ′L2P = P (P ′SMS′P )1/2. (19)

The general solution for A in (19) is

A = P (P ′SMS′P )1/2(MS′P )+ +Q(I −MS′P (MS′P )+)

= P (P ′SMS′P )−1/2P ′SM +Q(I −MS′P (P ′SMS′P )−1P ′SM) (20)

where Q is an arbitrary m× n matrix. From (20) we obtain

AA′ = PP ′ +Q(I −MS′P (P ′SMS′P )−1P ′SM)Q′ (21)
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and hence, in view of (12),

Q(I −MS′P (P ′SMS′P )−1P ′SM)Q′ = 0. (22)

Since the matrix in the middle is idempotent, (22) implies

Q(I −MS′P (P ′SMS′P )−1P ′SM) = 0 (23)

and hence, from (20),

A = P (P ′SMS′P )−1/2P ′SM. (24)

This concludes the proof. 2

14 BEST LINEAR UNBIASED PREDICTORS WITH FIXED
VARIANCE MATRIX, II

Let us now present the full generalization of Theorem 8.

Theorem 10

Consider the linear regression model (y,Xβ, σ2V ), where V is positive defi-
nite, and let

R = V −X(X ′V −1X)+X ′. (1)

Let S be a given m × n matrix and Ω a given positive semidefinite m ×m
matrix such that

r(SRS′Ω) = r(Ω). (2)

Then, for any positive definite m ×m matrix Q, the BLUF(Ω, Q) predictor
of Sǫ is

PZ−1/2P ′QSRV −1y, Z = P ′QSRS′QP, (3)

where P is a matrix with full column rank satisfying PP ′ = Ω and Z−1/2

denotes the positive definite square root of Z−1.

Proof. The maximization problem amounts to

maximize trQAV S′ (4)

subject to AX = 0 and AV A′ = Ω. (5)

We define

A∗ = QAV 1/2, S∗ = SV 1/2, X∗ = V −1/2X, (6)

Ω∗ = QΩQ, P ∗ = QP, M∗ = I −X∗X∗+. (7)



Sec. 15 ] Local sensitivity of the posterior mean 345

Then we rewrite the maximization problem (4) subject to (5) as a maximiza-
tion problem in A∗:

maximize trA∗S∗′ (8)

subject to A∗X∗ = 0 and A∗A∗′ = Ω∗. (9)

We know from Theorem 9 that the solution is

A∗ = P ∗(P ∗′S∗M∗S∗′P ∗)−1/2P ∗′S∗M∗. (10)

Hence, writing M∗ = V −1/2RV −1/2, we obtain

QAV 1/2 = QP (P ′QSRS′QP )−1/2P ′QSRV −1/2 (11)

and thus

A = P (P ′QSRS′QP )−1/2P ′QSRV −1, (12)

which completes the proof. 2

15 LOCAL SENSITIVITY OF THE POSTERIOR MEAN

Let (y,Xβ, V ) be the normal linear regression model where V is positive
definite. Suppose, however, that there is prior information concerning β:

β ∼ N (b∗, H∗−1). (1)

Then, as Leamer (1978, p. 76) shows, the posterior distribution of β is

β ∼ N (b,H−1) (2)

with

b = H−1(H∗b∗ +X ′V −1y) (3)

and

H = H∗ +X ′V −1X. (4)

We are interested in the effects of small changes in the precision matrix V −1,
the design matrix X and the prior moments b∗ and H∗−1 on the posterior
mean b and the posterior precision H−1.

We first study the effects on the posterior mean.

Theorem 11

Consider the normal linear regression model (y,Xβ, V ), V positive definite,
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with prior information β ∼ N (b∗, H∗−1). The local sensitivities of the poste-
rior mean b given in (3) with respect to V −1, X , and the prior moments b∗

and H∗−1 are

∂b/∂(v(V −1))′ = [(y −Xb)′ ⊗H−1X ′]Dn (5)

∂b/∂(vecX)′ = H−1 ⊗ (y −Xb)′V −1 − b′ ⊗H−1X ′V −1 (6)

∂b/∂b∗′ = H−1H∗ (7)

∂b/∂(v(H∗−1))′ = [(b− b∗)′H∗ ⊗H−1H∗]Dk. (8)

Note. The matrices Dn and Dk are ‘duplication’ matrices. See Section 3.8.

Proof. We have, letting e = y −Xb,

db = (dH−1)(H∗b∗ +X ′V −1y) +H−1
d(H∗b∗ +X ′V −1y)

= −H−1(dH)b +H−1
d(H∗b∗ +X ′V −1y)

= −H−1[dH∗ + (dX)′V −1X +X ′V −1
dX +X ′(dV −1)X ]b

+ H−1[(dH∗)b∗ +H∗
db∗ + (dX)′V −1y +X ′(dV −1)y]

= H−1[(dH∗)(b∗ − b) +H∗
db∗ + (dX)′V −1e

− X ′V −1(dX)b+X ′(dV −1)e]

= H−1H∗(dH∗−1)H∗(b− b∗) +H−1H∗
db∗

+ H−1(dX)′V −1e−H−1X ′V −1(dX)b+H−1X ′(dV −1)e

= [(b− b∗)′H∗ ⊗H−1H∗]d vecH∗−1 +H−1H∗
db∗

+ vec e′V −1(dX)H−1 − (b′ ⊗H−1X ′V −1)d vecX

+ [e′ ⊗H−1X ′]d vecV −1

= [(b− b∗)′H∗ ⊗H−1H∗]Dkdv(H
∗−1) +H−1H∗

db∗

+ [H−1 ⊗ e′V −1 − b′ ⊗H−1X ′V −1]d vecX

+ [e′ ⊗H−1X ′]Dndv(V
−1).

The results follow. 2

Exercise

1. Show that the local sensitivity of the least squares estimator b = (X ′X)−1X ′y
with respect to X is given by

∂b

∂(vecX)′
= (X ′X)−1 ⊗ (y −Xb)′ − b′ ⊗ (X ′X)−1X ′.
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16 LOCAL SENSITIVITY OF THE POSTERIOR PRECISION

In precisely the same manner we can obtain the local sensitivity of the pos-
terior precision.

Theorem 12

Consider the normal linear regression model (y,Xβ, V ), V positive definite,

with prior information β ∼ N (b∗, H∗−1). The local sensitivities of the poste-
rior precision matrix H−1 given by

H−1 = (H∗ +X ′V −1X)−1 (1)

with respect to V −1, X and the prior moments b∗ and H∗−1 are

∂v(H−1)/∂(v(V −1))′ = D+
k (H−1X ′ ⊗H−1X ′)Dn (2)

∂v(H−1/∂(vecX)′ = −2D+
k (H−1 ⊗H−1X ′V −1) (3)

∂v(H−1)/∂b∗′ = 0 (4)

∂v(H−1)/∂(v(H∗−1))′ = D+
k (H−1H∗ ⊗H−1H∗)Dk. (5)

Proof. From H = H∗ +X ′V −1X we obtain

dH−1 = −H−1(dH)H−1

= −H−1[dH∗ + (dX)′V −1X +X ′V −1
dX +X ′(dV −1)X ]H−1

= H−1H∗(dH∗−1)H∗H−1 −H−1(dX)′V −1XH−1

− H−1X ′V −1(dX)H−1 −H−1X ′(dV −1)XH−1. (6)

Hence

d vecH−1 = (H−1H∗ ⊗H−1H∗)d vecH∗−1 − (H−1X ′V −1 ⊗H−1)d vecX ′

− (H−1 ⊗H−1X ′V −1)d vecX − (H−1X ′ ⊗H−1X ′)d vecV −1

= (H−1H∗ ⊗H−1H∗)d vecH∗−1

− [(H−1X ′V −1 ⊗H−1)Knk +H−1 ⊗H−1X ′V −1]d vecX

− (H−1X ′ ⊗H−1X ′)d vecV −1

= (H−1H∗ ⊗H−1H∗)d vecH∗−1

− (Ik2 +Kkk)(H
−1 ⊗H−1X ′V −1)d vecX

− (H−1X ′ ⊗H−1X ′)d vecV −1, (7)

so that

dv(H−1) = D+
k d vecH−1 = D+

k (H−1H∗ ⊗H−1H∗)Dkdv(H
∗−1)

− 2D+
k (H−1 ⊗H−1X ′V −1)d vecX

− D+
k (H−1X ′ ⊗H−1X ′)Dndv(V

−1) (8)
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and the results follow. 2
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Part Six —

Applications to maximum likelihood
estimation





CHAPTER 15

Maximum likelihood estimation

1 INTRODUCTION

The method of maximum likelihood estimation has great intuitive appeal and
generates estimators with desirable asymptotic properties. The estimators are
obtained by maximization of the likelihood function, and the asymptotic pre-
cision of the estimators is measured by the inverse of the information matrix.
Thus both the first and the second differential of the likelihood function need
to be found and this provides an excellent example of the use of our techniques.

2 THE METHOD OF MAXIMUM LIKELIHOOD (ML)

Let {y1, y2, . . .} be a sequence of random variables, not necessarily indepen-
dent or identically distributed. The joint density function of y = (y1, . . . , yn) ∈
IRn is denoted hn(·; γ0) and is known except for γ0, the true value of the param-
eter vector to be estimated. We assume that γ0 ∈ Γ, where Γ (the parameter
space) is a subset of a finite-dimensional Euclidean space. For every (fixed)
y ∈ IRn the real-valued function

Ln(γ) = Ln(γ; y) = hn(y; γ), γ ∈ Γ, (1)

is called the likelihood function, and its logarithm

Λn(γ) = logLn(γ) (2)

is called the loglikelihood function.
For fixed y ∈ IRn every value γ̂n(y) ∈ Γ with

Ln(γ̂n(y); y) = sup
γ∈Γ

Ln(γ; y) (3)

is called a maximum likelihood (ML) estimate of γ0. In general, there is no
guarantee that an ML estimate of γ0 exists for (almost) every y ∈ IRn, but if

351
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it does and if the function γ̂n : IRn → Γ so defined is measurable, then this
function is called an ML estimator of γ0.

When the supremum in (3) is attained at an interior point of Γ and Ln(γ)
is a differentiable function of γ, then the score vector

sn(γ) = ∂Λn(γ)/∂γ (4)

vanishes at that point, so that γ̂n is a solution of the vector equation sn(γ) = 0.
If Ln(γ) is a twice differentiable function of γ, then the Hessian matrix is

defined as

Hn(γ) = ∂2Λn(γ)/∂γ∂γ
′ (5)

and the information matrix for γ0 is

Fn(γ0) = −EHn(γ0). (6)

Notice that the information matrix is evaluated at the true value γ0. The
asymptotic information matrix for γ0 is defined as

F(γ0) = lim
n→∞

(1/n)Fn(γ0) (7)

if the limit exists. If F(γ0) is positive definite, its inverse F−1(γ0) is essen-
tially a lower bound for the asymptotic variance matrix of any consistent
estimator of γ0 (asymptotic Cramér-Rao inequality). Under suitable regular-
ity conditions the ML estimator attains this lower bound asymptotically. As
a consequence we shall refer to F−1(γ0) as the asymptotic variance matrix
of the ML estimator γ̂n. The precise meaning of this is that, under suitable
conditions, the sequence of random variables

√
n(γ̂n − γ0) (8)

converges in distribution to a normally distributed random vector with mean
zero and variance matrix F−1(γ0). Thus, F−1(γ0) is the variance matrix of
the asymptotic distribution, and an estimator of the variance matrix of γ̂n is
given by

(1/n)F−1(γ̂n) or F−1
n (γ̂n). (9)

3 ML ESTIMATION OF THE MULTIVARIATE NORMAL
DISTRIBUTION

Our first theorem is the following well-known result concerning the multivari-
ate normal distribution.

Theorem 1

Let the random m× 1 vectors y1, y2, . . . , yn be independently and identically
distributed such that

yi ∼ Nm(µ0,Ω0) (i = 1, . . . , n), (1)
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where Ω0 is positive definite, and let n ≥ m + 1. The ML estimators of µ0

and Ω0 are

µ̂ = (1/n)

n∑

i=1

yi ≡ ȳ (2)

Ω̂ = (1/n)

n∑

i=1

(yi − ȳ)(yi − ȳ)′. (3)

Let us give four proofs of this theorem. The first proof ignores the fact that
Ω is symmetric.

First proof of Theorem 1. The loglikelihood function is

Λn(µ,Ω) = −1

2
mn log 2π − 1

2
n log |Ω| − 1

2
tr Ω−1Z, (4)

and

Z =

n∑

i=1

(yi − µ)(yi − µ)′. (5)

The first differential of Λn is

dΛn = −1

2
n d log |Ω| − 1

2
tr(dΩ−1)Z − 1

2
tr Ω−1

dZ

= −1

2
n trΩ−1

dΩ +
1

2
tr Ω−1(dΩ)Ω−1Z

+
1

2
tr Ω−1

(∑

i

(yi − µ)(dµ)′ + (dµ)
∑

i

(yi − µ)′

)

=
1

2
tr(dΩ)Ω−1(Z − nΩ)Ω−1 + (dµ)′Ω−1

∑

i

(yi − µ)

=
1

2
tr(dΩ)Ω−1(Z − nΩ)Ω−1 + n(dµ)′Ω−1(ȳ − µ). (6)

If we ignore the symmetry constraint on Ω, we obtain the first-order conditions

Ω−1(Z − nΩ)Ω−1 = 0, Ω−1(ȳ − µ) = 0, (7)

from which (2) and (3) follow immediately. To prove that we have in fact
found the maximum of (4), we differentiate (6) again. This yields

d
2Λn =

1

2
tr(dΩ)(dΩ−1)(Z − nΩ)Ω−1 +

1

2
tr(dΩ)Ω−1(Z − nΩ)dΩ−1

+
1

2
tr(dΩ)Ω−1(dZ − ndΩ)Ω−1 + n(dµ)′(dΩ−1)(ȳ − µ)

− n(dµ)′Ω−1
dµ. (8)
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At the point (µ̂, Ω̂) we have µ̂ = ȳ, Ẑ − nΩ̂ = 0 and dẐ = 0 (see Exercise 1),
and hence

d
2Λn(µ̂, Ω̂) = −n

2
tr(dΩ)Ω̂−1(dΩ)Ω̂−1 − n(dµ)′Ω̂−1

dµ < 0 (9)

unless dµ = 0 and dΩ = 0. It follows that Λn has a strict local maximum at
(µ̂, Ω̂). 2

Exercises

1. Show that dZ = −n(dµ)(ȳ − µ)′ − n(ȳ − µ)(dµ)′, and conclude that

dẐ = 0.

2. Show that EΩ̂ = ((n− 1)/n)Ω.

3. Show that Ω̂ = (1/n)Y ′ (I − (1/n)ıı′)Y , where Y = (y1, . . . , yn)
′.

4. Hence show that Ω̂ is positive definite (almost surely) if and only if
n− 1 ≥ m.

4 SYMMETRY: IMPLICIT VERSUS EXPLICIT TREATMENT

The first proof of Theorem 1 shows that, even if we do not improve symme-
try (or positive definiteness) on Ω, the solution Ω̂ is symmetric and positive
semidefinite (in fact, positive definite with probability 1). Hence there is no
need to impose symmetry at this stage. Nevertheless, we shall give two proofs
of Theorem 1 where the symmetry is properly taken into account. We shall
need these results in any case when we discuss the second-order conditions
(Hessian matrix and information matrix).

Second proof of Theorem 1. Starting from (3.6) we have

dΛn =
1

2
tr(dΩ)Ω−1(Z − nΩ)Ω−1 + n(dµ)′Ω−1(ȳ − µ)

=
1

2
(vec dΩ)′(Ω−1 ⊗ Ω−1) vec(Z − nΩ) + n(dµ)′Ω−1(ȳ − µ)

=
1

2
(dv(Ω))′D′

m(Ω−1 ⊗ Ω−1) vec(Z − nΩ) + n(dµ)′Ω−1(ȳ − µ), (1)

where Dm is the duplication matrix (see Section 3.8). The first-order condi-
tions are

Ω−1(ȳ − µ) = 0, D′
m(Ω−1 ⊗ Ω−1) vec(Z − nΩ) = 0. (2)

The first of these conditions implies µ̂ = ȳ; the second can be written as

D′
m(Ω−1 ⊗ Ω−1)Dmv(Z − nΩ) = 0 (3)
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since Z − nΩ is symmetric. Now, D′
m(Ω−1 ⊗ Ω−1)Dm is non-singular (see

Theorem 3.13), so (3) implies v(Z −nΩ) = 0. Using again the symmetry of Z
and Ω, we obtain

Ω̂ = (1/n)Ẑ = (1/n)
∑

i

(yi − ȳ)(yi − ȳ)′. (4)

This concludes the second proof of Theorem 1. 2

We shall call the above treatment of the symmetry condition (using the
duplication matrix) implicit. In contrast, an explicit treatment of symmetry
involves inclusion of the side condition Ω = Ω′. The next proof of Theorem 1
illustrates this approach.

Third proof of Theorem 1. Our starting point now is the Lagrangian function

ψ(µ,Ω) = −1

2
mn log 2π − 1

2
n log |Ω| − 1

2
trΩ−1Z − trL′(Ω − Ω′), (5)

where L is an m×m matrix of Lagrange multipliers. Differentiating (5) yields

dψ =
1

2
tr(dΩ)Ω−1(Z − nΩ)Ω−1 + tr(L− L′)dΩ + n(dµ)′Ω−1(ȳ − µ), (6)

so that the first-order conditions are

1

2
Ω−1(Z − nΩ)Ω−1 + L− L′ = 0 (7)

Ω−1(ȳ − µ) = 0 (8)

Ω = Ω′. (9)

From (8) follows µ̂ = ȳ. Adding (7) to its transpose and using (9) yields
Ω−1(Z − nΩ)Ω−1 = 0 and hence the desired result. 2

5 THE TREATMENT OF POSITIVE DEFINITENESS

Finally we may impose both symmetry and positive definiteness on Ω by
writing Ω = X ′X,X square. This leads to our final proof of Theorem 1.

Fourth proof of Theorem 1. Again starting from (3.6), we have

dΛn =
1

2
tr(dΩ)Ω−1(Z − nΩ)Ω−1 + n(dµ)′Ω−1(ȳ − µ)

=
1

2
tr(dX ′X)Ω−1(Z − nΩ)Ω−1 + n(dµ)′Ω−1(ȳ − µ)

=
1

2
tr
(
(dX)′X +X ′

dX)Ω−1(Z − nΩ)Ω−1
)

+ n(dµ)′Ω−1(ȳ − µ)

=
1

2
tr
(
Ω−1(Z − nΩ)Ω−1X ′

dX
)

+ n(dµ)′Ω−1(ȳ − µ). (1)
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The first-order conditions are

Ω−1(Z − nΩ)Ω−1X ′ = 0, Ω−1(ȳ − µ) = 0, (2)

from which it follows that µ̂ = ȳ and Ω̂ = X̂ ′X̂ = (1/n)Ẑ. 2

6 THE INFORMATION MATRIX

To obtain the information matrix we need to take the symmetry of Ω into
account, either implicitly or explicitly. We prefer the implicit treatment using
the duplication matrix.

Theorem 2

Let the random m × 1 vectors y1, . . . , yn be independently and identically
distributed such that

yi ∼ Nm(µ0,Ω0) (i = 1, . . . , n), (1)

where Ω0 is positive definite, and let n ≥ m+ 1. The information matrix for
µ0 and v(Ω0) is the 1

2m(m+ 3) × 1
2m(m+ 3) matrix

Fn = n

(
Ω−1

0 0
0 1

2D
′
m(Ω−1

0 ⊗ Ω−1
0 )Dm

)
. (2)

The asymptotic variance matrix of the ML estimators µ̂ and v(Ω̂) is

F−1 =

(
Ω0 0

0 2D+
m(Ω0 ⊗ Ω0)D

+
m

′

)
, (3)

and the generalized asymptotic variance of v(Ω̂) is

|2D+
m(Ω0 ⊗ Ω0)D

+
m

′| = 2m|Ω0|m+1. (4)

Proof. Since Ω is a linear function of v(Ω), we have d
2Ω = 0 and hence the

second differential of Λn(µ, v(Ω)) is given by (3.8):

d
2Λn(µ, v(Ω)) =

1

2
tr(dΩ)(dΩ−1)(Z − nΩ)Ω−1 +

1

2
tr(dΩ)Ω−1(Z − nΩ)dΩ−1

+
1

2
tr(dΩ)Ω−1(dZ − ndΩ)Ω−1 + n(dµ)′(dΩ−1)(ȳ − µ)

− n(dµ)′Ω−1
dµ. (5)

Notice that we do not at this stage evaluate d
2Λn completely in terms of dµ

and dv(Ω); this is unnecessary because, upon taking expectations, we find
immediately

−Ed
2Λn(µ0, v(Ω0)) =

n

2
tr(dΩ)Ω−1

0 (dΩ)Ω−1
0 + n(dµ)′Ω−1

0 dµ, (6)
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since E ȳ = µ0, EZ = nΩ0 and EdZ = 0 (compare the passage from (3.8) to
(3.9)). We now use the duplication matrix and obtain

−Ed
2Λn(µ0, v(Ω0)) =

n

2
(vec dΩ)′(Ω−1

0 ⊗ Ω−1
0 ) vec dΩ + n(dµ)′Ω−1

0 dµ

=
n

2
(dv(Ω))′D′

m(Ω−1
0 ⊗ Ω−1

0 )Dmdv(Ω) + n(dµ)′Ω−1
0 dµ. (7)

Hence the information matrix for µ0 and v(Ω0) is Fn = nF with

F =

(
Ω−1

0 0
0 1

2D
′
m(Ω−1

0 ⊗ Ω−1
0 )Dm

)
. (8)

The asymptotic variance matrix of µ̂ and v(Ω̂) is

F−1 =

(
Ω0 0

0 2D+
m(Ω0 ⊗ Ω0)D

+
m

′

)
, (9)

using Theorem 3.13(d). The generalized asymptotic variance of v(Ω̂) follows
from (9) and Theorem 3.14(b). 2

Exercises

1. Taking (5) as your starting point, show that

(1/n)d2Λn(µ, v(Ω)) = −(dµ)′Ω−1
dµ− 2(dµ)′Ω−1(dΩ)Ω−1(ȳ − µ)

+
1

2
tr(dΩ)Ω−1(dΩ)Ω−1

− tr(dΩ)Ω−1(dΩ)Ω−1(Z/n)Ω−1.

2. Hence show that the Hessian matrix Hn(µ, v(Ω)) takes the form

−n
(

Ω−1
(
(ȳ − µ)′Ω−1 ⊗ Ω−1

)
Dm

D′
m

(
Ω−1(ȳ − µ) ⊗ Ω−1

)
1
2D

′
m(Ω−1 ⊗A)Dm

)

with

A = Ω−1 ((2/n)Z − Ω)Ω−1.

7 ML ESTIMATION OF THE MULTIVARIATE NORMAL
DISTRIBUTION: DISTINCT MEANS

Suppose now that we have not one but, say, p random samples, and let the j-th
sample be from the Nm(µ0j ,Ω0) distribution. We wish to estimate µ01, . . . , µ0p

and the common variance matrix Ω0.
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Theorem 3

Let the randomm×1 vectors yij (i = 1, . . . , nj; j = 1, . . . , p) be independently
distributed such that

yij ∼ Nm(µ0j ,Ω0) (i = 1, . . . , nj ; j = 1, . . . , p) (1)

where Ω0 is positive definite, and let n =
∑p

j=1 nj ≥ m+p. The ML estimators
of µ01, . . . , µ0p and Ω0 are

µ̂j = (1/nj)

nj∑

i=1

yij ≡ ȳj (j = 1, . . . , p) (2)

Ω̂ = (1/n)

p∑

j=1

nj∑

i=1

(yij − ȳj)(yij − ȳj)
′. (3)

The information matrix for µ01, . . . , µ0p and v(Ω0) is

Fn = n

(
A⊗ Ω−1

0 0
0 1

2D
′
m(Ω−1

0 ⊗ Ω−1
0 )Dm

)
, (4)

where A is a diagonal p×p matrix with diagonal elements nj/n (j = 1, . . . , p).

The asymptotic variance matrix of the ML estimators µ̂1, . . . , µ̂p and v(Ω̂) is

F−1 =

(
A−1 ⊗ Ω0 0

0 2D+
m(Ω0 ⊗ Ω0)D

+
m

′

)
. (5)

Proof. The proof is left as an exercise for the reader. 2

Exercise

1. Show that Ω̂ is positive definite (almost surely) if and only if n−p ≥ m.

8 THE MULTIVARIATE LINEAR REGRESSION MODEL

Let us consider a system of linear regression equations

yij = x′iβ0j + ǫij (i = 1, . . . , n; j = 1, . . . ,m), (1)

where yij denotes the i-th observation on the j-th dependent variable, xi (i =
1, . . . , n) are observations on the k regressors, β0j (j = 1, . . . ,m) are k × 1
parameter vectors to be estimated, and ǫij is a random disturbance term. We
let ǫ′i = (ǫi1, . . . , ǫim) and assume that Eǫi = 0 (i = 1, . . . , n) and

Eǫiǫ′h =

{
0 if i 6= h
Ω0 if i = h.

(2)
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Let Y = (yij) be the n × m matrix of the observations on the dependent
variables and let

Y = (y1, y2, . . . , yn)
′ = (y(1), . . . , y(m)). (3)

Similarly we define

X = (x1, . . . , xn)′, B0 = (β01, . . . , β0m) (4)

of orders n× k and k×m respectively, and ǫ(j) = (ǫ1j , . . . , ǫnj)
′. We can then

write the system (1) either as

y(j) = Xβ0j + ǫ(j) (j = 1, . . . ,m) (5)

or as

y′i = x′iB0 + ǫ′i (i = 1, . . . , n). (6)

If the vectors ǫ(1), . . . , ǫ(m) are uncorrelated, which is the case if Ω0 is diagonal,
we can estimate each β0j separately. But in general this will not be the case
and we have to estimate the whole system on efficiency grounds.

Theorem 4

Let the random m × 1 vectors y1, . . . , yn be independently distributed such
that

yi ∼ Nm(B′
0xi,Ω0) (i = 1, . . . , n), (7)

where Ω0 is positive definite and X = (x1, . . . , xn)′ is a given non-random
n× k matrix of full column rank k. Let n ≥ m+ k. The ML estimators of B0

and Ω0 are

B̂ = (X ′X)−1X ′Y, Ω̂ = (1/n)Y ′MY, (8)

where

Y = (y1, . . . , yn)
′, M = In −X(X ′X)−1X ′. (9)

The information matrix for vecB0 and v(Ω0) is

Fn = n

(
Ω−1

0 ⊗ (1/n)X ′X 0
0 1

2D
′
m(Ω−1

0 ⊗ Ω−1
0 )Dm

)
. (10)

And, if (1/n)X ′X converges to a positive definite matrix Q when n→ ∞, the

asymptotic variance matrix of vec B̂ and v(Ω̂) is

F−1 =

(
Ω0 ⊗Q−1 0

0 2D+
m(Ω0 ⊗ Ω0)D

+
m

′

)
. (11)
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Proof. The loglikelihood is

Λn(B, v(Ω)) = −1

2
mn log 2π − 1

2
n log |Ω| − 1

2
tr Ω−1Z (12)

where

Z =

n∑

i=1

(yi −B′xi)(yi −B′xi)
′ = (Y −XB)′(Y −XB), (13)

and its first differential takes the form

dΛn = −1

2
n trΩ−1

dΩ +
1

2
trΩ−1(dΩ)Ω−1Z − 1

2
tr Ω−1

dZ

=
1

2
tr(dΩ)Ω−1(Z − nΩ)Ω−1 + tr Ω−1(Y −XB)′XdB. (14)

The first-order conditions are therefore

Ω = (1/n)Z, (Y −XB)′X = 0. (15)

This leads to B̂ = (X ′X)−1X ′Y , so that

Ω̂ = (1/n)(Y −XB̂)′(Y −XB̂) = (1/n)(MY )′MY = (1/n)Y ′MY. (16)

The second differential is

d
2Λn = tr(dΩ)(dΩ−1)(Z − nΩ)Ω−1 +

1

2
tr(dΩ)Ω−1(dZ − ndΩ)Ω−1

+ tr(dΩ−1)(Y −XB)′XdB − tr Ω−1(dB)′X ′XdB, (17)

and taking expectations we obtain

−Ed
2Λn(B0, v(Ω0)) =

n

2
tr(dΩ)Ω−1

0 (dΩ)Ω−1
0 + tr Ω−1

0 (dB)′X ′XdB

=
n

2
(dv(Ω))′D′

m(Ω−1
0 ⊗ Ω−1

0 )Dmdv(Ω)

+ (d vecB)′(Ω−1
0 ⊗X ′X)d vecB. (18)

The information matrix and the inverse of its limit now follow easily from
(18). 2

Exercises

1. Use (17) to show that

(1/n)d2Λn(B, v(Ω)) = − trΩ−1(dB)′(X ′X/n)dB

− 2 tr(dΩ)Ω−1(dB)′ (X ′(Y −XB)/n)Ω−1

+
1

2
tr(dΩ)Ω−1(dΩ)Ω−1

− tr(dΩ)Ω−1(dΩ)Ω−1(Z/n)Ω−1.



Sec. 9 ] The errors-in-variables model 361

2. Hence show that the Hessian matrix Hn(vecB, v(Ω)) takes the form

−n
(

Ω−1 ⊗ (X ′X/n) (Ω−1 ⊗ (X ′V/n)Ω−1)Dm

D′
m(Ω−1 ⊗ Ω−1(V ′X/n)) 1

2D
′
m(Ω−1 ⊗A)Dm

)

with
V = Y −XB, A = Ω−1 ((2/n)Z − Ω)Ω−1.

Compare this result with the Hessian matrix obtained in Exercise 6.2.

9 THE ERRORS-IN-VARIABLES MODEL

Consider the linear regression model

yi = x′iβ0 + ǫi (i = 1, . . . , n), (1)

where x1, . . . , xn are non-stochastic k × 1 vectors. Assume that both yi and
xi are measured with error, so that instead of observing yi and xi we observe
y∗i and x∗i where

y∗i = yi + ηi, x∗i = xi + ξi. (2)

Then we have
(
y∗i
x∗i

)
=

(
x′iβ0

xi

)
+

(
ǫi + ηi
ξi

)
(3)

or, for short,

zi = µ0i + vi (i = 1, . . . , n). (4)

If we assume that the distribution of (v1, . . . , vn) is completely known, then the
problem is to estimate the vectors x1, . . . , xn and β0. Letting α0 = (−1, β′

0)
′,

we see that this is equivalent to estimating µ01, . . . , µ0n and α0 subject to the
constraints µ′

0iα0 = 0 (i = 1, . . . , n). In this context the following result is of
importance.

Theorem 5

Let the random m × 1 vectors y1, . . . , yn be independently distributed such
that

yi ∼ Nm(µ0i,Ω0) (i = 1, . . . , n), (5)

where Ω0 is positive definite and known, and the parameter vectors µ01, . . . , µ0n

are subject to the constraint

µ′
0iα0 = 0 (i = 1, . . . , n) (6)
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for some unknown α0 in IRm, normalized by α′
0Ω0α0 = 1. The ML estimators

of µ01, . . . , µ0n and α0 are

µ̂i = Ω
1/2
0 (I − uu′)Ω

−1/2
0 yi (i = 1, . . . , n), (7)

α̂ = Ω
−1/2
0 u, (8)

where u is the normalized eigenvector (u′u = 1) associated with the smallest
eigenvalue of

Ω
−1/2
0

(
n∑

i=1

yiy
′
i

)
Ω

−1/2
0 . (9)

Proof. Letting

Y = (y1, . . . , yn)
′, M = (µ1, . . . , µn)

′, (10)

we write the loglikelihood as

Λn(M,α) = −1

2
mn log 2π − 1

2
log |Ω0| −

1

2
tr(Y −M)Ω−1

0 (Y −M)′. (11)

We wish to maximize Λn subject to the constraints Mα = 0 and α′Ω0α = 1.
Since Ω0 is given, the problem becomes

minimize
1

2
tr(Y −M)Ω−1

0 (Y −M)′

subject to Mα = 0 and α′Ω0α = 1. (12)

The Lagrangian function is

ψ(M,α) =
1

2
tr(Y −M)Ω−1

0 (Y −M)′ − l′Mα− λ(α′Ω0α− 1), (13)

where l is a vector of Lagrange multipliers and λ is a (scalar) Lagrange mul-
tiplier. The first differential is

dψ = − tr(Y −M)Ω−1
0 (dM)′ − l′(dM)α− l′Mdα− 2λα′Ω0dα

= − tr
(
(Y −M)Ω−1

0 + lα′
)
(dM)′ − (l′M + 2λα′Ω0)dα (14)

and the first-order conditions are thus

(Y −M)Ω−1
0 = −lα′ (15)

M ′l = −2λΩ0α (16)

Mα = 0 (17)

α′Ω0α = 1. (18)
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As usual we first solve for the Lagrange multipliers. Post-multiplying (15) by
Ω0α yields

l = −Y α, (19)

using (17) and (18). Also, pre-multiplying (16) by α′ yields

λ = 0 (20)

in view of (17) and (18). Inserting (19) and (20) into (15)–(18) gives

M = Y − Y αα′Ω0 (21)

M ′Y α = 0 (22)

α′Ω0α = 1. (23)

(Note that Mα = 0 is automatically satisfied.) Inserting (21) into (22) gives

(Y ′Y − νΩ0)α = 0, (24)

where ν = α′Y ′Y α, which we rewrite as

(Ω
−1/2
0 Y ′Y Ω

−1/2
0 − νI)Ω

1/2
0 α = 0. (25)

Given (21) and (23) we have

tr(Y −M)Ω−1
0 (Y −M)′ = α′Y ′Y α = ν. (26)

But this is the function we wish to minimize! Hence we take ν as the smallest
eigenvalue of Ω

−1/2
0 Y ′Y Ω

−1/2
0 and Ω

1/2
0 α as the associated normalized eigen-

vector. This yields (8), the ML estimator of α. The ML estimator of M then
follows from (21). 2

Exercise

1. If α0 is normalized by e′α0 = −1 (rather than by α′
0Ω0α0 = 1), show

that the ML estimators (7) and (8) become

µ̂i = Ω
1/2
0

(
I − uu′

u′u

)
Ω

−1/2
0 yi, α̂ = Ω

−1/2
0 u,

where u is the eigenvector (normalized by e′Ω
−1/2
0 u = −1) associated

with the smallest eigenvalue of

Ω
−1/2
0

(∑

i

yiy
′
i

)
Ω

−1/2
0 .
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10 THE NON-LINEAR REGRESSION MODEL WITH
NORMAL ERRORS

Let us now consider a system of n non-linear regression equations with normal
errors, which we write as

y ∼ Nn(µ(γ0),Ω(γ0)). (1)

Here γ0 denotes the true (but unknown) value of the parameter vector to be
estimated. We assume that γ0 ∈ Γ, an open subset of IRp, and that p (the
dimension of Γ) is independent of n. We also assume that Ω(γ) is positive
definite for every γ ∈ Γ, and that µ and Ω are twice differentiable on Γ. We
define the p× 1 vector l(γ) = (lj(γ)),

lj(γ) =
1

2
tr

(
∂Ω−1(γ)

∂γj
Ω(γ)

)
+ u′(γ)Ω−1(γ)

∂µ(γ)

∂γj

− 1

2
u′(γ)

∂Ω−1(γ)

∂γj
u(γ), (2)

where u(γ) = y − µ(γ), and the p× p matrix Fn(γ) = (Fn,ij(γ)),

Fn,ij(γ) =

(
∂µ(γ)

∂γi

)′

Ω−1(γ)
∂µ(γ)

∂γj

+
1

2
tr

(
∂Ω−1(γ)

∂γi
Ω(γ)

∂Ω−1(γ)

∂γj
Ω(γ)

)
. (3)

Theorem 6

The ML estimator of γ0 in the non-linear regression model (1) is obtained as
a solution of the vector equation l(γ) = 0. The information matrix is Fn(γ0);
and the asymptotic variance matrix of the ML estimator γ̂ is

(
lim
n→∞

(1/n)Fn(γ0)
)−1

(4)

if the limit exists.

Proof. The loglikelihood takes the form

Λ(γ) = −(n/2) log 2π − 1

2
log |Ω(γ)| − 1

2
u′Ω−1(γ)u, (5)

where u = u(γ) = y − µ(γ). The first differential is

dΛ(γ) = −1

2
tr Ω−1

dΩ − u′Ω−1
du− 1

2
u′(dΩ−1)u

=
1

2
trΩ(dΩ−1) + u′Ω−1

dµ− 1

2
u′(dΩ−1)u. (6)
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Hence ∂Λ(γ)/∂γ = l(γ) and the first-order conditions are given by l(γ) = 0.
The second differential is

d
2Λ(γ) =

1

2
tr(dΩ)(dΩ−1) +

1

2
tr Ω(d2Ω−1) + (du)′Ω−1

dµ

+ u′d(Ω−1
dµ) − u′(dΩ−1)du− 1

2
u′(d2Ω−1)u. (7)

Equation (7) can be further expanded, but this is not necessary here. Notice
that d

2Ω−1 (and d
2µ) does not vanish unless Ω−1 (and µ) is a linear (or affine)

function of γ. Taking expectations at γ = γ0, we obtain (letting Ω0 = Ω(γ0))

−Ed
2Λ(γ) =

1

2
trΩ0(dΩ−1)Ω0(dΩ−1) − 1

2
tr(Ω0d

2Ω−1) + (dµ)′Ω−1
0 dµ

+
1

2
tr(Ω0d

2Ω−1)

=
1

2
trΩ0(dΩ−1)Ω0(dΩ−1) + (dµ)′Ω−1

0 dµ, (8)

because Eu0 = 0, Eu0u
′
0 = Ω0. This shows that the information matrix is

Fn(γ0) and concludes the proof. 2

Exercise

1. Use (7) to obtain the Hessian matrix Hn(γ).

11 SPECIAL CASE: FUNCTIONAL INDEPENDENCE OF
MEAN- AND VARIANCE PARAMETERS

Theorem 6 is rather general in that the same parameters may appear in both
µ and Ω. We often encounter the special case where

γ = (β′, θ′)′ (1)

and µ only depends on the β parameters while Ω only depends on the θ
parameters.

Theorem 7

The ML estimators of β0 = (β01, . . . , β0k)
′ and θ0 = (θ01, . . . , θ0m)′ in the

non-linear regression model

y ∼ Nn(µ(β0),Ω(θ0)) (2)

are obtained by solving the equations

(y − µ(β))′Ω−1(θ)
∂µ(β)

∂βh
= 0 (h = 1, . . . , k) (3)
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and

tr

(
∂Ω−1(θ)

∂θj
Ω(θ)

)
= (y − µ(β))′

∂Ω−1(θ)

∂θj
(y − µ(β)). (4)

The information matrix for β0 and θ0 is Fn(β0, θ0) where

Fn(β, θ) =

(
(Dβµ)′ Ω−1 (Dβµ) 0

0 1
2 (Dθ vecΩ)

′
(Ω−1 ⊗ Ω−1) (Dθ vecΩ)

)
,

and

Dβµ =
∂µ(β)

∂β′
, Dθ vecΩ =

∂ vecΩ(θ)

∂θ′
.

The asymptotic variance matrix of the ML estimators β̂ and θ̂ is

(
lim
n→∞

(1/n)Fn(β0, θ0)
)−1

,

if the limit exists.

Proof. Immediate from Theorem 6 and Equations (10.2) and (10.3). 2

Exercises

1. Under the conditions of Theorem 7 show that the asymptotic variance

matrix of β̂, denoted Vas(β̂), is

Vas(β̂) =
(

lim
n→∞

(1/n)S′
0Ω

−1(θ0)S0

)−1

,

where S0 denotes the n × k matrix of partial derivatives ∂µ(β)/∂β′

evaluated at β0.

2. In particular, in the linear regression model y ∼ Nn(Xβ0,Ω(θ0)), show
that

Vas(β̂) =
(

lim
n→∞

(1/n)X ′Ω−1(θ0)X
)−1

.

12 GENERALIZATION OF THEOREM 6

In Theorem 6 we assumed that both µ and Ω depend on all the parameters in
the system. In Theorem 7 we assumed that µ depends on some parameters β
while Ω depends on some other parameters θ, and that µ does not depend on
θ or Ω on β. The most general case, which we discuss in this section, assumes
that β and θ may partially overlap. The following two theorems present the
first-order conditions and the information matrix for this case.
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Theorem 8

The ML estimators of β0 = (β01, . . . , β0k)
′, ζ0 = (ζ01, . . . , ζ0l)

′ and θ0 =
(θ01, . . . , θ0m)′ in the non-linear regression model

y ∼ Nn(µ(β0, ζ0),Ω(θ0, ζ0)) (1)

are obtained by solving the equations

u′Ω−1 ∂µ

∂βh
= 0 (h = 1, . . . , k) (2)

1

2
tr

(
∂Ω−1

∂ζi
Ω

)
+ u′Ω−1 ∂µ

∂ζi
− 1

2
u′
∂Ω−1

∂ζi
u = 0 (i = 1, . . . , l) (3)

tr

(
∂Ω−1

∂θj
Ω

)
= u′

∂Ω−1

∂θj
u (j = 1, . . . ,m), (4)

where u = y − µ(β, ζ).

Proof. Let γ = (β′, ζ′, θ′)′. We know from Theorem 6 that we must solve the
vector equation l(γ) = 0, where the elements of l are given in (10.2). The
results follow. 2

Theorem 9

The information matrix for β0, ζ0 and θ0 in the non-linear regression model
(1) is Fn(β0, ζ0, θ0), where

Fn(β, ζ, θ) =

( Fββ Fβζ 0
Fζβ Fζζ Fζθ
0 Fθζ Fθθ

)
(5)

and

Fββ = (Dβµ)′Ω−1(Dβµ) (6)

Fβζ = (Dβµ)′Ω−1(Dζµ) (7)

Fζζ = (Dζµ)′Ω−1(Dζµ) +
1

2
(Dζ vecΩ)′(Ω−1 ⊗ Ω−1)(Dζ vec Ω) (8)

Fζθ =
1

2
(Dζ vecΩ)′(Ω−1 ⊗ Ω−1)(Dθ vecΩ) (9)

Fθθ =
1

2
(Dθ vecΩ)′(Ω−1 ⊗ Ω−1)(Dθ vecΩ) (10)

and where, as the notation indicates,

Dβµ =
∂µ(β, ζ)

∂β′
, Dζµ =

∂µ(β, ζ)

∂ζ′
, (11)

Dθ vecΩ =
∂ vecΩ(θ, ζ)

∂θ′
, Dζ vecΩ =

∂ vecΩ(θ, ζ)

∂ζ′
. (12)
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Moreover, if (1/n)Fn(β0, ζ0, θ0) tends to a finite positive definite matrix, say
G, partitioned as

G =

(
Gββ Gβζ 0
Gζβ Gζζ Gζθ
0 Gθζ Gθθ

)
, (13)

then G−1 is the asymptotic variance matrix of the ML estimators β̂, ζ̂ and θ̂
and takes the form




G−1
ββ +QβQ

−1Q′
β −QβQ−1 QβQ

−1Q′
θ

−Q−1Q′
β Q−1 −Q−1Q′

θ

QθQ
−1Q′

β −QθQ−1 G−1
θθ +QθQ

−1Q′
θ


 , (14)

where

Qβ = G−1
ββGβζ , Qθ = G−1

θθ Gθζ , (15)

and

Q = Gζζ −GζβG
−1
ββGβζ −GζθG

−1
θθ Gθζ . (16)

Proof. The structure of the information matrix follows from Theorem 6 and
(10.3). The inverse of its limit follows from Theorem 1.3. 2

MISCELLANEOUS EXERCISES

1. Consider an m-dimensional system of demand equations

yt = a+ Γft + vt (t = 1, . . . , n),

where

ft = (1/ı′Γı)(ı′yt)ı+ Czt, C = Im − (1/ı′Γı)ıı′Γ,

and Γ is diagonal. Let the m× 1 vectors vt be independently and iden-
tically distributed as N (0,Ω). It is easy to see that ı′Γft = ı′yt (t =
1, . . . , n) almost surely, and hence that ı′a = 0, ı′vt = 0 (t = 1, . . . , n)
almost surely, and Ωı = 0. Assume that r(Ω) = m − 1 and denote the
positive eigenvalues of Ω by λ1, . . . , λm−1.

(a) Show that the loglikelihood of the sample is

logL = constant − (n/2)
m−1∑

i=1

logλi − (1/2) trΩ+V ′V,

where V = (v1, . . . , vn)′. (The density of a singular normal distri-
bution is given, e.g. in Mardia, Kent and Bibby 1992, p. 41.)
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(b) Show that the concentrated (with respect to Ω) loglikelihood is

logLc = constant − (n/2)

m−1∑

i=1

logµi,

where µ1, . . . , µm−1 are the positive eigenvalues of (1/n)V ′V . [Hint:
Use Miscellaneous Exercise 8.7 to show that dΩ+ = −Ω+(dΩ)Ω+,
since Ω has locally constant rank.]

(c) Show that logLc can be equivalently written as

logLc = constant − (n/2) log |A|,

where
A = (1/n)V ′V + (1/m)ıı′.

[Hint: Use Exercise 1.11.3 and Theorem 3.5.]

(d) Show that the first-order condition with respect to a is given by

n∑

t=1

(yt − a− Γft) = 0,

irrespective of whether we take account of the constraint ı′a = 0.

(e) Show that the first-order condition with respect to γ = Γı is given
by

n∑

t=1

FtCA
−1C′(yt − a− Γft) = 0,

where Ft is the diagonal matrix whose diagonal elements are the
components of ft (Barten 1969).

2. Let the random p×1 vectors y1, y2, . . . , yn be independently distributed
such that

yt ∼ Np(AB0ct,Ω0) (t = 1, . . . , n)

where Ω0 is positive definite, A is a known p× q matrix and ct, . . . , cn
are known k × 1 vectors. The matrices B0 and Ω0 are to be estimated.
Let C = (c1, . . . , cn), Y = (y1, . . . , yn)

′ and denote the ML estimators

of B0 and Ω0 by B̂ and Ω̂. Assume that r(C) ≤ n− p and prove that

Ω̂ = (1/n)(Y ′ −AB̂C)(Y ′ − AB̂C)′

AB̂C = A(A′S−1A)+A′S−1Y ′C+C,

where
S = (1/n)Y ′(I − C+C)Y

(cf. Von Rosen 1985).
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CHAPTER 16

Simultaneous equations

1 INTRODUCTION

In Chapter 13 we considered the simple linear regression model

yt = x′tβ0 + ut (t = 1, . . . , n), (1)

where yt and ut are scalar random variables and xt and β0 are k×1 vectors. In
Section 8 of Chapter 15 we generalized (1) to the multivariate linear regression
model

y′t = x′tB0 + u′t (t = 1, . . . , n), (2)

where yt and ut are random m×1 vectors, xt is a k×1 vector and B0 a k×m
matrix.

In this chapter we consider a further generalization, where the model is
specified by

y′tΓ0 + x′tB0 = u′t (t = 1, . . . , n). (3)

This model is known as the simultaneous equations model.

2 THE SIMULTANEOUS EQUATIONS MODEL

Thus, let economic theory specify a set of economic relations of the form

y′tΓ0 + x′tB0 = u′0t (t = 1, . . . , n), (1)

where yt is anm×1 vector of observed endogenous variables, xt is a k×1 vector
of observed exogenous (non-random) variables and u0t is an m× 1 vector of
unobserved random disturbances. The m×m matrix Γ0 and the k×m matrix
B0 are unknown parameter matrices. We shall make the following assumption.

371
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Assumption 1 (normality)

The vectors {u0t, t = 1, . . . , n} are independent and identically distributed as
N (0,Σ0) with Σ0 a positive definite m×m matrix of unknown parameters.

Lemma

Given Assumption 1, the m×m matrix Γ0 is non-singular.

Proof. Assume Γ0 is singular and let a be an m× 1 vector such that Γ0a = 0
and a 6= 0. Post-multiplying (1) by a then yields

x′tB0a = u′0ta. (2)

Since the left-hand side of (2) is non-random, the variance of the random vari-
able on the right-hand side must be zero. Hence a′Σ0a = 0, which contradicts
the non-singularity of Σ0. 2

Given the non-singularity of Γ0 we may post-multiply (1) with Γ−1
0 , thus

obtaining the reduced form

y′t = x′tΠ0 + v′0t (t = 1, . . . , n), (3)

where

Π0 = −B0Γ
−1
0 , v′0t = u′0tΓ

−1
0 . (4)

Combining the observations we define

Y = (y1, . . . , yn)
′, X = (x1, . . . , xn)

′ (5)

and similarly

U0 = (u01, . . . , u0n)
′, V0 = (v01, . . . , v0n)

′. (6)

Then we rewrite the structure (1) as

Y Γ0 +XB0 = U0 (7)

and the reduced form (3) as

Y = XΠ0 + V0. (8)

It is clear that the vectors {v0t, t = 1, . . . , n} are independent and iden-

tically distributed as N (0,Ω0) where Ω0 = Γ−1
0

′
Σ0Γ

−1
0 . The loglikelihood

function expressed in terms of the reduced-form parameters (Π,Ω) follows
from (15.8.12):

Λn(Π,Ω) = −1

2
mn log 2π − 1

2
n log |Ω| − 1

2
trΩ−1W, (9)
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where

W =
n∑

t=1

(y′t − x′tΠ)′(y′t − x′tΠ) = (Y −XΠ)′(Y −XΠ). (10)

Rewriting (9) in terms of (B,Γ,Σ), using Π = −BΓ−1 and Ω = Γ−1′ΣΓ−1,
we obtain

Λn(B,Γ,Σ) = −1

2
mn log 2π +

1

2
n log |Γ′Γ| − 1

2
n log |Σ| − 1

2
trΣ−1W ∗, (11)

where

W ∗ =

n∑

t=1

(y′tΓ + x′tB)′(y′tΓ + x′tB) = (Y Γ +XB)′(Y Γ +XB). (12)

The essential feature of (11) is the presence of the Jacobian term 1
2 log |Γ′Γ|

of the transformation from ut to yt.
There are two problems relating to the simultaneous equations model:

the identification problem and the estimation problem. We shall discuss the
identification problem first.

Exercise

1. In (11) we write 1
2 log |Γ′Γ| rather than log |Γ|. Why?

3 THE IDENTIFICATION PROBLEM

It is clear that knowledge of the structural parameters (B0,Γ0,Σ0) implies
knowledge of the reduced-form parameters (Π0,Ω0), but that the converse is
not true. It is also clear that a non-singular transformation of (2.1), say

y′tΓ0G+ x′tB0G = u′0tG, (1)

leads to the same loglikelihood (2.11) and the same reduced-form parameters
(Π0,Ω0). We say that (B0,Γ0,Σ0) and (B0G,Γ0G,G

′Σ0G) are observation-
ally equivalent, and that therefore (B0,Γ0,Σ0) is not identified. The following
definition makes these concepts precise.

Definition

Let z = (z1, . . . , zn)
′ be a vector of random observations with continuous

density function h(z; γ0) where γ0 is a p-dimensional parameter vector lying
in an open set Γ ⊂ IRp. Let Λ(γ; z) be the loglikelihood function. Then

(i) two parameter points γ and γ∗ are observationally equivalent if Λ(γ; z) =
Λ(γ∗; z) for all z,
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(ii) a parameter point γ in Γ is (globally) identified if there is no other point
in Γ which is observationally equivalent,

(iii) a parameter point γ in Γ is locally identified if there exists an open neigh-
bourhood N(γ) of γ such that no other point of N(γ) is observationally
equivalent to γ.

The following assumption is essential for the reduced-form parameter Π0

to be identified.

Assumption 2 (rank)

The n× k matrix X has full column rank k.

Theorem 1

Consider the simultaneous equations model (2.1) under the normality assump-
tion (Assumption 1) and rank condition (Assumption 2). Then, (i) the joint
density of (y1, . . . , yn) depends on (B0,Γ0,Σ0) only through the reduced-form
parameters (Π0,Ω0); and (ii) Π0 and Ω0 are globally identified.

Proof. Since Y = (y1, . . . , yn)
′ is normally distributed, its density function

depends only on its first two moments,

EY = XΠ0, V(vecY ) = Ω0 ⊗ In. (2)

Now, X has full column rank, so X ′X is non-singular and hence knowledge
of these two moments is equivalent to knowledge of (Π0,Ω0). Thus the den-
sity of Y depends only on (Π0,Ω0). This proves (i). But it also shows that
if we know the density of Y , we know the value of (Π0,Ω0), thus proving (ii). 2

As a consequence of Theorem 1, a structural parameter of (B0,Γ0,Σ0)
is identified if and only if its value can be deduced from the reduced-form
parameters (Π0,Ω0). Since without a priori restrictions on (B,Γ,Σ) none of
the structural parameters are identified (why not?), we introduce constraints

ψi(B,Γ,Σ) = 0 (i = 1, . . . , r). (3)

The identifiability of the structure (B0,Γ0,Σ0) satisfying (3) then depends on
the uniqueness of solutions of

Π0Γ +B = 0, (4)

Γ′Ω0Γ − Σ = 0, (5)

ψi(B,Γ,Σ) = 0 (i = 1, . . . , r). (6)
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4 IDENTIFICATION WITH LINEAR CONSTRAINTS ON B
AND Γ ONLY

In this section we shall assume that all prior information is in the form of
linear restrictions on B and Γ, apart from the obvious symmetry constraints
on Σ. We shall prove our next theorem.

Theorem 2

Consider the simultaneous equations model (2.1) under the normality assump-
tion (Assumption 1) and rank condition (Assumption 2). Assume further that
prior information is available in the form of linear restrictions on B and Γ:

R1 vecB +R2 vecΓ = r. (1)

Then (B0,Γ0,Σ0) is globally identified if and only if the matrix

R1(Im ⊗B0) +R2(Im ⊗ Γ0) (2)

has full column rank m2.

Proof. The identifiability of the structure (B0,Γ0,Σ0) depends on the unique-
ness of solutions of

Π0Γ +B = 0 (3)

Γ′Ω0Γ − Σ = 0 (4)

R1 vecB + R2 vecΓ − r = 0 (5)

Σ = Σ′. (6)

Now, (6) is redundant since it is implied by (4). From (3) we obtain

vecB = −(Im ⊗ Π0) vec Γ, (7)

and from (4), Σ = Γ′Ω0Γ. Inserting (7) into (5) we see that the identifiability
hinges on the uniqueness of solutions of the linear equation

(R2 −R1(Im ⊗ Π0)) vecΓ = r. (8)

By Theorem 2.12, Equation (8) has a unique solution for vecΓ if and only if
the matrix R2 −R1(Im ⊗Π0) has full column rank m2. Post-multiplying this
matrix by the non-singular matrix Im ⊗ Γ0, we obtain (2). 2

5 IDENTIFICATION WITH LINEAR CONSTRAINTS ON B,Γ
AND Σ

In Theorem 2 we obtained a global result, but this is only possible if the
constraint functions are linear in B and Γ and independent of Σ. The reason
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is that, even with linear constraints on B,Γ and Σ, our problem becomes one
of solving a system of non-linear equations, for which in general only local
results can be obtained.

Theorem 3

Consider the simultaneous equations model (2.1) under the normality assump-
tion (Assumption 1) and rank condition (Assumption 2). Assume further that
prior information is available in the form of linear restrictions on B,Γ and Σ:

R1 vecB +R2 vecΓ +R3v(Σ) = r. (1)

Then (B0,Γ0,Σ0) is locally identified if the matrix

W = R1(Im ⊗B0) +R2(Im ⊗ Γ0) + 2R3D
+
m(Im ⊗ Σ0) (2)

has full column rank m2.

Remark. If we define the parameter set P as the set of all (B,Γ,Σ) such
that Γ is non-singular and Σ is positive definite, and the restricted parameter
set P ′ as the subset of P satisfying restriction (1), then condition (2), which
is sufficient for the local identification of (B0,Γ0,Σ0), becomes a necessary
condition as well, if it is assumed that there exists an open neighbourhood of
(B0,Γ0,Σ0) in the restricted parameter set P ′ in which the matrix

W (B,Γ,Σ) = R1(Im ⊗B) +R2(Im ⊗ Γ) + 2R3D
+
m(Im ⊗ Σ) (3)

has constant rank.

Proof. The identifiability of (B0,Γ0,Σ0) depends on the uniqueness of solu-
tions of

Π0Γ +B = 0 (4)

Γ′Ω0Γ − Σ = 0 (5)

R1 vecB +R2 vecΓ +R3v(Σ) − r = 0. (6)

The symmetry of Σ follows again from the symmetry of Ω0 and (5). Equations
(4)–(6) form a system of non-linear equations (because of (5)) in B,Γ and
v(Σ). Differentiating (4)–(6) gives

Π0dΓ + dB = 0 (7)

(dΓ)′Ω0Γ + Γ′Ω0dΓ − dΣ = 0 (8)

R1d vecB +R2d vecΓ +R3dv(Σ) = 0, (9)

and hence, upon taking vecs in (7) and (8),

(Im ⊗ Π0)d vecΓ + d vecB = 0 (10)

(Γ′Ω0 ⊗ Im)d vecΓ′ + (Im ⊗ Γ′Ω0)d vec Γ − d vecΣ = 0 (11)

R1d vecB +R2d vecΓ +R3dv(Σ) = 0. (12)
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Writing vecΣ = Dmv(Σ), vecΓ′ = Km vecΓ and using Theorem 3.9(a), (11)
becomes

(Im2 +Km)(Im ⊗ Γ′Ω0)d vecΓ −Dmdv(Σ) = 0. (13)

From (10), (13) and (12) we obtain the Jacobian matrix

J(Γ) =

(
Im ⊗ Π0 Imk 0

(Im2 +Km)(Im ⊗ Γ′Ω0) 0 −Dm

R2 R1 R3

)
, (14)

where we notice that J depends on Γ, but not on B and Σ. (This follows of
course from the fact that the only non-linearity in (4)–(6) is in Γ.) A sufficient
condition for (B0,Γ0,Σ0) to be locally identifiable is that J evaluated at Γ0 has
full column rank. (This follows essentially from the implicit function theorem.)
But, when evaluated at Γ0, we can write

J(Γ0) =

(
0 Imk 0
0 0 −Dm

W R1 R3

)


(Im ⊗ Γ0)
−1 0 0

Im ⊗ Π0 Imk 0
−2D+

m(Im ⊗ Γ′Ω0) 0 Im(m+1)/2




(15)

using the fact that DmD
+
m = 1

2 (Im2 +Km), see Theorem 3.12(b). The second
partitioned matrix in (15) is non-singular. Hence J(Γ0) has full column rank
if and only if the first partitioned matrix in (15) has full column rank; this,
in turn, is the case if and only if W has full column rank. 2

6 NON-LINEAR CONSTRAINTS

Exactly the same techniques are used in establishing Theorem 3 (linear con-
straints) enable us to establish Theorem 4 (non-linear constraints).

Theorem 4

Consider the simultaneous equations model (2.1) under the normality assump-
tion (Assumption 1) and rank condition (Assumption 2). Assume that prior
information is available in the form of non-linear continuously differentiable
restrictions on B,Γ and Σ:

f(B,Γ, v(Σ)) = 0. (1)

Then (B0,Γ0,Σ0) is locally identified if the matrix

W = R1(Im ⊗B0) +R2(Im ⊗ Γ0) + 2R3D
+
m(Im ⊗ Σ0) (2)

has full column rank m2, where the matrices

R1 =
∂f

∂(vecB)′
, R2 =

∂f

∂(vecΓ)′
, R3 =

∂f

∂(v(Σ))′
(3)
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are evaluated at (B0,Γ0, v(Σ0)).

Proof. The proof is left as an exercise for the reader. 2

7 FULL-INFORMATION MAXIMUM LIKELIHOOD (FIML):
THE INFORMATION MATRIX (GENERAL CASE)

We now turn to the problem of estimating simultaneous equations models,
assuming that sufficient restrictions are present for identification. Maximum
likelihood estimation of the structural parameters (B0,Γ0,Σ0) calls for maxi-
mization of the loglikelihood function (2.11) subject to the a priori and iden-
tifying constraints. This method of estimation is known as full-information
maximum likelihood (FIML). Finding the FIML estimates involves non-linear
optimization and can be computationally burdensome. We shall first find the
information matrix for the rather general case where every element of B,Γ
and Σ can be expressed as a known function of some parameter vector θ.

Theorem 5

Consider a random sample of size n from the process defined by the simul-
taneous equations model (2.1) under the normality assumption (Assumption
1) and the rank condition (Assumption 2). Assume that (B,Γ,Σ) satisfies
certain a priori (non-linear) twice differentiable constraints

B = B(θ), Γ = Γ(θ), Σ = Σ(θ), (1)

where θ is an unknown parameter vector. The true value of θ is denoted by
θ0, so that B0 = B(θ0), Γ0 = Γ(θ0) and Σ0 = Σ(θ0). Let Λn(θ) be the
loglikelihood, so that

Λn(θ) = −(mn/2) log 2π + (n/2)|Γ′Γ| − (n/2) log |Σ|

− 1

2
trΣ−1(Y Γ +XB)′(Y Γ +XB). (2)

Then the information matrix Fn(θ0), determined by

−Ed
2Λn(θ0) = (dθ)′Fn(θ0)dθ, (3)

is given by

n

(
∆1

∆2

)′(
Km+k,m(C ⊗ C′) + Pn ⊗ Σ−1

0 −C′ ⊗ Σ−1
0

−C ⊗ Σ−1
0

1
2Σ−1

0 ⊗ Σ−1
0

)(
∆1

∆2

)
(4)
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where

∆1 = ∂ vecA′/∂θ′, ∆2 = ∂ vec Σ/∂θ′, (5)

Pn =

(
Π′

0QnΠ0 + Ω0 Π′
0Qn

QnΠ0 Qn

)
, Qn = (1/n)X ′X, (6)

Π0 = −B0Γ
−1
0 , Ω0 = Γ−1

0

′
Σ0Γ

−1
0 , (7)

A′ = (Γ′ : B′), C = (Γ−1
0 : 0), (8)

and ∆1 and ∆2 are evaluated at θ0.

Proof. We rewrite the loglikelihood as

Λn(θ) = constant +
1

2
n log |Γ′Γ| − 1

2
n log |Σ| − 1

2
trΣ−1A′Z ′ZA, (9)

where Z = (Y : X). The first differential is

dΛn = n tr Γ−1
dΓ − 1

2
n trΣ−1

dΣ − tr Σ−1A′Z ′ZdA

+
1

2
trΣ−1(dΣ)Σ−1A′Z ′ZA, (10)

and the second differential is

d
2Λn = −n tr(Γ−1

dΓ)2 + n tr Γ−1
d
2Γ +

1

2
n tr(Σ−1

dΣ)2

− 1

2
n trΣ−1

d
2Σ − trΣ−1(dA)′Z ′ZdA

+ 2 trΣ−1(dΣ)Σ−1A′Z ′ZdA− trΣ−1A′Z ′Zd
2A

− trA′Z ′ZA(Σ−1
dΣ)2Σ−1 +

1

2
tr Σ−1A′Z ′ZAΣ−1

d
2Σ. (11)

It is easily verified that

(1/n)E(Z ′Z) = Pn, (12)

(1/n)E(Σ−1
0 A′

0Z
′Z) = C (13)

and

(1/n)E(A′
0Z

′ZA0) = Σ0. (14)
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Using these results we obtain

−(1/n)Ed
2Λn(θ0)

= tr(Γ−1
0 dΓ)2 − tr Γ−1

0 d
2Γ − 1

2
tr(Σ−1

0 dΣ)2

+
1

2
tr Σ−1

0 d
2Σ + trΣ−1

0 (dA)′PndA− 2 trΣ−1
0 (dΣ)CdA

+ trCd
2A+ tr(Σ−1

0 dΣ)2 − 1

2
tr Σ−1

0 d
2Σ

= tr(Γ−1
0 dΓ)2 + tr Σ−1

0 (dA)′PndA

− 2 trΣ−1
0 (dΣ)CdA+

1

2
tr(Σ−1

0 dΣ)2

= (d vecA′)′
(
Km+k,m(C ⊗ C′) + Pn ⊗ Σ−1

0

)
d vecA′

− 2(d vecΣ)′(C ⊗ Σ−1
0 )d vecA′ +

1

2
(d vecΣ)′(Σ−1

0 ⊗ Σ−1
0 )d vecΣ.

(15)

Finally, since d vecA′ = ∆1dθ and d vecΣ = ∆2dθ, the result follows. 2

8 FULL-INFORMATION MAXIMUM LIKELIHOOD (FIML):
THE ASYMPTOTIC VARIANCE MATRIX (SPECIAL CASE)

Theorem 5 provides us with the information matrix of the FIML estimator

θ̂, assuming that B,Γ and Σ can all be expressed as (non-linear) functions
of a parameter vector θ. Our real interest, however, lies not so much in the
information matrix as in the inverse of its limit, known as the asymptotic
variance matrix. But to make further progress we need to assume more about
the functions B,Γ and Σ. Therefore we shall assume that B and Γ depend
on some parameter, say ζ, functionally independent of v(Σ). If Σ is also con-
strained, say Σ = Σ(σ), where σ and ζ are independent, the results are less
appealing (see Exercise 3).

Theorem 6

Consider a random sample of size n from the process defined by the simulta-
neous equations model (2.1) under the normality assumption (Assumption 1)
and the rank condition (Assumption 2). Assume that B and Γ satisfy certain
a priori (non-linear) twice differentiable constraints,

B = B(ζ), Γ = Γ(ζ), (1)

where ζ is an unknown parameter vector, functionally independent of v(Σ).
Then the information matrix Fn(ζ0, v(Σ0)) is given by

n

(
∆′
(
Km+k,m(C ⊗ C′) + Pn ⊗ Σ−1

0

)
∆ −∆′(C′ ⊗ Σ−1

0 )Dm

−D′
m(C ⊗ Σ−1

0 )∆ 1
2D

′
m(Σ−1

0 ⊗ Σ−1
0 )Dm

)
(2)
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where

∆ = (∆′
γ : ∆′

β)
′, ∆β =

∂ vecB′

∂ζ′
, ∆γ =

∂ vecΓ′

∂ζ′
(3)

are all evaluated at ζ0, and C and Pn are defined in Theorem 5.
Moreover, ifQn = (1/n)X ′X tends to a positive definite limitQ as n→ ∞,

so that Pn tends to a positive semidefinite limit, say P , then the asymptotic

variance matrix of the ML estimators ζ̂ and v(Σ̂) is

(
V −1 2V −1∆′

γE
′
0D

+
m

′

2D+
mE0∆γV

−1 2D+
m(Σ0 ⊗ Σ0 + 2E0∆γV

−1∆′
γE

′
0)D

+
m

′

)
(4)

with

V = ∆′
(
(P − C′Σ0C) ⊗ Σ−1

0

)
∆, E0 = Σ0Γ

−1
0 ⊗ Im. (5)

Proof. We apply Theorem 5. Let θ = (ζ′, v(Σ)′)′. Then

∆1 =

(
∂ vecΓ′/∂θ′

∂ vecB′/∂θ′

)
=

(
∆γ 0
∆β 0

)
= (∆ : 0) (6)

and

∆2 = ∂ vecΣ/∂θ′ = (0 : Dm). (7)

Thus, (2) follows from (7.4). The asymptotic variance matrix is obtained as
the inverse of

F =

(
F11 F12

F21 F22

)
(8)

where

F11 = ∆′
(
Km+k,m(C ⊗ C′) + P ⊗ Σ−1

0

)
∆ (9)

F12 = −∆′(C′ ⊗ Σ−1
0 )Dm (10)

F22 =
1

2
D′
m(Σ−1

0 ⊗ Σ−1
0 )Dm. (11)

We have

F−1 =

(
W−1 −W−1F12F−1

22

−F−1
22 F21W

−1 F−1
22 + F−1

22 F21W
−1F12F−1

22

)
(12)

with

W = F11 −F12F−1
22 F21. (13)
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From (10) and (11) we obtain first

F12F−1
22 = −2∆′(C′ ⊗ Σ−1

0 )DmD
+
m(Σ0 ⊗ Σ0)D

+
m

′

= −2∆′(C′Σ0 ⊗ Im)D+
m

′
, (14)

using Theorem 3.13(b) and (2.2.4). Hence

F12F−1
22 F21 = 2∆′(C′Σ0 ⊗ Im)D+

m
′
D′
m(C ⊗ Σ−1

0 )∆

= ∆′(C′Σ0 ⊗ Im)(Im2 +Km)(C ⊗ Σ−1
0 )∆

= ∆′
(
C′Σ0C ⊗ Σ−1

0 +Km+k,m(C ⊗ C′)
)
∆, (15)

using Theorems 3.12(b) and 3.9(a). Inserting (9) and (15) in (13) yields

W = ∆′
(
(P − C′Σ0C) ⊗ Σ−1

0

)
∆ = V. (16)

To obtain the remaining terms of F−1 we recall that C = (Γ−1
0 : 0) and

rewrite (14) as

F12F−1
22 = −2(∆′

γ : ∆′
β)

(
Γ−1

0

′
Σ0 ⊗ Im
0

)
D+
m

′

= −2∆′
γ(Γ

−1
0

′
Σ0 ⊗ Im)D+

m
′

= −2∆′
γE

′
0D

+
m

′
. (17)

Hence

−W−1F12F−1
22 = 2V −1∆′

γE
′
0D

+
m

′
(18)

and

F−1
22 + F−1

22 F21W
−1F12F−1

22

= 2D+
m(Σ0 ⊗ Σ0)D

+
m

′
+ 4D+

mE0∆γV
−1∆′

γE
′
0D

+
m

′
. (19)

This concludes the proof. 2

Exercises

1. In the special case of Theorem 6 where Γ0 is a known matrix of constants

and B = B(ζ), show that the asymptotic variance matrix of ζ̂ and v(Σ̂)
is

F−1 =

(
(∆′

β(Q⊗ Σ−1
0 )∆β)

−1
0

0 2D+
m(Σ0 ⊗ Σ0)D

+
m

′

)
.

2. How does this result relate to (8.11) in Theorem 15.4.
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3. Assume, in addition to the set-up of Theorem 6, that Σ is diagonal and
let σ be the m×1 vector of its diagonal elements. Obtain the asymptotic

variance matrix of (ζ̂ , σ̂). In particular, show that Vas(ζ̂), the asymptotic

variance matrix of ζ̂, equals

(
∆′

(
Km+k,m(C ⊗ C′) + P ⊗ Σ−1

0 − 2

m∑

i=1

(C′EiiC ⊗ Eii)

)
∆

)−1

where Eii denotes the m × m matrix with a one in the i-th diagonal
position and zeros elsewhere.

9 LIMITED-INFORMATION MAXIMUM LIKELIHOOD
(LIML): THE FIRST-ORDER CONDITIONS

In contrast to the FIML method of estimation, the limited-information max-
imum likelihood (LIML) method estimates the parameters of a single struc-
tural equation, say the first, subject only to those constraints that involve
the coefficients of the equation being estimated. We shall only consider the
standard case where all constraints are of the exclusion type. Then LIML can
be represented as a special case of FIML where every equation (apart from
the first) is just identified. Thus we write

y = Y γ0 +X1β0 + u0 (1)

Y = X1Π01 +X2Π02 + V0. (2)

The matrices Π01 and Π02 are unrestricted. The LIML estimates of β0 and
γ0 in Equation (1) are then defined as the ML estimates of β0 and γ0 in the
system (1)–(2).

We shall first obtain the first-order conditions.

Theorem 7

Consider a single equation from a simultaneous equations system,

y = Y γ0 +X1β0 + u0, (3)

completed by the reduced form of Y ,

Y = X1Π01 +X2Π02 + V0, (4)

where y (n × 1) and Y (n ×m) contain the observations on the endogenous
variables,X1 (n×k1) andX2 (n×k2) are exogenous (non-random), and u0 (n×
1) and V0 (n × m) are random disturbances. We assume that the n rows of
(u0 : V0) are independent and identically distributed as N (0,Ψ0), where Ψ0

is a positive definite (m+ 1) × (m+ 1) matrix partitioned as

Ψ0 =

(
σ2

0 θ′0
θ0 Ω0

)
. (5)
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There are m+k1 +m(k1 +k2)+ 1
2 (m+1)(m+2) parameters to be estimated,

namely γ0 (m × 1), β0 (k1 × 1), Π01 (k1 ×m), Π02 (k2 ×m), σ2
0 , θ0 (m × 1)

and v(Ω0) (1
2m(m+ 1) × 1). We define

X = (X1 : X2), Z = (Y : X1), (6)

Π = (Π′
1 : Π′

2)
′, α = (γ′ : β′)′. (7)

If û and V̂ are solutions of the equations

u =
(
I − Z(Z ′(I − V V +)Z)

−1
Z ′(I − V V +)

)
y, (8)

V =
(
I −X(X ′(I − uu+)X)

−1
X ′(I − uu+)

)
Y, (9)

where (X : u) and (Z : V ) are assumed to have full column rank, then the
ML estimators of α0, Π0 and Ψ0 are

α̂ = (Z ′(I − V̂ V̂ +)Z)
−1
Z ′(I − V̂ V̂ +)y, (10)

Π̂ = (X ′(I − ûû+)X)
−1
X ′(I − ûû+)Y, (11)

Ψ̂ =
1

n

(
û′û û′V̂

V̂ ′û V̂ ′V̂

)
. (12)

Remark. To solve equations (8) and (9) we can use the following iterative
scheme. Choose u(0) = 0 as the starting value. Then compute

V (1) = V (u(0)) = (I −X(X ′X)−1X ′)Y (13)

and u(1) = u(V (1)), V (2) = V (u(1)), and so on. If this scheme converges, a
solution has been found.

Proof. Given (6) and (7) we may rewrite (3) and (4) as

y = Zα0 + u0, Y = XΠ0 + V0. (14)

We define W = (u : V ), where

u = u(α) = y − Zα, V = V (Π) = Y −XΠ. (15)

Then we can write the loglikelihood function as

Λ(α, π, ψ) = constant − 1

2
n log |Ψ| − 1

2
trWΨ−1W ′, (16)

where π = vecΠ′ and ψ = v(Ψ). The first differential is

dΛ = −1

2
n trΨ−1

dΨ +
1

2
trWΨ−1(dΨ)Ψ−1W ′ − trWΨ−1(dW )′. (17)
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Since dW = −(Zdα,XdΠ) and

Ψ−1 =
1

η2

(
1 −θ′Ω−1

−Ω−1θ η2Ω−1 + Ω−1θθ′Ω−1

)
(18)

where η2 = σ2 − θ′Ω−1θ, we obtain

trWΨ−1(dW )′ = −(1/η2)
(
(dα)′Z ′u− θ′Ω−1(dΠ)′X ′u− (dα)′Z ′V Ω−1θ

+ trV (η2Ω−1 + Ω−1θθ′Ω−1)(dΠ)′X ′
)

(19)

and hence

dΛ =
1

2
tr(Ψ−1W ′WΨ−1 − nΨ−1)dΨ + (1/η2)(dα)′(Z ′u− Z ′V Ω−1θ)

− (1/η2) tr
(
X ′uθ′Ω−1 −X ′V (η2Ω−1 + Ω−1θθ′Ω−1)

)
(dΠ)′. (20)

Hence the first-order conditions are

Ψ = (1/n)W ′W (21)

Z ′u = Z ′V Ω−1θ (22)

X ′V (η2Ω−1 + Ω−1θθ′Ω−1) = X ′uθ′Ω−1. (23)

Post-multiplying (23) by Ω−1 − (1/σ2)θθ′ yields

σ2X ′V = X ′uθ′. (24)

Inserting σ2 = u′u/n, Ω = V ′V/n and θ = V ′u/n in (22) and (24) gives

Z ′u = Z ′V (V ′V )−1V ′u (25)

X ′V = X ′(1/u′u)uu′V (26)

and hence, since u = y − Zα and V = Y −XΠ,

Z ′(I − V V +)Zα = Z ′(I − V V +)y (27)

X ′(I − uu+)XΠ = X ′(I − uu+)Y. (28)

Since (X : u) and (Z : V ) have full column rank, the matrices Z ′(I −V V +)Z
and X ′(I − uu+)X are non-singular. This gives

Zα = Z(Z ′(I − V V +)Z)
−1
Z ′(I − V V +)y (29)

XΠ = X(X ′(I − uu+)X)
−1
X ′(I − uu+)Y. (30)

Hence, we can express u in terms of V and V in terms of u as follows:

u =
(
I − Z(Z ′(I − V V +)Z)

−1
Z ′(I − V V +)

)
y (31)

V =
(
I −X(X ′(I − uu+)X)

−1
X ′(I − uu+)

)
Y. (32)

Given a solution (û, V̂ ) of these equations, we obtain α̂ from (29), Π̂ from (30)

and Ψ̂ from (21). 2
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10 LIMITED-INFORMATION MAXIMUM LIKELIHOOD
(LIML): THE INFORMATION MATRIX

Having obtained the first-order conditions for LIML estimation, we proceed
to derive the information matrix.

Theorem 8

Consider a single equation from a simultaneous equations system,

y = Y γ0 +X1β0 + u0, (1)

completed by the reduced form of Y ,

Y = X1Π01 +X2Π02 + V0. (2)

Under the conditions of Theorem 7 and letting π = vecΠ′ and ψ = v(Ψ), the
information matrix in terms of the parametrization (α, π, ψ) is

Fn(α0, π0, ψ0) = n

( Fαα Fαπ Fαψ
Fπα Fππ 0
Fψα 0 Fψψ

)
(3)

with

Fαα = (1/η2
0)Azz (4)

Fαπ = −(1/η2
0)(Azx ⊗ θ′0Ω

−1
0 ) = F ′

πα (5)

Fαψ = (e′Ψ−1
0 ⊗ S′)Dm+1 = F ′

ψα (6)

Fππ = (1/η2
0)
(
(1/n)X ′X ⊗ (η0Ω

−1
0 + Ω−1

0 θ0θ
′
0Ω

−1
0 )
)

(7)

Fψψ =
1

2
D′
m+1(Ψ

−1
0 ⊗ Ψ−1

0 )Dm+1 (8)

where Azz and Azx are defined as

Azz =
1

n

(
Π′

0X
′XΠ0 + nΩ0 Π′

0X
′X1

X ′
1XΠ0 X ′

1X1

)
, Azx =

1

n

(
Π′

0X
′X

X ′
1X

)
(9)

of orders (m + k1) × (m + k1) and (m + k1) × (k2 + k1) respectively, e =
(1, 0, . . . , 0)′ of order (m+ 1)× 1, η2

0 = σ2
0 − θ′0Ω

−1
0 θ0, and S is the (m+ 1)×

(m+ k1) selection matrix

S =

(
0 0
Im 0

)
. (10)

Proof. Recall from (9.17) that the first differential of the loglikelihood function
Λ(α, π, ψ) is

dΛ = −1

2
n trΨ−1

dΨ +
1

2
trWΨ−1(dΨ)Ψ−1W ′ − trWΨ−1(dW )′, (11)
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where W = (u : V ), u = y − Zα, and V = Y − XΠ. Hence, the second
differential is

d
2Λ =

1

2
n tr Ψ−1(dΨ)Ψ−1

dΨ − trWΨ−1(dΨ)Ψ−1(dΨ)Ψ−1W ′

+ 2 trWΨ−1(dΨ)Ψ−1(dW )′ − tr(dW )Ψ−1(dW )′, (12)

using the (obvious) facts that both Ψ and W are linear in the parameters, so
that d

2Ψ = 0 and d
2W = 0. Let

W0 = (u0 : V0) = (w01, . . . , w0n)′. (13)

Then {w0t, t = 1, . . . , n} are independent and identically distributed as
N (0,Ψ0). Hence

(1/n)EW ′
0W0 = (1/n)E

n∑

t=1

w0tw
′
0t = Ψ0, (14)

and also, since dW = −(Zdα : XdΠ),

(1/n)E(dW )′W0 =

(
−(dα)′S′Ψ0

0

)
(15)

and

(1/n)E(dW )′(dW ) =

(
(dα)′Azz(dα) (dα)′Azx(dΠ)
(dΠ)′A′

zx(dα) (1/n)(dΠ)′X ′X(dΠ)

)
. (16)

Now, writing the inverse of Ψ as in (9.18), we obtain

−(1/n)Ed
2Λ(α0,π0, ψ0)

=
1

2
trΨ−1

0 (dΨ)Ψ−1
0 dΨ + 2(dα)′S′(dΨ)Ψ−1

0 e

+ (1/η2
0)(dα)′Azz(dα) − (2/η2

0)θ
′
0Ω

−1
0 (dΠ)′A′

zx(dα)

+ (1/η2
0) tr

(
(η2

0Ω−1
0 + Ω−1

0 θ0θ
′
0Ω

−1
0 )(dΠ)′

((1/n)X ′X) (dΠ)
)

=
1

2
(dv(Ψ))′D′

m+1(Ψ
−1
0 ⊗ Ψ−1

0 )Dm+1dv(Ψ)

+ 2(dα)′(e′Ψ−1
0 ⊗ S′)Dm+1dv(Ψ)

+ (1/η2
0)(dα)′Azz(dα)

− (2/η2
0)(dα)′Azx ⊗ θ′0Ω

−1
0 )d vecΠ′

+ (1/η2
0)(d vecΠ′)′

(
((1/n)X ′X)

⊗ (η2
0Ω−1

0 + Ω−1
0 θ0θ

′
0Ω

−1
0 )
)
d vecΠ′, (17)

and the result follows. 2



388 Simultaneous equations [Ch. 16

11 LIMITED-INFORMATION MAXIMUM LIKELIHOOD
(LIML): THE ASYMPTOTIC VARIANCE MATRIX

Again, the derivation of the information matrix in Theorem 8 is only an
intermediary result. Our real interest lies in the asymptotic variance matrix,
which we shall now derive.

Theorem 9

Consider a single equation from a simultaneous equations system,

y = Y γ0 +X1β0 + u0 (1)

completed by the reduced form of Y ,

Y = X1Π01 +X2Π02 + V0. (2)

Assume, in addition to the conditions of Theorem 7, that Π02 has full column
rank m and that (1/n)X ′X tends to a positive definite (k1 + k2) × (k1 + k2)
matrix Q as n → ∞. Then, letting π1 = vec Π′

1, π2 = vecΠ′
2, and ω =

v(Ω), the asymptotic variance matrix of the ML estimators α̂ = (β̂′, γ̂′)′,

π̂ = (π̂′
1, π̂

′
2)

′, and ψ̂ = (σ̂2, θ̂′, v(Ω̂)′)′ is

F−1 =




Fαα Fαπ Fαψ

Fπα Fππ Fπψ

Fψα Fψπ Fψψ


 (3)

with

Fαα = σ2
0

(
P−1

1 −P−1
1 P2

−P ′
2P

−1
1 Q−1

11 + P ′
2P

−1
1 P2

)
(4)

Fαπ =

(
−P−1

1 Π′
02Q21Q

−1
11 ⊗ θ′0 P−1

1 Π′
02 ⊗ θ′0

(Q−1
11 + P ′

2P
−1
1 Π′

02Q21Q
−1
11 ) ⊗ θ′0 −P ′

2P
−1
1 Π′

02 ⊗ θ′0

)
(5)

Fαψ = σ2
0

(
−2P−1

1 θ0 −P−1
1 Ω0 0

2P ′
2P

−1
1 θ0 P ′

2P
−1
1 Ω0 0

)
(6)

Fππ =

(
Q11 Q12

Q21 Q22

)
⊗ Ω0 − (1/σ2

0)

(
H11

∗ H12
∗

H21
∗ H22

∗

)
⊗ θ0θ

′
0 (7)

Fπψ =

(
2Q−1

11 Q12Π02P
−1
1 θ0 ⊗ θ0 Q−1

11 Q12Π02P
−1
1 Ω0 ⊗ θ0 0

−2Π02P
−1
1 θ0 ⊗ θ0 −Π02P

−1
1 Ω0 ⊗ θ0 0

)
(8)

Fψψ =



2σ4
0 + 4σ2

0θ
′
0P

−1
1 θ0 2σ2

0θ
′
0(I + P−1

1 Ω0) 2(θ′0 ⊗ θ′0)D
+
m

′

2σ2
0(I + Ω0P

−1
1 )θ0 σ2

0(Ω0 + Ω0P
−1
1 Ω0) + θ0θ

′
0 2(θ′0 ⊗ Ω0)D

+
m

′

2D+
m(θ0 ⊗ θ0) 2D+

m(θ0 ⊗ Ω0) 2D+
m(Ω0 ⊗ Ω0)D

+
m

′




(9)
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where

Q =

(
Q11 Q12

Q21 Q22

)
= (Q1 : Q2), (10)

Q−1 =

(
Q11 Q12

Q21 Q22

)
=

(
Q−1

11 +Q−1
11 Q12G

−1Q21Q
−1
11 −Q−1

11 Q12G
−1

−G−1Q21Q
−1
11 G−1

)
,

(11)

P1 = Π′
02GΠ02, P2 = Π′

01 + Π′
02Q21Q

−1
11 , (12)

G = Q22 −Q21Q
−1
11 Q12, H = G−1 − Π02P

−1
1 Π′

02, (13)

and

H∗ =

(
H11

∗ H12
∗

H21
∗ H22

∗

)
=

(
Q−1

11 Q12HQ21Q
−1
11 −Q−1

11 Q12H
−HQ21Q

−1
11 H

)
. (14)

Proof. Theorem 8 gives the information matrix. The asymptotic information
matrix, denoted as F , is obtained as the limit of (1/n)Fn for n→ ∞. We find

F =

( Fαα Fαπ Fαψ
Fπα Fππ 0
Fψα 0 Fψψ

)
(15)

with

Fαα = (1/η2
0)Azz (16)

Fαπ = −(1/η2
0)(Azx ⊗ θ′0Ω

−1
0 ) = F ′

πα (17)

Fαψ = (e′Ψ−1
0 ⊗ S′)Dm+1 = F ′

ψα (18)

Fππ = (1/η2
0)
(
Q⊗ (η2

0Ω−1
0 + Ω−1

0 θ0θ
′
0Ω

−1
0 )
)

(19)

Fψψ =
1

2
D′
m+1(Ψ

−1
0 ⊗ Ψ−1

0 )Dm+1, (20)

where Azz and Azx are now defined as the limits of (10.9):

Azz =

(
Π′

0QΠ0 + Ω0 Π′
0Q1

Q′
1Π0 Q11

)
, Azx =

(
Π′

0Q
Q′

1

)
, (21)

and e, η2
0 and S are defined in Theorem 8.

It follows from Theorem 1.3 that

F−1 =




Fαα Fαπ Fαψ

Fπα Fππ Fπψ

Fψα Fψπ Fψψ


 (22)
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with

Fαα = (Fαα −FαπF−1
ππ Fπα −FαψFψψ−1Fψα)−1 (23)

Fαπ = −FααFαπF−1
ππ (24)

Fαψ = −FααFαψF−1
ψψ (25)

Fππ = F−1
ππ + F−1

ππFπαFααFαπF−1
ππ (26)

Fπψ = F−1
ππFπαFααFαψF−1

ψψ (27)

Fψψ = F−1
ψψ + F−1

ψψFψαFααFαψF−1
ψψ . (28)

To evaluate Fαα, which is the asymptotic variance matrix of α̂, we need some
intermediary results:

F−1
ππ = Q−1 ⊗

(
Ω0 − (1/σ2

0)θ0θ
′
0

)
(29)

FαπF−1
ππ = −AzxQ−1 ⊗ (1/σ2

0)θ
′
0 (30)

FαπF−1
ππFπα =

(
(1/η2

0) − (1/σ2
0)
)
AzxQ

−1A′
zx, (31)

and also, using Theorems 3.13(d), 3.13(b), 3.12(b) and 3.9(a),

F−1
ψψ = 2D+

m+1(Ψ0 ⊗ Ψ0)D
+′

m+1 (32)

FαψF−1
ψψ = 2(e′ ⊗ S′Ψ0)D

+′

m+1 (33)

FαψF−1
ψψFψα = (e′Ψ−1

0 e)S′Ψ0S = (1/η2
0)S

′Ψ0S, (34)

since S′e = 0. Hence

Fαα =
(
(1/η2

0)(Azz −AzxQ
−1A′

zx − S′Ψ0S) + (1/σ2
0)AzxQ

−1A′
zx

)−1

= σ2
0(AzxQ

−1A′
zx)

−1. (35)

It is not difficult to partition the expression for Fαα in (35). Since

AzxQ
−1

(
Π′

01 Π′
02

Ik1 0

)
, (36)

we have

AzxQ
−1A′

zx =

(
Π′

0QΠ0 Π′
0Q1

Q′
1Π0 Q11

)
(37)

and

(AzxQ
−1A′

zx)
−1 =

(
P−1

1 −P−1
1 P2

−P ′
2P

−1
1 Q−1

11 + P ′
2P

−1
1 P2

)
(38)

with P1 and P2 defined in (12). Hence

Fαα = σ2
0

(
P−1

1 −P−1
1 P2

−P ′
2P

−1
1 Q−1

11 + P ′
2P

−1
1 P2

)
. (39)
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We now proceed to obtain expressions for the other blocks of F−1. We have

Fαπ =

(
P−1

1 −P−1
1 P2

−P ′
2P

−1
1 Q−1

11 + P ′
2P

−1
1 P2

)(
Π′

01 Π′
02

Ik1 0

)
⊗ θ′0

=

(
−P−1

1 Π′
02Q21Q

−1
11 ⊗ θ′0 P−1

1 Π′
02 ⊗ θ′0

(Q−1
11 + P ′

2P
−1
1 Π′

02Q21Q
−1
11 ) ⊗ θ′0 −P ′

2P
−1
1 Π′

02 ⊗ θ′0

)
, (40)

and

Fαψ = −2Fαα(e′ ⊗ S′Ψ0)D
+′

m+1

= −2Fαα

(
θ0 Ω0 0
0 0 0

)
D+′

m+1

= −2σ2
0

(
P−1

1 −P−1
1 P2

−P ′
2P

−1
1 Q−1

11 + P ′
2P

−1
1 P2

)(
θ0

1
2Ω0 0

0 0 0

)

= −2σ2
0

(
P−1

1 θ0
1
2P

−1
1 Ω0 0

−P ′
2P

−1
1 θ0 − 1

2P
′
2P

−1
1 Ω0 0

)
, (41)

using Theorem 3.17. Further

Fππ = Q−1 ⊗
(
Ω0 − (1/σ2

0)θ0θ
′
0

)
+Q−1A′

zxFααAzxQ
−1 ⊗ (1/σ4

0)θ0θ
′
0

= Q−1 ⊗ Ω0 − (1/σ2
0)
(
Q−1 − (1/σ2

0)Q
−1A′

zxFααAzxQ
−1
)
⊗ θ0θ

′
0.
(42)

With Q and G as defined in (10) and (13) one easily verifies that

Q−1 =

(
Q−1

11 +Q−1
11 Q12G

−1Q21Q
−1
11 −Q−1

11 Q12G
−1

−G−1Q21Q
−1
11 G−1

)
. (43)

Also,

Q−1A′
zxFααAzxQ

−1

= σ2
0

(
Q−1

11 +Q−1
11 Q12Π02P

−1
1 Π′

02Q21Q
−1
11 −Q−1

11 Q12Π02P
−1
1 Π′

02

−Π02P
−1
1 Π′

02Q21Q
−1
11 Π02P

−1
1 Π′

02

)
.

(44)

Hence

Q−1 − (1/σ2
0)Q

−1A′
zxFααAzxQ

−1

=

(
Q−1

11 Q12HQ21Q
−1
11 −Q−1

11 Q12H
−HQ21Q

−1
11 H

)
(45)

where H is defined in (13). Inserting (43) and (45) in (42) gives (7).
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Next,

Fπψ = −F−1
ππFπαFαψ

= (Q−1A′
zx ⊗ θ0)

(
−2P−1

1 θ0 −P−1
1 Ω0 0

2P ′
2P

−1
1 θ0 P ′

2P
−1
1 Ω0 0

)

=

(
Π01 ⊗ θ0 I ⊗ θ0
Π02 ⊗ θ0 0

)(
−2P−1

1 θ0 −P−1
1 Ω0 0

2P ′
2P

−1
1 θ0 P ′

2P
−1
1 Ω0 0

)

=

(
2Q−1

11 Q12Π02P
−1
1 θ0 ⊗ θ0 Q−1

11 Q12Π02P
−1
1 Ω0 ⊗ θ0 0

−2Π02P
−1
1 θ0 ⊗ θ0 −Π02P

−1
1 Ω0 ⊗ θ0 0

)
(46)

and finally

Fψψ = 2D+
m+1(Ψ0 ⊗ Ψ0)D

+′

m+1 + 4D+
m+1(e⊗ Ψ0S)Fαα(e′ ⊗ S′Ψ0)D

+′

m+1

= 2D+
m+1(Ψ0 ⊗ Ψ0)D

+′

m+1 + 4D+
m+1(ee

′ ⊗ Ψ0SFααS′Ψ0)D
+′

m+1. (47)

Using Theorem 3.15 we find

D+
m+1(Ψ0 ⊗ Ψ0)D

+′

m+1

=




σ4
0 σ2

0θ
′
0 (θ′0 ⊗ θ′0)D

+
m

′

σ2
0θ0

1
2 (σ2

0Ω0 + θ0θ
′
0) (θ′0 ⊗ Ω0)D

+
m

′

D+
m(θ0 ⊗ θ0) D+

m(θ0 ⊗ Ω0) D+
m(Ω0 ⊗ Ω0)D

+
m

′


 (48)

and

D+
m+1(ee

′ ⊗ Ψ0SFααS′Ψ0)D
+′

m+1 = σ2
0




θ′0P
−1
1 θ0

1
2θ

′
0P

−1
1 Ω0 0

1
2Ω0P

−1
1 θ0

1
4Ω0P

−1
1 Ω0 0

0 0 0


 (49)

because

Ψ0SFααS′Ψ0 = σ2
0

(
θ′0P

−1
1 θ0 θ′0P

−1
1 Ω0

Ω0P
−1
1 θ0 Ω0P

−1
1 Ω0

)
. (50)

This concludes the proof. 2

Exercises

1. Show that
Azx = lim

n→∞
(1/n)EZ ′X.

2. Hence prove that

Vas(α̂) = σ2
0

(
lim
n→∞

(1/n)(EZ ′X)(X ′X)−1(EX ′Z)
)−1

(see Holly and Magnus 1988).
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3. Let θ0 = (θ′01, θ
′
02)

′. What is the interpretation of the hypothesis
θ02 = 0?

4. Show that
Vas(θ̂2) = σ2

0(Ω
0
22 + Ω0

2
′
P−1

1 Ω0
2) + θ02θ

′
02,

where

Ω0 =

(
Ω0

11 Ω0
12

Ω0
21 Ω0

22

)
=
(
Ω0

1 : Ω0
2

)

is partitioned conformably to θ0 (see Smith 1985). How would you test
the hypothesis θ02 = 0?

5. Show that H∗ is positive semidefinite.

6. Hence show that

Q−1 ⊗
(
Ω0 − (1/σ2

0)θ0θ
′
0

)
≤ Vas(vec Π̂′) ≤ Q−1 ⊗ Ω0.

BIBLIOGRAPHICAL NOTES
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§9. The fact that LIML can be represented as a special case of FIML where
every equation (apart from the first) is just identified is discussed by Godfrey
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CHAPTER 17

Topics in psychometrics

1 INTRODUCTION

In this chapter we shall explore some of the optimization problems that occur
in psychometrics. Most of these are concerned with the eigenstructure of vari-
ance matrices, that is, with their eigenvalues and eigenvectors. The theorems
in this chapter fall into four categories. Thus, Sections 2–7 deal with princi-
pal components analysis. Here, a set of p scalar random variables x1, . . . , xp
is transformed linearly and orthogonally into an equal number of new ran-
dom variables v1, . . . , vp. The transformation is such that the new variables
are uncorrelated. The first principal component v1 is the normalized linear
combination of the x variables with maximum variance; the second principal
component v2 is the normalized linear combination having maximum variance
out of all linear combinations uncorrelated with v1; and so on. One hopes that
the first few components account for a large proportion of the variance of the
x variables. Another way of looking at principal components analysis is to
approximate the variance matrix of x, say Ω, which is assumed known, ‘as
well as possible’ by another positive semidefinite matrix of lower rank. If Ω
is not known we use an estimate S of Ω based on a sample of x, and try to
approximate S rather than Ω.

Instead of approximating S, which depends on the observation matrix X
(containing the sample values of x), we can also attempt to approximate X
directly. For example, we could approximate X be a lower-rank matrix, say
X̃. Employing a singular-value decomposition we can write X̃ = ZA′, where
A is semi-orthogonal. Hence, X = ZA′ +E, where Z and A have to be deter-
mined subject to A being semi-orthogonal such that trE′E is minimized. This
method of approximatingX is called one-mode component analysis and is dis-
cussed in Section 8. Generalizations to two-mode and multimode component
analysis are also discussed (Sections 10 and 11).

In contrast to principal components analysis, which is primarily concerned
with explaining the variance structure, factor analysis attempts to explain the
covariances of the variables x in terms of a smaller number of non-observables,

395
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called ‘factors’. This typically leads to the model

x = Ay + µ+ ǫ, (1)

where y and ǫ are unobservable and independent. One usually assumes that
y ∼ N (0, Im), ǫ ∼ N (0,Φ), where Φ is diagonal. The variance matrix of x
is then AA′ + Φ, and the problem is to estimate A and Φ from the data.
Interesting optimization problems arise in this context and are discussed in
Sections 12–15.

A final section deals with canonical correlations. Here, again, the idea is
to reduce the number of variables without sacrificing too much information.
Whereas principal components analysis regards the variables as arising from
a single set, canonical correlation analysis assumes that the variables fall
naturally into two sets. Instead of studying the two complete sets, the aim
is to select only a few uncorrelated linear combinations of the two sets of
variables, which are pairwise highly correlated.

2 POPULATION PRINCIPAL COMPONENTS

Let x be a p × 1 random vector with mean µ and positive definite variance
matrix Ω. It is assumed that Ω is known. Let λ1 ≥ λ2 ≥ · · · ≥ λp > 0 be the
eigenvalues of Ω and let T = (t1, t2, . . . , tp) be a p× p orthogonal matrix such
that

T ′ΩT = Λ = diag(λ1, λ2, . . . , λp). (1)

If the eigenvalues λ1, . . . , λp are distinct, then T is unique apart from possible
sign reversals of its columns. If multiple eigenvalues occur, T is not unique.
The i-th column of T is, of course, an eigenvector of Ω associated with the
eigenvalue λi.

We now define the p× 1 vector of transformed random variables

v = T ′x (2)

as the vector of principal components of x. The i-th element of v, say vi, is
called the i-th principal component.

Theorem 1

The principal components v1, v2, . . . , vp are uncorrelated, and V(vi) = λi, i =
1, . . . , p.

Proof. We have

V(v) = V(T ′x) = T ′V(x)T = T ′ΩT = Λ, (3)

and the result follows. 2



Sec. 3 ] Optimality of principal components 397

3 OPTIMALITY OF PRINCIPAL COMPONENTS

The principal components have the following optimality property.

Theorem 2

The first principal component v1 is the normalized linear combination of
x1, . . . , xp with maximum variance. That is,

max
a′a=1

V(a′x) = V(v1) = λ1. (1)

The second principal component v2 is the normalized linear combination of
x1, . . . , xp with maximum variance subject to being uncorrelated to v1. That
is,

max
a′a=1
t′1a=0

V(a′x) = V(v2) = λ2, (2)

where t1 denotes the first column of T . In general, for i = 1, 2, . . . , p, the i-th
principal component vi is the normalized linear combination of x1, . . . , xp with
maximum variance subject to being uncorrelated to v1, v2, . . . , vi−1. That is,

max
a′a=1
T ′

i−1a=0

V(a′x) = V(vi) = λi, (3)

where Ti−1 denotes the p× (i− 1) matrix consisting of the first i− 1 columns
of T .

Proof. We want to find a linear combination of the elements of x, say a′x such
that V(a′x) is maximal subject to the conditions a′a = 1 (normalization) and
C(a′x, vj) = 0, j = 1, 2, . . . , i− 1. Noting that

V(a′x) = a′Ωa (4)

and also that

C(a′x, vj) = C(a′x, t′jx) = a′Ωtj = λja
′tj , (5)

the problem boils down to

maximize a′Ωa/a′a (6)

subject to t′ja = 0 (j = 1, . . . , i− 1). (7)

From Theorem 11.6 we know that the constrained maximum is λi and is ob-
tained for a = ti. 2

Notice that the principal components are unique (apart from sign) if and
only if all eigenvalues are distinct. But Theorem 2 holds irrespective of mul-
tiplicities among the eigenvalues.
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Since principal components analysis attempts to ‘explain’ the variability
in x, we need some measure of the amount of total variation in x that has
been explained by the first r principal components. One such measure is

µr =
V(v1) + · · · + V(vr)

V(x1) + · · · + V(xp)
. (8)

It is clear that

µr =
λ1 + λ2 + · · · + λr
λ1 + λ2 + · · · + λp

, (9)

and hence that 0 < µr ≤ 1 and µp = 1.
Principal components analysis is only useful when, for a relatively small

value of r, µr is close to one; in that case a small number of principal com-
ponents explain most of the variation in x.

4 A RELATED RESULT

Another way of looking at the problem of explaining the variation in x is to
try and find a matrix V of specified rank r ≤ p which provides the ‘best’
approximation of Ω. It turns out that the optimal V is a matrix whose r
non-zero eigenvalues are the r largest eigenvalues of Ω.

Theorem 3

Let Ω be a given positive definite p× p matrix and let 1 ≤ r ≤ p. Let φ be a
real-valued function defined by

φ(V ) = tr(Ω − V )2 (1)

where V is positive semidefinite of rank r. The minimum of φ is obtained for

V =

r∑

i=1

λitit
′
i (2)

where λ1, . . . , λr are the r largest eigenvalues of Ω and t1, . . . , tr are corre-
sponding orthonormal eigenvectors. The minimum value of φ is the sum of
the squares of the p− r smallest eigenvalues of Ω.

Proof. In order to force positive semidefiniteness on V , we write V = AA′

where A is a p× r matrix of full column rank r. Let

φ(A) = tr(Ω −AA′)2. (3)

Then we must minimize φ with respect to A. The first differential is

dφ(A) = −2 tr(Ω −AA′)d(AA′)

= −4 trA′(Ω −AA′)dA. (4)
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The first-order condition is thus

ΩA = A(A′A). (5)

As A′A is symmetric it can be diagonalized. Thus, if µ1, µ2, . . . , µr denote the
eigenvalues of A′A, then there exists an orthogonal r × r matrix S such that

S′A′AS = M = diag(µ1, µ2, . . . , µr). (6)

Defining Q = ASM−1/2, we can now rewrite (5) as

ΩQ = QM, Q′Q = Ir. (7)

Hence, every eigenvalue of A′A is an eigenvalue of Ω, and Q is a corresponding
matrix of orthonormal eigenvectors.

Given (5) and (6) the objective function φ can be rewritten as

φ(A) = trΩ2 − trM2. (8)

For a minimum we thus put µ1, . . . , µr equal to λ1, . . . , λr, the r largest eigen-
values of Ω. Then,

V = AA′ = QM1/2S′SM1/2Q′ = QMQ′ =

r∑

i=1

λitit
′
i. (9)

This concludes the proof. 2

Exercises

1. Show that the explained variation in x as defined in (3.8) is given by
µr = trV/ tr Ω.

2. Show that if, in Theorem 3, we only require V to be symmetric (rather
than positive semidefinite), we obtain the same result.

5 SAMPLE PRINCIPAL COMPONENTS

In applied research the variance matrix Ω is usually not known and must be
estimated. To this end we consider a random sample x1, x2, . . . , xn of size
n > p from the distribution of a random p× 1 vector x. We let

Ex = µ, V(x) = Ω, (1)

where both µ and Ω are unknown (but finite). We assume that Ω is positive
definite and denote its eigenvalues by λ1 ≥ λ2 ≥ · · · ≥ λp > 0.

The observations in the sample can be combined into the n×p observation
matrix

X =




x11 · · · x1p

...
...

xn1 · · · xnp


 = (x1, . . . , xn)

′. (2)
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The sample variance of x, denoted S, is

S = (1/n)X ′MX = (1/n)

n∑

i=1

(xi − x̄)(xi − x̄)′, (3)

where

x̄ = (1/n)

n∑

i=1

xi, M = In − (1/n)ıı′, ı = (1, 1, . . . , 1)′. (4)

The sample variance is more commonly defined as S∗ = (n/(n− 1))S, which
has the advantage of being an unbiased estimator of Ω. We prefer to work
with S as given in (3) because, given normality, it is the ML estimator of Ω.

We denote the eigenvalues of S by l1 > l2 > · · · > lp, and notice that these
are distinct with probability one even when the eigenvalues of Ω are not all
distinct. Let Q = (q1, q2, . . . , qp) be a p× p orthogonal matrix such that

Q′SQ = L = diag(l1, l2, . . . , lp). (5)

We then define the p× 1 vector

v̂ = Q′x (6)

as the vector of sample principal components of x, and its i-th element v̂i as
the i-th sample principal component.

Recall that T = (t1, . . . , tp) denotes a p× p orthogonal matrix such that

T ′ΩT = Λ = diag(λ1, . . . , λp). (7)

We would expect that the matrices S,Q and L from the sample provide good
estimates of the corresponding population matrices Ω, T and Λ. That this is
indeed the case follows from the next theorem.

Theorem 4 (Anderson)

If x follows a p-dimensional normal distribution, then S is the ML estimator of
Ω. If, in addition, the eigenvalues of Ω are all distinct, then the ML estimators
of λi and ti are li and qi respectively (i = 1, . . . , p).

Remark. If the eigenvalues of both Ω and S are distinct (as in the second part
of Theorem 4), then the eigenvectors ti and qi (i = 1, . . . , p) are unique apart
from their sign. We can resolve this indeterminacy by requiring that the first
non-zero element in each column of T and Q is positive.

Exercise

1. If Ω is singular, show that r(X) ≤ r(Ω) + 1. Conclude that X cannot
have full rank p and S must be singular, if r(Ω) ≤ p− 2.
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6 OPTIMALITY OF SAMPLE PRINCIPAL COMPONENTS

In direct analogy with population principal components, the sample principal
components have the following optimality property.

Theorem 5

The first sample principal component v̂1 is the normalized linear combination
of x, say a′1x, with maximum sample variance. That is, the vector a1 maxi-
mizes a′1Sa1 subject to the constraint a′1a1 = 1. In general, for i = 1, 2, . . . , p,
the i-th sample principal component v̂i is the normalized linear combination
of x, say a′ix, with maximum sample variance subject to having zero sample
correlation with v̂1, . . . , v̂i−1. That is, the vector ai maximizes a′iSai subject
to the constraints a′iai = 1 and q′jai = 0, j = 1, . . . , i− 1.

7 SAMPLE ANALOGUE OF THEOREM 3

Precisely as in Section 4, the problem can also be viewed as one of approxi-
mating the sample variance matrix S, of rank p, by a matrix V of given rank
r ≤ p.

Theorem 6

The positive semidefinite p× p matrix V of given rank r ≤ p which provides
the best approximation to S ≡ (1/n)X ′MX in the sense that it minimizes
tr(S − V )2, is given by

V =

r∑

i=1

liqiq
′
i. (1)

8 ONE-MODE COMPONENT ANALYSIS

Let X be the n× p observation matrix and M = In − (1/n)ıı′. As in (5.3) we
express the sample variance matrix S as

S = (1/n)X ′MX. (1)

In Theorem 6 we found the best approximation to S by a matrix V of given
rank. Of course, instead of approximating S we can also approximate X by a
matrix of given (lower) rank. This is attempted in component analysis.

In the one-mode component model we try to approximate the p columns
of X = (x1, . . . , xp) by linear combinations of a smaller number of vectors
z1, . . . , zr. In other words, we write

xj =
r∑

h=1

αjhz
h + ej (j = 1, . . . , p) (2)
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and try to make the residuals ej ‘as small as possible’ by suitable choices of
{zh} and {αjh}. In matrix notation (2) becomes

X = ZA′ + E. (3)

The n × r matrix Z is known as the core matrix. Without loss of generality
we may assume A′A = Ir (see Exercise 1). Even with this constraint on A
there is some indeterminacy in (3). We can post-multiply Z with an orthogonal
matrix R and pre-multiply A′ with R′ without changing ZA′ or the constraint
A′A = Ir .

Let us introduce the set of matrices

Op×r = {A : A ∈ IRp×r, A′A = Ir}. (4)

This is the set of all semi-orthogonal p× r matrices, also known as the Stiefel
manifold.

With this notation we can now prove Theorem 7.

Theorem 7 (Eckart and Young)

Let X be a given n× p matrix and let φ be a real-valued function defined by

φ(A,Z) = tr(X − ZA′)(X − ZA′)′ (5)

where A ∈ Op×r and Z ∈ IRn×r. The minimum of φ is obtained when A
is a p × r matrix of orthonormal eigenvectors associated with the r largest
eigenvalues of X ′X and Z = XA. The ‘best’ approximation X̃ (of rank r) to

X is then X̃ = XAA′. The constrained minimum of φ is the sum of the p− r
smallest eigenvalues of X ′X .

Proof. Define the Lagrangian function

ψ(A,Z) =
1

2
tr(X − ZA′)(X − ZA′)′ − 1

2
trL(A′A− I), (6)

where L is a symmetric r × r matrix of Lagrange multipliers. Differentiating
ψ we obtain

dψ = tr(X − ZA′)d(X − ZA′)′ − 1

2
trL ((dA)′A+A′

dA)

= − tr(X − ZA′)A(dZ)′ − tr(X − ZA′)(dA)Z ′ − trLA′
dA

= − tr(X − ZA′)A(dZ)′ − tr(Z ′X − Z ′ZA′ + LA′)dA. (7)

The first-order conditions are

(X − ZA′)A = 0 (8)

Z ′X − Z ′ZA′ + LA′ = 0 (9)

A′A = I. (10)
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From (8) and (10) we find

Z = XA. (11)

Post-multiplying both sides of (9) by A gives

L = Z ′Z − Z ′XA = 0, (12)

in view of (10) and (11). Hence (9) can be rewritten as

(X ′X)A = A(A′X ′XA). (13)

Now, let P be an orthogonal r × r matrix such that

P ′A′X ′XAP = Λ1, (14)

where Λ1 is a diagonal r× r matrix containing the eigenvalues of A′X ′XA on
its diagonal. Let T1 = AP . Then (13) can be written as

X ′XT1 = T1Λ1. (15)

Hence T1 is a semi-orthogonal p× r matrix that diagonalizes X ′X , and the r
diagonal elements in Λ1 are eigenvalues of X ′X .

Given Z = XA, we have

(X − ZA′)(X − ZA′)′ = X(I −AA′)X ′ (16)

and thus

tr(X − ZA′)(X − ZA′)′ = trX ′X − tr Λ1. (17)

To minimize (17), we must maximize trΛ1; hence Λ1 contains the r largest
eigenvalues of X ′X , and T1 contains eigenvectors associated with these r
eigenvalues. The ‘best’ approximation to X is then

ZA′ = XAA′ = XT1T
′
1, (18)

so that an optimal choice is A = T1, Z = XT1. From (17) it is clear that the
value of the constrained minimum is the sum of the p− r smallest eigenvalues
of X ′X . 2

We notice that the ‘best’ approximation to X , say X̃, is given by (18):

X̃ = XAA′. It is important to observe that X̃ is part of a singular-value de-
composition of X , namely the part corresponding to the r largest eigenvalues
of X ′X . To see this, assume that r(X) = p and that the eigenvalues of X ′X
are given by λ1 ≥ λ2 ≥ · · · ≥ λp > 0. Let Λ = diag(λ1, . . . , λp) and let

X = SΛ1/2T ′ (19)
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be a singular-value decomposition of X , with S′S = T ′T = Ip. Let

Λ1 = diag(λ1, . . . , λr), Λ2 = diag(λr+1, . . . , λp) (20)

and partition S and T accordingly as

S = (S1 : S2), T = (T1 : T2). (21)

Then

X = S1Λ
1/2
1 T ′

1 + S2Λ
1/2
2 T ′

2. (22)

From (19)–(21) we see that X ′XT1 = T1Λ1, in accordance with (15). The

approximation X̃ can then be written as

X̃ = XAA′ = XT1T
′
1 = (S1Λ

1/2
1 T ′

1 + S2Λ
1/2
2 T ′

2)T1T
′
1 = S1Λ

1/2
1 T ′

1. (23)

This result will be helpful in the treatment of two-mode component analysis in
Section 10. Notice that when r(ZA′) = r(X), then X̃ = X (see also Exercise
3).

Exercises

1. Suppose r(A) = r′ ≤ r. Use the singular-value decomposition of A to
show that ZA′ = Z∗A∗′, where A∗′A∗ = Ir. Conclude that we may
assume A′A = Ir in (3).

2. Consider the optimization problem

minimize φ(X)

subject to F (X) = 0.

If F (X) is symmetric for all X , prove that the Lagrangian function is

ψ(X) = φ(X) − trLF (X)

where L is symmetric.

3. If X has rank ≤ r show that

min tr(X − ZA′)(X − ZA′)′ = 0

over all A in Op×r and Z in IRn×r.

9 ONE-MODE COMPONENT ANALYSIS AND
SAMPLE PRINCIPAL COMPONENTS

In the one-mode component model we attempted to approximate the n × p
matrix X by ZA′ satisfying A′A = Ir. The solution, from Theorem 7, is

ZA′ = XT1T
′
1 (1)
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where T1 is a p× r matrix of eigenvectors associated with the r largest eigen-
values of X ′X .

If, instead of X , we approximate MX by ZA′ under the constraint A′A =
Ir, we find in precisely the same way

ZA′ = MXT1T
′
1, (2)

but now T1 is a p×r matrix of eigenvectors associated with the r largest eigen-
values of (MX)′(MX) = X ′MX . This suggests that a suitable approximation
to X ′MX is provided by

(ZA′)′ZA′ = T1T
′
1X

′MXT1T
′
1 = T1Λ1T

′
1 (3)

where Λ1 is an r × r matrix containing the r largest eigenvalues of X ′MX .
Now, (3) is precisely the approximation obtained in Theorem 6. Thus one-
mode component analysis and sample principal components are tightly con-
nected.

10 TWO-MODE COMPONENT ANALYSIS

Suppose that our data set consists of a 27 × 6 matrix X containing the scores
given by n = 27 individuals to each of p = 6 television commercials. A one-
mode component analysis would attempt to reduce p from 6 to 2 (say). There
is no reason, however, why we should not also reduce n, say from 27 to 4.
This is attempted in two-mode component analysis, where the purpose is to
find matrices A,B and Z such that

X = BZA′ + E (1)

with A′A = Ir1 and B′B = Ir2 , and ‘minimal’ residual matrix E. (In our
example r1 = 2, r2 = 4.) When r1 = r2 the result follows directly from
Theorem 7 and we obtain Theorem 8.

Theorem 8

Let X be a given n× p matrix and let φ be a real-valued function defined by

φ(A,B,Z) = tr(X −BZA′)(X −BZA′)′ (2)

where A ∈ Op×r, B ∈ On×r and Z ∈ IRr×r. The minimum of φ is obtained
when A,B and Z satisfy

A = T1, B = S1, Z = Λ
1/2
1 , (3)

where Λ1 is a diagonal r × r matrix containing the r largest eigenvalues of
XX ′ (and of X ′X), S1 is an n× r matrix of orthonormal eigenvectors of XX ′

associated with these r eigenvalues,

XX ′S1 = S1Λ1, (4)
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and T1 is a p× r matrix of orthonormal eigenvectors of X ′X defined by

T1 = X ′S1Λ
−1/2
1 . (5)

The constrained minimum of φ is the sum of the p− r smallest eigenvalues of
XX ′.

Proof. Immediate from Theorem 7 and the discussion following its proof. 2

In the more general case where r1 6= r2 the solution is essentially the same.
A better approximation does not exist. Suppose r2 > r1. Then we can extend
B with r2 − r1 additional columns such that B′B = Ir2 , and we can extend
Z with r2 − r1 additional rows of zeros. The approximation is still the same:

BZA′ = S1Λ
1/2
1 T ′

1. Adding columns to B turns out to be useless; it does not
lead to a better approximation to X , since the rank of BZA′ remains r1.

11 MULTIMODE COMPONENT ANALYSIS

Continuing our example of Section 10, suppose that we now have an enlarged
data set consisting of a three-dimensional matrix X of order 27 × 6 × 5 con-
taining scores by p1 = 27 individuals to each of p2 = 6 television commer-
cials; each commercial is shown p3 = 5 times to every individual. A three-
mode component analysis would attempt to reduce p1, p2 and p3 to, say,
r1 = 6, r2 = 2, r3 = 3. Since, in principle, there is no limit to the number
of modes we might be interested in, let us consider the s-mode model. First,
however, we reconsider the two-mode case

X = BZA′ + E. (1)

We rewrite (1) as

x = (A⊗B)z + e (2)

where x = vecX, z = vecZ and e = vecE. This suggests the following
formulation for the s-mode component case:

x = (A1 ⊗A2 ⊗ · · · ⊗As)z + e, (3)

where Ai is a pi × ri matrix satisfying A′
iAi = Iri

(i = 1, . . . , s). The data
vector x and the ‘core’ vector z can be considered as stacked versions of s-
dimensional matrices X and Z. The elements in x are identified by s indices
with the i-th index assuming the values 1, 2, . . . , pi. The elements are arranged
in such a way that the first index runs slowly and the last index runs fast.
The elements in z are also identified by s indices; the i-th index runs from 1
to ri.

The mathematical problem is to choose Ai (i = 1, . . . , s) and z in such a
way that the residual e is ‘as small as possible’.
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Theorem 9

Let p1, p2, . . . , ps and r1, r2, . . . , rs be given integers ≥ 1, and put p =
∏s
i=1 pi

and r =
∏s
i=1 ri. Let x be a given p × 1 vector and let φ be a real-valued

function defined by

φ(A, z) = (x−Az)′(x−Az) (4)

where A = A1 ⊗ A2 ⊗ · · · ⊗ As, Ai ∈ Opi×ri
(i = 1, . . . , s) and z ∈ IRr. The

minimum of φ is obtained when A1, . . . , As and z satisfy

Ai = Ti (i = 1, . . . , s), z = (T1 ⊗ · · · ⊗ Ts)
′x, (5)

where Ti is a pi × ri matrix of orthonormal eigenvectors associated with the
ri largest eigenvalues of X ′

iT(i)T
′
(i)Xi. Here T(i) denotes the (p/pi) × (r/ri)

matrix

T(i) = T1 ⊗ · · · ⊗ Ti−1 ⊗ Ti+1 ⊗ · · · ⊗ Ts, (6)

and Xi is the (p/pi) × pi matrix defined by

vecX ′
i = Qix (i = 1, . . . , s) (7)

where

Qi = Iαi−1
⊗Kβs−i,pi

(i = 1, . . . , s) (8)

with

α0 = 1, α1 = p1, α2 = p1p2, . . . , αs = p (9)

and

β0 = 1, β1 = ps, β2 = psps−1, . . . , βs = p. (10)

The minimum value of φ is x′x− z′z.

Remark. The solution has to be obtained iteratively. Take A
(0)
2 , . . . , A

(0)
s as

starting values for A2, . . . , As. Compute A
(0)
(1) = A

(0)
2 ⊗· · ·⊗A(0)

s . Then form a

first approximate of A1, say A
(1)
1 , as the p1 × r1 matrix of orthonormal eigen-

vectors associated with the r1 largest eigenvalues of X ′
1A

(0)
(1)A

(0)′

(1) X1. Next,

use A
(1)
1 and A

(0)
3 , . . . , A

(0)
s to compute A

(0)
(2) = A

(1)
1 ⊗ A

(0)
3 ⊗ · · · ⊗ A

(0)
s , and

form A
(1)
2 , the first approximate of A2, in a similar manner. Having computed

A
(1)
1 , . . . , A

(1)
s , we form a new approximate of A1, say A

(2)
1 . This process is

continued until convergence.
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Proof. Analogous to the p× p matrices Qi we define the r × r matrices

Ri = Iγi−1
⊗Kδs−i,ri

(i = 1, . . . , s) (11)

where

γ0 = 1, γ1 = r1, γ2 = r1r2, . . . , γs = r (12)

and

δ0 = 1, δ1 = rs, δ2 = rsrs−1, . . . , δs = r. (13)

We also define the (r/ri) × ri matrices Zi by

vecZ ′
i = Riz (i = 1, . . . , s), (14)

and notice that

Qi(A1 ⊗A2 ⊗ · · · ⊗As)R
′
i = A(i) ⊗Ai, (15)

where A(i) is defined in the same way as T(i).
Now, let ψ be the Lagrangian function

ψ(A,Z) =
1

2
(x−Az)′(x −Az) − 1

2

s∑

i=1

trLi(A
′
iAi − I), (16)

where Li (i = 1, . . . , s) is a symmetric ri × ri matrix of Lagrange multipliers.
We have

dψ = −(x−Az)′(dA)z − (x −Az)′Adz −
s∑

i=1

trLiA
′
idAi. (17)

Since A = Q′
i(A(i) ⊗Ai)Ri for i = 1, . . . , s, we obtain

dA =

s∑

i=1

Q′
i(A(i) ⊗ dAi)Ri (18)

and hence

(x−Az)′(dA)z =

s∑

i=1

(x−Az)′Q′
i(A(i) ⊗ dAi)Riz

=

s∑

i=1

(vecX ′
i −QiAR

′
i vecZ ′

i)
′(A(i) ⊗ dAi) vecZ ′

i

=
s∑

i=1

(vec(X ′
i −AiZ

′
iA

′
(i)))

′(A(i) ⊗ dAi) vecZ ′
i

=

s∑

i=1

trZ ′
iA

′
(i)(Xi −A(i)ZiA

′
i)dAi. (19)
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Inserting (19) in (17) we thus find

dψ = −(x−Az)′Adz −
s∑

i=1

tr
(
Z ′
iA

′
(i)(Xi −A(i)ZiA

′
i) + LiA

′
i

)
dAi, (20)

from which we obtain the first-order conditions

A′(x−Az) = 0 (21)

Z ′
iA

′
(i)Xi − Z ′

iA
′
(i)A(i)ZiA

′
i + LiA

′
i = 0 (i = 1, . . . , s) (22)

A′
iAi = Iri

(i = 1, . . . , s). (23)

We find again

z = A′x, (24)

from which it follows that Zi = A′
(i)XiAi. Hence Li = 0 and (21) can be

simplified to

(X ′
iA(i)A

′
(i)Xi)Ai = Ai(A

′
iX

′
iA(i)A

′
(i)XiAi). (25)

For i = 1, . . . , s, let Si be an orthogonal ri × ri matrix such that

S′
iA

′
iX

′
iA(i)A

′
(i)XiAiSi = Λi (diagonal). (26)

Then (24) can be written as

(X ′
iA(i)A

′
(i)Xi)(AiSi) = (AiSi)Λi. (27)

We notice that

tr Λi = trZ ′
iZi = z′z = λ (say), (28)

is the same for all i. Then

(x−Az)′(x−Az) = x′x− λ. (29)

To minimize (28), we must maximize λ; hence Λi contains the ri largest eigen-
values of X ′

iA(i)A
′
(i)Xi, and ASi = Ti. Then, by (23),

Az = AA′x = (A1A
′
1 ⊗ · · · ⊗AsA

′
s)x

= (T1T
′
1 ⊗ · · · ⊗ TsT

′
s)x, (30)

and an optimal choice is Ai = Ti (i = 1, . . . , s) and z = (T1 ⊗ · · · ⊗ Ts)
′x. 2

Exercise

1. Show that the matrices Qi and Ri defined in (8) and (11) satisfy

Q1 = Kp/p1,p1 , Qs = Ip

and
R1 = Kr/r1,r1 , Rs = Ir.
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12 FACTOR ANALYSIS

Let x be an observable p × 1 random vector with Ex = µ and V(x) = Ω.
The factor analysis model assumes that the observations are generated by the
structure

x = Ay + µ+ ǫ, (1)

where y is an m×1 vector of non-observable random variables called ‘common
factors’, A is a p×m matrix of unknown parameters called ‘factor loadings’,
and ǫ is a p × 1 vector of non-observable random errors. It is assumed that
y ∼ N (0, Im), ǫ ∼ N (0,Φ), where Φ is diagonal positive definite, and that
y and ǫ are independent. Given these assumptions we find that x ∼ N (µ,Ω)
with

Ω = AA′ + Φ. (2)

There is clearly a problem of identifying A from AA′, because if A∗ = AT
is an orthogonal transformation of A, then A∗A∗′ = AA′. We shall see later
(Section 15) how this ambiguity can be solved.

Suppose that a random sample of n > p observations x1, . . . , xn of x is
obtained. The loglikelihood is

Λn(µ,A,Φ) = −1

2
np log 2π − 1

2
n log |Ω| − 1

2

n∑

i=1

(xi − µ)′Ω−1(xi − µ). (3)

Maximizing Λ with respect to µ yields µ̂ = (1/n)
∑n
i=1 xi. Substituting µ̂ for

µ in (3) yields the so-called concentrated loglikelihood

Λcn(A,Φ) = −1

2
np log 2π − 1

2
n(log |Ω| + tr Ω−1S) (4)

with

S = (1/n)

n∑

i=1

(xi − x̄)(xi − x̄)′. (5)

Clearly, maximizing (4) is equivalent to minimizing log |Ω|+tr Ω−1S with
respect to A and Φ. The following theorem assumes Φ known, and thus min-
imizes with respect to A only.

Theorem 10

Let S and Φ be two given positive definite p× p matrices, Φ diagonal, and let
1 ≤ m ≤ p. Let φ be a real-valued function defined by

φ(A) = log |AA′ + Φ| + tr(AA′ + Φ)−1S, (6)
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where A ∈ IRp×m. The minimum of φ is obtained when

A = Φ1/2T (Λ − Im)1/2, (7)

where Λ is a diagonal m×m matrix containing the m largest eigenvalues of
Φ−1/2SΦ−1/2 and T is a p ×m matrix of corresponding orthonormal eigen-
vectors. The minimum value of φ is

p+ log |S| +
p∑

i=m+1

(λi − logλi − 1), (8)

where λm+1, . . . , λp denote the p−m smallest eigenvalues of Φ−1/2SΦ−1/2.

Proof. Define

Ω = AA′ + Φ, C = Ω−1 − Ω−1SΩ−1. (9)

Then φ = log |Ω| + tr Ω−1S and hence

dφ = tr Ω−1
dΩ − tr Ω−1(dΩ)Ω−1S = trCdΩ

= trC((dA)A′ +A(dA)′) = 2 trA′CdA. (10)

The first-order condition is

CA = 0, (11)

or, equivalently,

A = SΩ−1A. (12)

From (12) we obtain

AA′Φ−1A = SΩ−1AA′Φ−1A

= SΩ−1(Ω − Φ)Φ−1A

= SΦ−1A− SΩ−1A = SΦ−1A−A. (13)

Hence

SΦ−1A = A(Im +A′Φ−1A). (14)

Assume that r(A) = m′ ≤ m and let Q be a semi-orthogonal m×m′ matrix
(Q′Q = Im′) such that

A′Φ−1AQ = QM, (15)

where M is diagonal and contains the m′ non-zero eigenvalues of A′Φ−1A.
Then (14) can be written as

SΦ−1AQ = AQ(I +M) (16)
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from which we obtain

(Φ−1/2SΦ−1/2)T̃ = T̃ (I +M), (17)

where T̃ ≡ Φ−1/2AQM−1/2 is a semi-orthogonal p×m′ matrix.
Our next step is to rewrite Ω = AA′ + Φ as

Ω = Φ1/2(I + Φ−1/2AA′Φ−1/2)Φ1/2, (18)

so that the determinant and inverse of Ω can be expressed as

|Ω| = |Φ||I +A′Φ−1A| (19)

and

Ω−1 = Φ−1 − Φ−1A(I +A′Φ−1A)−1A′Φ−1. (20)

Then, using (14),

Ω−1S = Φ−1S − Φ−1A(I +A′Φ−1A)−1(I +A′Φ−1A)A′

= Φ−1S − Φ−1AA′. (21)

Given the first-order condition, we thus have

φ = log |Ω| + tr Ω−1S

= log |Φ| + log |I +A′Φ−1A| + tr Φ−1S − trA′Φ−1A

= p+ log |S| +
(
tr(Φ−1/2SΦ−1/2) − log |Φ−1/2SΦ−1/2| − p

)

−
(
tr(Im +A′Φ−1A) − log |Im +A′Φ−1A| −m

)

= p+ log |S| +
p∑

i=1

(λi − logλi − 1) −
m∑

j=1

(νj − log νj − 1), (22)

where λ1 ≥ λ2 ≥ · · · ≥ λp are the eigenvalues of Φ−1/2SΦ−1/2 and ν1 ≥ ν2 ≥
· · · ≥ νm are the eigenvalues of Im + A′Φ−1A. From (15) and (17) we see
that ν1, . . . , νm′ are also eigenvalues of Φ−1/2SΦ−1/2 and that the remaining
eigenvalues νm′+1, . . . , νm are all one. Since we wish to minimize φ, we make
ν1, . . . , νm′ as large as possible, hence equal to the m′ largest eigenvalues of
Φ−1/2SΦ−1/2. Thus,

νi =

{
λi (i = 1, . . . ,m′)
1 (i = m′ + 1, . . . ,m).

(23)

Given (23), (22) reduces to

φ = p+ log |S| +
p∑

i=m′+1

(λi − logλi − 1), (24)
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which, in turn, is minimized when m′ is taken as large as possible; that is,
m′ = m.

Givenm′ = m, Q is orthogonal, T = T̃ = Φ−1/2AQM−1/2 and Λ = I+M .
Hence

AA′ = Φ1/2T (Λ − I)T ′Φ1/2 (25)

and A can be chosen as A = Φ1/2T (Λ − I)1/2. 2

Notice that the optimal choice for A is such that A′Φ−1A is a diagonal
matrix, even though this was not imposed.

13 A ZIGZAG ROUTINE

Theorem 10 provides the basis for (at least) two procedures by which ML
estimates of A and Φ in the factor model can be found. The first procedure is
to minimize the concentrated function (12.8) with respect to the p diagonal
elements of Φ. The second procedure is based on the first-order conditions
obtained from minimizing the function

ψ(A,Φ) = log |AA′ + Φ| + tr(AA′ + Φ)−1S. (1)

The function ψ is the same as the function φ defined in (12.6) except that φ
is a function of A given Φ, while ψ is a function of A and Φ.

In this section we investigate the second procedure. The first procedure is
discussed in Section 14.

From (12.12) we see that the first-order condition of ψ with respect to A
is given by

A = SΩ−1A, (2)

where Ω = AA′ +Φ. To obtain the first-order condition with respect to Φ, we
differentiate ψ holding A constant. This yields

dψ = trΩ−1
dΩ − trΩ−1(dΩ)Ω−1S

= trΩ−1
dΦ − trΩ−1(dΦ)Ω−1S

= tr(Ω−1 − Ω−1SΩ−1)dΦ. (3)

Since Φ is diagonal, the first-order condition with respect to Φ is

dg(Ω−1 − Ω−1SΩ−1) = 0. (4)

Pre- and post-multiplying (4) by Φ we obtain the equivalent condition

dg(ΦΩ−1Φ) = dg(ΦΩ−1SΩ−1Φ). (5)
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(The equivalence follows from the fact that Φ is diagonal and non-singular.)
Now, given the first-order condition for A in (2), and writing Ω −AA′ for Φ,
we have

SΩ−1Φ = SΩ−1(Ω −AA′) = S − SΩ−1AA′

= S −AA′ = S + Φ − Ω, (6)

so that

ΦΩ−1SΩ−1Φ = ΦΩ−1(S + Φ − Ω)

= ΦΩ−1S + ΦΩ−1Φ − Φ

= ΦΩ−1Φ + S − Ω, (7)

using the fact that ΦΩ−1S = SΩ−1Φ. Hence, given (2), (5) is equivalent to

dg Ω = dgS, (8)

that is,

Φ = dg(S −AA′). (9)

Thus, Theorem 10 provides an explicit solution for A as a function of Φ, and
(9) gives Φ as an explicit function of A. A zigzag routine suggests itself: choose
an appropriate starting value for Φ, then calculate AA′ from (12.25), then Φ
from (9), etcetera. If convergence occurs (which is not guaranteed), then the
resulting values for Φ and AA′ correspond to a (local) minimum of ψ.

From (12.25) and (9) we summarize this iterative procedure as

φ
(k+1)
i = sii − φ

(k)
i

m∑

j=1

(λ
(k)
j − 1)(t

(k)
ij )2 (i = 1, . . . , p) (10)

for k = 0, 1, 2, . . .. Here sii denotes the i-th diagonal element of S, λ
(k)
j the

j-th largest eigenvalue of (Φ(k))−1/2S(Φ(k))−1/2, and (t
(k)
1j , . . . , t

(k)
pj )′ the cor-

responding eigenvector.
What is an appropriate starting value for Φ? From (9) we see that 0 <

φi < sii (i = 1, . . . , p). This suggests that we choose our starting value as

Φ(0) = α dg S (11)

for some α satisfying 0 < α < 1. Calculating A from (12.7) given Φ = Φ(0)

leads to

A(1) = (dg S)1/2T (Λ − αIm)1/2, (12)

where Λ is a diagonal m × m matrix containing the m largest eigenvalues
of S∗ ≡ (dg S)−1/2S(dg S)−1/2 and T is a p × m matrix of corresponding
orthonormal eigenvectors. This shows that α must be chosen smaller than
each of the m largest eigenvalues of S∗.
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14 A NEWTON-RAPHSON ROUTINE

Instead of using the first-order conditions to set up a zigzag procedure, we can
also use the Newton-Raphson method in order to find the values of φ1, . . . , φp
that minimize the concentrated function (12.8). The Newton-Raphson method
requires knowledge of the first- and second-order derivatives of this function,
and these are provided by the following theorem.

Theorem 11

Let S be a given positive definite p× p matrix and let 1 ≤ m ≤ p− 1. Let γ
be a real-valued function defined by

γ(φ1, . . . , φp) =

p∑

i=m+1

(λi − logλi − 1), (1)

where λm+1, . . . , λp denote the p − m smallest eigenvalues of Φ−1/2SΦ−1/2

and Φ = diag(φ1, . . . , φp) is diagonal positive definite of order p×p. At points

(φ1, . . . , φp) where λm+1, . . . , λp are all distinct eigenvalues of Φ−1/2SΦ−1/2,
the gradient of γ is the p× 1 vector

g(φ) = −Φ−1

(
p∑

i=m+1

(λi − 1)ui ⊙ ui

)
(2)

and the Hessian is the p× p matrix

G(φ) = Φ−1

(
p∑

i=m+1

uiu
′
i ⊙Bi

)
Φ−1, (3)

where

Bi = (2λi − 1)uiu
′
i + 2λi(λi − 1)(λiI − Φ−1/2SΦ−1/2)

+
, (4)

and ui (i = m+1, . . . , p) denotes the orthonormal eigenvector of Φ−1/2SΦ−1/2

associated with λi.

Remark. The symbol ⊙ denotes the Hadamard product: A⊙B = (aijbij), see
Section 3.6.

Proof. Let φ = (φ1, . . . , φp) and S∗(φ) = Φ−1/2SΦ−1/2. Let φ0 be a given
point in IRp

+ (the positive orthant of IRp) and S∗
0 = S∗(φ0). Let

λ1 ≥ λ2 ≥ · · · ≥ λm > λm+1 > · · · > λp (5)

denote the eigenvalues of S∗
0 and let u1, . . . , up be corresponding eigenvec-

tors. (Notice that the p−m smallest eigenvalues of S∗
0 are assumed distinct.)
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Then, according to Theorem 8.7, there is a neighbourhood, say N(φ0), where
differentiable eigenvalue functions λ(i) and eigenvector functions u(i) (i =
m+ 1, . . . , p) exist satisfying

S∗u(i) = λ(i)u(i), u(i)′u(i) = 1 (6)

and

u(i)(φ0) = ui, λ(i)(φ0) = λi. (7)

Furthermore, at φ = φ0,

dλ(i) = u′i(dS
∗)ui (8)

and

d
2λ(i) = 2u′i(dS

∗)T+
i (dS∗)ui + u′i(d

2S∗)ui (9)

where Ti = λiI − S∗
0 ; see also Theorem 8.10.

In the present case, S∗ = Φ−1/2SΦ−1/2 and hence

dS∗ = −1

2
(Φ−1(dΦ)S∗ + S∗(dΦ)Φ−1) (10)

and

d
2S∗ =

3

4
(Φ−1(dΦ)Φ−1(dΦ)S∗ + S∗(dΦ)Φ−1(dΦ)Φ−1)

+
1

2
Φ−1(dΦ)S∗(dΦ)Φ−1. (11)

Inserting (10) into (8) yields

dλ(i) = −λiu′iΦ−1(dΦ)ui. (12)

Similarly, inserting (10) and (11) into (9) yields

d
2λ(i) =

1

2
λ2
i u

′
i(dΦ)Φ−1T+

i Φ−1(dΦ)ui

+ λiu
′
iΦ

−1(dΦ)S∗
0T

+
i Φ−1(dΦ)ui

+
1

2
u′iΦ

−1(dΦ)S∗
0T

+
i S

∗
0 (dΦ)Φ−1ui

+
3

2
λiu

′
iΦ

−1(dΦ)Φ−1(dΦ)ui

+
1

2
u′iΦ

−1(dΦ)S∗
0 (dΦ)Φ−1ui

=
1

2
u′i(dΦ)Φ−1CiΦ

−1(dΦ)ui, (13)
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where

Ci = λ2
iT

+
i + 2λiS

∗
0T

+
i + S∗

0T
+
i S

∗
0 + 3λiI + S∗

0 . (14)

Now, since

T+
i =

∑

j 6=i

(λi − λj)
−1uju

′
j and S∗

0 =
∑

j

λjuju
′
j , (15)

we have

S∗
0T

+
i =

∑

j 6=i

(λj/(λi − λj))uju
′
j , S∗

0T
+
i S

∗
0 =

∑

j 6=i

(
λ2
j/(λi − λj)

)
uju

′
j . (16)

Hence we obtain

Ci = 4λi(uiu
′
i + λiT

+
i ). (17)

We can now take the differentials of

γ =

p∑

i=m+1

(λi − logλi − 1). (18)

We have

dγ =

p∑

i=m+1

(1 − λ−1
i )dλ(i) (19)

and

d
2γ =

p∑

i=m+1

(
(λ−1
i dλ(i))2 + (1 − λ−1

i )d2λ(i)
)
. (20)

Inserting (12) in (19) gives

dγ = −
p∑

i=m+1

(λi − 1)u′iΦ
−1(dΦ)ui. (21)

Inserting (12) and (13) in (20) gives

d
2γ =

p∑

i=m+1

u′i(dΦ)Φ−1

(
uiu

′
i +

1

2
(1 − λ−1

i )Ci

)
Φ−1(dΦ)ui

=

p∑

i=m+1

u′i(dΦ)Φ−1
(
(2λi − 1)uiu

′
i + 2λi(λi − 1)T+

i

)
Φ−1(dΦ)ui

=

p∑

i=m+1

u′i(dΦ)Φ−1BiΦ−1(dΦ)ui, (22)
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in view of (17). The first-order partial derivatives are thus

∂γ

∂φh
= −φ−1

h

p∑

i=m+1

(λi − 1)u2
ih (h = 1, . . . , p), (23)

where uih denotes the h-th component of ui. The second-order partial deriva-
tives are

∂2γ

∂φh∂φk
= (φhφk)

−1

p∑

i=m+1

uihuikB
i
hk (h, k = 1, . . . , p) (24)

and the result follows. 2

Given knowledge of the gradient g(φ) and the Hessian G(φ) from (2) and
(3), the Newton-Raphson method proceeds as follows. First choose a starting
value φ(0). Then, for k = 0, 1, 2, . . ., compute

φ(k+1) = φ(k) −
(
G(φ(k))

)−1

g(φ(k)). (25)

This method appears to work well in practice and yields the values φ1, . . . , φp
which minimize (1). Given these values we can compute A from (12.7), thus
completing the solution.

There is, however, one proviso. In Theorem 11 we require that the p−m
smallest eigenvalues of Φ−1/2SΦ−1/2 are all distinct. But, by rewriting (12.2)
as

Φ−1/2ΩΦ−1/2 = I + Φ−1/2AA′Φ−1/2, (26)

we see that the p − m smallest eigenvalues of Φ−1/2ΩΦ−1/2 are all one.
Therefore, if the sample size increases, the p − m smallest eigenvalues of
Φ−1/2SΦ−1/2 will all converge to one. For large samples an optimization
method based on Theorem 11 may therefore not give reliable results.

15 KAISER’S VARIMAX METHOD

The factorization Ω = AA′ + Φ of the variance matrix is not unique. If we
transform the ‘loading’ matrixA by an orthogonal matrix T , then (AT )(AT )′ =
AA′. In this way, we can always rotate A by an orthogonal matrix T , so that
A∗ = AT yields the same Ω. Several approaches have been suggested to use
this ambiguity in a factor analysis solution in order to create maximum con-
trast between the columns of A. A well-known method, due to Kaiser, is to
maximize the raw varimax criterion.

Kaiser defined the simplicity of the k-th factor, denoted sk, as the sample
variance of its squared factor loadings. Thus

sk =
1

p

p∑

i=1

(
a2
ik −

1

p

p∑

h=1

a2
hk

)2

(k = 1, . . . ,m). (1)
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The total simplicity is s = s1 + s2 + · · · + sm and the raw varimax method
selects an orthogonal matrix T such that s is maximized.

Theorem 12

Let A be a given p × m matrix of rank m. Let φ be a real-valued function
defined by

φ(T ) =

m∑

j=1



(

p∑

i=1

b4ij

)
− 1

p

(
p∑

i=1

b2ij

)2

 , (2)

where B = (bij) satisfies B = AT and T ∈ Om×m. The function φ reaches a
maximum when B satisfies

B = AA′Q(Q′AA′Q)−1/2, (3)

where Q = (qij) is the p×m matrix with typical element

qij = bij

(
b2ij −

1

p

p∑

h=1

b2hj

)
. (4)

Proof. Let C = B⊙B, so that cij = b2ij . Let ı = (1, 1, . . . , 1)′ be of order p×1
and M = Ip − (I/p)ıı′. Let ei denote the i-th column of Ip and uj the j-th
column of Im. Then we can rewrite φ as

φ(T ) =
∑

j

∑

i

c2ij − (1/p)
∑

j

(∑

i

cij

)2

= trC′C − (1/p)
∑

j

(∑

i

e′iCuj

)2

= trC′C − (1/p)
∑

j

(ı′Cuj)
2

= trC′C − (1/p)
∑

j

ı′Cuju
′
jC

′ı

= trC′C − (1/p)ı′CC′ı = trC′MC. (5)

We wish to maximize φ with respect to T subject to the orthogonality con-
straint T ′T = Im. Let ψ be the appropriate Lagrangian function

ψ(T ) =
1

2
trC′MC − trL(T ′T − I), (6)
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where L is a symmetric m × m matrix of Lagrange multipliers. Then the
differential of ψ is

dψ = trC′MdC − 2 trLT ′
dT

= 2 trC′M(B ⊙ dB) − 2 trLT ′
dT

= 2 tr(C′M ⊙B′)dB − 2 trLT ′
dT

= 2 tr(C′M ⊙B′)AdT − 2 trLT ′
dT, (7)

where the third equality follows from Theorem 3.7(a). Hence, the first-order
conditions are

(C′M ⊙B′)A = LT ′ (8)

and

T ′T = I. (9)

It is easy to verify that the p×m matrix Q given in (4) satisfies

Q = B ⊙MC, (10)

so that (8) becomes

Q′A = LT ′. (11)

Post-multiplying with T and using the symmetry of L we obtain the condition

Q′B = B′Q. (12)

We see from (11) that L = Q′B. This is a symmetric matrix and

trL = trB′Q = trB′(B ⊙MC)

= tr(B′ ⊙B′)MC = trC′MC, (13)

using Theorem 3.7(a). From (11) follows

L2 = Q′AA′Q (14)

so that

L = (Q′AA′Q)1/2. (15)

It is clear that L must be positive semidefinite. Assuming that L is, in fact,
non-singular, we may write

L−1 = (Q′AA′Q)−1/2 (16)

and we obtain from (11)

T ′ = L−1Q′A = (Q′AA′Q)−1/2Q′A. (17)
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The solution for B is then

B = AT = AA′Q(Q′AA′Q)−1/2, (18)

which completes the proof. 2

An iterative zigzag procedure can be based on (3) and (4). In (3) we have
B = B(Q) and in (4) we have Q = Q(B). An obvious starting value for B is
B(0) = A. Then calculate Q(1) = Q(B(0)), B(1) = B(Q(1)), Q(2) = Q(B(1)),
etcetera. If the procedure converges, which is not guaranteed, then a (local)
maximum of (2) has been found.

16 CANONICAL CORRELATIONS AND VARIATES IN THE
POPULATION

Let z be a random vector with zero expectations and positive definite variance
matrix Σ. Let z and Σ be partitioned as

z =

(
z(1)

z(2)

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (1)

so that Σ11 is the variance matrix of z(1), Σ22 the variance matrix of z(2) and
Σ12 = Σ′

21 the covariance matrix between z(1) and z(2).
The pair of linear combinations u′z(1) and v′z(2), each of unit variance,

with maximum correlation (in absolute value) is called the first pair of canoni-
cal variates and its correlation is called the first canonical correlation between
z(1) and z(2).

The k-th pair of canonical variates is the pair u′z(1) and v′z(2), each of
unit variance and uncorrelated with the first k− 1 pairs of canonical variates,
with maximum correlation (in absolute value). This correlation is the k-th
canonical correlation.

Theorem 13

Let z be a random vector with zero expectation and positive definite variance
matrix Σ. Let z and Σ be partitioned as in (1), and define

B = Σ−1
11 Σ12Σ

−1
22 Σ21, C = Σ−1

22 Σ21Σ
−1
11 Σ12. (2)

(a) There are r non-zero canonical correlations between z(1) and z(2), where
r is the rank of Σ12.

(b) Let λ1 ≥ λ2 ≥ · · · ≥ λr > 0 denote the non-zero eigenvalues of B (and

of C). Then the k-th canonical correlation between z(1) and z(2) is λ
1/2
k .

(c) The k-th pair of canonical variates is given by u′z(1) and v′z(2), where
u and v are normalized eigenvectors of B and C, respectively, associ-
ated with the eigenvalue λk. Moreover, if λk is a simple (non-repeated)
eigenvalue of B (and C), then u and v are unique (apart from sign).
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(d) If the pair u′z(1) and v′z(2) is the k-th pair of canonical variates, then

Σ12v = λ
1/2
k Σ11u, Σ21u = λ

1/2
k Σ22v. (3)

Proof. Let A = Σ
−1/2
11 Σ12Σ

−1/2
22 with rank r(A) = r(Σ12) = r, and notice that

the r non-zero eigenvalues of AA′, A′A, B and C are all the same, namely
λ1 ≥ λ2 ≥ · · · ≥ λr > 0. Let S = (s1, s2, . . . , sr) and T = (t1, t2, . . . , tr) be
semi-orthogonal matrices such that

AA′S = SΛ, A′AT = TΛ, (4)

S′S = Ir , T ′T = Ir, Λ = diag(λ1, λ2, . . . , λr). (5)

We assume first that all λi (i = 1, 2, . . . , r) are distinct.
The first pair of canonical variates is obtained from the maximization

problem

maximize
u,v

(u′Σ12v)
2

subject to u′Σ11u = v′Σ22v = 1. (6)

Let x = Σ
1/2
11 u, y = Σ

1/2
22 v. Then (6) can be equivalently stated as

maximize
x,y

(x′Ay)2

subject to x′x = y′y = 1. (7)

According to Theorem 11.17, the maximum λ1 is obtained for x = s1, y = t1
(apart from the sign, which is irrelevant). Hence λ

1/2
1 is the first canonical

correlation, and the first pair of canonical variates is u(1)′z(1) and v(1)′z(2)

with u(1) = Σ
−1/2
11 s1, v

(1) = Σ
−1/2
22 t1. It follows that Bu(1) = λ1u

(1) (because

AA′s1 = λ1s1) and Cv(1) = λ1v
(1) (because A′At1 = λ1t1). Theorem 11.17

also gives s1 = λ
−1/2
1 At1, t1 = λ

−1/2
1 A′s1 from which we obtain Σ12v

(1) =

λ
1/2
1 Σ11u

(1), Σ21u
(1) = λ

1/2
1 Σ22v

(1).

Now assume that λ
1/2
1 , λ

1/2
2 , . . . , λ

1/2
k−1 are the first k − 1 canonical cor-

relations, and that s′iΣ
−1/2
11 z(1) and t′iΣ

−1/2
22 z(2), i = 1, 2, . . . , k − 1, are the

corresponding pairs of canonical variates. In order to obtain the k-th pair of
canonical variates we let S1 = (s1, s2, . . . , sk−1) and T1 = (t1, t2, . . . , tk−1),
and consider the constrained maximization problem

maximize
u,v

(u′Σ12v)
2

subject to u′Σ11u = v′Σ22v = 1,

S′
1Σ

1/2
11 u = 0, S′

1Σ
−1/2
11 Σ12v = 0,

T ′
1Σ

1/2
22 v = 0, T ′

1Σ
−1/2
22 Σ21u = 0. (8)
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Again, letting x = Σ
1/2
11 u, y = Σ

1/2
22 v, we can rephrase (8) as

maximize
x,y

(x′Ay)2

subject to x′x = y′y = 1,

S′
1x = S′

1Ay = 0,

T ′
1y = T ′

1A
′x = 0. (9)

It turns out, as we shall see shortly, that we can take any one of the four con-
straints S′

1x = 0, S′
1Ay = 0, T ′

1y = 0, T ′
1A

′x = 0, because the solution will
automatically satisfy the remaining three conditions. The reduced problem is

maximize
x,y

(x′Ay)2

subject to x′x = y′y = 1, S′
1x = 0, (10)

and its solution follows from Theorem 11.17. The constrained maximum is λk
and is achieved by x∗ = sk and y∗ = tk.

We see that the three constraints that were dropped in the passage from

(9) to (10) are indeed satisfied: S′
1Ay∗ = 0, because Ay∗ = λ

1/2
k x∗; T

′
1y∗ = 0;

and T ′
1A

′x∗ = 0, because A′x∗ = λ
1/2
k y∗. Hence we may conclude that λ

1/2
k

is the k-th canonical correlation; that u(k)′z(1), v(k)′z(2) with u(k) = Σ
−1/2
11 sk

and v(k) = Σ
−1/2
22 tk is the k-th pair of canonical variates; that u(k) and v(k) are

the (unique) normalized eigenvectors of B and C, respectively, associated with

the eigenvalue λk; and that Σ12v
(k) = λ

1/2
k Σ11u

(k) and Σ21u
(k) = λ

1/2
k Σ22v

(k).
The theorem (still assuming distinct eigenvalues) now follows by simple

mathematical induction. It is clear that only r pairs of canonical variates
can be found yielding non-zero canonical correlations. (The (r + 1)-st pair
would yield zero canonical correlations, since AA′ possesses only r positive
eigenvalues.)

In the case of multiple eigenvalues, the proof remains unchanged, except
that the eigenvectors associated with multiple eigenvalues are not unique, and
therefore the pairs of canonical variates corresponding to these eigenvectors
are not unique either. 2

BIBLIOGRAPHICAL NOTES

§1. There are some excellent texts on multivariate statistics and psychomet-
rics, of which we mention in particular Morrison (1976) and Anderson (1984).
§2–§3. See also Lawley and Maxwell (1971), Muirhead (1982) and Anderson
(1984).
§5–§6. See Morrison (1976) and Muirhead (1982). Theorem 4 is proved in An-
derson (1984). For asymptotic distributional results concerning li and qi, see
Kollo and Neudecker (1993). For asymptotic distributional results concern-
ing qi in Hotelling’s (1933) model where t′iti = λi, see Kollo and Neudecker
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(1997).
§8–§10. See Eckart and Young (1936), Theil (1971), Ten Berge (1993), Greene
(1993) and Chipman (1996). We are grateful to Jos Ten Berge for pointing
out a redundancy in Theorem 8.
§11. For three-mode component analysis see Tucker (1966). An extension to
four models is given in Lastovička (1981), and to an arbitrary number of
modes in Kapteyn, Neudecker and Wansbeek (1986).
§12–§13. See Rao (1955), Morrison (1976), and Mardia, Kent and Bibby
(1992).
§14. See Clarke (1970), Lawley and Maxwell (1971) and Neudecker (1975).
§15. See Kaiser (1958, 1959), Sherin (1966), Lawley and Maxwell (1971) and
Neudecker (1981).
§16. See Muirhead (1982) and Anderson (1984).
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Lastovička, J. L. (1981). The extension of component analysis to four-mode
matrices, Psychometrika, 46, 47–57.



432 Bibliography

Lawley, D. N. and A. E. Maxwell (1971). Factor Analysis as a Statistical
Method , 2nd edition, Butterworths, London.

Leamer, E. E. (1978). Specification Searches , John Wiley, New York.

Liu, S. (1995). Contributions to Matrix Calculus and Applications in Statis-
tics , Ph.D. Thesis, University of Amsterdam.

Luenberger, D. G. (1969). Optimization by Vector Space Methods , John Wi-
ley, New York.

McCulloch, C. E. (1982). Symmetric matrix derivatives with applications,
Journal of the American Statistical Association, 77, 679–682.

McDonald, R. P. and H. Swaminathan (1973). A simple matrix calculus with
applications to multivariate analysis, General Systems , 18, 37–54.

MacDuffee, C. C. (1933). The Theory of Matrices, reprinted by Chelsea, New
York.

MacRae, E. C. (1974). Matrix derivatives with an application to an adaptive
linear decision problem, The Annals of Statistics , 2, 337–346.

Madansky, A. (1976). Foundations of Econometrics , North-Holland, Ams-
terdam.

Magnus, J. R. (1985). On differentiating eigenvalues and eigenvectors, Econo-
metric Theory, 1, 179–191.

Magnus, J. R. (1987). A representation theorem for (trAp)1/p, Linear Algebra
and Its Applications , 95, 127–134.

Magnus, J. R. (1988). Linear Structures , Griffin’s Statistical Monographs,
No. 42, Edward Arnold, London and Oxford University Press, New York.

Magnus, J. R. (1990). On the fundamental bordered matrix of linear esti-
mation, in: Advanced Lectures in Quantitative Economics (ed. F. van der
Ploeg), Academic Press, London, 583–604.

Magnus, J. R. and H. Neudecker (1979). The commutation matrix: some
properties and applications, The Annals of Statistics , 7, 381–394.

Magnus, J. R. and H. Neudecker (1980). The elimination matrix: some lem-
mas and applications, SIAM Journal on Algebraic and Discrete Methods ,
1, 422–449.

Magnus, J. R. and H. Neudecker (1985). Matrix differential calculus with
applications to simple, Hadamard, and Kronecker products, Journal of
Mathematical Psychology, 29, 474–492.

Magnus, J. R. and H. Neudecker (1986). Symmetry, 0-1 matrices and Jaco-
bians: a review, Econometric Theory, 2, 157–190.

Malinvaud, E. (1966). Statistical Methods of Econometrics , North-Holland,
Amsterdam.

Marcus, M. and H. Minc (1964). A Survey of Matrix Theory and Matrix
Inequalities , Allyn and Bacon, Boston.



Bibliography 433

Mardia, K. V., J. T. Kent and J. M. Bibby (1992). Multivariate Analysis,
Academic Press, London.

Markov, A. A. (1900). Wahrscheinlichkeitsrechnung, Teubner, Leipzig.

Marshall, A. and I. Olkin (1979). Inequalities: Theory of Majorization and
Its Applications , Academic Press, New York.

Milliken, G. A. and F. Akdeniz (1977). A theorem on the difference of
the generalized inverses of two nonnegative matrices, Communications
in Statistics—Theory and Methods , A6, 73–79.

Mirsky, L. (1961). An Introduction to Linear Algebra, Oxford University
Press, Oxford.

Mood, A. M., F. A. Graybill and D. C. Boes (1974). Introduction to the
Theory of Statistics , 3rd edition, McGraw-Hill, New York.

Moore, E. H. (1920). On the reciprocal of the general algebraic matrix (Ab-
stract), Bulletin of the American Mathematical Society, 26, 394–395.

Moore, E. H. (1935). General Analysis, Memoirs of the American Philosoph-
ical Society, Volume I, American Philosophical Society, Philadelphia.

Moore, M. H. (1973). A convex matrix function, American Mathematical
Monthly, 80, 408–409.

Morrison, D. F. (1976). Multivariate Statistical Methods , 2nd edition,
McGraw-Hill, New York.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory, John Wi-
ley, New York.

Nel, D. G. (1980). On matrix differentiation in statistics, South African Sta-
tistical Journal , 14, 137–193.

Neudecker, H. (1967). On matrix procedures for optimizing differentiable
scalar functions of matrices, Statistica Neerlandica, 21, 101–107.

Neudecker, H. (1969). Some theorems on matrix differentiation with special
reference to Kronecker matrix products, Journal of the American Statis-
tical Association, 64, 953–963.

Neudecker, H. (1973). De BLUF-schatter: een rechtstreekse afleiding, Statis-
tica Neerlandica, 27, 127–130.

Neudecker, H. (1974). A representation theorem for |A|1/n , METU Journal
of Pure and Applied Sciences , 7, 1–2.

Neudecker, H. (1975). A derivation of the Hessian of the (concentrated) like-
lihood function of the factor model employing the Schur product, British
Journal of Mathematical and Statistical Psychology, 28, 152–156.

Neudecker, H. (1977a). Abrahamse and Koerts’ ‘new estimator’ of distur-
bances in regression analysis, Journal of Econometrics , 5, 129–133.

Neudecker, H. (1977b). Bounds for the bias of the least squares estimator of
σ2 in the case of a first-order autoregressive process (positive autocorre-
lation), Econometrica, 45, 1257–1262.



434 Bibliography

Neudecker, H. (1978). Bounds for the bias of the least squares estimator of
σ2 in the case of a first-order (positive) autoregressive process when the
regression contains a constant term, Econometrica, 46, 1223–1226.

Neudecker, H. (1980a). A comment on ‘Minimization of functions of a pos-
itive semidefinite matrix A subject to AX = 0’, Journal of Multivariate
Analysis , 10, 135–139.

Neudecker, H. (1980b). Best quadratic unbiased estimation of the variance
matrix in normal regression, Statistische Hefte, 21, 239–242.

Neudecker, H. (1981). On the matrix formulation of Kaiser’s varimax crite-
rion, Psychometrika, 46, 343–345.

Neudecker, H. (1982). On two germane matrix derivatives, The Matrix and
Tensor Quarterly, 33, 3–12.

Neudecker, H. (1985a). Recent advances in statistical applications of com-
mutation matrices, in: Proceedings of the Fourth Pannonian Symposium
on Mathematical Statistics (eds W. Grossman, G. Pflug, I. Vincze and
W. Wertz), Volume B, Reidel, Dordrecht, 239–250.

Neudecker, H. (1985b). On the dispersion matrix of a matrix quadratic form
connected with the noncentral normal distribution, Linear Algebra and
Its Applications , 70, 257–262.

Neudecker, H. (1989a). A matrix derivation of a representation theorem for
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Qüestiió, 13, 81–82.

Neudecker, H. (1992). A matrix trace inequality, Journal of Mathematical
Analysis and Applications , 166, 302–303.

Neudecker, H. (1995). Mathematical properties of the variance of the multi-
nomial distribution, Journal of Mathematical Analysis and Applications,
189, 757–762.

Neudecker, H. and S. Liu (1993). Best quadratic and positive semidefinite un-
biased estimation of the variance of the multivariate normal distribution,
Communications in Statistics—Theory and Methods , 22, 2723–2732.

Neudecker, H. and S. Liu (1995). Note on a matrix-concave function, Journal
of Mathematical Analysis and Applications , 196, 1139–1141.

Neudecker, H., S. Liu and W. Polasek (1995). The Hadamard product and
some of its applications in statistics, Statistics , 26, 365–373.

Neudecker, H., W. Polasek and S. Liu (1995). The heteroskedastic linear
regression model and the Hadamard product: a note, Journal of Econo-
metrics , 68, 361–366.

Neudecker, H. and A. Satorra (1993). Problem 93.3.9, Econometric Theory,
9, 524. (Solutions by H. Neudecker and A. Satorra; G. Trenkler; and H.
Neudecker and S. Liu, Econometric Theory, 11, 654–655.)



Bibliography 435

Neudecker, H. and T. Wansbeek (1983). Some results on commutation ma-
trices, with statistical applications. Canadian Journal of Statistics , 11,
221–231.

Norden, R. H. (1972). A survey of maximum likelihood estimation, Interna-
tional Statistical Review , 40, 329–354.

Norden, R. H. (1973). A survey of maximum likelihood estimation, Part 2,
International Statistical Review , 41, 39–58.

Olkin, I. (1983). An inequality for a sum of forms, Linear Algebra and Its
Applications , 52/53, 529–532.

Penrose, R. (1955). A generalized inverse for matrices, Proceedings of the
Cambridge Philosophical Society, 51, 406–413.

Penrose, R. (1956). On best approximate solutions of linear matrix equations,
Proceedings of the Cambridge Philosophical Society, 52, 17–19.
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Index of symbols

The symbols listed below are followed by a brief statement of their meaning
and by the number of the page where they are defined.

General symbols

≡ equals, by definition
=⇒ implies
⇐⇒ if and only if
2 end of proof
min minimum, minimize
max maximum, maximize
sup supremum
lim limit, 81
i imaginary unit, 13
e, exp exponential
! factorial
≺ majorization, 243
|ξ| absolute value of scalar ξ

ξ̄ complex conjugate of scalar ξ, 13

Sets

∈, /∈ belongs to (does not belong to), 3
{x : x ∈ S, x satisfies P} set of all elements of S with property P , 3
⊂ is a subset of, 3
∪ union, 4
∩ intersection, 4
∅ empty set, 3
B −A complement of A relative to B, 4
Ac complement of A, 4
IN {1, 2, . . .}, 3
IR set of real numbers, 4
IRn, IRm×n set of real n× 1 vectors (m× n matrices), 4
IRn+ positive orthant of IRn, 415
Cn×n set of complex n× n matrices, 183
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◦

S interior of S, 76
S′ derived set of S, 76
S̄ closure of S, 76
∂S boundary of S, 76
B(c), B(c; r), B(C; r) ball with centre c (C), 75, 107
N(c), N(C) neighbourhood of c (C), 75, 107
M(A) column space of A, 9
O Stiefel manifold, 402

Special matrices and vectors

I, In identity matrix (of order n× n), 7
0 null matrix, null vector, 5
Kmn commutation matrix, 54
Kn Knn, 54
Nn

1
2 (In2 +Kn), 56

Dn duplication matrix, 57
Jk(λ) Jordan block, 18
ı sum vector (1, 1, . . . , 1)′

Operations on matrix A and vector a

A′ transpose, 6
A−1 inverse, 9
A+ Moore-Penrose inverse, 36
A− generalized inverse, 44
dgA, dg(A) diagonal matrix containing the diagonal elements of A, 6
diag(a1, . . . , an) diagonal matrix containing a1, a2, . . . , an on the diagonal, 7
A2 AA, 7
A1/2 square root, 7
Ap p-th power, 207, 245
A# adjoint (matrix), 10
A∗ complex conjugate, 13
Ak principal submatrix of order k × k, 26
Av block-vec of A, 122, 215, 215
(A,B), (A : B) partitioned matrix
vecA, vec(A) vec operator, 34
v(A) vector containing aij (i ≥ j), 56
r(A) rank, 8
λi, λi(A) i-th eigenvalue (of A), 16
µ(A) maxi |λi(A)|, 268
trA, tr(A) trace, 11
|A| determinant, 10
‖A‖ norm of matrix, 11
‖a‖ norm of vector, 6
Mp(x, a) weighted mean of order p, 257
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M0(x, a) geometric mean, 259
A ≥ B, B ≤ A A−B positive semidefinite, 24
A > B, B < A A−B positive definite, 24

Matrix products

⊗ Kronecker product, 31
⊙ Hadamard product, 53

Functions

f : S → T function defined on S with values in T , 80
φ, ψ real-valued function, 193
f , g vector function, 193
F , G matrix function, 193
g ◦ f , G ◦ F composite function, 103, 131

Derivatives

d differential, 92, 93, 107
d
2 second differential, 118, 130

d
n n-th order differential, 129

Djφ, Djfi partial derivative, 97
D

2
kjφ, D

2
kjfi second-order partial derivative, 113

∂φ(X)/∂X
∂F (X)/∂X matrices of partial derivatives, 194, 194, 195
∂F (X)//∂X
φ′(ξ) derivative of φ(ξ), 91
Dφ(x), ∂φ(x)/∂x′ derivative of φ(x), 99, 196
Df(x), ∂f(x)/∂x′ derivative (Jacobian matrix) of f(x), 99, 196
DF (X) derivative (Jacobian matrix) of F (X), 108
∂ vecF (X)/∂(vecX)′ derivative of F (X), alternative notation, 196
∇φ, ∇f gradient, 99
φ′′(ξ) second derivative (Hessian matrix) of φ(ξ), 125
Hφ(x), ∂2φ(x)/∂x∂x′ second derivative (Hessian matrix) of φ(x), 114, 213
Hf(x) second derivative (Hessian matrix) of f(x), 115, 214
HF (X) second derivative (Hessian matrix) of F (X), 129, 214

Statistical symbols

Pr probability, 275
a.s. almost surely, 279
E expectation, 276
V variance (matrix), 277
Vas asymptotic variance (matrix), 366
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C covariance (matrix), 277
ML maximum likelihood, 351
MSE mean squared error, 285
Fn information matrix, 352
F asymptotic information matrix, 352
∼ is distributed as, 282
Nm(µ,Ω) normal distribution, 282



Subject index

Accumulation point, 75, 76, 80, 81,
90

Adjoint (matrix), 10, 47–51, 169,
190

differential of, 175–177, 190
rank of, 47, 48

Aitken’s theorem, 293
Almost surely (a.s.), 279
Approximation

first-order (linear), 91–92
second-order, 116, 123
zero-order, 91

Ball
convex, 83
in IRn, 75
in IRn×q, 107
open, 77

Bias, 285
of least squares estimator of

σ2, 336
bounds of, 336–337

Bilinear form, 7
maximum of, 241, 421–423

Bolzano-Weierstrass theorem, 80
Bordered determinantal criterion,

155
Boundary, 76
Boundary point, 76

Canonical correlations, 421–423
Cartesian product, 4
Cauchy’s rule of invariance, 105, 108

and simplified notation, 109–
110

Cayley-Hamilton theorem, 16, 186
Chain rule, 103

for Hessian matrices, 125
for matrix functions, 108

Characteristic equation, 14
Closure, 76
Cofactor (matrix), 10, 47
Column space, 9
Column symmetry, 115

of Hessian matrix, 121
Commutation matrix, 54–56

as derivative of X ′, 206
as Hessian matrix of 1

2 trX2,
219

Complement, 4
Complexity, entropic, 28
Component analysis, 401–409

core matrix, 402
core vector, 406
multimode, 406–409
one-mode, 401–405

and sample principal com-
ponents, 404

two-mode, 405–406
Concave function (strictly), 86

see also Convex function
Concavity (strict)

of log x, 88, 146, 229
of log |X |, 251
see also Convexity

Consistency of linear model, 307
with constraints, 311
see also Linear equations

Continuity, 82, 90
of differentiable function, 96
on compact set, 135

Convex combination (of points), 85
Convex function (strictly), 85–88

443
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and absolute minimum under
constraints, 158

and absolute minimum, 147
and inequalities, 243, 245
characterization (differentiable),

142, 144
characterization (twice differ-

entiable), 145
continuity of, 86

Convex set, 83–85
Convexity (strict)

of Lagrangian function, 159
of largest eigenvalue, 188, 232

Covariance (matrix), 277
Critical point, 134, 150
Critical value, 134

Demand equations, 368
Density function, 276

marginal, 280
Derivative, 92, 93, 107

bad notation, 194–195
first derivative, 93, 107
first-derivative test, 139
good notation, 196–197
partial derivative, 97

differentiability of, 117
existence of, 97
notation, 97
second-order, 113

partitioning of, 199
second-derivative test, 140

Determinant, 10
concavity of log |X |, 251
continuity of |X |, 172
derivative of |X |, 202
differential of log |X |, 171
differential of |X |, 169, 190
equals product of eigenvalues,

20
Hessian of log |X |, 219
Hessian of |X |, 217
higher-order differentials of log |X |,

172
of partitioned matrix, 13, 25,

28, 51
of triangular matrix, 10

second differential of log |X |,
172, 252

Diagonalization
of matrix with distinct eigen-

values, 19
of symmetric matrix, 17

Differentiability, 93, 94, 99–102, 107
see also Derivative, Differen-

tial, Function
Differential

first differential
and infinitely small quanti-

ties, 92
existence of, 99–102
fundamental rules, 167–169
geometric interpretation, 92
notation, 92, 109–110
of composite function, 105,

108
of matrix function, 107
of real-valued function, 92
of vector function, 94
uniqueness of, 95

higher-order differential, 129
second differential

does not satisfy Cauchy’s rule
of invariance, 127

existence of, 118
implies second-order Taylor

formula, 123
notation, 118, 130
of composite function, 126–

127, 131
of matrix function, 130
of real-valued function, 119
of vector function, 118, 120
uniqueness of, 119

Disjoint, 4, 64
Distribution function, cumulative,

275
Disturbance, 287

prediction of, 338–344
Duplication matrix, 56–61

Eigenvalue, 14
and Karamata’s inequality, 245
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convexity (concavity) of extreme
eigenvalue, 188, 232

derivative of, 204
differential of, 177–187

alternative expressions, 185–
187

application in factor analy-
sis, 416

with symmetric perturbations,
181

differential of multiple eigen-
value, 189

gradient of, 204
Hessian matrix of, 219
monotonicity of, 235
multiple eigenvalue, 14, 189
multiplicity of, 14
of (semi)definite matrix, 15
of idempotent matrix, 15
of singular matrix, 15
of symmetric matrix, 14
of unitary matrix, 15
ordering, 230
quasilinear representation, 234
second differential of, 188

application in factor analy-
sis, 416

simple eigenvalue, 14, 21
variational description, 232

Eigenvector, 14
column eigenvector, 14
derivative of, 205
differential of, 177–184

with symmetric perturbations,
181

linear independence, 16
normalization, 14, 180, 181, 183
row eigenvector, 14

Errors-in-variables, 361–363
Estimable function, 288, 297–298,

302
necessary and sufficient condi-

tions, 298
strictly estimable, 304

Estimator, 284
affine, 288

affine minimum-determinant un-
biased, 292

affine minimum-trace unbiased,
289–320

definition, 289
optimality of, 294

best affine unbiased, 288–320
definition, 288
relation with affine minimum-

trace unbiased estimator,
289

best linear unbiased, 288
best quadratic invariant, 329
best quadratic unbiased, 324–

328, 332–335
definition, 324

maximum likelihood, see Max-
imum likelihood

positive, 324
quadratic, 324
unbiased, 285

Euclidean space, 4
Expectation, 276, 277

as linear operator, 277
of quadratic form, 279, 286

Exponential of a matrix, 191
differential of, 191

Factor analysis, 410–421
Newton-Raphson routine, 415
varimax, 418–421
zigzag procedure, 413–414

First-derivative test, 139
Fischer’s min-max theorem, 234
Function, 80

affine, 81, 87, 92, 127
bounded, 81, 82
classification of, 193
component, 90, 91, 95, 117
composite, 91, 103–105, 108,

125–127, 131, 148
differentiable, 93, 99–102, 107
n times, 129
continuously, 103
twice, 116

domain of, 80
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estimable (strictly), 297–298,
302, 304

increasing (strictly), 80, 87
likelihood, 351
linear, 81
loglikelihood, 351
matrix, 107
monotonic (strictly), 81
range of, 80
real-valued, 80, 89
vector, 80, 89

Gauss-Markov theorem, 291
Generalized inverse, 44
Gradient, 99

Hadamard product, 53–54, 71
derivative of, 210
differential of, 168
in factor analysis, 415, 420

Hessian matrix
column symmetry, 115, 121
explicit formula, 217, 221, 222
identification of, 214–215
of matrix function, 129, 214,

220–222
of real-valued function, 114, 205,

213, 217–219, 352
of vector function, 115, 213,

219–220
symmetry of, 115, 119–121

Identification (in simultaneous equa-
tions), 373–378

global, 374, 375
with linear constraints, 375

local, 374, 376, 377
with linear constraints, 376
with non-linear constraints,

377
Identification table

first, 198–199
second, 215–216

Identification theorem, first
for matrix functions, 108, 198
for real-valued functions, 99
for vector functions, 98

Identification theorem, second
for matrix functions, 130, 215
for real-valued functions, 122,

214
for vector functions, 122, 214

Implicit function theorem, 162–163,
180

Independent (linearly), 8
of eigenvectors, 16

Independent (stochastically), 279–
281

and correlation, 280
and identically distributed (i.i.d.),

281
Inequality

arithmetic-geometric mean, 153,
229, 259

matrix analogue, 269
Bergstrom, 227

matrix analogue, 269
Cauchy-Schwarz, 226

matrix analogues, 227
Hölder, 249

matrix analogue, 249
Hadamard, 242
Kantorovich, 269

matrix analogue, 269
Karamata, 243

applied to eigenvalues, 245
Minkowski, 253, 261

matrix analogue, 253
Schlömilch, 259
Schur, 228
triangle, 227

Information matrix, 352
asymptotic, 352
for full-information ML, 378
for limited-information ML, 386–

388
for multivariate linear model,

359
for non-linear regression model,

364, 366, 367
for normal distribution, 356

multivariate, 358
Interior, 76
Interior point, 75, 133
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Intersection, 4, 78, 79, 84
Interval, 77
Inverse, 9

convexity of, 252
derivative of, 207
differential of, 171

higher-order, 172
second, 172

Inverse of partitioned matrix, 12
Isolated point, 76, 90

Jacobian, 99
Jacobian matrix, 99, 108, 129, 196,

197
explicit formula of, 217
identification of, 198

Jordan decomposition, 18, 49

Kronecker delta, 7
Kronecker product, 31–32

derivative of, 208–210
determinant of, 33
differential of, 168
eigenvalues of, 33
eigenvectors of, 33
inverse of, 32
Moore-Penrose inverse of, 38
rank of, 34
trace of, 32
transpose of, 32
vec of, 55

Lagrange multipliers, 150
economic interpretation of, 160–

161
matrix of, 160
symmetric matrix of, 327, 340,

343, 402, 404, 408, 420
Lagrange’s theorem, 149
Lagrangian function, 150, 158

convexity (concavity) of, 159
first-order conditions, 150

Least squares (LS), 262, 292–293
and best affine unbiased esti-

mation, 293, 318–321
as approximation method, 293
generalized, 263, 318–319

LS estimator of σ2, 335
bounds for bias of, 336–337

restricted, 263–266, 319–321
matrix version, 265–266

Limit, 81
Linear equations, 41

consistency of, 41
solution of homogeneous equa-

tion, 41
solution of matrix equation, 43,

51, 68
uniqueness of, 43

solution of vector equation, 42
Linear form, 7, 119

derivative of, 200
Linear model

consistency of, 307
with constraints, 311

estimation of σ2, 323–332
estimation of Wβ, 288–321

alternative route, 314
singular variance matrix, 306–

317
under linear constraints, 299–

306, 310–317
explicit and implicit constraints,

310–313
local sensitivity analysis, 345–

348
multivariate, 358–361, 371
prediction of disturbances, 338–

344
Lipschitz condition, 96
Locally idempotent, 175
Logarithm of a matrix, 191

differential of, 191

Majorization, 243
Matrix, 4

commuting, 5
complex, 13, 182–187
complex conjugate, 13
diagonal, 7, 27
element of, 4
Gramian, 66–68
Hermitian, 13
idempotent, 6, 22, 40
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identity, 7
indefinite, 7
locally idempotent, 175
lower triangular (strictly), 6
negative (semi)definite, 7
non-singular, 9
null, 5
orthogonal, 7, 13
partitioned, 11

determinant of, 13, 28
inverse of, 12

permutation, 9
positive (semi)definite, 7, 23–

26
power of, 202, 207, 245
semi-orthogonal, 7
singular, 9
skew symmetric, 6, 28
square, 6
square root of, 7
symmetric, 6, 13
transpose, 6
triangular, 6
unit lower (upper) triangular,

6
unitary, 13
upper triangular (strictly), 6
Vandermonde, 185, 190

Maximum
of a bilinear form, 241
see also Minimum

Maximum likelihood (ML), 351–370
errors-in-variables, 361–363
estimate, estimator, 351–352
full-information ML (FIML),

378–383
limited-information ML (LIML),

383–393
as special case of FIML, 383
asymptotic variance matrix,

388
estimators, 384
information matrix, 386

multivariate linear regression
model, 358–359

multivariate normal distribu-
tion, 352

with distinct means, 358–368
non-linear regression model, 364–

367
sample principal components,

400
Mean squared error, 285, 321, 329–

332
Mean-value theorem

for real-valued functions, 106,
128

for vector functions, 110
Means, weighted, 257

bounds of, 257
curvature of, 260
limits of, 258
linear homogeneity of, 257
monotonicity of, 259

Minimum
(strict) absolute, 134
(strict) local, 134
existence of absolute minimum,

135
necessary conditions for local

minimum, 137–138
sufficient conditions for abso-

lute minimum, 147
sufficient conditions for local

minimum, 138–142
Minimum under constraints

(strict) absolute, 149
(strict) local, 149
necessary conditions for con-

strained local minimum,
149–153

sufficient conditions for constrained
absolute minimum, 158–
159

sufficient conditions for constrained
local minimum, 154–158

Minkowski’s determinant theorem,
256

Minor, 10
principal, 10, 26, 239

Monotonicity, 147
Moore-Penrose (MP) inverse

and the solution of linear equa-
tions, 41–43
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definition of, 36
differentiability of, 172–175
differential of, 172–175, 191
existence of, 37
of bordered Gramian matrix,

66–68
properties of, 38–41
uniqueness of, 37

Multicollinearity, 295

Neighbourhood, 75
Non-linear regression model, 364–

368
Norm, 6, 11, 107
Normal distribution

n-dimensional, 282
marginal distribution, 283
moments, 282

of affine function, 283
of quadratic function, 284,

285, 333
one-dimensional, 281
standard-normal, 282, 283

Normality assumption (in simulta-
neous equations), 372

Observational equivalence, 373
Optimization

constrained, 133
unconstrained, 133

Partial derivative, see Derivative
Poincaré’s separation theorem, 236

consequences of, 237–239
Positivity (in optimization problems),

254, 325, 330, 355, 398
Predictor

best linear unbiased, 338
BLUF, 341–345
BLUS, 339

Principal components (population),
396

as approximation to popula-
tion variance, 398

optimality of, 397
uncorrelated, 396
unique, 397

usefulness, 398
Principal components (sample), 400

and one-mode component anal-
ysis, 404

as approximation to sample vari-
ance, 401

ML estimation of, 400
optimality of, 401
sample variance, 400

Probability, 275
with probability one, 279

Quadratic form, 7, 119
convex, 88
derivative of, 200
positivity of

under linear constraints, 61–
64, 155

Quasilinearization, 231, 246
of (trAp)1/p, 248

of |A|1/n, 254
of eigenvalues, 234
of extreme eigenvalues, 231

Random variable (continuous), 276
Rank, 8

column rank, 8
locally constant, 109, 156, 172–

175, 177
and continuity of Moore-Penrose

inverse, 173
and differentiability of Moore-

Penrose inverse, 173
of idempotent matrix, 22
of partitioned matrix, 64
of symmetric matrix, 21
rank condition, 374
row rank, 8

Rayleigh quotient, 230
bounds of, 230

Saddle point, 134, 141
Sample, 281

sample variance, 400, 401
Schur decomposition, 17
Score vector, 352
Second-derivative test, 140
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Sensitivity analysis, local, 345–348
of posterior mean, 345
of posterior precision, 347

Set, 3
(proper) subset, 3
bounded, 4, 77
closed, 76
compact, 77, 135
derived, 76
element of, 3
empty, 3
open, 76

Simultaneous equations model, 371
identification, 373–378
normality assumption, 372
rank condition, 374
reduced form, 372
reduced-form parameters, 372–

374
structural parameters, 373–374

Singular-value decomposition, 19
Stiefel manifold, 402
Submatrix, 10

principal, 10, 231
Symmetry, treatment of, 354–355

Taylor formula
first-order, 92, 115, 128
of order zero, 91
second-order, 116, 123

Taylor’s theorem (for real-valued func-
tions, 128

Trace, 11
derivative of, 200–202
equals sum of eigenvalues, 20

Uncorrelated, 277, 278, 280, 281,
283, 284

Union, 4, 78, 79
Unit vector, 97

Variance (matrix), 277–279
asymptotic, 352, 356, 358, 359,

364, 366, 368, 381–383, 388–
393

generalized, 278, 356
of quadratic form in normal

variables, 284, 286, 333

positive semidefinite, 278
Vec operator, 34–36

vec of Kronecker product, 56
Vector, 4

column vector, 4
components of, 5
orthonormal, 7
row vector, 4

Weierstrass theorem, 135
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