
Web API development with OpenAPI
Software and Applications for IoT
Dimitrios J. Vergados

May 6, 2022

Presentation outline
1. What is OpenAPI (formerly Swagger)

2. The YAML data format

3. The OpenAPI Specification

What is OpenAPI (formerly Swagger)
• Swagger allows you to describe the structure of your APIs so that machines

can read them.

• The ability of APIs to describe their own structure is the root of all
awesomeness in Swagger. Why is it so great? Well, by reading your
API’s structure, we can automatically build beautiful and interactive API
documentation.

• We can also automatically generate client libraries for your API in many
languages and explore other possibilities like automated testing. Swagger
does this by asking your API to return a YAML or JSON that contains a
detailed description of your entire API.

• This file is essentially a resource listing of your API which adheres to
OpenAPI Specification. The specification asks you to include information
like:

– What are all the operations that your API supports?
– What are your API’s parameters and what does it return?
– Does your API need some authorization?
– And even fun things like terms, contact information and license to

use the -API.

• You can write a Swagger spec for your API manually, or have it
generated automatically from annotations in your source code. Check
swagger.io/open-source-integrations for a list of tools that let you generate
Swagger from code.

1

• Swagger is a set of open source tools for writing REST-based APIs. It
simplifies the process of writing APIs by notches, specifying the standards
& providing the tools required to write beautiful, safe, performant &
scalable APIs.

• In today’s software realm, there are no systems running online without
exposing an API. We have moved from monolithic systems to microservices.
And the whole design of microservices is laid on REST APIs.

• Business can’t afford any loopholes or glitches in the functionality of the
APIs after all the entire business rests on them.

How does Swagger Help in Writing APIs?

• When writing APIs from scratch, first thing as a developer which pops up
in our minds is.

• Am I doing things, right? I mean have I included the versioning system in
the API. Are all the safety & data quarantine checks in place? How about
the design? Seems Ok to me. Am I handling the errors correctly or am I
missing something?

• How helpful it would have been had there been a global specification for
writing APIs.

• I would just base my design on that & would be carefree.

• When writing an API from scratch there were so many things to get
straight, like going through different articles online. Go through docs of
APIs exposed by Twitter, Facebook & stuff. Try to get an idea into the
standards they were complying to. Hell, It was a time-consuming process.

• Here is where OpenAPI fits in. It standardizes the whole process of writing
APIs. Helps us figure things out which should ideally be spotted in the
initial phases of writing software, help us weed them out, saving tons of
time of code refactorization.

Be Accurate About Your APIs At the First Time

• We know this already, in the first iteration of code design, things are never
perfect. We have to keep tweaking stuff to make things aligned with our
expectations. It’s really time-consuming running iterations tinkering with
APIs over & over.

2

• Swagger offers a tool called the Swagger Editor which helps us design our
APIs based on the OpenAPI specification.

• OpenAPI Woah!! Seems like we have a standard. Hurray!!

What is Swagger Editor?

• Swagger Editor is a tool that helps us validate our API design in real time,
it checks the design against the OAS Open API Specification & provides
visual feedback on the fly.

• The editor tool can be run anywhere, either locally or on the web. Provides
instant feedback on the API design, points out if the errors are not handled
correctly or if there are any issues with the syntax.

• It also has intelligent autocompletion features, which enable us to write
code faster. It is easy to configure & also enables the devs to create server
stubs for the API for faster development.

• With tools like Swagger Editor developers have an insight in real time on
how the API design is coming along. By getting instant response from the
stubs. It also helps us analyze how a third party developer would interact
with the API.

Figure 1: scaleyourapp.com Swagger Editor

3

Advantages of using swagger

• Well the API response could also be received in the traditional browser
tab, but where the Swagger really stood out was:

1. Testing the API. Also, it’s really comforting for devs to view their code,
work on the UI. It was a bit easy to comprehend stuff, especially when
I returned to the project after a bit of a break. Triggering commands
from the Swagger UI was always easy or more comprehensible.

2. Swagger UI helped business people, like my product owner, get an
insight into the functionality of the system, as it was developed over
time. Obviously, you can’t always expect a business person to setup
code in his system or check the API response in the browser by
running the code locally. I would always ping him the swagger UI
url & he could easily feed in the parameters in the UI & have a look
at the response the system was returning. Much easier & simpler I
would say.

Having A Standard API Design Across Different Teams

• Swagger is to APIs what a Framework is to writing software.

• Just like a framework helps standardize the software development pro-
cess. Swagger provides global standards via OpenAPI, enabling a certain
universal structure to the APIs.

• Different people have different styles of writing software & if it weren’t
for frameworks & standards. Maintaining software written by any other
developer would be much worse than a nightmare.

• Swagger specifies standards of common behaviour, patterns & a RESTful
interface to the APIs. Different microservices teams in an organization
don’t have to break their head comprehending, consuming & modifying
foreign APIs.

• Swagger offers a tool Swagger Hub which has an in-built API standard-
ization tool which makes your code abide by the organizational design
guidelines.

• With this, it doesn’t matter if you have a team of 3 or 300. Things are
always simple.

Features Assisting API Development

• While writing APIs there are so many things to get straight like handling
errors properly, modularity of code, abiding by protocols & stuff. Swagger

4

provides us with tools to quickly code our APIs taking care of all these
things. Using swagger is taking the fastest road to prototype an API &
then to a production deployable code.

• Swagger’s open source tool CodeGen generates the boilerplate code when
writing the API. Enabling the developer focus on the business logic as
opposed to investing time in writing the syntactical stuff.

• CodeGen takes care of the obvious plumbing & boilerplate code. Just like
a Spring Boot project does to a Spring-based application.

Creating API Documentation

• After being done with writing code. Another colossal, tedious task for
developers is writing documentation for their code. My head hurts when I
think about it.

• Swagger lets us off the hook by generating & maintaining API docs for
us. Saves a ton of time!! Also, we don’t have to go back & change the
documentation every time the code changes.

• All the docs are automagically updated by Swagger. We can also generate
different versions of the API as per our requirements & whim. We can also
configure Swagger to generate documentation for the existing APIs.

What is OpenAPI?

• OpenAPI is the global standard for writing RESTful APIs. It like a
specification which enables developers around the planet to standardize
the design of their APIs. Also, comply with all the safety, versioning, error
handling & other best practices when writing REST APIs from the ground
up. And not just ground up, even existing APIs can be tweaked to comply
with a global standard.

• Besides, isn’t this pretty obvious, why complying to universal standards in
the development of a product is helpful?

• Initially, the OpenAPI was known as the Swagger specification. Swagger
came up with the best practices of building APIs & then those best practices
became the OpenAPI specification.

• An Open API file contains the entire specification of your API. It helps
developers describe their API in its entirety like listing available endpoints
& operations on each endpoint. The parameters going into the methods

5

& the response from the method. Ways of authentication, metadata like
license, terms of use & stuff.

Is there Any Difference Between Swagger & the Open API?

• OpenAPI is the specification & Swagger is the implementation of the
specification. Just like, JPA is the specification & Hibernate is the imple-
mentation.

• Swagger provides the tools for implementing the OpenAPI specification.
Today OpenAPI is adopted by the big guns in the industry, contributing
to it at the same time, evolving the API development process.

What is the difference between Postman & Swagger?

• Postman is also an API testing solution just like Swagger. It started as a
chrome app & now offers pretty much majority of the features required to
develop & test APIs.

• It’s been a while I’ve used Postman. Did use it a couple of years back when
I was integrating the Facebook login with Spring social in an e-commerce
project.

• Swagger, on the other hand, is a suite of open source & commercial tools. It
created the OpenAPI specification. So, this, in my opinion, is the primary
difference. The specification part.

The YAML data format
• YAML Ain’t Markup Language (YAML) is a serialization language that

has steadily increased in popularity over the last few years.

• It’s often used as a format for configuration files, but its object serialization
abilities make it a viable replacement for languages like JSON.

• This chapter will demonstrate the language syntax with a guide and some
simple coding examples in Python. YAML has broad language support
and maps easily into native data structures.

• It’s also easy to for humans to read, which is why it’s a good choice for
configuration.

• The YAML acronym was shorthand for Yet Another Markup Language.
But the maintainers renamed it to YAML Ain’t Markup Language to place
more emphasis on its data-oriented features.

6

http://yaml.org
https://rollout.io/blog/python-feature-flag-guide/

YAML Tutorial Quick Start: A Simple File

Let’s take a look at a YAML file for a brief overview.

doe: "a deer, a female deer"
ray: "a drop of golden sun"
pi: 3.14159
xmas: true
french-hens: 3
calling-birds:

- huey
- dewey
- louie
- fred

xmas-fifth-day:
calling-birds: four
french-hens: 3
golden-rings: 5
partridges:

count: 1
location: "a pear tree"

turtle-doves: two

• The file starts with three dashes. These dashes indicate the start of a new
YAML document. YAML supports multiple documents, and compliant
parsers will recognize each set of dashes as the beginning of a new one.

• Next, we see the construct that makes up most of a typical YAML document:
a key-value pair. Doe is a key that points to a string value: a deer, a
female deer. YAML supports more than just string values.

• The file starts with six key-value pairs. They have four different data

• types. Doe and ray are strings. Pi is a floating-point number. Xmas is
a boolean. French-hens is an integer.

• You can enclose strings in single or double-quotes or no quotes at all.

• YAML recognizes unquoted numerals as integers or floating point.

• The seventh item is an array. Calling-birds has four elements, each
denoted by an opening dash. I indented the elements in calling-birds
with two spaces.

• Indentation is how YAML denotes nesting. The number of spaces can vary
from file to file, but tabs are not allowed. We’ll look at how indentation

7

works below. Finally, we see xmas-fifth-day, which has five more elements
inside it, each of them indented.

• We can view xmas-fifth-day as a dictionary that contains two string, two
integers, and another dictionary. YAML supports nesting of key-values,
and mixing types.

• Before we take a deeper dive, let’s look at how this document looks in
JSON. I’ll throw it in this handy JSON to YAML converter.

{
"doe": "a deer, a female deer",
"ray": "a drop of golden sun",
"pi": 3.14159,
"xmas": true,
"french-hens": 3,
"calling-birds": [

"huey",
"dewey",
"louie",
"fred"

],
"xmas-fifth-day": {
"calling-birds": "four",
"french-hens": 3,
"golden-rings": 5,
"partridges": {

"count": 1,
"location": "a pear tree"

},
"turtle-doves": "two"
}

}

JSON and YAML have similar capabilities, and you can convert most documents
between the formats.

Outline Indentation and Whitespace

• Whitespace is part of YAML’s formatting. Unless otherwise indicated,
newlines indicate the end of a field.

• You structure a YAML document with indentation.
• The indentation level can be one or more spaces.

8

https://www.json2yaml.com

• The specification forbids tabs because tools treat them differently.

• Consider this document. The items inside stuff are indented with two
spaces.

“‘yaml foo: bar

pleh: help stuff: foo: bar bar: foo

- Let’s take a look at how a simple python script views this document.

- We’ll save it as a file named **foo.yaml**. The PyYAML package will map a YAML
file stream into a dictionary.

- We’ll iterate through the outermost set of keys and values and print the key
and the string representation of each value. You can find a processor for your
favorite platform here.

‘‘‘python
import yaml

if __name__ == ’__main__’:

stream = open("foo.yaml", ’r’)
dictionary = yaml.load(stream)
for key, value in dictionary.items():

print (key + " : " + str(value))

The output is:

foo : bar
pleh : help
stuff : {'foo': 'bar', 'bar': 'foo'}

• When we tell python to print a dictionary as a string, it uses the inline
syntax we’ll see below.

• We can see from the output that our document is a python dictionary with
two strings and another dictionary nested inside it.

• YAML’s simple nesting gives us the power to build sophisticated objects.
But that’s only the beginning.

9

Comments

• Comments begin with a hash sign. They can appear after a document
value or take up an entire line.

This is a full line comment

foo: bar # this is a comment, too

• Comments are for humans. YAML processors will discard them.

YAML Datatypes

• Values in YAML’s key-value pairs are scalar.
• They act like the scalar types in languages like Perl, Javascript, and Python.
• It’s usually good enough to enclose strings in quotes, leave numbers un-

quoted, and let the parser figure it out.
• But that’s only the tip of the iceberg. YAML is capable of a great deal

more.

Key-Value Pairs and Dictionaries

• The key-value is YAML’s basic building block.
• Every item in a YAML document is a member of at least one dictionary.
• The key is always a string.
• The value is a scalar so that it can be any datatype.
• So, as we’ve already seen, the value can be a string, a number, or another

dictionary.

Numeric types

• YAML recognizes numeric types. We saw floating point and integers above.
YAML supports several other numeric types. An integer can be decimal,
hexidecimal, or octal.

foo: 12345
bar: 0x12d4
plop: 023332

• Let’s run our python script on this document.

foo : 12345
bar : 4820
plop : 9946

10

• As you expect, Ox indicates a value is hex, and a leading zero denotes an
octal value.

• YAML supports both fixed and exponential floating point numbers.

foo: 1230.15
bar: 12.3015e+05

• When we evaluate these entries we see:

foo : 1230.15
bar : 1230150.0

• Finally, we can represent not-a-number (NAN) or infinity.

foo: .inf
bar: -.Inf
plop: .NAN

• Foo is infinity. Bar is negative infinity, and plop is NAN.

Strings

• YAML strings are Unicode. In most situations, you don’t have to specify
them in quotes.

foo: this is a normal string

• Our test program processes this as:

foo: this is a normal string

• But if we want escape sequences handled, we need to use double quotes.

foo: "this is not a normal string\\n"
bar: this is not a normal string\\n

• YAML processes the first value as ending with a carriage return and
linefeed. Since the second value is not quoted, YAML treats the \\n as
two characters.

foo: this is not a normal string

bar: this is not a normal string\\n

11

• YAML will not escape strings with single quotes, but the single quotes do
avoid having string contents interpreted as document formatting.

• String values can span more than one line. With the fold (greater than)
character, you can specify a string in a block.

bar: >
this is not a normal string it
spans more than
one line
see?

• But it’s interpreted without the newlines.

bar : this is not a normal string it spans more than one line see?

• The block (pipe) character has a similar function, but YAML interprets
the field exactly as is.

bar: |
this is not a normal string it
spans more than
one line
see?

• So, we see the newlines where they are in the document.

bar : this is not a normal string it
spans more than
one line
see?

Nulls

• You enter nulls with a tilde or the unquoted null string literal.

foo: ~
bar: null

• Our program prints:

foo : None
bar : None

• Python’s representation for null is None.

12

Booleans

• YAML indicates boolean values with the keywords True, On and Yes for
true. False is indicated with False, Off, or No.

foo: True
bar: False
light: On
TV: Off

Arrays

• You can specify arrays or lists on a single line.

items: [1, 2, 3, 4, 5]
names: ["one", "two", "three", "four"]

• Or, you can put them on multiple lines.

items:
- 1
- 2
- 3
- 4
- 5

names:
- "one"
- "two"
- "three"
- "four"

• The multiple line format is useful for lists that contain complex objects
instead of scalars.

items:
- things:

thing1: huey
things2: dewey
thing3: louie

- other things:
key: value

13

• An array can contain any valid YAML value. The values in a list do not
have to be the same type.

Dictionaries

• We covered dictionaries above, but there’s more to them. Like arrays, you
can put dictionaries inline.

• We saw this format above. It’s how python prints dictionaries.

foo: { thing1: huey, thing2: louie, thing3: dewey }

• We’ve seen them span lines before.

foo: bar
bar: foo

• And, of course, they can be nested and hold any value.

foo:
bar:

- bar
- rab
- plop

Advanced Options

Chomp Modifiers

• Multiline values may end with whitespace, and depending on how you
want the document to be processed you might not want to preserve it.
YAML has the strip chomp and preserve chomp operators. To save the
last character, add a plus to the fold or block operators.

bar: >+
this is not a normal string it
spans more than
one line
see?

• So, if the value ends with whitespace, like a newline, YAML will preserve
it. To strip the character, use the strip operator.

bar: |-
this is not a normal string it

14

spans more than
one line
see?

Multiple documents

• A document starts with three dashes and ends with three periods. Some
YAML processors require the document start operator. The end operator
is usually optional. For example, Java’s Jackson will not process a YAML
document without the start, but Python’s PyYAML will. You’ll usually
use the end document operator when a file contains multiple documents.
Let’s modify our python code.

import yaml

if __name__ == '__main__':
stream = open("foo.yaml", 'r')
dictionary = yaml.load_all(stream)

for doc in dictionary:
print("New document:")
for key, value in doc.items():

print(key + " : " + str(value))
if type(value) is list:

print(str(len(value)))

• PyYAML’s load_all will process all of the documents in a stream.

• Now, let’s process a compound document with it.

bar: foo
foo: bar
...

one: two
three: four

• The script finds two YAML documents.

New document:
bar : foo
foo : bar
New document:

15

one : two
three : four

Conclusion

• YAML is a powerful language that can be used for

– configuration files,
– messages between applications,
– saving application state.

• We covered its most commonly used features, including how to use the
built-in datatypes and structure complex documents.

• Some platforms support YAML’s advanced features, including custom
datatypes.

The OpenAPI Specification
• The OpenAPI Specification (OAS) defines a standard, language-agnostic

interface to RESTful APIs which allows both humans and computers to
discover and understand the capabilities of the service without access to
source code, documentation, or through network traffic inspection.

• When properly defined, a consumer can understand and interact with the
remote service with a minimal amount of implementation logic.

• An OpenAPI definition can then be used by documentation generation
tools to display the API, code generation tools to generate servers and
clients in various programming languages, testing tools, and many other
use cases.

Definitions

OpenAPI Document

• A document (or set of documents) that defines or describes an API. An
OpenAPI definition uses and conforms to the OpenAPI Specification.

Path Templating

• Path templating refers to the usage of template expressions, delimited by
curly braces ({}), to mark a section of a URL path as replaceable using
path parameters.

16

http://yaml.org

• Each template expression in the path MUST correspond to a path param-
eter that is included in the Path Item itself and/or in each of the Path
Item’s Operations.

Media Types Media type definitions are spread across several resources. The
media type definitions SHOULD be in compliance with RFC6838.

Some examples of possible media type definitions:

text/plain; charset=utf-8
application/json
application/vnd.github+json
application/vnd.github.v3+json
application/vnd.github.v3.raw+json
application/vnd.github.v3.text+json
application/vnd.github.v3.html+json
application/vnd.github.v3.full+json
application/vnd.github.v3.diff
application/vnd.github.v3.patch

HTTP Status Codes The HTTP Status Codes are used to indicate the status
of the executed operation. The available status codes are defined by RFC7231
and registered status codes are listed in the IANA Status Code Registry.

Specification
Versions

• The OpenAPI Specification is versioned using Semantic Versioning 2.0.0
(semver) and follows the semver specification.

• The major.minor portion of the semver (for example 3.0) SHALL designate
the OAS feature set. Typically, .patch versions address errors in this
document, not the feature set. Tooling which supports OAS 3.0 SHOULD
be compatible with all OAS 3.0.* versions. The patch version SHOULD
NOT be considered by tooling, making no distinction between 3.0.0 and
3.0.1 for example.

• Each new minor version of the OpenAPI Specification SHALL allow any
OpenAPI document that is valid against any previous minor version of the
Specification, within the same major version, to be updated to the new
Specification version with equivalent semantics. Such an update MUST
only require changing the openapi property to the new minor version.

17

https://tools.ietf.org/html/rfc6838
https://tools.ietf.org/html/rfc7231#section-6
https://www.iana.org/assignments/http-status-codes/http-status-codes.xhtml
https://semver.org/spec/v2.0.0.html

• For example, a valid OpenAPI 3.0.2 document, upon changing its openapi
property to 3.1.0, SHALL be a valid OpenAPI 3.1.0 document, seman-
tically equivalent to the original OpenAPI 3.0.2 document. New minor
versions of the OpenAPI Specification MUST be written to ensure this
form of backward compatibility.

• An OpenAPI document compatible with OAS 3.*.* contains a required
openapi field which designates the semantic version of the OAS that it
uses. (OAS 2.0 documents contain a top-level version field named swagger
and value "2.0".)

Format

• An OpenAPI document that conforms to the OpenAPI Specification is
itself a JSON object, which may be represented either in JSON or YAML
format.

• For example, if a field has an array value, the JSON array representation
will be used:

{
"field": [1, 2, 3]

}

• All field names in the specification are case sensitive. This includes all
fields that are used as keys in a map, except where explicitly noted that
keys are case insensitive.

• The schema exposes two types of fields: Fixed fields, which have a declared
name, and Patterned fields, which declare a regex pattern for the field
name.

• Patterned fields MUST have unique names within the containing object.

• In order to preserve the ability to round-trip between YAML and JSON for-
mats, YAML version 1.2 is RECOMMENDED along with some additional
constraints:

– Tags MUST be limited to those allowed by the JSON Schema ruleset.
– Keys used in YAML maps MUST be limited to a scalar string, as

defined by the YAML Failsafe schema ruleset.

• Note: While APIs may be defined by OpenAPI documents in either
YAML or JSON format, the API request and response bodies and other
content are not required to be JSON or YAML.

18

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#swaggerObject
https://yaml.org/spec/1.2/spec.html
https://yaml.org/spec/1.2/spec.html#id2803231
https://yaml.org/spec/1.2/spec.html#id2802346

Document Structure

• An OpenAPI document MAY be made up of a single document or be
divided into multiple, connected parts at the discretion of the user. In
the latter case, $ref fields MUST be used in the specification to reference
those parts as follows from the JSON Schema definitions.

• It is RECOMMENDED that the root OpenAPI document be named:
openapi.json or openapi.yaml.

Data Types

• Primitive data types in the OAS are based on the types supported by the
JSON Schema Specification Wright Draft 00.

• Note that integer as a type is also supported and is defined as a JSON
number without a fraction or exponent part. null is not supported as a
type (see nullable for an alternative solution).

• Models are defined using the Schema Object, which is an extended subset
of JSON Schema Specification Wright Draft 00.

• Primitives have an optional modifier property: format.

• OAS uses several known formats to define in fine detail the data type being
used.

• However, to support documentation needs, the format property is an
open string-valued property, and can have any value. Formats such as
"email", "uuid", and so on, MAY be used even though undefined by this
specification.

• Types that are not accompanied by a format property follow the type
definition in the JSON Schema. Tools that do not recognize a specific
format MAY default back to the type alone, as if the format is not
specified.

The formats defined by the OAS are:

type format Comments
integer int32 signed 32 bits
integer int64 signed 64 bits (a.k.a long)
number float
number double
string

19

https://json-schema.org
https://tools.ietf.org/html/draft-wright-json-schema-00#section-4.2

type format Comments
string byte base64 encoded characters
string binary any sequence of octets
boolean
string date As defined by full-date - RFC3339
string date-time As defined by date-time - RFC3339
string password A hint to UIs to obscure input.

Rich Text Formatting

• Throughout the specification description fields are noted as supporting
CommonMark markdown formatting.

• Where OpenAPI tooling renders rich text it MUST support, at a minimum,
markdown syntax as described by CommonMark 0.27

• Tooling MAY choose to ignore some CommonMark features to address
security concerns.

Relative References in URLs

• Unless specified otherwise, all properties that are URLs MAY be relative
references as defined by RFC3986.

• Relative references are resolved using the URLs defined in the Server
Object as a Base URI.

• Relative references used in $ref are processed as per JSON Reference,
using the URL of the current document as the base URI. See also the
Reference Object.

Schema

• In the following description, if a field is not explicitly REQUIRED or
described with a MUST or SHALL, it can be considered OPTIONAL.

OpenAPI Object

• This is the root document object of the OpenAPI document.

20

https://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14
https://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14
https://spec.commonmark.org/0.27/
https://tools.ietf.org/html/rfc3986#section-4.2
https://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03

Fixed Fields (1/2)

Field Name Type Description
openapi string REQUIRED.

This string MUST
be the semantic
version number of
the OpenAPI
Specification
version that the
OpenAPI document
uses. The openapi
field SHOULD be
used by tooling
specifications and
clients to interpret
the OpenAPI
document. This is
not related to the
API info.version
string.

info Info Object REQUIRED.
Provides metadata
about the API. The
metadata MAY be
used by tooling as
required.

servers [Server Object] An array of Server
Objects, which
provide connectivity
information to a
target server. If the
servers property
is not provided, or
is an empty array,
the default value
would be a Server
Object with a url
value of /.

paths Paths Object REQUIRED. The
available paths and
operations for the
API.

21

https://semver.org/spec/v2.0.0.html
https://semver.org/spec/v2.0.0.html

Field Name Type Description
components Components Object An element to hold

various schemas for
the specification.

Fixed Fields (2/2)

Field Name Type Description
security [Security Requirement Object] A declaration of

which security
mechanisms can be
used across the API.
The list of values
includes alternative
security
requirement objects
that can be used.
Only one of the
security
requirement objects
need to be satisfied
to authorize a
request. Individual
operations can
override this
definition. To make
security optional,
an empty security
requirement ({})
can be included in
the array.

22

Field Name Type Description
tags [Tag Object] A list of tags used

by the specification
with additional
metadata. The
order of the tags
can be used to
reflect on their
order by the
parsing tools. Not
all tags that are
used by the
Operation Object
must be declared.
The tags that are
not declared MAY
be organized
randomly or based
on the tools’ logic.
Each tag name in
the list MUST be
unique.

externalDocs External Documentation Object Additional external
documentation.

This object MAY be extended with Specification Extensions.

Info Object

• The object provides metadata about the API.
• The metadata MAY be used by the clients if needed, and MAY be presented

in editing or documentation generation tools for convenience.

Fixed Fields

Field Name Type Description
title string REQUIRED. The

title of the API.

23

Field Name Type Description
description string A short description

of the API.
CommonMark
syntax MAY be
used for rich text
representation.

termsOfService string A URL to the
Terms of Service for
the API. MUST be
in the format of a
URL.

contact Contact Object The contact
information for the
exposed API.

license License Object The license
information for the
exposed API.

version string REQUIRED. The
version of the
OpenAPI document
(which is distinct
from the OpenAPI
Specification
version or the API
implementation
version).

This object MAY be extended with Specification Extensions.

Info Object Example

{
"title": "Sample Pet Store App",
"description": "This is a sample server for a pet store.",
"termsOfService": "http://example.com/terms/",
"contact": {

"name": "API Support",
"url": "http://www.example.com/support",
"email": "support@example.com"

},
"license": {

"name": "Apache 2.0",

24

https://spec.commonmark.org/
https://spec.commonmark.org/

"url": "https://www.apache.org/licenses/LICENSE-2.0.html"
},
"version": "1.0.1"

}

title: Sample Pet Store App
description: This is a sample server for a pet store.
termsOfService: http://example.com/terms/
contact:

name: API Support
url: http://www.example.com/support
email: support@example.com

license:
name: Apache 2.0
url: https://www.apache.org/licenses/LICENSE-2.0.html

version: 1.0.1

Contact Object Contact information for the exposed API.

Fixed Fields

Field Name Type Description
name string The identifying

name of the contact
person/organization.

url string The URL pointing
to the contact
information. MUST
be in the format of
a URL.

email string The email address
of the contact per-
son/organization.
MUST be in the
format of an email
address.

This object MAY be extended with Specification Extensions.

Contact Object Example

25

{
"name": "API Support",
"url": "http://www.example.com/support",
"email": "support@example.com"

}

name: API Support
url: http://www.example.com/support
email: support@example.com

License Object License information for the exposed API.

Fixed Fields

Field Name Type Description
name string REQUIRED. The

license name used
for the API.

url string A URL to the
license used for the
API. MUST be in
the format of a
URL.

This object MAY be extended with Specification Extensions.

License Object Example

{
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0.html"

}

name: Apache 2.0
url: https://www.apache.org/licenses/LICENSE-2.0.html

Server Object An object representing a Server.

Fixed Fields

26

Field Name Type Description
url string REQUIRED. A

URL to the target
host. This URL
supports Server
Variables and MAY
be relative, to
indicate that the
host location is
relative to the
location where the
OpenAPI document
is being served.
Variable
substitutions will
be made when a
variable is named in
{brackets}.

description string An optional string
describing the host
designated by the
URL.
CommonMark
syntax MAY be
used for rich text
representation.

variables Map[string, Server Variable
Object]

A map between a
variable name and
its value. The value
is used for
substitution in the
server’s URL
template.

This object MAY be extended with Specification Extensions.

Server Object Example A single server would be described as:

{
"url": "https://development.gigantic-server.com/v1",
"description": "Development server"

}

27

https://spec.commonmark.org/
https://spec.commonmark.org/

url: https://development.gigantic-server.com/v1
description: Development server

The following shows how multiple servers can be described, for example, at the
OpenAPI Object’s servers:

{
"servers": [

{
"url": "https://development.gigantic-server.com/v1",
"description": "Development server"

},
{

"url": "https://staging.gigantic-server.com/v1",
"description": "Staging server"

},
{

"url": "https://api.gigantic-server.com/v1",
"description": "Production server"

}
]

}

servers:
- url: https://development.gigantic-server.com/v1

description: Development server
- url: https://staging.gigantic-server.com/v1

description: Staging server
- url: https://api.gigantic-server.com/v1

description: Production server

The following shows how variables can be used for a server configuration:

servers:
- url: https://{username}.gigantic-server.com:{port}/{basePath}

description: The production API server
variables:

username:
note! no enum here means it is an open value
default: demo
description: this value is assigned by the service provider, in this example `gigantic-server.com`

port:
enum:

- '8443'
- '443'

28

default: '8443'
basePath:

open meaning there is the opportunity to use special base paths as assigned by the provider, default is `v2`
default: v2

Server Variable Object An object representing a Server Variable for server
URL template substitution.

Fixed Fields

Field Name Type Description
enum [string] An enumeration of

string values to be
used if the
substitution options
are from a limited
set. The array
SHOULD NOT be
empty.

default string REQUIRED. The
default value to use
for substitution,
which SHALL be
sent if an alternate
value is not
supplied. Note this
behavior is different
than the Schema
Object’s treatment
of default values,
because in those
cases parameter
values are optional.
If the enum is
defined, the value
SHOULD exist in
the enum’s values.

29

Field Name Type Description
description string An optional

description for the
server variable.
CommonMark
syntax MAY be
used for rich text
representation.

This object MAY be extended with Specification Extensions.

Components Object Holds a set of reusable objects for different aspects of
the OAS. All objects defined within the components object will have no effect
on the API unless they are explicitly referenced from properties outside the
components object.

Fixed Fields (1/2)

Field Name Type Description
schemas Map[string, Schema Object

| Reference Object]
An object to hold
reusable Schema
Objects.

responses Map[string, Response
Object | Reference Object]

An object to hold
reusable Response
Objects.

parameters Map[string, Parameter
Object | Reference Object]

An object to hold
reusable Parameter
Objects.

examples Map[string, Example
Object | Reference Object]

An object to hold
reusable Example
Objects.

Fixed Fields (1/2)

Field Name Type Description
requestBodies Map[string, Request Body

Object | Reference Object]
An object to hold
reusable Request
Body Objects.

30

https://spec.commonmark.org/
https://spec.commonmark.org/

Field Name Type Description
headers Map[string, Header Object |

Reference Object]
An object to hold
reusable Header
Objects.

securitySchemes Map[string, Security
Scheme Object | Reference
Object]

An object to hold
reusable Security
Scheme Objects.

links Map[string, Link Object |
Reference Object]

An object to hold
reusable Link
Objects.

callbacks Map[string, Callback
Object | Reference Object]

An object to hold
reusable Callback
Objects.

This object MAY be extended with Specification Extensions.

All the fixed fields declared above are objects that MUST use keys that match
the regular expression: ˆ[a-zA-Z0-9\.\-_]+$.

Field Name Examples:

User
User_1
User_Name
user-name
my.org.User

Components Object Example

components:
schemas:

GeneralError:
type: object
properties:

code:
type: integer
format: int32

message:
type: string

Category:
type: object
properties:

id:

31

type: integer
format: int64

name:
type: string

Tag:
type: object
properties:

id:
type: integer
format: int64

name:
type: string

parameters:
skipParam:

name: skip
in: query
description: number of items to skip
required: true
schema:

type: integer
format: int32

limitParam:
name: limit
in: query
description: max records to return
required: true
schema:

type: integer
format: int32

responses:
NotFound:

description: Entity not found.
IllegalInput:

description: Illegal input for operation.
GeneralError:

description: General Error
content:

application/json:
schema:

$ref: '#/components/schemas/GeneralError'
securitySchemes:

api_key:
type: apiKey
name: api_key
in: header

petstore_auth:

32

type: oauth2
flows:

implicit:
authorizationUrl: http://example.org/api/oauth/dialog
scopes:

write:pets: modify pets in your account
read:pets: read your pets

Paths Object

• Holds the relative paths to the individual endpoints and their operations.
• The path is appended to the URL from the Server Object in order to

construct the full URL.
• The Paths MAY be empty, due to ACL constraints.

Patterned Fields

33

Field Pattern Type Description
/{path} Path Item Object A relative path to

an individual
endpoint. The field
name MUST begin
with a forward
slash (/). The path
is appended (no
relative URL
resolution) to the
expanded URL
from the Server
Object’s url field
in order to
construct the full
URL. Path
templating is
allowed. When
matching URLs,
concrete
(non-templated)
paths would be
matched before
their templated
counterparts.
Templated paths
with the same
hierarchy but
different templated
names MUST NOT
exist as they are
identical. In case of
ambiguous
matching, it’s up to
the tooling to
decide which one to
use.

This object MAY be extended with Specification Extensions.

Path Templating Matching Assuming the following paths, the concrete
definition, /pets/mine, will be matched first if used:

34

/pets/{petId}
/pets/mine

The following paths are considered identical and invalid:

/pets/{petId}
/pets/{name}

The following may lead to ambiguous resolution:

/{entity}/me
/books/{id}

Paths Object Example

/pets:
get:

description: Returns all pets from the system that the user has access to
responses:

'200':
description: A list of pets.
content:

application/json:
schema:

type: array
items:

$ref: '#/components/schemas/pet'

Path Item Object

• Describes the operations available on a single path.
• A Path Item MAY be empty, due to ACL constraints.
• The path itself is still exposed to the documentation viewer but they will

not know which operations and parameters are available.

Fixed Fields (1/3)

35

Field Name Type Description
$ref string Allows for an

external definition
of this path item.
The referenced
structure MUST be
in the format of a
Path Item Object.
In case a Path Item
Object field appears
both in the defined
object and the
referenced object,
the behavior is
undefined.

summary string An optional, string
summary, intended
to apply to all
operations in this
path.

description string An optional, string
description,
intended to apply
to all operations in
this path.
CommonMark
syntax MAY be
used for rich text
representation.

Fixed Fields (2/3)

Field Name Type Description
get Operation Object A definition of a GET operation on this path.
put Operation Object A definition of a PUT operation on this path.
post Operation Object A definition of a POST operation on this path.
delete Operation Object A definition of a DELETE operation on this path.
options Operation Object A definition of a OPTIONS operation on this path.
head Operation Object A definition of a HEAD operation on this path.
patch Operation Object A definition of a PATCH operation on this path.
trace Operation Object A definition of a TRACE operation on this path.

36

https://spec.commonmark.org/
https://spec.commonmark.org/

Fixed Fields (3/3)

Field Name Type Description
servers [Server Object] An alternative

server array to
service all
operations in this
path.

parameters [Parameter Object | Reference
Object]

A list of parameters
that are applicable
for all the
operations
described under
this path. These
parameters can be
overridden at the
operation level, but
cannot be removed
there. The list
MUST NOT
include duplicated
parameters. A
unique parameter is
defined by a
combination of a
name and location.
The list can use the
Reference Object to
link to parameters
that are defined at
the OpenAPI
Object’s compo-
nents/parameters.

This object MAY be extended with Specification Extensions.

Path Item Object Example

get:
description: Returns pets based on ID
summary: Find pets by ID

37

operationId: getPetsById
responses:

'200':
description: pet response
content:

'*/*' :
schema:

type: array
items:

$ref: '#/components/schemas/Pet'
default:

description: error payload
content:

'text/html':
schema:

$ref: '#/components/schemas/ErrorModel'
parameters:
- name: id

in: path
description: ID of pet to use
required: true
schema:

type: array
items:

type: string
style: simple

Operation Object

• Describes a single API operation on a path.

Fixed Fields (1/4)

Field Name Type Description
tags [string] A list of tags for

API documentation
control. Tags can
be used for logical
grouping of
operations by
resources or any
other qualifier.

38

Field Name Type Description
summary string A short summary of

what the operation
does.

description string A verbose
explanation of the
operation behavior.
CommonMark
syntax MAY be
used for rich text
representation.

externalDocs External Documentation Object Additional external
documentation for
this operation.

Fixed Fields (2/4)

Field Name Type Description
operationId string Unique string used

to identify the
operation. The id
MUST be unique
among all
operations
described in the
API. The
operationId value is
case-sensitive.
Tools and libraries
MAY use the
operationId to
uniquely identify an
operation, therefore,
it is
RECOMMENDED
to follow common
programming
naming
conventions.

39

https://spec.commonmark.org/
https://spec.commonmark.org/

Field Name Type Description
parameters [Parameter Object | Reference

Object]
A list of parameters
that are applicable
for this operation.
If a parameter is
already defined at
the Path Item, the
new definition will
override it but can
never remove it.
The list MUST
NOT include
duplicated
parameters. A
unique parameter is
defined by a
combination of a
name and location.
The list can use the
Reference Object to
link to parameters
that are defined at
the OpenAPI
Object’s compo-
nents/parameters.

requestBody Request Body Object |
Reference Object

The request body
applicable for this
operation. The
requestBody is
only supported in
HTTP methods
where the HTTP
1.1 specification
RFC7231 has
explicitly defined
semantics for
request bodies. In
other cases where
the HTTP spec is
vague,
requestBody
SHALL be ignored
by consumers.

40

https://tools.ietf.org/html/rfc7231#section-4.3.1

Fixed Fields (3/4)

Field Name Type Description
responses Responses Object REQUIRED. The

list of possible
responses as they
are returned from
executing this
operation.

callbacks Map[string, Callback Object |
Reference Object]

A map of possible
out-of band
callbacks related to
the parent
operation. The key
is a unique
identifier for the
Callback Object.
Each value in the
map is a Callback
Object that
describes a request
that may be
initiated by the
API provider and
the expected
responses.

deprecated boolean Declares this
operation to be
deprecated.
Consumers
SHOULD refrain
from usage of the
declared operation.
Default value is
false.

Fixed Fields (4/4)

41

Field Name Type Description
security [Security Requirement Object] A declaration of

which security
mechanisms can be
used for this
operation. The list
of values includes
alternative security
requirement objects
that can be used.
Only one of the
security
requirement objects
need to be satisfied
to authorize a
request. To make
security optional,
an empty security
requirement ({})
can be included in
the array. This
definition overrides
any declared
top-level security.
To remove a
top-level security
declaration, an
empty array can be
used.

servers [Server Object] An alternative
server array to
service this
operation. If an
alternative server
object is specified
at the Path Item
Object or Root
level, it will be
overridden by this
value.

This object MAY be extended with Specification Extensions.

42

Operation Object Example

tags:
- pet
summary: Updates a pet in the store with form data
operationId: updatePetWithForm
parameters:
- name: petId

in: path
description: ID of pet that needs to be updated
required: true
schema:

type: string
requestBody:

content:
'application/x-www-form-urlencoded':

schema:
properties:

name:
description: Updated name of the pet
type: string

status:
description: Updated status of the pet
type: string

required:
- status

responses:
'200':

description: Pet updated.
content:

'application/json': {}
'application/xml': {}

'405':
description: Method Not Allowed
content:

'application/json': {}
'application/xml': {}

security:
- petstore_auth:

- write:pets
- read:pets

External Documentation Object

• Allows referencing an external resource for extended documentation.

43

Fixed Fields

Field Name Type Description
description string A short description

of the target
documentation.
CommonMark
syntax MAY be
used for rich text
representation.

url string REQUIRED. The
URL for the target
documentation.
Value MUST be in
the format of a
URL.

This object MAY be extended with Specification Extensions.

External Documentation Object Example

{
"description": "Find more info here",
"url": "https://example.com"

}

description: Find more info here
url: https://example.com

Parameter Object

• Describes a single operation parameter.

• A unique parameter is defined by a combination of a name and location.

Parameter Locations

• There are four possible parameter locations specified by the in field:

– path - Used together with Path Templating, where the parameter
value is actually part of the operation’s URL. This does not include
the host or base path of the API. For example, in /items/{itemId},
the path parameter is itemId.

44

https://spec.commonmark.org/
https://spec.commonmark.org/

– query - Parameters that are appended to the URL. For example, in
/items?id=###, the query parameter is id.

– header - Custom headers that are expected as part of the request.
Note that RFC7230 states header names are case insensitive.

– cookie - Used to pass a specific cookie value to the API.

Fixed Fields (1/3)

Field Name Type Description

name | string | REQUIRED. The name of the parameter. Parameter names
are case sensitive.

If in is "path", the name field MUST correspond to a template expression
occurring within the path field in the Paths Object. See Path Templating for
further information.

If in is "header" and the name field is "Accept", "Content-Type" or
"Authorization", the parameter definition SHALL be ignored.

For all other cases, the name corresponds to the parameter name used by the in
property.

in | string | REQUIRED. The location of the parameter. Possible values are
"query", "header", "path" or "cookie".

Fixed Fields (2/3)

Field Name Type Description
description string A brief description

of the parameter.
This could contain
examples of use.
CommonMark
syntax MAY be
used for rich text
representation.

45

https://tools.ietf.org/html/rfc7230#page-22
https://spec.commonmark.org/
https://spec.commonmark.org/

Field Name Type Description
required boolean Determines whether

this parameter is
mandatory. If the
parameter location
is "path", this
property is
REQUIRED and
its value MUST be
true. Otherwise,
the property MAY
be included and its
default value is
false.

deprecated boolean Specifies that a
parameter is
deprecated and
SHOULD be
transitioned out of
usage. Default
value is false.

Fixed Fields (3/3)

46

Field Name Type Description
allowEmptyValue boolean Sets the ability to

pass empty-valued
parameters. This is
valid only for query
parameters and
allows sending a
parameter with an
empty value.
Default value is
false. If style is
used, and if
behavior is n/a
(cannot be
serialized), the
value of
allowEmptyValue
SHALL be ignored.
Use of this property
is NOT
RECOMMENDED,
as it is likely to be
removed in a later
revision.

The rules for serialization of the parameter are specified in one of two ways.

For simpler scenarios, a schema and style can describe the structure and syntax
of the parameter.

Fixed Fields (1/3)

47

Field Name Type Description
style string Describes how the

parameter value
will be serialized
depending on the
type of the
parameter value.
Default values
(based on value of
in): for query -
form; for path -
simple; for header
- simple; for
cookie - form.

explode boolean When this is true,
parameter values of
type array or
object generate
separate parameters
for each value of
the array or
key-value pair of
the map. For other
types of parameters
this property has
no effect. When
style is form, the
default value is
true. For all other
styles, the default
value is false.

48

Field Name Type Description
allowReserved boolean Determines whether

the parameter value
SHOULD allow
reserved characters,
as defined by
RFC3986
:/?#[]@!$&'()*+,;=
to be included
without
percent-encoding.
This property only
applies to
parameters with an
in value of query.
The default value is
false.

Fixed Fields (2/3)

Field Name Type Description
schema Schema Object | Reference

Object
The schema
defining the type
used for the
parameter.

49

https://tools.ietf.org/html/rfc3986#section-2.2

Field Name Type Description
example Any Example of the

parameter’s
potential value.
The example
SHOULD match
the specified
schema and
encoding properties
if present. The
example field is
mutually exclusive
of the examples
field. Furthermore,
if referencing a
schema that
contains an
example, the
example value
SHALL override
the example
provided by the
schema. To
represent examples
of media types that
cannot naturally be
represented in
JSON or YAML, a
string value can
contain the example
with escaping where
necessary.

Fixed Fields (3/3)

50

Field Name Type Description
examples Map[string, Example Object |

Reference Object]
Examples of the
parameter’s
potential value.
Each example
SHOULD contain a
value in the correct
format as specified
in the parameter
encoding. The
examples field is
mutually exclusive
of the example
field. Furthermore,
if referencing a
schema that
contains an
example, the
examples value
SHALL override
the example
provided by the
schema.

• For more complex scenarios, the content property can define the media
type and schema of the parameter.

• A parameter MUST contain either a schema property, or a content prop-
erty, but not both.

• When example or examples are provided in conjunction with the schema
object, the example MUST follow the prescribed serialization strategy for
the parameter.

Field Name Type Description
content Map[string, Media Type

Object]
A map containing
the representations
for the parameter.
The key is the
media type and the
value describes it.
The map MUST
only contain one
entry.

51

Style Values In order to support common ways of serializing simple parame-
ters, a set of style values are defined.

(1/2)

style type in Comments
matrix primitive,

array,
object

path Path-style
parameters
defined by
RFC6570

label primitive,
array,
object

path Label style
parameters
defined by
RFC6570

form primitive,
array,
object

query, cookie Form style
parameters
defined by
RFC6570. This
option replaces
collectionFormat
with a csv
(when explode
is false) or
multi (when
explode is true)
value from
OpenAPI 2.0.

(2/2)

style type in Comments
simple array path, header Simple style

parameters
defined by
RFC6570. This
option replaces
collectionFormat
with a csv value
from OpenAPI
2.0.

52

https://tools.ietf.org/html/rfc6570#section-3.2.7
https://tools.ietf.org/html/rfc6570#section-3.2.5
https://tools.ietf.org/html/rfc6570#section-3.2.8
https://tools.ietf.org/html/rfc6570#section-3.2.2

style type in Comments
spaceDelimited array query Space separated

array values.
This option
replaces
collectionFormat
equal to ssv
from OpenAPI
2.0.

pipeDelimited array query Pipe separated
array values.
This option
replaces
collectionFormat
equal to pipes
from OpenAPI
2.0.

deepObject object query Provides a
simple way of
rendering nested
objects using
form
parameters.

Style Examples Assume a parameter named color has one of the following
values:

string -> "blue"
array -> ["blue","black","brown"]
object -> { "R": 100, "G": 200, "B": 150 }

The following table shows examples of rendering differences for each value.

(1/2)

style explode empty string array object

matrix false ;color ;color=blue ;color=blue,black,brown;color=R,100,G,200,B,150
matrix true ;color ;color=blue ;color=blue;color=black;color=brown;R=100;G=200;B=150
label false . .blue .blue.black.brown.R.100.G.200.B.150
label true . .blue .blue.black.brown.R=100.G=200.B=150
form false color= color=blue color=blue,black,browncolor=R,100,G,200,B,150

53

(1/2)

style explode empty string array object

form true color= color=blue color=blue&color=black&color=brownR=100&G=200&B=150
simple false n/a blue blue,black,brownR,100,G,200,B,150
simple true n/a blue blue,black,brownR=100,G=200,B=150
spaceDelimited false n/a n/a blue%20black%20brownR%20100%20G%20200%20B%20150
pipeDelimited false n/a n/a blue|black|brownR|100|G|200|B|150
deepObject true n/a n/a n/a color[R]=100&color[G]=200&color[B]=150

This object MAY be extended with Specification Extensions.

Parameter Object Examples A header parameter with an array of 64 bit
integer numbers:

name: token
in: header
description: token to be passed as a header
required: true
schema:

type: array
items:

type: integer
format: int64

style: simple

A path parameter of a string value:

name: username
in: path
description: username to fetch
required: true
schema:

type: string

An optional query parameter of a string value, allowing multiple values by
repeating the query parameter:

name: id
in: query
description: ID of the object to fetch
required: false

54

schema:
type: array
items:

type: string
style: form
explode: true

A free-form query parameter, allowing undefined parameters of a specific type:

in: query
name: freeForm
schema:

type: object
additionalProperties:

type: integer
style: form

A complex parameter using content to define serialization:

in: query
name: coordinates
content:

application/json:
schema:

type: object
required:

- lat
- long

properties:
lat:

type: number
long:

type: number

Request Body Object Describes a single request body.

Fixed Fields

55

Field Name Type Description
description string A brief description

of the request body.
This could contain
examples of use.
CommonMark
syntax MAY be
used for rich text
representation.

content Map[string, Media Type
Object]

REQUIRED. The
content of the
request body. The
key is a media type
or media type range
and the value
describes it. For
requests that match
multiple keys, only
the most specific
key is applicable.
e.g. text/plain
overrides text/*

required boolean Determines if the
request body is
required in the
request. Defaults to
false.

This object MAY be extended with Specification Extensions.

Request Body Examples A request body with a referenced model definition.

description: user to add to the system
content:

'application/json':
schema:

$ref: '#/components/schemas/User'
examples:

user:
summary: User Example
externalValue: 'http://foo.bar/examples/user-example.json'

'application/xml':
schema:

56

https://spec.commonmark.org/
https://spec.commonmark.org/
https://tools.ietf.org/html/rfc7231#appendix-D

$ref: '#/components/schemas/User'
examples:

user:
summary: User Example in XML
externalValue: 'http://foo.bar/examples/user-example.xml'

'text/plain':
examples:

user:
summary: User example in text plain format
externalValue: 'http://foo.bar/examples/user-example.txt'

'*/*':
examples:

user:
summary: User example in other format
externalValue: 'http://foo.bar/examples/user-example.whatever'

A body parameter that is an array of string values:

description: user to add to the system
required: true
content:

text/plain:
schema:

type: array
items:

type: string

Media Type Object Each Media Type Object provides schema and examples
for the media type identified by its key.

Fixed Fields (1/2)

Field Name Type Description
schema Schema Object | Reference

Object
The schema
defining the content
of the request,
response, or
parameter.

57

Field Name Type Description
example Any Example of the

media type. The
example object
SHOULD be in the
correct format as
specified by the
media type. The
example field is
mutually exclusive
of the examples
field. Furthermore,
if referencing a
schema which
contains an
example, the
example value
SHALL override
the example
provided by the
schema.

Fixed Fields (2/2)

58

Field Name Type Description
examples Map[string, Example Object |

Reference Object]
Examples of the
media type. Each
example object
SHOULD match
the media type and
specified schema if
present. The
examples field is
mutually exclusive
of the example
field. Furthermore,
if referencing a
schema which
contains an
example, the
examples value
SHALL override
the example
provided by the
schema.

encoding Map[string, Encoding Object] A map between a
property name and
its encoding
information. The
key, being the
property name,
MUST exist in the
schema as a
property. The
encoding object
SHALL only apply
to requestBody
objects when the
media type is
multipart or
application/x-www-form-urlencoded.

This object MAY be extended with Specification Extensions.

Media Type Examples

59

application/json:
schema:

$ref: "#/components/schemas/Pet"
examples:

cat:
summary: An example of a cat
value:

name: Fluffy
petType: Cat
color: White
gender: male
breed: Persian

dog:
summary: An example of a dog with a cat's name
value:

name: Puma
petType: Dog
color: Black
gender: Female
breed: Mixed

frog:
$ref: "#/components/examples/frog-example"

Considerations for File Uploads

• In contrast with the 2.0 specification, file input/output content in Ope-
nAPI is described with the same semantics as any other schema type.
Specifically:

content transferred with base64 encoding
schema:

type: string
format: base64

content transferred in binary (octet-stream):
schema:

type: string
format: binary

• These examples apply to either input payloads of file uploads or response
payloads.

• A requestBody for submitting a file in a POST operation may look like the
following example:

60

requestBody:
content:

application/octet-stream:
schema:

a binary file of any type
type: string
format: binary

• In addition, specific media types MAY be specified:

multiple, specific media types may be specified:
requestBody:

content:
a binary file of type png or jpeg

'image/jpeg':
schema:

type: string
format: binary

'image/png':
schema:

type: string
format: binary

• To upload multiple files, a multipart media type MUST be used:

requestBody:
content:

multipart/form-data:
schema:

properties:
The property name 'file' will be used for all files.
file:

type: array
items:

type: string
format: binary

Support for x-www-form-urlencoded Request Bodies

• To submit content using form url encoding via RFC1866, the following
definition may be used:

requestBody:
content:

application/x-www-form-urlencoded:

61

https://tools.ietf.org/html/rfc1866

schema:
type: object
properties:

id:
type: string
format: uuid

address:
complex types are stringified to support RFC 1866
type: object
properties: {}

• In this example, the contents in the requestBody MUST be stringified
per RFC1866 when passed to the server. In addition, the address field
complex object will be stringified.

• When passing complex objects in the application/x-www-form-urlencoded
content type, the default serialization strategy of such properties is
described in the Encoding Object’s style property as form.

Special Considerations for multipart Content

• It is common to use multipart/form-data as a Content-Type when
transferring request bodies to operations. In contrast to 2.0, a schema is
REQUIRED to define the input parameters to the operation when using
multipart content. This supports complex structures as well as supporting
mechanisms for multiple file uploads.

• When passing in multipart types, boundaries MAY be used to separate
sections of the content being transferred — thus, the following default
Content-Types are defined for multipart:

– If the property is a primitive, or an array of primitive values, the
default Content-Type is text/plain

– If the property is complex, or an array of complex values, the default
Content-Type is application/json

– If the property is a type: string with format: binary or
format: base64 (aka a file object), the default Content-Type is
application/octet-stream

Examples:

requestBody:
content:

multipart/form-data:
schema:

type: object

62

https://tools.ietf.org/html/rfc1866/

properties:
id:

type: string
format: uuid

address:
default Content-Type for objects is `application/json`
type: object
properties: {}

profileImage:
default Content-Type for string/binary is `application/octet-stream`
type: string
format: binary

children:
default Content-Type for arrays is based on the `inner` type (text/plain here)
type: array
items:

type: string
addresses:

default Content-Type for arrays is based on the `inner` type (object shown, so `application/json` in this example)
type: array
items:

type: '#/components/schemas/Address'

An encoding attribute is introduced to give you control over the serialization
of parts of multipart request bodies. This attribute is only applicable to
multipart and application/x-www-form-urlencoded request bodies.

Encoding Object A single encoding definition applied to a single schema
property.

Fixed Fields (1/2)

63

Field Name Type Description
contentType string The Content-Type

for encoding a
specific property.
Default value
depends on the
property type: for
string with
format being
binary –
application/octet-stream;
for other primitive
types –
text/plain; for
object -
application/json;
for array – the
default is defined
based on the inner
type. The value can
be a specific media
type
(e.g. application/json),
a wildcard media
type (e.g. image/*),
or a
comma-separated
list of the two
types.

64

Field Name Type Description
headers Map[string, Header Object |

Reference Object]
A map allowing
additional
information to be
provided as headers,
for example
Content-Disposition.
Content-Type is
described separately
and SHALL be
ignored in this
section. This
property SHALL be
ignored if the
request body media
type is not a
multipart.

Fixed Fields (2/2)

Field Name Type Description
style string Describes how a

specific property
value will be
serialized depending
on its type. See
Parameter Object
for details on the
style property.
The behavior
follows the same
values as query
parameters,
including default
values. This
property SHALL be
ignored if the
request body media
type is not
application/x-www-form-urlencoded.

65

Field Name Type Description
explode boolean When this is true,

property values of
type array or
object generate
separate parameters
for each value of
the array, or
key-value-pair of
the map. For other
types of properties
this property has
no effect. When
style is form, the
default value is
true. For all other
styles, the default
value is false.
This property
SHALL be ignored
if the request body
media type is not
application/x-www-form-urlencoded.

allowReserved boolean Determines whether
the parameter value
SHOULD allow
reserved characters,
as defined by
RFC3986
:/?#[]@!$&'()*+,;=
to be included
without
percent-encoding.
The default value is
false. This
property SHALL be
ignored if the
request body media
type is not
application/x-www-form-urlencoded.

This object MAY be extended with Specification Extensions.

66

https://tools.ietf.org/html/rfc3986#section-2.2

Encoding Object Example

requestBody:
content:

multipart/mixed:
schema:

type: object
properties:

id:
default is text/plain
type: string
format: uuid

address:
default is application/json
type: object
properties: {}

historyMetadata:
need to declare XML format!
description: metadata in XML format
type: object
properties: {}

profileImage:
default is application/octet-stream, need to declare an image type only!
type: string
format: binary

encoding:
historyMetadata:

require XML Content-Type in utf-8 encoding
contentType: application/xml; charset=utf-8

profileImage:
only accept png/jpeg
contentType: image/png, image/jpeg
headers:

X-Rate-Limit-Limit:
description: The number of allowed requests in the current period
schema:

type: integer

Responses Object

• A container for the expected responses of an operation. The container
maps a HTTP response code to the expected response.

• The documentation is not necessarily expected to cover all possible HTTP
response codes because they may not be known in advance. However,

67

documentation is expected to cover a successful operation response and
any known errors.

• The default MAY be used as a default response object for all HTTP
codes that are not covered individually by the specification.

• The Responses Object MUST contain at least one response code, and it
SHOULD be the response for a successful operation call.

Fixed Fields

Field Name Type Description
default Response Object | Reference

Object
The documentation
of responses other
than the ones
declared for specific
HTTP response
codes. Use this field
to cover undeclared
responses. A
Reference Object
can link to a
response that the
OpenAPI Object’s
compo-
nents/responses
section defines.

Patterned Fields

68

Field Pattern Type Description
HTTP Status Code Response Object | Reference

Object
Any HTTP status
code can be used as
the property name,
but only one
property per code,
to describe the
expected response
for that HTTP
status code. A
Reference Object
can link to a
response that is
defined in the
OpenAPI Object’s
compo-
nents/responses
section. This field
MUST be enclosed
in quotation marks
(for example, “200”)
for compatibility
between JSON and
YAML. To define a
range of response
codes, this field
MAY contain the
uppercase wildcard
character X. For
example, 2XX
represents all
response codes
between [200-299].
Only the following
range definitions
are allowed: 1XX,
2XX, 3XX, 4XX, and
5XX. If a response is
defined using an
explicit code, the
explicit code
definition takes
precedence over the
range definition for
that code.

69

Field Pattern Type Description

This object MAY be extended with Specification Extensions.

Responses Object Example A 200 response for a successful operation and
a default response for others (implying an error):

'200':
description: a pet to be returned
content:

application/json:
schema:

$ref: '#/components/schemas/Pet'
default:

description: Unexpected error
content:

application/json:
schema:

$ref: '#/components/schemas/ErrorModel'

Response Object Describes a single response from an API Operation, includ-
ing design-time, static links to operations based on the response.

Fixed Fields

Field Name Type Description
description string REQUIRED. A

short description of
the response.
CommonMark
syntax MAY be
used for rich text
representation.

70

https://spec.commonmark.org/
https://spec.commonmark.org/

Field Name Type Description
headers Map[string, Header Object |

Reference Object]
Maps a header
name to its
definition.
RFC7230 states
header names are
case insensitive. If
a response header is
defined with the
name
"Content-Type", it
SHALL be ignored.

content Map[string, Media Type
Object]

A map containing
descriptions of
potential response
payloads. The key
is a media type or
media type range
and the value
describes it. For
responses that
match multiple
keys, only the most
specific key is
applicable.
e.g. text/plain
overrides text/*

links Map[string, Link Object |
Reference Object]

A map of
operations links
that can be
followed from the
response. The key
of the map is a
short name for the
link, following the
naming constraints
of the names for
Component
Objects.

This object MAY be extended with Specification Extensions.

Response Object Examples

71

https://tools.ietf.org/html/rfc7230#page-22
https://tools.ietf.org/html/rfc7231#appendix-D

• Response of an array of a complex type:

description: A complex object array response
content:

application/json:
schema:

type: array
items:

$ref: '#/components/schemas/VeryComplexType'

• Response with a string type:

description: A simple string response
content:

text/plain:
schema:

type: string

• Plain text response with headers:

description: A simple string response
content:

text/plain:
schema:

type: string
example: 'whoa!'

headers:
X-Rate-Limit-Limit:

description: The number of allowed requests in the current period
schema:

type: integer
X-Rate-Limit-Remaining:

description: The number of remaining requests in the current period
schema:

type: integer
X-Rate-Limit-Reset:

description: The number of seconds left in the current period
schema:

type: integer

• Response with no return value:

description: object created

Callback Object

72

• A map of possible out-of band callbacks related to the parent operation.
• Each value in the map is a Path Item Object that describes a set of requests

that may be initiated by the API provider and the expected responses.
• The key value used to identify the path item object is an expression,

evaluated at runtime, that identifies a URL to use for the callback operation.

Patterned Fields

Field Pattern Type Description
{expression} Path Item Object A Path Item Object

used to define a
callback request
and expected
responses. A
complete example is
available.

This object MAY be extended with Specification Extensions.

Key Expression

• The key that identifies the Path Item Object is a runtime expression that
can be evaluated in the context of a runtime HTTP request/response to
identify the URL to be used for the callback request.

• A simple example might be $request.body#/url. However, using a run-
time expression the complete HTTP message can be accessed.

• This includes accessing any part of a body that a JSON Pointer RFC6901
can reference.

For example, given the following HTTP request:

POST /subscribe/myevent?queryUrl=http://clientdomain.com/stillrunning HTTP/1.1
Host: example.org
Content-Type: application/json
Content-Length: 187

{
"failedUrl" : "http://clientdomain.com/failed",
"successUrls" : [

"http://clientdomain.com/fast",
"http://clientdomain.com/medium",
"http://clientdomain.com/slow"

]
}

73

../examples/v3.0/callback-example.yaml
https://tools.ietf.org/html/rfc6901

201 Created
Location: http://example.org/subscription/1

The following examples show how the various expressions evaluate, assuming
the callback operation has a path parameter named eventType and a query
parameter named queryUrl.

Expression Value
$url http://example.org/subscribe/myevent?

queryUrl=http:
//clientdomain.com/stillrunning

$method POST
$request.path.eventType myevent
$request.query.queryUrl http://clientdomain.com/stillrunning
$request.header.content-Type application/json
$request.body#/failedUrl http://clientdomain.com/failed
$request.body#/successUrls/2 http://clientdomain.com/medium
$response.header.Location http://example.org/subscription/1

Callback Object Examples

• The following example uses the user provided queryUrl query string
parameter to define the callback URL. This is an example of how to use
a callback object to describe a WebHook callback that goes with the
subscription operation to enable registering for the WebHook.

myCallback:
'{$request.query.queryUrl}':

post:
requestBody:

description: Callback payload
content:

'application/json':
schema:

$ref: '#/components/schemas/SomePayload'
responses:

'200':
description: callback successfully processed

74

http://example.org/subscribe/myevent?queryUrl=http://clientdomain.com/stillrunning
http://example.org/subscribe/myevent?queryUrl=http://clientdomain.com/stillrunning
http://example.org/subscribe/myevent?queryUrl=http://clientdomain.com/stillrunning
http://clientdomain.com/stillrunning
http://clientdomain.com/failed
http://clientdomain.com/medium
http://example.org/subscription/1

• The following example shows a callback where the server is hard-coded,
but the query string parameters are populated from the id and email
property in the request body.

transactionCallback:
'http://notificationServer.com?transactionId={$request.body#/id}&email={$request.body#/email}':

post:
requestBody:

description: Callback payload
content:

'application/json':
schema:

$ref: '#/components/schemas/SomePayload'
responses:

'200':
description: callback successfully processed

Example Object

Fixed Fields

Field Name Type Description
summary string Short description

for the example.
description string Long description for

the example.
CommonMark
syntax MAY be
used for rich text
representation.

75

https://spec.commonmark.org/
https://spec.commonmark.org/

Field Name Type Description
value Any Embedded literal

example. The
value field and
externalValue
field are mutually
exclusive. To
represent examples
of media types that
cannot naturally
represented in
JSON or YAML,
use a string value
to contain the
example, escaping
where necessary.

externalValue string A URL that points
to the literal
example. This
provides the
capability to
reference examples
that cannot easily
be included in
JSON or YAML
documents. The
value field and
externalValue
field are mutually
exclusive.

This object MAY be extended with Specification Extensions.

In all cases, the example value is expected to be compatible with the type
schema of its associated value. Tooling implementations MAY choose to validate
compatibility automatically, and reject the example value(s) if incompatible.

Example Object Examples

• In a request body:

requestBody:
content:

76

'application/json':
schema:

$ref: '#/components/schemas/Address'
examples:

foo:
summary: A foo example
value: {"foo": "bar"}

bar:
summary: A bar example
value: {"bar": "baz"}

'application/xml':
examples:

xmlExample:
summary: This is an example in XML
externalValue: 'http://example.org/examples/address-example.xml'

'text/plain':
examples:

textExample:
summary: This is a text example
externalValue: 'http://foo.bar/examples/address-example.txt'

• In a parameter:

parameters:
- name: 'zipCode'

in: 'query'
schema:

type: 'string'
format: 'zip-code'

examples:
zip-example:

$ref: '#/components/examples/zip-example'

• In a response:

responses:
'200':

description: your car appointment has been booked
content:

application/json:
schema:

$ref: '#/components/schemas/SuccessResponse'
examples:

confirmation-success:
$ref: '#/components/examples/confirmation-success'

77

Link Object The Link object represents a possible design-time link for a
response. The presence of a link does not guarantee the caller’s ability to
successfully invoke it, rather it provides a known relationship and traversal
mechanism between responses and other operations.

Unlike dynamic links (i.e. links provided in the response payload), the OAS
linking mechanism does not require link information in the runtime response.

For computing links, and providing instructions to execute them, a runtime
expression is used for accessing values in an operation and using them as
parameters while invoking the linked operation.

Fixed Fields (1/2)

Field Name Type Description
operationRef string A relative or

absolute URI
reference to an OAS
operation. This
field is mutually
exclusive of the
operationId field,
and MUST point to
an Operation
Object. Relative
operationRef
values MAY be
used to locate an
existing Operation
Object in the
OpenAPI
definition.

operationId string The name of an
existing, resolvable
OAS operation, as
defined with a
unique
operationId. This
field is mutually
exclusive of the
operationRef
field.

78

Field Name Type Description
parameters Map[string, Any |

{expression}]
A map representing
parameters to pass
to an operation as
specified with
operationId or
identified via
operationRef.
The key is the
parameter name to
be used, whereas
the value can be a
constant or an
expression to be
evaluated and
passed to the linked
operation. The
parameter name
can be qualified
using the parameter
location
[{in}.]{name} for
operations that use
the same parameter
name in different
locations
(e.g. path.id).

Fixed Fields (2/2)

Field Name Type Description
requestBody Any | {expression} A literal value or

{expression} to use
as a request body
when calling the
target operation.

description string A description of the
link. CommonMark
syntax MAY be
used for rich text
representation.

79

https://spec.commonmark.org/
https://spec.commonmark.org/

Field Name Type Description
server Server Object A server object to

be used by the
target operation.

This object MAY be extended with Specification Extensions.

• A linked operation MUST be identified using either an operationRef or
operationId.

• In the case of an operationId, it MUST be unique and resolved in the
scope of the OAS document.

• Because of the potential for name clashes, the operationRef syntax is
preferred for specifications with external references.

Examples

• Computing a link from a request operation where the $request.path.id
is used to pass a request parameter to the linked operation.

paths:
/users/{id}:

parameters:
- name: id

in: path
required: true
description: the user identifier, as userId
schema:

type: string
get:

responses:
'200':

description: the user being returned
content:

application/json:
schema:

type: object
properties:

uuid: # the unique user id
type: string
format: uuid

links:
address:

the target link operationId
operationId: getUserAddress

80

parameters:
get the `id` field from the request path parameter named `id`
userId: $request.path.id

the path item of the linked operation
/users/{userid}/address:

parameters:
- name: userid

in: path
required: true
description: the user identifier, as userId
schema:

type: string
linked operation
get:

operationId: getUserAddress
responses:

'200':
description: the user's address

• When a runtime expression fails to evaluate, no parameter value is passed
to the target operation.

• Values from the response body can be used to drive a linked operation.

links:
address:

operationId: getUserAddressByUUID
parameters:

get the `uuid` field from the `uuid` field in the response body
userUuid: $response.body#/uuid

• Clients follow all links at their discretion. Neither permissions, nor the
capability to make a successful call to that link, is guaranteed solely by
the existence of a relationship.

OperationRef Examples

• As references to operationId MAY NOT be possible (the operationId
is an optional field in an Operation Object), references MAY also be made
through a relative operationRef:

links:
UserRepositories:

returns array of '#/components/schemas/repository'
operationRef: '#/paths/~12.0~1repositories~1{username}/get'

81

parameters:
username: $response.body#/username

• or an absolute operationRef:

links:
UserRepositories:

returns array of '#/components/schemas/repository'
operationRef: 'https://na2.gigantic-server.com/#/paths/~12.0~1repositories~1{username}/get'
parameters:

username: $response.body#/username

• Note that in the use of operationRef, the escaped forward-slash is neces-
sary when using JSON references.

Runtime Expressions

• Runtime expressions allow defining values based on information that will
only be available within the HTTP message in an actual API call.

• This mechanism is used by Link Objects and Callback Objects.

• The runtime expression is defined by the following ABNF syntax

expression = ("$url" / "$method" / "$statusCode" / "$request." source / "$response." source)
source = (header-reference / query-reference / path-reference / body-reference)
header-reference = "header." token
query-reference = "query." name
path-reference = "path." name
body-reference = "body" ["#" json-pointer]
json-pointer = *("/" reference-token)
reference-token = *(unescaped / escaped)
unescaped = %x00-2E / %x30-7D / %x7F-10FFFF

; %x2F (’/’) and %x7E (’~’) are excluded from ’unescaped’
escaped = "~" ("0" / "1")

; representing ’~’ and ’/’, respectively
name = *(CHAR)
token = 1*tchar
tchar = "!" / "#" / "$" / "%" / "&" / "’" / "*" / "+" / "-" / "." /

"^" / "_" / "‘" / "|" / "~" / DIGIT / ALPHA

• Here, json-pointer is taken from RFC 6901, char from RFC 7159 and
token from RFC 7230.

• The name identifier is case-sensitive, whereas token is not.

82

https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc7159#section-7
https://tools.ietf.org/html/rfc7230#section-3.2.6

• The table below provides examples of runtime expressions and examples
of their use in a value:

Examples

(1/2)

Source Location example expression notes
HTTP Method $method The allowable values for

the $method will be those
for the HTTP operation.

Requested media
type

$request.header.accept

Request parameter $request.path.id Request parameters
MUST be declared in the
parameters section of the
parent operation or they
cannot be evaluated. This
includes request headers.

(1/2)

Source Location example expression notes
Request body
property

$request.body#/user/uuidIn operations which
accept payloads,
references may be made
to portions of the
requestBody or the entire
body.

Request URL $url
Response value $response.body#/status In operations which

return payloads,
references may be made to
portions of the response
body or the entire body.

Response header $response.header.Server Single header values only
are available

Runtime expressions preserve the type of the referenced value. Expressions can
be embedded into string values by surrounding the expression with {} curly
braces.

83

Header Object The Header Object follows the structure of the Parameter
Object with the following changes:

1. name MUST NOT be specified, it is given in the corresponding headers
map.

2. in MUST NOT be specified, it is implicitly in header.
3. All traits that are affected by the location MUST be applicable to a location

of header (for example, style).

Header Object Example A simple header of type integer:

description: The number of allowed requests in the current period
schema:

type: integer

Tag Object Adds metadata to a single tag that is used by the Operation
Object. It is not mandatory to have a Tag Object per tag defined in the Operation
Object instances.

Fixed Fields

Field Name Type Description
name string REQUIRED. The

name of the tag.
description string A short description

for the tag.
CommonMark
syntax MAY be
used for rich text
representation.

externalDocs External Documentation Object Additional external
documentation for
this tag.

This object MAY be extended with Specification Extensions.

Tag Object Example

name: pet
description: Pets operations

84

https://spec.commonmark.org/
https://spec.commonmark.org/

Reference Object

• A simple object to allow referencing other components in the specification,
internally and externally.

• The Reference Object is defined by JSON Reference and follows the same
structure, behavior and rules.

• For this specification, reference resolution is accomplished as defined by the
JSON Reference specification and not by the JSON Schema specification.

Fixed Fields

Field Name Type Description
$ref string REQUIRED. The reference string.

This object cannot be extended with additional properties and any properties
added SHALL be ignored.

Reference Object Example

$ref: '#/components/schemas/Pet'

Relative Schema Document Example

$ref: Pet.yaml

Relative Documents With Embedded Schema Example

$ref: definitions.yaml#/Pet

Schema Object

• The Schema Object allows the definition of input and output data types.

• These types can be objects, but also primitives and arrays.

• This object is an extended subset of the JSON Schema Specification Wright
Draft 00.

• For more information about the properties, see JSON Schema Core and
JSON Schema Validation.

• Unless stated otherwise, the property definitions follow the JSON Schema.

85

https://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03
https://json-schema.org/
https://json-schema.org/
https://tools.ietf.org/html/draft-wright-json-schema-00
https://tools.ietf.org/html/draft-wright-json-schema-validation-00

Properties

• The following properties are taken directly from the JSON Schema defini-
tion and follow the same specifications:

– title
– multipleOf
– maximum
– exclusiveMaximum
– minimum
– exclusiveMinimum
– maxLength
– minLength
– pattern (This string SHOULD be a valid regular expression, according

to the Ecma-262 Edition 5.1 regular expression dialect)
– maxItems
– minItems
– uniqueItems
– maxProperties
– minProperties
– required
– enum

• The following properties are taken from the JSON Schema definition but
their definitions were adjusted to the OpenAPI Specification.

– type - Value MUST be a string. Multiple types via an array are not
supported.

– allOf - Inline or referenced schema MUST be of a Schema Object and
not a standard JSON Schema.

– oneOf - Inline or referenced schema MUST be of a Schema Object
and not a standard JSON Schema.

– anyOf - Inline or referenced schema MUST be of a Schema Object
and not a standard JSON Schema.

– not - Inline or referenced schema MUST be of a Schema Object and
not a standard JSON Schema.

– items - Value MUST be an object and not an array. Inline or referenced
schema MUST be of a Schema Object and not a standard JSON
Schema. items MUST be present if the type is array.

• properties - Property definitions MUST be a Schema Object and not a
standard JSON Schema (inline or referenced).

• additionalProperties - Value can be boolean or object. Inline or referenced
schema MUST be of a Schema Object and not a standard JSON Schema.
Consistent with JSON Schema, additionalProperties defaults to true.

86

https://www.ecma-international.org/ecma-262/5.1/#sec-15.10.1

• description - CommonMark syntax MAY be used for rich text representa-
tion.

• format - See Data Type Formats for further details. While relying on
JSON Schema’s defined formats, the OAS offers a few additional predefined
formats.

• default - The default value represents what would be assumed by the
consumer of the input as the value of the schema if one is not provided.
Unlike JSON Schema, the value MUST conform to the defined type for the
Schema Object defined at the same level. For example, if type is string,
then default can be "foo" but cannot be 1.

• Alternatively, any time a Schema Object can be used, a Reference Object
can be used in its place. This allows referencing definitions instead of
defining them inline.

• Additional properties defined by the JSON Schema specification that are
not mentioned here are strictly unsupported.

• Other than the JSON Schema subset fields, the following fields MAY be
used for further schema documentation:

Fixed Fields (1/3)

87

https://spec.commonmark.org/

Field Name Type Description
nullable boolean A true value adds

"null" to the
allowed type
specified by the
type keyword, only
if type is explicitly
defined within the
same Schema
Object. Other
Schema Object
constraints retain
their defined
behavior, and
therefore may
disallow the use of
null as a value. A
false value leaves
the specified or
default type
unmodified. The
default value is
false.

discriminator Discriminator Object Adds support for
polymorphism. The
discriminator is an
object name that is
used to differentiate
between other
schemas which may
satisfy the payload
description. See
Composition and
Inheritance for
more details.

88

Field Name Type Description
readOnly boolean Relevant only for

Schema
"properties"
definitions.
Declares the
property as “read
only”. This means
that it MAY be
sent as part of a
response but
SHOULD NOT be
sent as part of the
request. If the
property is marked
as readOnly being
true and is in the
required list, the
required will take
effect on the
response only. A
property MUST
NOT be marked as
both readOnly and
writeOnly being
true. Default value
is false.

Fixed Fields (2/3)

89

Field Name Type Description
writeOnly boolean Relevant only for

Schema
"properties"
definitions.
Declares the
property as “write
only”. Therefore, it
MAY be sent as
part of a request
but SHOULD NOT
be sent as part of
the response. If the
property is marked
as writeOnly being
true and is in the
required list, the
required will take
effect on the
request only. A
property MUST
NOT be marked as
both readOnly and
writeOnly being
true. Default value
is false.

xml XML Object This MAY be used
only on properties
schemas. It has no
effect on root
schemas. Adds
additional metadata
to describe the
XML representation
of this property.

externalDocs External Documentation Object Additional external
documentation for
this schema.

Fixed Fields (3/3)

90

Field Name Type Description
example Any A free-form

property to include
an example of an
instance for this
schema. To
represent examples
that cannot be
naturally
represented in
JSON or YAML, a
string value can be
used to contain the
example with
escaping where
necessary.

deprecated boolean Specifies that a
schema is
deprecated and
SHOULD be
transitioned out of
usage. Default
value is false.

This object MAY be extended with Specification Extensions.

Composition and Inheritance (Polymorphism)

• The OpenAPI Specification allows combining and extending model defini-
tions using the allOf property of JSON Schema, in effect offering model
composition.

• allOf takes an array of object definitions that are validated independently
but together compose a single object.

• While composition offers model extensibility, it does not imply a hierarchy
between the models.

• To support polymorphism, the OpenAPI Specification adds the
discriminator field.

• When used, the discriminator will be the name of the property that
decides which schema definition validates the structure of the model.

91

• As such, the discriminator field MUST be a required field. There are
two ways to define the value of a discriminator for an inheriting instance.

– Use the schema name.
– Override the schema name by overriding the property with a new

value. If a new value exists, this takes precedence over the schema
name.

• As such, inline schema definitions, which do not have a given id, cannot
be used in polymorphism.

XML Modeling

• The xml property allows extra definitions when translating the JSON
definition to XML.

• The XML Object contains additional information about the available
options.

Schema Object Examples Primitive Sample

type: string
format: email

Simple Model

type: object
required:
- name
properties:

name:
type: string

address:
$ref: '#/components/schemas/Address'

age:
type: integer
format: int32
minimum: 0

Model with Map/Dictionary Properties

• For a simple string to string mapping:

type: object
additionalProperties:

type: string

92

• For a string to model mapping:

type: object
additionalProperties:

$ref: '#/components/schemas/ComplexModel'

Model with Example

type: object
properties:

id:
type: integer
format: int64

name:
type: string

required:
- name
example:

name: Puma
id: 1

Models with Composition

components:
schemas:

ErrorModel:
type: object
required:
- message
- code
properties:

message:
type: string

code:
type: integer
minimum: 100
maximum: 600

ExtendedErrorModel:
allOf:
- $ref: '#/components/schemas/ErrorModel'
- type: object

required:
- rootCause
properties:

rootCause:

93

type: string

Models with Polymorphism Support

components:
schemas:

Pet:
type: object
discriminator:

propertyName: petType
properties:

name:
type: string

petType:
type: string

required:
- name
- petType

Cat: ## "Cat" will be used as the discriminator value
description: A representation of a cat
allOf:
- $ref: '#/components/schemas/Pet'
- type: object

properties:
huntingSkill:

type: string
description: The measured skill for hunting
enum:
- clueless
- lazy
- adventurous
- aggressive

required:
- huntingSkill

Dog: ## "Dog" will be used as the discriminator value
description: A representation of a dog
allOf:
- $ref: '#/components/schemas/Pet'
- type: object

properties:
packSize:

type: integer
format: int32
description: the size of the pack the dog is from
default: 0

94

minimum: 0
required:
- packSize

Discriminator Object

• When request bodies or response payloads may be one of a number
of different schemas, a discriminator object can be used to aid in
serialization, deserialization, and validation.

• The discriminator is a specific object in a schema which is used to inform
the consumer of the specification of an alternative schema based on the
value associated with it.

• When using the discriminator, inline schemas will not be considered.

Fixed Fields

Field Name Type Description
propertyName string REQUIRED. The

name of the
property in the
payload that will
hold the
discriminator value.

mapping Map[string, string] An object to hold
mappings between
payload values and
schema names or
references.

The discriminator object is legal only when using one of the composite keywords
oneOf, anyOf, allOf.

• In OAS 3.0, a response payload MAY be described to be exactly one of
any number of types:

MyResponseType:
oneOf:
- $ref: '#/components/schemas/Cat'

95

- $ref: '#/components/schemas/Dog'
- $ref: '#/components/schemas/Lizard'

which means the payload MUST, by validation, match exactly one of the
schemas described by Cat, Dog, or Lizard.

• In this case, a discriminator MAY act as a “hint” to shortcut validation
and selection of the matching schema which may be a costly operation,
depending on the complexity of the schema. We can then describe exactly
which field tells us which schema to use:

MyResponseType:
oneOf:
- $ref: '#/components/schemas/Cat'
- $ref: '#/components/schemas/Dog'
- $ref: '#/components/schemas/Lizard'
discriminator:

propertyName: petType

• The expectation now is that a property with name petType MUST be
present in the response payload, and the value will correspond to the name
of a schema defined in the OAS document. - Thus the response payload:

{
"id": 12345,
"petType": "Cat"

}

Will indicate that the Cat schema be used in conjunction with this payload.

• In scenarios where the value of the discriminator field does not match the
schema name or implicit mapping is not possible, an optional mapping
definition MAY be used:

MyResponseType:
oneOf:
- $ref: '#/components/schemas/Cat'
- $ref: '#/components/schemas/Dog'
- $ref: '#/components/schemas/Lizard'
- $ref: 'https://gigantic-server.com/schemas/Monster/schema.json'
discriminator:

propertyName: petType
mapping:

dog: '#/components/schemas/Dog'
monster: 'https://gigantic-server.com/schemas/Monster/schema.json'

96

• Here the discriminator value of dog will map to the schema
#/components/schemas/Dog, rather than the default (implicit) value of
Dog.

• If the discriminator value does not match an implicit or explicit mapping,
no schema can be determined and validation SHOULD fail.

• Mapping keys MUST be string values, but tooling MAY convert response
values to strings for comparison.

• When used in conjunction with the anyOf construct, the use of the discrim-
inator can avoid ambiguity where multiple schemas may satisfy a single
payload.

• In both the oneOf and anyOf use cases, all possible schemas MUST be
listed explicitly.

• To avoid redundancy, the discriminator MAY be added to a parent schema
definition, and all schemas comprising the parent schema in an allOf
construct may be used as an alternate schema.

For example:

components:
schemas:

Pet:
type: object
required:
- petType
properties:

petType:
type: string

discriminator:
propertyName: petType
mapping:

dog: Dog
Cat:

allOf:
- $ref: '#/components/schemas/Pet'
- type: object

all other properties specific to a `Cat`
properties:

name:
type: string

Dog:
allOf:

97

- $ref: '#/components/schemas/Pet'
- type: object

all other properties specific to a `Dog`
properties:

bark:
type: string

Lizard:
allOf:
- $ref: '#/components/schemas/Pet'
- type: object

all other properties specific to a `Lizard`
properties:

lovesRocks:
type: boolean

a payload like this:

{
"petType": "Cat",
"name": "misty"

}

will indicate that the Cat schema be used. Likewise this schema:

{
"petType": "dog",
"bark": "soft"

}

will map to Dog because of the definition in the mappings element.

XML Object A metadata object that allows for more fine-tuned XML model
definitions.

When using arrays, XML element names are not inferred (for singular/plural
forms) and the name property SHOULD be used to add that information. See
examples for expected behavior.

Fixed Fields

98

Field Name Type Description
name string Replaces the name

of the
element/attribute
used for the
described schema
property. When
defined within
items, it will affect
the name of the
individual XML
elements within the
list. When defined
alongside type
being array
(outside the items),
it will affect the
wrapping element
and only if
wrapped is true. If
wrapped is false,
it will be ignored.

namespace string The URI of the
namespace
definition. Value
MUST be in the
form of an absolute
URI.

prefix string The prefix to be
used for the name.

attribute boolean Declares whether
the property
definition translates
to an attribute
instead of an
element. Default
value is false.

99

Field Name Type Description
wrapped boolean MAY be used only

for an array
definition. Signifies
whether the array is
wrapped (for
example,
<books><book/><book/></books>)
or unwrapped
(<book/><book/>).
Default value is
false. The
definition takes
effect only when
defined alongside
type being array
(outside the items).

This object MAY be extended with Specification Extensions.

XML Object Examples The examples of the XML object definitions are
included inside a property definition of a Schema Object with a sample of the
XML representation of it.

No XML Element

Basic string property:

animals:
type: string

<animals>...</animals>

Basic string array property (wrapped is false by default):

animals:
type: array
items:

type: string

<animals>...</animals>
<animals>...</animals>
<animals>...</animals>

100

XML Name Replacement

animals:
type: string
xml:

name: animal

<animal>...</animal>

XML Attribute, Prefix and Namespace

In this example, a full model definition is shown.

Person:
type: object
properties:

id:
type: integer
format: int32
xml:

attribute: true
name:

type: string
xml:

namespace: http://example.com/schema/sample
prefix: sample

<Person id="123">
<sample:name xmlns:sample="http://example.com/schema/sample">example</sample:name>

</Person>

XML Arrays

Changing the element names:

animals:
type: array
items:

type: string
xml:

name: animal

<animal>value</animal>
<animal>value</animal>

The external name property has no effect on the XML:

101

animals:
type: array
items:

type: string
xml:

name: animal
xml:

name: aliens

<animal>value</animal>
<animal>value</animal>

Even when the array is wrapped, if a name is not explicitly defined, the same
name will be used both internally and externally:

animals:
type: array
items:

type: string
xml:

wrapped: true

<animals>
<animals>value</animals>
<animals>value</animals>

</animals>

To overcome the naming problem in the example above, the following definition
can be used:

animals:
type: array
items:

type: string
xml:

name: animal
xml:

wrapped: true

<animals>
<animal>value</animal>
<animal>value</animal>

</animals>

Affecting both internal and external names:

102

animals:
type: array
items:

type: string
xml:

name: animal
xml:

name: aliens
wrapped: true

<aliens>
<animal>value</animal>
<animal>value</animal>

</aliens>

If we change the external element but not the internal ones:

animals:
type: array
items:

type: string
xml:

name: aliens
wrapped: true

<aliens>
<aliens>value</aliens>
<aliens>value</aliens>

</aliens>

Security Scheme Object Defines a security scheme that can be used by the
operations. Supported schemes are HTTP authentication, an API key (either
as a header, a cookie parameter or as a query parameter), OAuth2’s common
flows (implicit, password, client credentials and authorization code) as defined
in RFC6749, and OpenID Connect Discovery.

Fixed Fields (1/3)

103

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/draft-ietf-oauth-discovery-06

Field Name Type Applies To Description
type string Any REQUIRED.

The type of
the security
scheme. Valid
values are
"apiKey",
"http",
"oauth2",
"openIdConnect".

description string Any A short
description for
security
scheme.
CommonMark
syntax MAY
be used for
rich text
representation.

Fixed Fields (2/3)

Field Name Type Applies To Description
name string apiKey REQUIRED.

The name of
the header,
query or cookie
parameter to
be used.

in string apiKey REQUIRED.
The location of
the API key.
Valid values
are "query",
"header" or
"cookie".

104

https://spec.commonmark.org/
https://spec.commonmark.org/

Field Name Type Applies To Description
scheme string http REQUIRED.

The name of
the HTTP
Authorization
scheme to be
used in the
Authorization
header as
defined in
RFC7235. The
values used
SHOULD be
registered in
the IANA
Authentication
Scheme
registry.

Fixed Fields (2/3)

Field Name Type Applies To Description
bearerFormat string http

("bearer")
A hint to the
client to
identify how
the bearer
token is
formatted.
Bearer tokens
are usually
generated by
an
authorization
server, so this
information is
primarily for
documentation
purposes.

105

https://tools.ietf.org/html/rfc7235#section-5.1
https://tools.ietf.org/html/rfc7235#section-5.1
https://tools.ietf.org/html/rfc7235#section-5.1
https://tools.ietf.org/html/rfc7235#section-5.1
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml

Field Name Type Applies To Description
flows OAuth Flows Object oauth2 REQUIRED.

An object
containing
configuration
information for
the flow types
supported.

openIdConnectUrl string openIdConnect REQUIRED.
OpenId
Connect URL
to discover
OAuth2
configuration
values. This
MUST be in
the form of a
URL.

This object MAY be extended with Specification Extensions.

Security Scheme Object Example Basic Authentication Sample

type: http
scheme: basic

API Key Sample

type: apiKey
name: api_key
in: header

JWT Bearer Sample

type: http
scheme: bearer
bearerFormat: JWT

Implicit OAuth2 Sample

type: oauth2
flows:

implicit:
authorizationUrl: https://example.com/api/oauth/dialog

106

scopes:
write:pets: modify pets in your account
read:pets: read your pets

OAuth Flows Object Allows configuration of the supported OAuth Flows.

Fixed Fields

Field Name Type Description
implicit OAuth Flow Object Configuration for

the OAuth Implicit
flow

password OAuth Flow Object Configuration for
the OAuth
Resource Owner
Password flow

clientCredentials OAuth Flow Object Configuration for
the OAuth Client
Credentials flow.
Previously called
application in
OpenAPI 2.0.

authorizationCode OAuth Flow Object Configuration for
the OAuth
Authorization Code
flow. Previously
called accessCode
in OpenAPI 2.0.

This object MAY be extended with Specification Extensions.

OAuth Flow Object Configuration details for a supported OAuth Flow

Fixed Fields (1/2)

107

Field Name Type Applies To Description
authorizationUrl string oauth2

("implicit",
"authorizationCode")

REQUIRED.
The
authorization
URL to be
used for this
flow. This
MUST be in
the form of a
URL.

tokenUrl string oauth2
("password",
"clientCredentials",
"authorizationCode")

REQUIRED.
The token
URL to be
used for this
flow. This
MUST be in
the form of a
URL.

Fixed Fields (2/2)

Field Name Type Applies To Description
refreshUrl string oauth2 The URL to be

used for
obtaining
refresh tokens.
This MUST be
in the form of
a URL.

108

Field Name Type Applies To Description
scopes Map[string, string] oauth2 REQUIRED.

The available
scopes for the
OAuth2
security
scheme. A
map between
the scope name
and a short
description for
it. The map
MAY be
empty.

This object MAY be extended with Specification Extensions.

OAuth Flow Object Example

type: oauth2
flows:

implicit:
authorizationUrl: https://example.com/api/oauth/dialog
scopes:

write:pets: modify pets in your account
read:pets: read your pets

authorizationCode:
authorizationUrl: https://example.com/api/oauth/dialog
tokenUrl: https://example.com/api/oauth/token
scopes:

write:pets: modify pets in your account
read:pets: read your pets

Security Requirement Object

• Lists the required security schemes to execute this operation. The name
used for each property MUST correspond to a security scheme declared in
the Security Schemes under the Components Object.

• Security Requirement Objects that contain multiple schemes require that
all schemes MUST be satisfied for a request to be authorized.

109

• This enables support for scenarios where multiple query parameters or
HTTP headers are required to convey security information.

• When a list of Security Requirement Objects is defined on the OpenAPI
Object or Operation Object, only one of the Security Requirement Objects
in the list needs to be satisfied to authorize the request.

Patterned Fields

Field Pattern Type Description
{name} [string] Each name MUST

correspond to a
security scheme
which is declared in
the Security
Schemes under the
Components Object.
If the security
scheme is of type
"oauth2" or
"openIdConnect",
then the value is a
list of scope names
required for the
execution, and the
list MAY be empty
if authorization
does not require a
specified scope. For
other security
scheme types, the
array MUST be
empty.

Security Requirement Object Examples Non-OAuth2 Security Require-
ment

api_key: []

OAuth2 Security Requirement

petstore_auth:
- write:pets
- read:pets

110

Optional OAuth2 Security

Optional OAuth2 security as would be defined in an OpenAPI Object or an
Operation Object:

security:
- {}
- petstore_auth:

- write:pets
- read:pets

Specification Extensions

• While the OpenAPI Specification tries to accommodate most use cases,
additional data can be added to extend the specification at certain points.

• The extensions properties are implemented as patterned fields that are
always prefixed by "x-".

Field Pattern Type Description
ˆx- Any Allows extensions

to the OpenAPI
Schema. The field
name MUST begin
with x-, for
example,
x-internal-id.
The value can be
null, a primitive,
an array or an
object. Can have
any valid JSON
format value.

• The extensions may or may not be supported by the available tooling,
but those may be extended as well to add requested support (if tools are
internal or open-sourced).

Security Filtering

• Some objects in the OpenAPI Specification MAY be declared and remain
empty, or be completely removed, even though they are inherently the core
of the API documentation.

111

• The reasoning is to allow an additional layer of access control over the
documentation.

• While not part of the specification itself, certain libraries MAY choose
to allow access to parts of the documentation based on some form of
authentication/authorization.

• Two examples of this:

1. The Paths Object MAY be empty. It may be counterintuitive, but
this may tell the viewer that they got to the right place, but can’t
access any documentation. They’d still have access to the Info Object
which may contain additional information regarding authentication.

2. The Path Item Object MAY be empty. In this case, the viewer will
be aware that the path exists, but will not be able to see any of its
operations or parameters. This is different from hiding the path itself
from the Paths Object, because the user will be aware of its existence.
This allows the documentation provider to finely control what

Thank you for the attention

Questions?

dvergados@uowm.gr

112

	Web API development with OpenAPI
	Software and Applications for IoT
	Dimitrios J. Vergados
	May 6, 2022

	Presentation outline
	What is OpenAPI (formerly Swagger)
	How does Swagger Help in Writing APIs?
	Be Accurate About Your APIs At the First Time
	Advantages of using swagger
	Having A Standard API Design Across Different Teams
	Features Assisting API Development
	Creating API Documentation
	What is OpenAPI?
	Is there Any Difference Between Swagger & the Open API?
	What is the difference between Postman & Swagger?

	The YAML data format
	YAML Tutorial Quick Start: A Simple File
	Outline Indentation and Whitespace
	Comments
	YAML Datatypes
	Advanced Options
	Conclusion

	The OpenAPI Specification
	Definitions

	Specification
	Versions
	Format
	Document Structure
	Data Types
	Rich Text Formatting
	Relative References in URLs
	Schema
	Specification Extensions
	Security Filtering
	Thank you for the attention

