
CONTRIBUTED
P A P E R

Managing Performance
Overhead of Virtual Machines
in Cloud Computing:
A Survey, State of the Art,
and Future Directions
This survey reviews the latest solutions for managing performance overheard in

three cloud scenarios, namely, single-server virtualization, single mega datacenter,

and multiple geodistributed datacenters.

By Fei Xu, Fangming Liu, Member IEEE, Hai Jin, Senior Member IEEE, and

Athanasios V. Vasilakos, Senior Member IEEE

ABSTRACT | Infrastructure-as-a-Service (IaaS) cloud comput-

ing offers customers (tenants) a scalable and economical way

to provision virtual machines (VMs) on demand while charging

them only for the leased computing resources by time. How-

ever, due to the VM contention on shared computing resources

in datacenters, this new computing paradigm inevitably brings

noticeable performance overhead (i.e., unpredictable perfor-

mance) of VMs to tenants, which has become one of the pri-

mary issues of the IaaS cloud. Consequently, increasing efforts

have recently been devoted to guaranteeing VM performance

for tenants. In this survey, we review the state-of-the-art

research on managing the performance overhead of VMs, and

summarize them under diverse scenarios of the IaaS cloud,

ranging from the single-server virtualization, a single mega

datacenter, to multiple geodistributed datacenters. Speci-

fically, we unveil the causes of VM performance overhead by

illustrating representative scenarios, discuss the performance

modeling methods with a particular focus on their accuracy and

cost, and compare the overhead mitigation techniques by

identifying their effectiveness and implementation complexity.

With the obtained insights into the pros and cons of each

existing solution, we further bring forth future research chal-

lenges pertinent to the modeling methods and mitigation tech-

niques of VM performance overhead in the IaaS cloud.

KEYWORDS | Cloud computing; predictable performance;

virtualization; virtual machine (VM) performance overhead

I . INTRODUCTION

With the ability to scale computing resources on demand
and provide a simple pay-as-you-go business model for

customers, cloud computing is emerging as an economical

computing paradigm, and has gained much popularity in

the industry. Currently, a number of big companies such as

Netflix and Foursquare [1] have successfully moved their

business services from the dedicated computing infra-

structure to Amazon Elastic Computing Cloud (EC2) [2],

which is a leading public Infrastructure-as-a-Service (IaaS)
cloud platform worldwide. Undoubtedly, more individuals

(tenants) and enterprises will leverage the cloud to main-

tain or scale up their business while cutting down the

Manuscript received February 11, 2013; revised October 14, 2013; accepted October 17,

2013. Date of current version December 16, 2013. This work was supported in part by

the National Natural Science Foundation of China under Grant 61370232 and by the

National Basic Research Program (973 program) under Grant 2014CB347800.

F. Xu, F. Liu, and H. Jin are with the Services Computing Technology and System Lab,

Cluster and Grid Computing Lab, School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan 430074, China (e-mail:

fmliu@hust.edu.cn).

A. V. Vasilakos is with the Department of Computer Science, Kuwait University,

Safat 13060, Kuwait.

Digital Object Identifier: 10.1109/JPROC.2013.2287711

Vol. 102, No. 1, January 2014 | Proceedings of the IEEE 110018-9219 � 2013 IEEE

转载

http://www.paper.edu.cn中国科技论文在线

budget, as reported by the International Data Corporation

(IDC) that the business revenue brought by cloud

computing will reach $1.1 trillion by 2015 [3].

Unfortunately, the running performance of virtual

machines (VMs) on the IaaS cloud platform is unpredict-
able, which significantly impacts the tenant’s service-level

agreement (SLA) offered by the cloud provider [4]. Speci-

fically, due to the resource contention of VMs, the VM

performance obtained in the IaaS cloud is severely de-

graded and highly variable, compared to the performance

of VMs running in an isolated environment (e.g., running

alone on a physical server in a local cluster) [5]. In this

paper, we formally refer to such VM performance degra-
dation and variation as VM performance overhead. Not

surprisingly, several latest measurement studies on

Amazon EC2 [2] have recently shown that diverse cloud

applications listed in Table 1, ranging from latency sensi-

tive [6], network sensitive [7], to data intensive [5], suffer

significant performance overhead, which consequently

hinders users from moving their performance-critical

business to the cloud. In particular, the performance de-
gradation and variation metrics listed in Table 1 are mea-

sured as: 1) the ratio of the degraded performance obtained

in the IaaS cloud, in terms of the increased job execution

time and the decreased network throughput, to the appli-

cation performance obtained in isolated VMs; and 2) the

variation of application performance obtained in the IaaS

cloud over a period of time. Accordingly, these evidences

bring forth a series of urgent demands for managing the

performance overhead of VMs and guaranteeing VM

performance for tenants in the cloud.

From a high level perspective of the IaaS cloud, existing
studies control the performance overhead of VMs under

three representative scenarios, ranging from the single-

server virtualization, a single large datacenter, to multiple

geodistributed datacenters, as summarized in Fig. 1. On the

one hand, even with built-in resource isolation mechanisms

on central processing unit (CPU) cores, memory and disk

capacities across VMs [8], the contention on shared cache

and input/output (I/O) bandwidth resources among colo-
cated VMs is difficult to be alleviated by existing hyper-

visors [9] in practice [10]. Recent efforts on single-server

virtualization are primarily devoted to alleviating the VM

performance overhead caused by the contention on shared

server resources (e.g., CPU cache and I/O bandwidth) by

resource isolation. Moreover, to gain deep understanding

of the relationship between the performance overhead and

resource consumption of VMs, there have been a number of
recent studies devoted to the performance modeling. With

an accurate modeling method, the VM performance

overhead can be alleviated in a cost-effective manner, as

compared to the resource isolation techniques.

On the other hand, the performance overhead of VMs

within a single mega datacenter and across multiple

Table 1 Measurement Results of Application Performance on Amazon EC2 in Existing Literature

Fig. 1. Classification of causes and mitigation techniques of VM performance overhead from the viewpoint of IaaS cloud hierarchy.

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

12 Proceedings of the IEEE | Vol. 102, No. 1, January 2014

中国科技论文在线 http://www.paper.edu.cn

geodistributed datacenters, however, can hardly be man-

aged by the traditional resource isolation techniques. Spe-

cifically, in a single large datacenter, the distributed

network and storage resources are shared among a huge
amount of VMs leased by multiple tenants, as illustrated in

Fig. 2. Such a cloud scenario undoubtedly makes the VM

performance issue more intractable than the single-server

virtualization. Furthermore, among multiple geodistribu-

ted datacenters, the issue of VM performance overhead

becomes even more complicated due to the highly variable

and scarce network resource over the wide area network

(WAN). While a number of solutions that mitigate such a
VM performance issue have emerged recently, the fast

innovations of these overhead mitigation techniques man-

date comprehensive surveying of the state-of-the-art liter-

ature under the three cloud scenarios discussed above,

with the aim of highlighting future directions in managing

the performance overhead of VMs in IaaS clouds.

Therefore, we compare the latest solutions of managing

the performance overhead of VMs under the three cloud
scenarios shown in Fig. 1. The focus of this paper is on

obtaining the insights into the benefits and costs of these

solutions, as well as raising the future research challenges

in the performance modeling methods and overhead miti-

gation techniques.

There also exists several alternative approaches dealing

with the VM performance issue. For example, CloudCmp

[11] has been developed for guiding tenants in selecting the
IaaS cloud platform with the best application performance

from several cloud providers, such as Amazon EC2 [2],

Microsoft Azure [12], and Rackspace Cloud Servers [13].

Several studies [14], [15] explore the hardware heteroge-

neity within the same type of Amazon EC2 instances (i.e.,

VMs). Potential improvements of VM performance can
accordingly be obtained by placing workloads onto the

instances with good performance in the EC2 datacenters.

The strategies above can provide acceptable VM perfor-

mance and reduce budgets on behalf of tenants, while they

might hurt the benefits of cloud providers. Accordingly, we

limit the scope of this survey to the solutions that alleviate

VM performance overhead on behalf of both tenants and

cloud providers.
The rest of this survey is organized as follows.

Section II explores the causes and summarizes the metrics

of VM performance overhead by illustrating the represen-

tative scenarios of the IaaS cloud. The existing measure-

ment and modeling methods of VM performance overhead

as well as the future research issues are discussed in

Section III. Section IV summarizes and compares the state-

of-the-art solutions that manage VM performance over-
head under diverse scenarios of the IaaS cloud, along with

a fruitful discussion of future research challenges. Finally,

we conclude this survey in Section V.

II . CAUSES AND METRICS OF
VM PERFORMANCE OVERHEAD
IN IaaS CLOUD

There are various kinds of causes that can lead to the

performance overhead of VMs in IaaS cloud datacenters, as

illustrated in Fig. 1. In this section, we first expose and

discuss these causes of VM performance overhead in de-

tail, especially on single-server virtualization, within a

single datacenter, and across multiple geodistributed data-

centers, respectively. We next summarize the metrics of

VM performance overhead used in the literature.

A. Performance Impact of
Single-Server Virtualization

The server virtualization technique [9], which serves as

the cornerstone of cloud computing, multiplexes the com-

puting resources of a physical server for multiple colocated

VMs. Current virtual machine monitors (VMMs) or hyper-

visors [9] (e.g., Citrix XenServer, VMware vSphere, and
Microsoft Hyper-V) have already provided good perfor-

mance isolation mechanisms on sharing the resource of

CPU cores, memory, and disk capacities among colocated

VMs. The isolation mechanisms can be implemented by

fully fledged CPU schedulers (e.g., Credit Scheduler in Xen
[8]) and static partition of memory and disk capacities.

However, server resources like CPU cache space, memory

bandwidth, network, and disk I/O bandwidth are very hard
to be isolated in existing hypervisors [10]. This inevitably

leads to the contention on these aforementioned server

resources among colocated VMs. As shown in [16], with

each VM allocated to a dedicated CPU core, statically par-

titioned memory capacity and disk space, the execution

time of the lbm application from the SPECCPU 2006

benchmark [17] deployed on two colocated VMs on an

Fig. 2. Typical architecture of the IaaS cloud datacenter. The running

VMs of tenant A and B contend for the shared computing resources

in datacenters, such as network and storage resources. In addition,

live migration of tenant A’s VMs severely impacts the performance of

the applications running on tenant B’s VMs.

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

Vol. 102, No. 1, January 2014 | Proceedings of the IEEE 13

中国科技论文在线 http://www.paper.edu.cn

Intel Core-2-Duo processor can be prolonged by up to
120%, compared with the performance of the lbm appli-

cation VM running alone. The above significant perfor-

mance overhead of VMs is caused by the contention of

cache and memory bandwidth on a physical server.

Furthermore, with the tide of green computing and the

recent prevalence of deploying multicore architecture sys-

tems in datacenters, VM consolidation is now widely used

to improve the resource utilization of a multicore physical
server [18] and reduce the energy consumption of data-

centers [19]. As more VMs are colocated on a physical

server, VM consolidation, however, increases the severity

of performance overhead of these colocated VMs on a

physical server. As a result, the contention of shared cache

and I/O bandwidth resources among colocated VMs on a

physical server becomes one of the causes of VM per-

formance overhead in the IaaS cloud.

B. Cause of VM Performance Overhead Within
a Single Datacenter

It is essential for tenants to lease a cluster of VMs from

cloud providers when processing large jobs with a large

amount of data (e.g., terabyte), such as MapReduce [20]

and scientific workloads. In such cases, one natural ques-

tion is as follows: Are the performance isolation tech-
niques for colocated VMs on a single physical server

enough to eliminate the performance overhead among

multiple VMs in a single datacenter? Unfortunately, the

routine operations of the IaaS cloud datacenter, such as

(concurrent) live migration, deployment and snapshotting

of multiple VMs, and the contention of multiple VMs on

the shared cloud network and storage resources, compli-

cate the issue of VM performance overhead and signifi-
cantly degrade the performance of VMs. We elaborate

them in the following three cases, respectively.

1) The (concurrent) live migration of VMs [21] is an

indispensable tool that enables the load balancing

and power saving of a datacenter. It can nevertheless

cause the performance overhead to the migrating

VMs and colocated VMs on the migration source

and destination servers, which is illustrated in Fig. 2.
As shown in [22], live migration of a VM configured

with 256-MB memory hosting the MySQL server,

over a 100-Mb/s Ethernet link, severely prolongs the

end-to-end mean response time of the multitier

Web applications (e.g., RUBiS [23]) by 211%,

compared with the application performance before

the live VM migration. Undoubtedly, migrating

multiple VMs simultaneously in a cloud datacenter
will overload the datacenter network even worse,

which further constrains the performance of CPU

and network resources on the migration and desti-

nation servers, and incurs a long migration time

(i.e., from several minutes to hours) [24].

2) The concurrent deployment and snapshotting of
multiple VMs are two commonly occurring pat-

terns of the routine operations in an IaaS cloud
datacenter [25]. For example, to execute jobs with

a large amount of data, it is the basic requirement

of tenants to fast deploy (initialize) a large num-

ber of VMs simultaneously in a public IaaS cloud

platform [26]. As for the private cloud owned by

a big IT enterprise, it is also the common demand

of the employees for fast provisioning a large

number of VMs concurrently in the daily working
hours, even when there are a burst of VM

deployment requests. Once the VMs are initial-

ized and running, there is another basic require-

ment of tenants to fast take snapshots of their

leased cluster of VMs simultaneously. Fast

snapshotting is also desired by Amazon Elastic

Block Store (EBS) [27] for the checkpoint of VM

states or the VM data sharing among workmates.
Currently, both the public and private clouds,

however, suffer the VM performance overhead

caused by the concurrent deployment and snap-

shotting of multiple VMs. This is because these

two operation patterns can generate a significant

amount of network traffic, which inevitably

interferes with the other VMs in the same

datacenter [25].
3) The inability to isolate shared cloud network and

storage resources among multiple VMs is another

cause of performance overhead of VMs within a

datacenter. In general, to serve the disk and net-

work I/O requests for tenant VMs, the IaaS cloud

datacenter deploys the shared back–end storage

such as storage area network (SAN), and shares

the network resources such as network bandwidth
on physical servers and switches, as shown in

Fig. 2. This accordingly leads to the I/O conten-

tion on the shared storage and network resources

among multiple VMs of tenants in a cloud data-

center. It is revealed by the latest measurements

on Amazon EC2 that the standard medium in-

stances experience up to 66% variation of the

network I/O throughput [28], and the write I/O
bandwidth of standard small instances can vary by

as much as 50% from the mean [6].

C. Cause From Live WAN Migration Across
Multiple Geodistributed Datacenters

It is reported by Gartner Inc. that the hybrid use of

public and private clouds becomes an imperative trend of

cloud computing [29], and more than half of large enter-
prises around the world will have such hybrid cloud de-

ployments by the end of 2017 [30]. A commercial solution,

Amazon Virtual Private Cluster (VPC) [31], now allows the

private datacenter of IT companies to connect to a cluster

of Amazon EC2 instances. These evidences hence bring

new challenges in managing VM performance overhead

across multiple geodistributed datacenters, such as the

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

14 Proceedings of the IEEE | Vol. 102, No. 1, January 2014

中国科技论文在线 http://www.paper.edu.cn

performance overhead of VMs caused by live migration of
VMs and storage over the WAN connection.

Specifically, live migration of VMs and storage across

geodistributed datacenters over a WAN connection serves

as an indispensable technique for managing computing

resources of these datacenters. For big IT enterprises with

multiple geodistributed datacenters, for example, live VM

migration over the WAN enables the load balancing and

power saving across datacenters, by migrating several VMs
from heavy-loaded datacenters to light-loaded datacenters

and consolidating the VMs from the small datacenter into

the large datacenter, respectively. For small IT companies

deploying their business on the hybrid cloud, live WAN

migration of VMs allows them to move or replicate their

business services to the public cloud from the private cloud

when the loads of service requests are bursting [32].

Different from the live VM migration in a local area
network (LAN) discussed in Section II-B, the live WAN

migration of VMs includes the data transfer of not only the

VM memory state, but also the VM disk image and the

ongoing network connections [33]. Accordingly, this

would cause a long VM migration time, application down-

time, and a large amount of network traffic, which further

leads to severe performance overhead to a certain number

of VMs in the migration source and destination datacen-
ters over the WAN, as well as the migrating VMs. Such

performance overhead cannot be easily managed by VM

performance guarantee solutions on a single server or in a

single datacenter. For example, over the WAN with a

maximum throughput of 85 Mb/s, live migration of a VM

configured with 1.7-GB memory and 10-GB disk hosting a

Web service application, performed between the datacen-

ters in Illinois and Texas, can undergo up to 40 min of disk
transfer and 210 s of memory transfer. The response time of

the Web service during the migration process is highly

variable, and can be degraded to 52 ms on average, as

compared to 10 ms before the migration [32]. Consequently,

the migration of VMs over the WAN becomes another cause

of performance overhead of VMs in IaaS clouds.

D. Evaluation and Metrics of VM
Performance Overhead

After discussing the causes of VM performance

overhead, the next natural and fundamental question is

as follows: How can we evaluate the performance overhead

of VMs, and what are the metrics? To simply capture the

performance overhead of VMs, the first type of metric is

the performance degradation of various applications

running in the IaaS cloud, compared with the application
performance obtained in the VMs running in an isolated

environment. Specifically, the performance degradation of

VMs Pd can be measured as

Pd ¼
jxiaas � xisolationj

xisolation
(1)

where xiaas and xisolation are the performance of VM appli-
cations running in the IaaS cloud and in isolation,

respectively. The larger magnitude of performance degra-

dation value Pd indicates the more severe performance

overhead of VMs.

The second type of metric that captures the perfor-

mance overhead of VMs is the variation of VM perfor-

mance obtained in the IaaS cloud over a period of time.

Specifically, the VM performance variation Pv can be re-
presented by the coefficient of variation [34], which is

formulated as

Pv ¼
1

�x

ffi
1

nx � 1

Xnx

i¼1

ðxi � �xÞ2
s

(2)

where xi is the VM performance measured in the IaaS

cloud over time. nx is the number of performance measure-

ments. �x is the average of VM performance over time. The
larger magnitude of performance variation value Pv implies

the more severe performance overhead of VMs.

Due to the security concern and noticeable measure-

ment costs, the performance degradation of VM applica-

tions can hardly be obtained in several scenarios. In such

cases, the third type of metric is required to reflect the

performance overhead of VMs by examining the perfor-

mance of routine operations in IaaS cloud datacenters, as
introduced in Section II-B and C. Specifically, such a type

of metric includes the duration of live VM migration (i.e.,

migration time), downtime of the migrating VM, energy

consumption of live VM migration, and the amount of

network traffic caused by the live VM migration, deploy-

ment, and snapshotting. The smaller migration time,

migration downtime, amount of network traffic, and ener-

gy consumption implies the better performance of routine
operations and lighter performance overhead of VMs. In

summary, existing studies in the literature leverage the

above three types of metrics to evaluate the performance

overhead of VMs in the IaaS cloud.

III . MODELS AND MEASUREMENTS ON
VM PERFORMANCE OVERHEAD

In order to well manage the performance overhead of VMs

in datacenters, the primary requirement is to accurately

model and measure VM performance overhead. Existing

studies have devoted great efforts to modeling the perfor-
mance overhead of VMs on two aspects: performance

interference of colocated VMs on a physical server and VM

performance overhead caused by live migration of VMs.

We review the representative performance modeling

methods on the two aspects, and summarize them in

Tables 2 and 3, respectively. In particular, the column

‘‘kind/type of model’’ indicates whether the model is linear

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

Vol. 102, No. 1, January 2014 | Proceedings of the IEEE 15

中国科技论文在线 http://www.paper.edu.cn

or nonlinear to its parameters. The column ‘‘resource

consumption profile’’ in Table 2 represents the parameters

of VM performance interference models. The column

‘‘prediction error’’ shows the accuracy of the predicted VM
performance overhead in comparison to the measured

overhead data. Specifically, the smaller value of the pre-

diction error implies the more accurate prediction model-

ing approach.

A. Models of VM Performance Overhead Caused by
Single-Server Virtualization

To model the performance interference of colocated

VMs on a single server, the representative approach is to

develop an accurate function of resource consumption

profile of these VMs. For example, Zhu and Tung [35]

propose a simple dilation factor to represent the perfor-

mance interference between two colocated VMs on each of

the 4-D resource consumptions of VMs (i.e., CPU, mem-
ory, network, and disk I/O). By prerunning each workload

which is colocated with a background benchmark work-

load, this method manually varies the resource consump-

tion of workloads (e.g., varying CPU consumption from

10% to 100% with a step of 10%), and acquires the dilation

factors offline for the workloads. The larger dilation factor

means the more severe performance interference of colo-

cated VMs. Similar with the previous approach, Koh et al.
[36] predict the performance interference between two

VMs by two linear statistical approaches (i.e., weighted

mean method and linear regression analysis). In addition,

this method enriches the resource consumption profile of

VMs with other system-level workload metrics, such as the

statistics of cache hits and misses, VM switches. The above

linear statistical model of performance interference I is
presented as

I ¼ �0 þ
Xp

i¼1

�iXi (3)

where Xi is the ith dimension of VM resource consump-

tion. p is the dimensions of VM resource consumption, and

�0 and �i are the model coefficients.

With a particular focus on the colocated VMs hosting

data-intensive applications, two nonlinear statistical mod-

els have been developed in [37] and [38]. Specifically, by
extending the linear model shown in (3), TRACON [37]

models the performance interference I between two colo-

cated VMs as a quadratic function of CPU and I/O band-

width consumption Xi of VMs, which is given by

I ¼ �0 þ
X4

i¼1

�iXi

 !2

: (4)

A more accurate model has been presented in [38], where

the performance interference of multiple colocated VMs is

Table 2 Comparison of Modeling Performance Interference of Colocated VMs on a Physical Server

Table 3 Comparison of Modeling VM Performance Overhead Caused by Live Migration of VMs

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

16 Proceedings of the IEEE | Vol. 102, No. 1, January 2014

中国科技论文在线 http://www.paper.edu.cn

modeled as an exponential function of VM CPU and I/O
resource consumption, which is shown as

I ¼ �0 þ �1 exp
X

i

�iX
cpu
i

 !
þ �2 exp

X
i

!iX
io
i

 !

(5)

where Xcpu
i and Xio

i are the CPU and I/O resource con-

sumptions of VMs, respectively. �i and !i are the model

coefficients. Nevertheless, these linear and nonlinear sta-

tistical models in (3)–(5) require the offline training of

experimental statistics to obtain the model coefficients,

e.g., �i and �i. To particularly predict the performance

interference on the cache and memory bandwidth among
multiple colocated VMs, Cuanta [16] first leverages a cer-

tain synthetic cache benchmark and an interference matrix

to create the cache clones with the same cache behaviors of

these VMs. This method then looks up a degradation table

to model the effect of interference from colocated VMs. In

particular, the interference matrix and degradation table

are generated offline by the preruns of the cache bench-

mark and VMs.
Whereas the previous approaches require the prerun of

workloads to acquire necessary parameters of the statis-

tical prediction model, several studies make efforts to

break such a limitation. For example, pSciMapper [19]

leverages the Pearson Correlation Coefficient [34] of mul-

tidimensional VM resource consumption (e.g., CPU, mem-

ory, network, and disk I/O) to estimate the performance

interference IXY between two VMs. Specifically, the inter-
ference model is given by

IXY¼
kp
P

XiYi�
P

Xi

P
Yikffi

p
P

X2
i �

P
Xið Þ2

q ffi
p
P

Y2
i �

P
Yið Þ2

q (6)

where Xi and Yi are the resource consumption of the two

colocated VMs, and p is the dimensions of VM resource

consumption. In particular, the larger correlation result

IXY indicates the more severe VM performance interfer-

ence. Q-Clouds [39] develops a discrete-time (linear or

nonlinear) model of history performance feedbacks and

current CPU resource caps of VMs ui to online predict the
current performance of colocated VMs Pi. At each time

step i, the discrete-time model is given by

Pi ¼ FðPi�1; . . . ; Pi�n; ui; . . . ; ui�mÞ (7)

where m and n represent to what extent the history values

of performance data and CPU resource caps impact the

current performance, respectively. In particular, the

model construction of Fð�Þ requires a learning phase
using the historical observed performance data Pi and CPU

resource caps ui of multiple VMs.

B. Models of VM Performance Overhead Caused
by Live Migration of VMs

As discussed in Section II-D, the migration time is an

important metric that reflects VM performance overhead

caused by live migration of VMs. A number of methods

have recently been proposed to model the migration time.

For example, Wu and Zhao [40] particularly study the
relationship between the domain-0 CPU allocation Ucpu

and live migration time Tmig. Specifically, given a VM to be

migrated, Tmig can be modeled as a nonlinear function of

Ucpu, which is given by

Tmig ¼
�

U�
cpu

(8)

where � and � are the model coefficients, and �; � 2
ð0;1Þ. In particular, these coefficients require the prerun
of workload applications and are trained offline using the

experimental results of multiple preruns. Given a VM mi-

gration environment, CloudScale [41] estimates the migra-

tion time Tmig using a linear function of the memory size

Vmem of the migrating VM. Similar to (8), such a linear

function is also derived based on the regression analysis of

experimental results of multiple migration preruns. The

impact of another two parameters (i.e., network link speed
R and memory page dirty rate D) to the VM migration time

Tmig has been examined by simulation models in [42],

where Tmig is proved to be nonlinear to R and D.

Based on the four parameters (i.e., Ucpu, Vmem, R, and

D), an integrated model of the VM migration time Tmig has

been developed in [43], which is given by

Tmig ¼
Xn

i¼1

ti; ti ¼

ti�1D

r
; i � 2

Vmem

r
; i ¼ 1

8>><
>>: (9)

where n is the total rounds of memory precopy phases.1 ti is

the phase time for each round of memory precopy, and r is

the network transmission rate for the live VM migration.

As r highly correlates with Ucpu [40] and is restricted by R,

it can be further modeled as r ¼ fðUcpu; RÞ, where fð�Þ is a

nonlinear function. In addition to the performance metric

of migration time, Liu et al. [43] further develop a series of

statistical models to predict several other important VM
migration metrics, including the network traffic Nmig,

energy consumption Emig, and application downtime

1We mainly discuss the precopy migration [21] in this survey.

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

Vol. 102, No. 1, January 2014 | Proceedings of the IEEE 17

中国科技论文在线 http://www.paper.edu.cn

Tdown, respectively. Accordingly, the migration perfor-
mance Pmig of migrating a VM can be comprehensively

evaluated as

Pmig ¼ aTmig þ bTdown þ cNmig þ dEmig (10)

where a, b, c, and d are model coefficients. In particular,

the application downtime Tdown is the phase time for the

last round of memory copy tr, according to (9). The net-

work traffic Nmig are the total transferred memory pages

during live VM migration, which are calculated as Vmem þPn
i¼1 ti � D. The energy consumption Emig is proportional

to the network traffic Nmig, which can be modeled as

�Nmig þ �, where � and � are model coefficients. In parti-

cular, these model coefficients are obtained based on the

regression analysis of experimental statistics which are

measured offline.

The former approaches model the performance over-

head of VMs caused by live migration from the perspective
of migration performance itself. From the perspective of

the migrating VM and other colocated VMs on the migra-

tion source and destination servers, VM performance

overhead can simply be measured offline as the performance
degradation caused by the live migration for each specific

application using (1) [22], [41]. In addition, such a VM

performance overhead can be modeled mathematically.

Specifically, considering live VM migration as a job that
consumes the computing resources of physical server,

Lim et al. [44] predict the performance overhead (i.e., the

prolonged execution time Text) of colocated VMs on the

migration source and destination servers, using a two-

resource contention model, which is given by

Text ¼ � q1q2 þ ð1� q1Þð1� q2Þð Þ (11)

where � is the application execution time running alone on

a physical server. q1 and q2 are the probabilities of access-

ing a kind of VM resource by live VM migration and the
colocated VM, respectively, and q1; q2 2 ½0; 1�. The param-

eters in (11) are acquired offline using the VM performance

statistics. Especially for the migrating VM hosting a Web

server, Breitgand et al. [45] adopt the queuing theory to

model the service-level objective (SLO) violation of such a

migrating Web application, which is quantified as a

function of the network bandwidth allocated to the live

VM migration Bm. Specifically, given the SLO of the Web
service tSLO and the maximum network bandwidth of the

Web server B, the probability of SLO violations Pðt > tSLOÞ
is modeled by

Pðt > tSLOÞ ¼ exp tSLO 	�
ðB� BmÞð Þð Þ (12)

where
ðB� BmÞ denotes the requests’ response rate of the
Web server, given the migration bandwidth Bm. 	 is the

request’s arrive rate on the Web server.

C. Summaries, Insights, and Open Research Issues
From the above comparison of performance modeling

methods summarized in Tables 2 and 3, we raise the fol-

lowing conclusions, insights, and open research issues.

First, statistical methods, such as regression analysis
and correlation analysis [34], have been proved to be

effective in the model construction and estimation of VM

performance overhead caused by the single-server virtua-

lization and live VM migration. Although the statistical

methods are widely used in the existing modeling ap-

proaches with a high prediction accuracy, most of them

require the prerun of VM workloads to acquire necessary

parameters of the prediction models of VM performance
overhead. Such a requirement is not always practical in

datacenters, as it is under the assumption that few kinds of

workloads are running on the homogeneous physical

servers. In real-world cloud datacenters, the heterogeneity

of hardwares [14] and workloads [46] becomes common.

The prerun of workloads or offline measurements on each

type of hardware will undoubtedly bring noticeable pro-

cessing overhead to the model construction. Accordingly,
how to develop a lightweight, yet effective, prediction

model of VM performance overhead without the prerun of

workloads becomes an open research problem.

Second, from the above discussion on the complexity of

model construction, we further obtain a key insight into

the relationship between the accuracy and cost (e.g., the

prerun of VM workloads) of the model of VM performance

overhead. For example, although the correlation analysis
of VM resource consumption in (6) does not require the

prerun of VM workloads, this method only provides an

estimation of performance interference between two VMs,

rather than an accurate value of the VM performance in-

terference. As a result, the accuracy of the prediction

model should be determined by its practical usage. On the

one hand, a lightweight estimation model that catches the

qualitative trend of VM performance overhead is sufficient
to guide in determining an appropriate assignment of

VMs, for mitigating the performance overhead of VMs

(e.g., [19]). On the other hand, a sophisticated prediction

model that accurately quantifies the performance over-

head of VMs is required to reallocate the computing

resources to the competing VMs within a single data-

center (e.g., [39]).

Third, although a number of performance models of
single-server virtualization have been proposed (refer to

Table 2), there is a lack of a holistic prediction model to

quantify the performance overhead of multiple (i.e., more

than three) colocated VMs on multidimensional shared

server resources, i.e., CPU cache, memory bandwidth,

network, and disk I/O bandwidth. Hence, how to design

such a holistic model of performance overhead among

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

18 Proceedings of the IEEE | Vol. 102, No. 1, January 2014

中国科技论文在线 http://www.paper.edu.cn

multiple VMs becomes a promising research problem. One
potential modeling solution is to extend the discrete-time

model of CPU resource in [39], i.e., (7), to support

multidimensional server resources. However, this method

requires learning the relationship between the current

performance data and the historical resource consumption

of VMs for the model construction. The overhead (e.g.,

CPU cycles) caused by such a learning phase cannot be

neglected. Accordingly, it would also be interesting to
mitigate such an overhead incurred by the learning phase

for constructing this model.

Fourth, to quantify the performance overhead of VMs

caused by live VM migration, existing modeling methods

focus on the performance of either the migrating VM or

colocated VMs on migration source and destination servers

(refer to Table 3). Accordingly, it would be desirable to

design a prediction model that jointly quantifies the per-
formance overhead of the migrating VM and its colocated

VMs in order to comprehensively evaluate the performance

overhead caused by the live VM migration process [47].

Furthermore, as the multitier application that requires

multiple interdependent VMs are widely deployed in data-

centers [22], the migration of a VM (e.g., the SQL server)

can adversely impact the performance of other associated

VMs (e.g., the Web server). Hence, the evaluation of per-
formance overhead of live VM migration cannot be

restricted to the single migrating VM (i.e., [45]). The

cascading performance effects to other associated VMs

should be incorporated into the model of VM perfor-

mance overhead, particularly for evaluating multitier VM
applications.

Last but not least, although the performance of live VM

migration has been comprehensively studied and modeled

(e.g., [43]) in the LAN environment, the performance

model of live VM migration over the WAN has not been

investigated yet. Such a performance model would be be-

neficial for the tenant to utilize the computing resources in

the hybrid cloud (i.e., public and private clouds across
multiple geodistributed datacenters). For example, the

migration performance model in the WAN is effective in

improving the performance of the migrating VM and the

migration itself, by selecting an appropriate migrating VM

and a migration destination datacenter. However, the per-

formance model of live VM migration in the LAN cannot

be directly applied in the WAN environment due to at least

two reasons: 1) the network link bandwidth can vary
significantly over time in the WAN; and 2) the VM disk

image also requires to be transferred over the WAN.

Consequently, how to develop a performance model of live

WAN migration of VMs becomes another future research

problem.

IV. MANAGING PERFORMANCE
OVERHEAD OF VMs IN IaaS CLOUD

A large number of approaches have recently been proposed

to manage VM performance overhead and guarantee the

performance of VMs in the IaaS cloud. We broadly classify

Table 4 Comparison of Approaches to Alleviate VM Performance Overhead Caused by Single-Server Virtualization

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

Vol. 102, No. 1, January 2014 | Proceedings of the IEEE 19

中国科技论文在线 http://www.paper.edu.cn

and summarize these solutions according to the high-level

hierarchy of IaaS cloud datacenters shown in Fig. 1. We

compare these solutions on single-server virtualization,

within a single mega datacenter, and across multiple geo-
distributed datacenters, in Section IV-A–C, respectively.

These overhead mitigation techniques are summarized in

Tables 4–8. In particular, the column ‘‘complexity’’

represents the implementation complexity of techniques

introduced to the original systems (e.g., hypervisors, shared

storage, and networks). It also shows the time complexity

of VM assignment algorithms in a number of overhead

mitigation techniques (e.g., pSciMapper [19], iAware [47],
Pesto [48], and Oktopus [49]). The time complexity

notations m and n denote the number of physical servers

and virtual machines in a datacenter, respectively.

A. Alleviating VM Performance Overhead Caused
by Single-Server Virtualization

Currently, hypervisors [9], such as Citrix XenServer and

Microsoft Hyper-V, provide a baseline of performance isola-

tion on CPU, memory, and disk resources by simply allocat-

ing each VM (including domain-0) with dedicated CPU

core(s) and an amount of nonoverlapped memory and disk

capacities. However, the cache and I/O bandwidth resources

shared among multiple colocated VMs shown in Fig. 3

cannot be easily isolated in existing hypervisors, as we dis-
cussed in Section II-A. To deal with such a performance

issue, a number of approaches have been proposed to miti-

gate the performance overhead of VMs caused by the single-

server virtualization. We summarize these solutions in Table 4.

1) Resource Isolation Among Colocated VMs: To alleviate

performance overhead of VMs on a single physical server,

one conventional approach is to isolate the computing
resources among colocated VMs. To mitigate the perfor-

mance interference on the CPU cache and memory

bandwidth, Q-Clouds [39] dynamically provisions the un-

derutilized or idle CPU resource to the impacted (victim)

VMs using closed-loop resource management. Accordingly,

the workload SLAs can be guaranteed and the datacenter

utilization is improved. Page coloring mechanism2 assigns a

Table 5 Comparison of Approaches to Manage VM Performance Overhead Caused by Live Migration, Deployment, and Snapshotting of Multiple VMs

Within a Single Datacenter

2Page coloring mechanism is the traditional cache and memory
management technique in the operating system.

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

20 Proceedings of the IEEE | Vol. 102, No. 1, January 2014

中国科技论文在线 http://www.paper.edu.cn

different color to each virtual memory page and physical

cache page, where the virtual memory page can only be

allocated to the physical cache page with the same color.

Such a technique can accordingly be used to partition the

cache space and control the contention on the cache

resource among corunning applications [50]. However,

whether page coloring can alleviate the performance

interference on the cache and memory bandwidth resource
among colocated VMs requires further investigation.

To control the disk I/O contention among colocated

VMs on a physical server, one possible solution is to lever-

age the disk I/O scheduling technique on the VM and VMM

levels. For example, Boutcher and Chandra [51] empirically

show that the aggregate amount of I/O throughput of co-

located VMs can significantly be improved, by choosing the

appropriate disk I/O schedulers of VM and VMM from the

existing Linux I/O schedulers. In particular, the disk I/O

fairness among colocated VMs can only be achieved at the

cost of I/O throughput and latency. To improve the re-

sponse time for I/O requests with a high priority, a priority-
based scheduler has been proposed in [52]. This scheduler

intercepts I/O requests at the VM level, and reorders these

requests in the disk I/O queue of a physical server according

to their priority information at the VMM level.

Table 7 Comparison of Approaches to Mitigate Contention of VMs on Shared Network Resource of a Single Datacenter

Table 6 Comparison of Approaches to Mitigate Contention of VMs on Shared Storage Resource of a Single Datacenter

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

Vol. 102, No. 1, January 2014 | Proceedings of the IEEE 21

中国科技论文在线 http://www.paper.edu.cn

The performance interference on network bandwidth

among colocated VMs is managed through two kinds of

solutions in existing studies. On the one hand, it is re-
ported that the network bandwidth of VMs can be isolated

from the other colocated VMs by hardware solutions, such

as installing multiple network adapters or multiqueue

network adapters for the VMs on a physical server [53]. On

the other hand, the network bandwidth of VMs can be

guaranteed by software solutions (i.e., bandwidth capping

techniques) via statically setting a bandwidth cap in the

VM configuration file before booting the VM [8], or
limiting the network bandwidth using the ‘‘tc’’ utility in the

Linux kernel [6]. To allow scalable and dynamic program-

mable rate limiting with low CPU overhead, NicPic [54]

classifies and stores the network packets in transmission

queues in memory, and schedules the packets from mem-

ory to network interface card (NIC) using direct memory

access according to the rate limits of VMs.

2) Optimization of VM Assignment: In addition to the

resource isolation techniques, it is also effective in alleviat-

ing VM performance overhead by finding an optimal map-

ping of VMs to physical servers. Specifically, by greedily

minimizing the VM performance overhead calculated by

the model introduced in (3), (4), or (5), such an optimized

VM assignment3 can accordingly minimize the perfor-

mance interference among colocated VMs [35], [37]. As
more physical servers are provisioned, the performance

interference of VMs will be reduced while leading to

higher energy consumption. Accordingly, to jointly ba-

lance the tradeoff between energy consumption and VM

performance, Cuanta [16] and pSciMapper [19] determine

the VM assignment and the number of physical servers, by

greedily maximizing the ratio of VM performance to VM

power. A similar performance-aware VM assignment

mechanism has been proposed in [55], where the cloud
scheduler greedily alleviates the VM contention on last-

level cache (LLC) in the entire cloud system. Specifically,

for the physical server with maximum LLC misses and the

physical server with minimum LLC misses, this approach

iteratively swaps the VM with maximum LLC misses on

the former server and the VM with minimum LLC misses

on the latter server, via live migration of VMs.

To efficiently identify and manage the performance
interference of VMs, DeepDive [10] first qualitatively pin-

points culprit resource (i.e., the resource which is the

source of interference) using a clustering technique of low-

level VM metrics. Then, this approach migrates the VM

consuming the culprit resource most aggressively to other

servers, so that the VM interference is sufficiently miti-

gated or totally eliminated. With a particular focus on the

network I/O resource, Xu et al. [56] observe that the

3VM assignment decides which VM is assigned to which physical
server. It requires live migration of VMs.

Table 8 Comparison of Approaches to Manage VM Performance Overhead Caused by Live Migration over the WAN

Fig. 3. Shared computing resources among colocated VMs on a

physical server. The CPU cache and I/O bandwidth resources can bring

performance interference to colocated VMs in existing hypervisors.

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

22 Proceedings of the IEEE | Vol. 102, No. 1, January 2014

中国科技论文在线 http://www.paper.edu.cn

coscheduling of CPU-bound and latency-sensitive applica-
tions on a physical server can cause long I/O latency to

VMs. Based on such an observation, they further design a

simple VM examining method, which assigns latency-

sensitive applications to well-performing VMs, avoiding

the colocation with bad neighboring VMs.

B. Mitigating VM Performance Overhead Within
a Single Datacenter

As analyzed in Section II-B, the routine operations of an

IaaS cloud datacenter including (concurrent) live migration,

deployment, and snapshotting of multiple VMs, and the

contention of multiple VMs on the shared datacenter

network and storage resources, can severely degrade the

performance of VMs. We review and summarize the existing

approaches that mitigate the performance overhead of VMs

within a single datacenter in Tables 5–7, according to the
aforementioned three aspects, respectively.

1) Live Migration, Deployment, and Snapshotting of
Multiple VMs

a) Live migration of VMs: The migration process

causes different aspects of performance overhead to VMs

in terms of migration time, application downtime, network

traffic, and energy consumption [43]. To alleviate such
performance overhead, one intuitive method is to reduce

the amount of transferred data during live migration of

VMs. For example, by taking advantage of plenty multicore

CPU resource, MECOM [57] utilizes the traditional data

compression technique to significantly reduce the amount

of transferred memory pages on the migration source

server. Yet, this method requires decompressing those

transferred memory pages to restore VM memory state on
the migration destination server.

To further reduce the network traffic during live mi-

gration of VMs, several practical approaches have been

proposed in existing studies (e.g., [58], [60], and [61]).

Specifically, instead of transferring the entire dirty mem-

ory pages in each round of the precopy phase [21]: 1) the

delta compression technique [60] compresses and trans-

fers the data changes between the current and previous
versions of memory pages, particularly for the applications

with a fast dirty rate of memory pages over a slow network;

2) the memory ‘‘pruning’’ approach [58], [59] identifies

and transfers the necessary VM memory pages which are

mandatory for the VM to run correctly on the destination

server after the VM migration, such as the application data

and the OS kernel data; 3) CR/RT-Motion [61] first trans-

fers a small amount of logs for the VM execution events
traced on the migration source server, and then the VM

memory state can be restored by replying the execution

trace logs on the migration destination server; and

4) Jo et al. [62] only transfer the memory pages that are not

available on the shared storage, along with a list of storage

blocks with the memory page locations in order to restore

the VM memory state on the destination server.

While the approaches above focus on reducing the
amount of transferred data to improve the performance of

live VM migration itself, PMigrate [63] aims to parallelize

the data and processes of the migration operation using

abundant CPU and network resources in order to acce-

lerate live migration of VMs. Different from these ap-

proaches above, Liu et al. [43] alleviate the performance

overhead of the migrating VMs by selecting the VM with

the smallest migration cost. In particular, the migration
cost is quantified by the migration performance model

described in (10).

Furthermore, the migration process also deteriorates

the performance of VMs (including the migrating VM) on

the migration source and destination servers [47]. As

shown in Fig. 4, the migration traffic interferes with the

application traffic among the colocated VMs on both

migration source and destination servers. In addition, the
migration process consumes a certain amount of CPU

cycles in domain-0 [44]: 1) to mitigate the performance

overhead on the migrating VM, CloudScale [41] chooses to

migrate the VM with the smallest SLO penalty which is

measured offline for each VM application; and 2) to fur-

ther alleviate the performance overhead of VMs on migra-

tion source and destination servers, iAware [47] chooses to

migrate the VM with the least performance interference
among the colocated and migrating VMs. In particular, the

interference is predicted online by a multiresource

demand/supply model. With a particular focus on the

performance of the migrating VM and the migration itself,

Breitgand et al. [45] develop a mathematical model to learn

the tradeoff between the migration time and VM per-

formance, as described in (12). By jointly minimizing the

migration time and improving the performance of the
migrating VM, this approach allocates an appropriate

network bandwidth to the live VM migration.

Given the same VM candidates for live migration, it has

been shown that the performance of concurrent live mi-

gration of these VMs is much worse than that of sequential

live migration of these VMs [44]. To mitigate the migra-

tion performance overhead (i.e., reducing the network

traffic and migration time), the approach proposed in [24]

Fig. 4. Typical live migration process of a single VM. The migration

traffic occupies a certain amount of network bandwidth, which

inevitably constrains the performance of colocated VMs on migration

source and destination servers during live migration of VMs.

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

Vol. 102, No. 1, January 2014 | Proceedings of the IEEE 23

中国科技论文在线 http://www.paper.edu.cn

still focuses on reducing the amount of transferred data.
Specifically, this method de-duplicates the memory pages

among colocated VMs and transfers the identical memory

pages only once, during the concurrent live migration of

the VMs hosted on a physical server.

b) Deployment and snapshotting of VMs: To reduce the

deployment time of multiple VMs, traditional approaches

adopt the peer-to-peer (P2P) technique, which allows the

VMs booting from the same image to share the content of
VM image among themselves [74]. However, it cannot

mitigate the potential VM performance overhead caused

by a significant amount of network traffic due to the con-

current VM deployment. To mitigate such a traffic over-

head, VDN [64] proposes a VM image distribution

network based on the cross-image duplication character-

istic, i.e., the similarity among real-world VM disk images

(e.g., VMware images and Amazon machine images) can
be as high as 60% [75]. Specifically, this method divides

VM images into disjoint chunks, and allows the VMs to

share these chunks in a topology-aware network during

provisioning these VMs.

As observed that only a small part of the VM image

requires to be loaded for the VM startup [65], the booting

part of VM images can be cached in compute nodes in

order to reduce the VM booting time and the traffic load to
datacenter networks. In addition, a lazy VM deployment

mechanism has been proposed in [25], where the VM

image blocks are fetched as required by the execution of

applications, so as to avoid transferring and loading the

unnecessary image data to VMs. VMTorrent [26] further

refines this lazy deployment method by prefetching the

image data blocks, according to the offline profile infor-

mation of block access patterns for each pair of a workload
and a VM image. To reduce the network traffic caused by

the concurrent VM snapshotting, Nicolae et al. [25]

propose to save the image difference between the current

image snapshot and the former-stored VM image to the

persistent storage, rather than the snapshot of a whole

image file.

2) Contention of Multiple VMs on Shared Storage
Resources: Different from the disk I/O sharing among

colocated VMs on a single physical server discussed in

Section IV-A, shared cloud storage service deploys an entire

storage system, such as network attach storage (NAS) and

storage area network (SAN), to support I/O requests from

multiple VMs hosted on multiple physical servers, as

illustrated in Fig. 5. To isolate the storage I/O resource

among multiple VMs, the straightforward approach is to
well manage and schedule the requests in I/O queues on

each physical server and shared storage system. For exam-

ple, PARDA [66] first controls the length of I/O queue on

each physical server based on the aggregated weights of the

hosted VMs. Then, this method uses a local fair I/O sched-

uler to achieve proportional-share fairness of storage I/O

resource among colocated VMs within each physical server.

In addition to the proportional share of storage I/O

resource, SRP [67] further provides several other storage

resource controls, such as the minimum guarantee and

limits of storage I/O bandwidth for an individual VM or a

group of VMs. In particular, the I/O reservations, limits,

and proportional shares of I/O queue capacity for each VM

and physical server can be determined by periodically
predicting the workload demands. With a particular focus

on the replicated key-value shared storage, Pisces [68] de-

ploys a series of novel mechanisms to achieve the perfor-

mance isolation and max–min fairness among tenants

(rather than VMs). Specifically, these mechanisms include

placing and replicating the data blocks across multiple

storage devices based on the weights of tenants, as well as

scheduling VM I/O requests to storage devices using the
deficit (weighted) round robin algorithm. To alleviate the

interference on the shared cache of storage arrays among

VMs, Tarasov et al. [69] fairly allocate the storage cache

space according to the classification of VM I/O operations

and data. The data prefetching in the storage cache is further

applied to improve the I/O throughput of shared storage.

While the former approaches provide the isolation on

sharing storage I/O resource among multiple VMs or
tenants, they cannot guarantee the SLO of VM applica-

tions, such as the latency and throughput of storage I/O

service, due to the storage I/O contention. To achieve this

goal, Soundararajan and Amza [70] first translate the SLO

into the storage I/O allocation by a reinforcement learning

algorithm. Then, this method dynamically partitions the

I/O bandwidth based on the translated storage I/O allo-

cation using I/O schedulers on physical servers and shared
storage. Two SLO-oriented storage I/O scheduling ap-

proaches have been proposed in [71] and [72], where the

high-level SLO of VM application is translated into a series

of deadlines for application I/O requests based on the

historical I/O statistics. These I/O requests can be completed

before their specific translated deadlines, by reordering them

in the storage I/O queue using the early deadline first (EDF)

scheduling algorithm.

Fig. 5. Typical shared storage architecture in the datacenter.

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

24 Proceedings of the IEEE | Vol. 102, No. 1, January 2014

中国科技论文在线 http://www.paper.edu.cn

To mitigate the disk I/O contention in the cloud
storage, another practical approach is to leverage live

migration of virtual disks with heavy I/O requests. For

example, Pesto [48] first constructs an empirical linear

model of latency and throughput of I/O requests in the

shared storage. Then, such a model is leveraged to perform

I/O load balancing with a cost-benefit analysis for all

migration choices of virtual disks, so as to alleviate the I/O

performance variation, i.e., (2). As compared with the
former method, a more accurate I/O performance model

has been developed in [73], which uses statistical modeling

approaches (i.e., the analysis of variance and linear

regression) and takes the interference of colocated virtual

disks into account. Based on such a model, Romano [73]

designs an algorithm to find the global pseudo-optimal

mapping of VMs to physical servers using the simulated

annealing approach, to reduce the variation of storage I/O
latency in datacenters.

3) Contention of Multiple VMs on Shared Network
Resources: Currently, several commercial cloud providers

(e.g., Amazon EC2 [2]) cannot provide the performance

guarantee of network resource for tenants (or VMs). As

discussed in Section II-B, the network bandwidth and

latency between two VMs can vary significantly over time.
Fortunately, the issue of network performance isolation

among tenant VMs in an IaaS cloud datacenter has been

extensively studied by recent research, which can be

broadly classified into two categories: weighted competi-

tion sharing and VM-assignment-based sharing.

a) Weighted-competition-sharing approach: The

weighted competition approach is to share the network

resource among competing entities (i.e., processes, VMs,
or tenants) according to their weights, as illustrated in

Fig. 6. In particular, the weights of entities can be assigned

by cloud providers [81] or according to minimum band-

width guarantees [76] and tenant payments [77]. A typical

example of this approach has been proposed in Seawall

[28], where the network bandwidth on the contention

links is fairly allocated among multiple data senders using

a VMM-based rate limiter (e.g., NicPic [54]) according to
their assigned weights. However, this approach fails to

offer minimum bandwidth guarantees to VMs or tenants.

To support minimum guarantees of network bandwidth

and share the network resource among VMs in a fine-

grained timescale (i.e., milliseconds), EyeQ [76] proposes

an end-to-end rate control mechanism along the data

transmission path, by implementing rate limiters on the

data sender and congestion detectors on the data receiver,
respectively. This approach also achieves high utilization

of the cloud network resource. To particularly provide

bandwidth guarantees for intertenant communication,

Hadrian [77] allocates the network bandwidth to inter-

tenant flows using the rate limiters on data senders,

receivers, and weighted fair queueing in switches. As this

approach requires traffic shaping (e.g., vShape [86]) in

network switches, the implementation complexity is
increased accordingly. ElasticSwitch [78] allocates the

pairwise VM-to-VM bandwidth based on the network

bandwidth guarantees of VMs, and distributes the unused

bandwidth to VMs according to their weights. To reduce

the implementation overhead and improve the scalability,

this approach is fully implemented in hypervisors and

without centralized coordination.

By proposing and comparing three bandwidth alloca-
tion policies [proportional sharing at the link level (PS-L),

at the network level (PS-N), and on the proximate link

(PS-P)], FairCloud [79] experimentally explores the trade-

off space among three requirements for weighted band-

width sharing of datacenter networks, including minimum

guarantee, network proportionality, and high utilization.

Specifically, the minimum guarantee and network propor-

tionality cannot be achieved simultaneously (i.e., hard
tradeoff), and there exists a tradeoff between the network

proportionality and high utilization. To obtain a theoretical

insight into the tradeoff between minimum guarantee and

proportional bandwidth share, Guo et al. [80], [81] model

the bandwidth allocation as a Nash bargaining game [87],

and design a distributed algorithm named Falloc to fairly

allocate bandwidth to VMs in a cooperative manner.

In addition to achieving the weighted sharing and
minimum guarantees of VM network bandwidth, two

approaches [82], [83] further provide another quality-of-

service (QoS) control for VM bandwidth allocation, i.e.,

limits of VM bandwidth. Specifically, Gatekeeper [82]

guarantees the network bandwidth of VMs by implement-

ing a weighted packet scheduler on data senders, and

determining the bandwidth allocation according to the

minimum and maximum rates on data receivers. In
particular, this method focuses on guaranteeing the

aggregate end-to-end network bandwidth of VMs for

tenants in datacenters. hClock [83] allocates VM band-

width in a hierarchical manner through maintaining and

scheduling I/O requests in the leaf queue of VMs. In more

detail, the requests are scheduled by periodically checking

the minimum guarantees, limits, and weights of VMs, and
Fig. 6. Network bandwidth sharing among VMs according to their

respective weights.

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

Vol. 102, No. 1, January 2014 | Proceedings of the IEEE 25

中国科技论文在线 http://www.paper.edu.cn

the scheduling of I/O requests is started at the root node of
the leaf queue in the hierarchy.

b) VM-assignment-based sharing approach: In response

to the VM leasing request from tenants, the VM-

assignment-based approach allocates the network resource

to tenant VMs and meets their bandwidth requirements by

assigning these VMs to an appropriate network location

(physical server). A representative example of this ap-

proach has been presented in Oktopus [49], where the VM
leasing request is simply abstracted to a tuple hN; Bi (i.e.,

the number of VMs N with a homogenous network band-

width B). According to the network abstractions of VM

leasing requests, the network resource is statically allo-

cated to tenant VMs, by greedily assigning these VMs to

the smallest subtree (i.e., a server, a rack, and a pod) that

can host them.

To break the assumption of static and homogeneous
network bandwidth B of the VM leasing request, two

approaches [84], [85] extend the basic network abstraction

model hN; Bi to more realistic models, where tenants are

allowed to specify time-varying (i.e., temporal) and

heterogeneous (i.e., spatial) allocations of network band-

width for their leased VMs, respectively. The objective of

VM allocations in these two approaches is to improve the

utilization of network resource, so as to support more
tenant VMs in a datacenter than Oktopus [49]. Specifi-

cally, by profiling the network bandwidth demands offline

for each VM application, TIVC [84] fits the leased VMs

into four types of network abstractions with the time-

varying bandwidth. According to the fitted abstraction

models of these VMs, this method then assigns them to

the datacenter by a first-fit VM assignment algorithm.

Zhu et al. [85] propose an abstraction model of hetero-
geneous VM network bandwidth allocations, and math-

ematically prove the problem of VM allocations with

heterogeneous bandwidth demands to be NP-complete. In

addition, an online heuristic VM assignment algorithm is

developed to place the tenant VMs with heterogeneous

bandwidth demands into an appropriate subtree of the

datacenter network.

C. Controlling VM Performance Overhead Across
Multiple Geodistributed Datacenters

Live migration of VMs or storage over the WAN is a

common tool to manage computing resources of multiple

geodistributed datacenters (e.g., load balancing among

datacenters and disaster recovery of IT systems). However,

it brings noticeable performance overhead of VMs in IaaS

clouds, as we have discussed in Section II-C. In this
section, we review and compare the solutions that alleviate

the performance overhead of VMs caused by the live WAN

migration in Table 8.

1) Live WAN Migration of VMs: As illustrated in Fig. 7,

live WAN migration of VMs requires transferring the VM

disk image and memory state as well as the ongoing net-

work connections via the WAN, which is more compli-

cated than live VM migration in a LAN. Bradford et al. [33]

make the first attempt to migrate a single VM hosting a
running Web server over the WAN. Specifically, the disk

image and VM memory state are iteratively copied to the

destination to complete the whole live VM migration. To

particularly deal with the migrating VM hosting write-

intensive workloads, a write throttling mechanism is pro-

posed. During transferring the disk or memory state, write

throttling reduces the number of dirty pages by restricting

the number of write operations below a predefined
threshold. Furthermore, the existing network connections

of the migrating VM can be transparently redirected to the

VM migration destination server by the IP tunneling

technique, which dynamically routes the network packets

to the new IP address of the migrating VM. To accelerate

the migration of data-intensive applications over the WAN,

Akiyama et al. [88] propose page cache teleportation which

reduces the amount of transferred memory for the VM page
cache. In particular, the page cache of the migrating VM

can be restored on the destination server based on its

memory location which is identified before the migration.

To reduce the migration time and network traffic

caused by the live WAN migration of multiple VMs, one

straightforward, yet effective, approach is de-duplication.

Specifically, this approach explores the duplicate contents

among the disk images and VM memory states of the
migrating VMs, and transfer only one copy of them [32],

[89]. Particularly, to reduce the application downtime of

the migrated VMs, VMFlockMS [89] adopts the data prio-

ritization transfer mechanism by transferring the data that

is responsible for booting the VM and running application

services with the highest priority. With the same objective,

CloudNet [32] proposes a page delta approach which only

sends the difference between the current memory page
and the page previously transferred, thereby reducing the

rounds of memory precopy and the number of dirty pages.

Generally, the migration cost of transferring the VM disk

image is much higher than that of transferring the VM

memory state. To avoid such a high migration cost of disk

image transfer, one speculative approach [32] is to

replicate the VM images in the background before live

Fig. 7. Live WAN migration of a single VM across multiple geodis-

tributed datacenters.

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

26 Proceedings of the IEEE | Vol. 102, No. 1, January 2014

中国科技论文在线 http://www.paper.edu.cn

migration of VMs, and synchronize the disk state during
live migration.

2) Live WAN Migration of VM Storage: Live migration of

VM storage (i.e., one or more VM disk images) is a critical

part of live migration of VMs over the WAN, which has

recently attracted much interest from researchers. In

order to guarantee a minimal application downtime,

Mashtizadeh et al. [90] develop a technique named I/O
mirroring in VMWare ESX. During the transfer of the VM

disk image, I/O mirroring blocks the write operations on

the migration source server until these operations are

finished on the destination server. Hirofuchi et al. [91]

propose to fetch the required data blocks on demand from

the migration source server, and transfer the remaining disk

data blocks to the destination server using the available

bandwidth of the WAN. However, these two approaches
above can cause high disk I/O latency and low I/O

throughput during the migration of I/O-intensive workloads.

Particularly, to deal with the I/O-intensive workloads,

Nicolae and Cappello [92] further optimize the migration

strategy by two mechanisms: 1) transferring only the

modified content of VM disk image except the VM operating

system to the migration destination server; and 2) a hybrid

data fetching technique, in which the migration source
server pushes (copies) the cold data chunks when transfer

control is on the source server, and the migration destination

server pulls the remaining (dirty) data chunks from the

source server when transfer control is on the destination

server.

A workload-aware scheduling approach for storage

migration has been proposed in [93], where the disk data

blocks are scheduled in an optimized order for migration,
so that the migration network traffic is reduced and the

storage I/O performance is improved during the live WAN

migration of storage. In particular, the scheduled order of

data blocks is determined by tracking the temporal and

spatial locality characteristics of the read and write opera-

tions, as well as the popularity characteristic of data blocks

of the migrating workload.

D. Summaries, Insights, and Open Research Issues
From the above detailed review and comparison of the

existing techniques that mitigate the performance over-

head of VMs in Section IV-A–C, we bring forth the

following summaries, insights, and open research issues.

First, we come to the conclusion that live migration of

VMs serves as the cornerstone of managing the computing

resources and alleviating the performance overhead of VMs
in IaaS clouds. Specifically, in addition to enabling the

routine operations, including load balancing and power

saving [47], live VM migration has also been proved to be

effective in controlling the VM performance overhead in

diverse scenarios, ranging from the single-server virtual-

ization (e.g., [10]) to a single datacenter (e.g., shared

network resource [49] and shared storage resource [73]). In

particular, a number of overhead mitigation techniques (e.g.,
[10] and [48]) require adjusting the mapping of VMs to

physical servers. Such a VM adjusting process is enabled by

live VM migration during the execution of workloads. As a

result, managing the performance overhead of VMs caused

by live VM migration (Section IV-B1) plays a critical role in

guaranteeing the performance of VMs in the IaaS cloud.

Second, the conclusion above gives an impetus to

mitigate the performance overhead of VMs caused by live
VM migration in a cost-effective manner. To improve the

performance of live VM migration itself in a LAN or a

WAN, existing techniques mainly rely on two aspects (refer

to Tables 5 and 8): reducing the amount of transferred data

during live VM migration and lowering the memory or disk

dirty rate, specifically: 1) a number of techniques have been

proposed to reduce the amount of transferred data for

migration, for example, memory page compression (e.g.,
[57]), logging and replying VM execution events [61],

memory pages pruning [58], spatial de-duplication of

memory content and disk images of multiple VMs (e.g.,

[24] and [89]), and temporal de-duplication of the current

and former memory pages of the migrating VM [32], [60];

and 2) to control the dirty rate of memory or disks, existing

techniques focus on throttling or blocking I/O requests to

the migrating VM during the migration (e.g., [33] and
[90]). Although these techniques can significantly reduce

the migration time, they either bring noticeable CPU and

memory performance overhead to colocated VMs, or

significantly impact the QoS of applications running on

the migrating VM. Therefore, how to design a less ‘‘noisy’’

live migration approach while improving the performance

of live VM migration itself will continue to be a challenge.

Third, although a number of migration policies have
been extensively studied in the literature (e.g., [41] and

[43]), they focus on performance overhead of either mi-

grating VM or colocated VMs on migration source and

destination servers during live migration of VMs (refer to

Table 5). Few migration policies have devoted adequate

attention to the VM performance overhead caused by VM

colocation on a single server after live VM migration [47].

Specifically, as the migrating VM is moved onto a new
physical server after the migration, it will be likely to

contend with the VMs colocated on the destination server

for scarce physical resources. Accordingly, the VM

performance overhead caused by VM colocation on the

migration destination server cannot be overlooked

(Section II-A), when evaluating a specific migration choice

(i.e., a tuple of the migrating VM and migration destina-

tion server). Consequently, it is essential for the VM
migration policy to jointly consider the VM performance

overhead caused by both live VM migration and VM colo-

cation (i.e., single-server virtualization) during and after

migration. It would be a promising research problem to

design such a performance-centric VM migration policy.

Fourth, it would be an interesting research topic to

explore the tradeoff between alleviating VM performance

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

Vol. 102, No. 1, January 2014 | Proceedings of the IEEE 27

中国科技论文在线 http://www.paper.edu.cn

overhead and saving the monetary cost of hardware
provisioning (i.e., physical servers, storage, network

switches and links) in IaaS cloud datacenters. Specifically,

with hosting the same number of tenant VMs, the more

physical hardware the datacenter provisions, the lower

performance overhead these VMs will experience. To the

extreme, it is possible, but not practical, to provision each

VM with a physical server, each network connection

between VMs with a physical network link, and each VM
virtual disk with a physical storage device [a disk or

redundant array of independent disks (RAID)]. In such an

environment, the performance overhead of VMs can be

dramatically decreased or nearly eliminated, whereas the

resource utilization can be extremely low, which appar-

ently hurts the benefits of cloud providers. Hence, it would

be beneficial for cloud providers to explore such a tradeoff

in order to obtain insights into the relationship between
guaranteeing the VM performance for tenants and

maximizing the profits for cloud providers.

Fifth, most storage I/O-sharing solutions in the

literature focus on achieving one or two of the three

sharing requirements for VMs or tenants: the minimum

guarantee, the proportional share, or high utilization of the

storage resource (refer to Table 6). Although they have

isolated well the storage resource and achieved good
storage I/O performance among multiple VMs or tenants in

the datacenter, whether one of the above three I/O-sharing

requirements contradicts with another remains unknown.

It would be interesting to explore the tradeoff space among

the three requirements for sharing the datacenter storage

resource. Such a tradeoff analysis can be further used for

exploring the design space of storage I/O-sharing solutions.

In addition, the solid state driver (SSD) is already
displacing the traditional hard disk driver (HDD) in

existing datacenters (e.g., Facebook, Dropbox) [94], and

Amazon EC2 has recently released a new type of high I/O

VM instance which is equipped with the SSD-based local

storage [2]. This evidence above mandates a novel VM I/O

sharing mechanism particularly for the SSD storage system,

which has been seldom studied in the literature. It would be

a future research problem to investigate VM I/O-sharing
solutions on the SSD-based storage or the hybrid storage

system of HDD and SSD in datacenters.

Sixth, a number of existing network-sharing solutions

(e.g., [76], [78], [79], [82], and [84]; refer to Table 7) are

based on the hose model, where all VMs are connected to a

nonblocking logical switch through dedicated network

connections. Although the hose model can simplify VM

networking abstractions, the network capacity of central
switches is unlikely to be infinite in practice. It has also

been shown that, even in a datacenter network with very

high bisection bandwidth, the network congestion can still

happen anywhere, i.e., network links or switches [95]. As a

result, the hose model does not quite conform to the

networks in real-world datacenters. How to develop a

realistic networking model, and then design a network-

sharing solution based on such a model, becomes one
potential research challenge. Furthermore, although ex-

isting network-sharing solutions have studied the VM

allocations with heterogeneous bandwidth demands (e.g.,

[84] and [85]), few of them have focused on sharing the

network resource among VMs in a heterogeneous hard-

ware environment, which apparently complicates the

bandwidth-sharing problem. Accordingly, how to design

an effective VM network-sharing solution under the
environment of heterogeneous physical servers, network

switches and links become a promising research topic.

Seventh, as revealed by an analysis of workload traces

in Google’s production datacenter, the computing resource

demands of cloud workloads are highly varying over short

time intervals. In addition, various kinds of workloads are

concurrently running in the datacenter. This evidence

undoubtedly makes the prediction of workload resource
demands much difficult [46]. Unfortunately, a number of

VM performance management solutions (e.g., [67] and

[84]) rely on an accurate prediction of workload resource

demands. In such an environment with heterogeneous and

dynamic workloads, how to design an effective resource

prediction technique for these workloads with a reasonable

prediction error becomes a compelling research problem.

In addition, the issue of VM performance overhead in a
heterogeneous hardware environment becomes more

severe and more complicated than that in a homogeneous

environment. For example, as for selecting the migration

destination server for a live VM migration or evaluating

the assignment of VMs to physical servers, the heteroge-

neity of physical servers should be taken into consider-

ation. As the hardware heterogeneity is likely to be

encountered in IaaS cloud datacenters, even within the
same type of Amazon EC2 instances [14], how to

incorporate the hardware heterogeneity into existing

solutions of managing VM performance overhead would

be an interesting problem.

Last but not least, the hybrid use of public and private

clouds will become a popular computing paradigm for

tenants in the near future [96]. We believe that the

research on managing VM performance overhead across
geodistributed datacenters will be enriched by the emerg-

ing applications or usages in the hybrid cloud, not limited to

the live WAN migration of VMs (Section IV-C). For

example, in the scenario of ‘‘cloud bursting’’ for an

enterprise [32], the synchronization of VMs between the

application service running in the local datacenter and the

replica service running in the public cloud is mandatory.

Such VM synchronization can generate a large amount of
data, including VM states, snapshots, or even virtual disk

images, thereby causing a significant amount of network

traffic to the other VMs running in clouds. Therefore, how

to alleviate such a heavy and intractable network load to

tenant VMs? Can existing solutions on live WAN migration

still handle such a network traffic problem? These

questions are practical future research problems on

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

28 Proceedings of the IEEE | Vol. 102, No. 1, January 2014

中国科技论文在线 http://www.paper.edu.cn

guaranteeing the performance of VMs across multiple
geodistributed datacenters.

V. CONCLUSION

As the trend of shifting the business service from the

private datacenter to the public IaaS cloud prevails, one of

the most important concerns of tenants lies in the

performance overhead (i.e., unpredictable performance)
of their leased VMs in the IaaS cloud. In this survey, we first

elaborate on the causes of VM performance overhead, from

the single-server virtualization, a single mega datacenter, to

multiple geodistributed datacenters. With a broad review
and a detailed comparison of the state-of-the-art ap-

proaches that manage the VM performance overhead in

the aforementioned three aspects, we further extract

fruitful insights into the benefits and costs of existing

solutions. Although the latest techniques are able to control

well the performance overhead of VMs in IaaS clouds, a

series of future research issues on the modeling methods

(Section III-C) and mitigation techniques (Section IV-D) of
VM performance overhead remain to be solved in order to

provide predictable performance of VMs and guarantee the

performance SLA of applications for tenants. h

RE FERENCES

[1] Amazon.com, Customer success. Powered by the
AWS Cloud. [Online]. Available: http://aws.
amazon.com/solutions/case-studies/.

[2] Amazon.com, Amazon elastic compute cloud
(Amazon EC2). [Online]. Available: http://
aws.amazon.com/ec2/.

[3] J. F. Gantz, S. Minton, and A. Toncheva, Cloud
computing’s role in job creation, Mar. 2012.
[Online]. Available: http://www.microsoft.
com/en-us/news/features/2012/mar12/
03-05cloudcomputingjobs.aspx.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. Katz, A. Konwinski, G. Lee, D. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia, ‘‘Above
the clouds: A Berkeley view of cloud
computing,’’ Univ. California at Berkeley,
Berkeley, CA, USA, Tech. Rep., Feb. 2009.

[5] J. Schad, J. Dittrich, and J.-A. Q.-Ruiz,
‘‘Runtime measurements in the cloud:
Observing, analyzing, and reducing variance,’’
Proc. VLDB Endowment, vol. 3, no. 1-2,
pp. 460–471, Sep. 2010.

[6] S. K. Barker and P. Shenoy, ‘‘Empirical
evaluation of latency-sensitive application
performance in the cloud,’’ in Proc. 1st Annu.
ACM SIGMM Conf. Multimedia Syst.,
Feb. 2010, pp. 35–46.

[7] G. Wang and T. S. E. Ng, ‘‘The impact of
virtualization on network performance of
Amazon EC2 data center,’’ in Proc. 29th Conf.
Inf. Commun., Mar. 2010, pp. 1163–1171.

[8] Xen Users’ Manual, Citrix Systems, Inc.,
University of Cambridge, U.K., XenSource Inc.,
IBM Corp., Hewlett-Packard Co., Intel Corp.,
AMD Inc., 2008. [Online]. Available: http://
bits.xensource.com/Xen/docs/user.pdf.

[9] P. Barham, B. Dragovic, K. Fraser,
S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, ‘‘Xen and the art of
virtualization,’’ in Proc. 19th ACM Symp. Oper.
Syst. Principles, Oct. 2003, pp. 164–177.

[10] D. Novakovic, N. Vasic, S. Novakovic,
D. Kostic, and R. Bianchini, ‘‘DeepDive:
Transparently identifying and managing
performance interference in virtualized
environments,’’ in Proc. Annu. Tech. Conf.,
Jun. 2013, pp. 219–230.

[11] A. Li, X. Yang, S. Kandula, and M. Zhang,
‘‘CloudCmp: Comparing public cloud
providers,’’ in Proc. 10th ACM SIGCOMM Conf.
Internet Meas., Nov. 2010, DOI: 10.1145/
1879141.1879143.

[12] Windows Azure. [Online]. Available: http://
www.windowsazure.com/

[13] The Rackspace Cloud. [Online]. Available:
http://www.rackspace.com/

[14] Z. Ou, H. Zhuang, J. K. Nurminen,
A. Y.-Jaaski, and P. Hui, ‘‘Exploiting hardware
heterogeneity within the same instance type

of Amazon EC2,’’ in Proc. 4th USENIX Conf.
Hot Topics Cloud Comput., Jun. 2012.

[15] B. Farley, V. Varadarajan, K. D. Bowers,
A. Juels, T. Ristenpart, and M. M. Swift,
‘‘More for your money: Exploiting
performance heterogeneity in public clouds,’’
in Proc. 3rd ACM Symp. Cloud Comput.,
Oct. 2012, DOI: 10.1145/2391229.2391249.

[16] S. Govindan, J. Liu, A. Kansal, and
A. Sivasubramaniam, ‘‘Cuanta: Quantifying
effects of shared on-chip resource
interference for consolidated virtual
machine,’’ in Proc. 2nd ACM Symp. Cloud
Comput., Oct. 2011, DOI: 10.1145/2038916.
2038938.

[17] SPEC CPU2006. [Online]. Available: http://
www.spec.org/cpu2006/

[18] H. Lv, Y. Dong, J. Duan, and K. Tian,
‘‘Virtualization challenges: A view from server
consolidation perspective,’’ in Proc. 8th ACM
SIGPLAN/SIGOPS Conf. Virtual Execution
Environ., Mar. 2012, pp. 15–26.

[19] Q. Zhu, J. Zhu, and G. Agrawal, ‘‘Power-aware
consolidation of scientific workflows in
virtualized environments,’’ in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal.,
Nov. 2010, DOI: 10.1109/SC.2010.43.

[20] J. Dean and S. Ghemawat, ‘‘MapReduce:
Simplified data processing on large clusters,’’
Commun. ACM, vol. 51, no. 1, pp. 107–113,
Jan. 2008.

[21] C. Clark, K. Fraser, S. Hand, J. G. Hansen,
E. Jul, C. Limpach, I. Pratt, and A. Warfield,
‘‘Live migration of virtual machines,’’ in Proc.
2nd Conf. Symp. Netw. Syst. Design Implement.,
May 2005, vol. 2, pp. 273–286.

[22] G. Jung, K. R. Joshi, M. A. Hiltunen,
R. D. Schlichting, and C. Pu, ‘‘A cost-sensitive
adaptation engine for server consolidation of
multitier applications,’’ Middleware 2009,
Lecture Notes in Computer Science.
Berlin, Germany: Springer-Verlag, Dec. 2009,
vol. 5896, pp. 163–183.

[23] E. Cecchet, A. Chanda, S. Elnikety,
J. Marguerite, and W. Zwaenepoel,
‘‘Performance comparison of middleware
architectures for generating dynamic web
content,’’ in Proc. ACM/IFIP/USENIX Int. Conf.
Middleware, Jun. 2003, pp. 242–261.

[24] U. Deshpande, X. Wang, and K. Gopalan,
‘‘Live gang migration of virtual machines,’’ in
Proc. 20th Int. Symp. High Perform. Distrib.
Comput., Jun. 2011, pp. 135–146.

[25] B. Nicolae, J. Bresnahan, K. Keahey, and
G. Antoniu, ‘‘Going back and forth: Efficient
multideployment and multisnapshotting on
clouds,’’ in Proc. 20th Int. Symp. High Perform.
Distrib. Comput., Jun. 2011, pp. 147–158.

[26] J. Reich, O. Laadan, E. Brosh, A. Sherman,
V. Misra, J. Nieh, and D. Rubenstein,
‘‘VMTorrent: Scalable P2P virtual machine

streaming,’’ in Proc. 8th Int. Conf. Emerging
Netw. Exp. Technol., Dec. 2012, pp. 286–300.

[27] Amazon.com, Amazon elastic block store (EBS).
[Online]. Available: http://aws.amazon.com/
ebs/.

[28] A. Shieh, S. Kandula, A. Greenberg, C. Kim,
and B. Saha, ‘‘Sharing the data center
network,’’ in Proc. 8th USENIX Conf. Netw.
Syst. Design Implement., Mar. 2011, p. 23.

[29] Gartner, Inc., Gartner outlines five cloud
computing trends that will affect cloud strategy
through 2015, Apr. 2012. [Online]. Available:
http://www.gartner.com/newsroom/id/
1971515.

[30] Gartner, Inc., Gartner says nearly half of large
enterprises will have hybrid cloud deployments
by the end of 2017, Oct. 2013. [Online].
Available: http://www.gartner.com/
newsroom/id/2599315.

[31] Amazon.com, Amazon virtual private cloud
(Amazon VPC). [Online]. Available: http://
aws.amazon.com/vpc/.

[32] T. Wood, P. Shenoy, K. K. Ramakrishnan, and
J. V. der Merwe, ‘‘CloudNet: Dynamic pooling
of cloud resources by live WAN migration of
virtual machines,’’ in Proc. 7th ACM SIGPLAN/
SIGOPS Int. Conf. Virtual Execution Environ.,
Jun. 2011, pp. 121–132.

[33] R. Bradford, E. Kotsovinos, A. Feldmann, and
H. Schioberg, ‘‘Live wide-area migration of
virtual machines including local persistent
state,’’ in Proc. 3rd Int. Conf. Virtual Execution
Environ., Jun. 2007, pp. 169–179.

[34] M. G. Kendall and A. Stuart, Eds., The
Advanced Theory of Statistics. London,
U.K.: Charles Griffin, 1973.

[35] Q. Zhu and T. Tung, ‘‘A performance
interference model for managing consolidated
workloads in QoS-aware clouds,’’ in Proc.
5th Int. Conf. Cloud Comput., Mar. 2012,
pp. 170–179.

[36] Y. Koh, R. Knauerhase, P. Brett, M. Bowman,
Z. Wen, and C. Pu, ‘‘An analysis of
performance interference effects in virtual
environments,’’ in Proc. Int. Symp. Perform.
Anal. Syst. Softw., Apr. 2007, pp. 200–209.

[37] R. C. Chiang and H. H. Huang, ‘‘TRACON:
Interference-aware scheduling for
data-intensive applications in virtualized
environments,’’ in Proc. Int. Conf. High
Perform. Comput. Netw. Storage Anal.,
Nov. 2011, DOI: 10.1145/2063384.2063447.

[38] X. Bu, J. Rao, and C.-Z. Xu, ‘‘Interference and
locality-aware task scheduling for MapReduce
applications in virtual clusters,’’ in Proc. 22nd
Int. Symp. High Perform. Distrib. Comput.,
Jun. 2013, pp. 227–238.

[39] R. Nathuji, A. Kansal, and A. Ghaffarkhah,
‘‘Q-Clouds: Managing performance
interference effects for QoS-aware clouds,’’ in

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

Vol. 102, No. 1, January 2014 | Proceedings of the IEEE 29

中国科技论文在线 http://www.paper.edu.cn

Proc. 5th Eur. Conf. Comput. Syst., Apr. 2010,
pp. 237–250.

[40] Y. Wu and M. Zhao, ‘‘Performance modeling
of virtual machine live migration,’’ in Proc.
IEEE 4th Int. Conf. Cloud Comput., Jul. 2011,
pp. 492–499.

[41] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes,
‘‘CloudScale: Elastic resource scaling for
multi-tenant cloud systems,’’ in Proc. 2nd ACM
Symp. Cloud Comput., Oct. 2011, DOI: 10.
1145/2038916.2038921.

[42] S. Akoush, R. Sohan, A. Rice, A. W. Moore,
and A. Hopper, ‘‘Predicting the performance
of virtual machine migration,’’ in Proc. IEEE
Int. Symp. Model. Anal. Simul. Comput.
Telecommun. Syst., Aug. 2010, pp. 37–46.

[43] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao,
‘‘Performance and energy modeling for live
migration of virtual machines,’’ in Proc. 20th
Int. Symp. High Perform. Distrib. Comput.,
Jun. 2011, pp. 171–182.

[44] S.-H. Lim, J.-S. Huh, Y. Kim, and C. R. Das,
‘‘Migration, assignment, and scheduling of
jobs in virtualized environment,’’ in Proc. 3rd
USENIX Conf. Hot Topics Cloud Comput.,
Jun. 2011.

[45] D. Breitgand, G. Kutiel, and D. Raz,
‘‘Cost-aware live migration of services in
the cloud,’’ in Proc. 11th USENIX Conf. Hot
Topics Manage. Internet Cloud Enterprise Netw.
Services, Mar. 2011.

[46] C. Reiss, A. Tumanov, G. R. Ganger,
R. H. Katz, and M. A. Kozuch, ‘‘Heterogeneity
and dynamicity of clouds at scale: Google trace
analysis,’’ in Proc. 3rd ACM Symp. Cloud Comput.,
Oct. 2012, DOI: 10.1145/2391229.2391236.

[47] F. Xu, F. Liu, L. Liu, H. Jin, B. Li, and B. Li,
‘‘iAware: Making live migration of virtual
machines interference-aware in the cloud,’’
IEEE Trans. Comput., 2013, DOI: 10.1109/TC.
2013.185.

[48] A. Gulati, G. Shanmuganathan, I. Ahmad,
C. Waldspurger, and M. Uysal, ‘‘Pesto: Online
storage performance management in
virtualized datacenters,’’ in Proc. 2nd ACM
Symp. Cloud Comput., Oct. 2011, DOI: 10.
1145/2038916.2038935.

[49] H. Ballani, P. Costa, T. Karagiannis, and
A. Rowstron, ‘‘Towards predictable datacenter
networks,’’ in Proc. ACM SIGCOMM Conf.,
Aug. 2011, pp. 242–253.

[50] X. Zhang, S. Dwarkadas, and K. Shen,
‘‘Towards practical page coloring-based
multicore cache management,’’ in Proc. 4th
ACM Eur. Conf. Comput. Syst., Mar. 2009,
pp. 89–102.

[51] D. Boutcher and A. Chandra, ‘‘Does
virtualization make disk scheduling pass?’’ in
Proc. HotStorage, Oct. 2009, pp. 20–24.

[52] F. Blagojevic, C. Guyot, Q. Wang, T. Tsai,
R. Mateescu, and Z. Bandic, ‘‘Priority IO
scheduling in the cloud,’’ in Proc. USENIX
Conf. Hot Topics Cloud Comput., Jun. 2013,
pp. 1–6.

[53] Wikipedia, Temporal isolation among virtual
machines. [Online]. Available: http://en.
wikipedia.org/wiki/Temporal_isolation_
among_virtual_machines.

[54] S. Radhakrishnan, V. Jeyakumar, A. Kabbani,
G. Porter, and A. Vahdat, ‘‘NicPic: Scalable
and accurate end-host rate limiting,’’ in Proc.
USENIX Conf. Hot Topics Cloud Comput.,
Jun. 2013, pp. 7–12.

[55] J. Ahn, C. Kim, J. Han, Y.-R. Choi, and J. Huh,
‘‘Dynamic virtual machine scheduling in
clouds for architectural shared resources,’’ in
Proc. 4th USENIX Conf. Hot Topics Cloud
Comput., Jun. 2012, p. 19.

[56] Y. Xu, Z. Musgrave, B. Noble, and M. Bailey,
‘‘Bobtail: Avoiding long tails in the cloud,’’ in
Proc. 10th USENIX Conf. Netw. Syst. Design
Implement., Apr. 2013, pp. 329–342.

[57] H. Jin, L. Deng, S. Wu, X. Shi, and X. Pan,
‘‘Live virtual machine migration with adaptive
memory compression,’’ in Proc. Int. Conf.
Cluster Comput. Workshops, Sep. 2009,
DOI: 10.1109/CLUSTR.2009.5289170.

[58] A. Koto, H. Yamada, K. Ohmura, and K. Kono,
‘‘Towards unobtrusive VM live migration for
cloud computing platforms,’’ in Proc.
Asia-Pacific Workshop Syst., Jul. 2012,
DOI: 10.1145/2349896.2349903.

[59] J.-H. Chiang, H.-L. Li, and T. C. Chiueh,
‘‘Introspection-based memory de-duplication
and migration,’’ in Proc. 9th ACM SIGPLAN/
SIGOPS Int. Conf. Virtual Execution Environ.,
Mar. 2013, pp. 51–62.

[60] P. Svard, B. Hudzia, J. Tordsson, and
E. Elmroth, ‘‘Evaluation of Delta compression
techniques for efficient live migration of large
virtual machines,’’ in Proc. 7th ACM SIGPLAN/
SIGOPS Int. Conf. Virtual Execution Environ.,
Mar. 2011, pp. 111–120.

[61] H. Liu, H. Jin, X. Liao, L. Hu, and C. Yu, ‘‘Live
migration of virtual machine based on full
system trace and replay,’’ in Proc. 18th ACM
Int. Symp. High Perform. Distrib. Comput.,
Jun. 2009, pp. 101–110.

[62] C. Jo, E. Gustafsson, J. Son, and B. Egger,
‘‘Efficient live migration of virtual machines
using shared storage,’’ in Proc. 9th ACM
SIGPLAN/SIGOPS Int. Conf. Virtual Execution
Environ., Mar. 2013, pp. 41–50.

[63] X. Song, J. Shi, R. Liu, J. Yang, and H. Chen,
‘‘Parallelizing live migration of virtual
machines,’’ in Proc. ACM SIGPLAN/SIGOPS
Int. Conf. Virtual Execution Environ.,
Mar. 2013, pp. 85–96.

[64] C. Peng, M. Kim, Z. Zhang, and H. Lei,
‘‘VDN: Virtual machine image distribution
network for cloud data centers,’’ in Proc. IEEE
INFOCOM, Mar. 2012, pp. 181–189.

[65] K. Razavi and T. Kielmann, ‘‘Scalable virtual
machine deployment using VM image
caches,’’ in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., Nov. 2013, p. 65.

[66] A. Gulati, I. Ahmad, and C. A. Waldspurger,
‘‘PARDA: Proportional allocation of resources
for distributed storage access,’’ in Proc.
7th Conf. File Storage Technol., Feb. 2009,
pp. 85–98.

[67] A. Gulati, G. Shanmuganathan, X. Zhang, and
P. Varman, ‘‘Demand based hierarchical QoS
using storage resource pools,’’ in Proc. Annu.
USENIX Tech. Conf., Jun. 2012, pp. 1–13.

[68] D. Shue, M. J. Freedman, and A. Shaikh,
‘‘Performance isolation and fairness for
multi-tenant cloud storage,’’ in Proc. 10th
USENIX Conf. Operat. Syst. Design Implement.,
Oct. 2012, pp. 349–362.

[69] V. Tarasov, D. Jain, D. Hildebrand, R. Tewari,
G. Kuenning, and E. Zadok, ‘‘Improving I/O
performance using virtual disk introspection,’’
in Proc. 5th USENIX Conf. Hot Topics Storage
File Syst., Jun. 2013, p. 11.

[70] G. Soundararajan and C. Amza, ‘‘Towards
end-to-end quality of service: Controlling I/O
interference in shared storage servers,’’ in
Proc. 9th ACM/IFIP/USENIX Int. Conf.
Middleware, Dec. 2008, pp. 287–305.

[71] A. Povzner, D. Sawyer, and S. Brandt,
‘‘Horizon: Efficient deadline-driven disk I/O
management for distributed storage systems,’’
in Proc. 19th ACM Int. Symp. High Perform.
Distrib. Comput., Jun. 2010, DOI: 10.1145/
1851476.1851478.

[72] D. Skourtis, S. Kato, and S. Brandt, ‘‘QBox:
Guaranteeing I/O performance on black box
storage systems,’’ in Proc. 21st Int. Symp.
High Perform. Distrib. Comput., Jun. 2012,
pp. 73–84.

[73] N. Park, I. Ahmad, and D. J. Lilja, ‘‘Romano:
Autonomous storage management using
performance prediction in multi-tenant
datacenters,’’ in Proc. 3rd ACM Symp. Cloud
Comput., Oct. 2012, DOI: 10.1145/2391229.
2391250.

[74] Z. Chen, Y. Zhao, X. Miao, Y. Chen, and
Q. Wang, ‘‘Rapid provisioning of cloud
infrastructure leveraging peer-to-peer
networks,’’ in Proc. 29th IEEE Int. Conf.
Distrib. Comput. Syst. Workshops, Jun. 2009,
pp. 324–329.

[75] S. Bazarbayev, M. Hiltunen, K. Joshi,
W. H. Sanders, and R. Schlichting,
‘‘Content-based scheduling of virtual
machines (VMs) in the cloud,’’ in Proc. IEEE
33rd Int. Conf. Distrib. Comput. Syst., Nov.
2013, pp. 1–10.

[76] V. Jeyakumar, M. Alizadeh, D. Mazieres,
B. Prabhakar, C. Kim, and A. Greenberg,
‘‘EyeQ: Practical network performance
isolation at the edge,’’ in Proc. 10th USENIX
Conf. Netw. Syst. Design Implement., Apr. 2013,
pp. 297–312.

[77] H. Ballani, K. Jang, T. Karagiannis, C. Kim,
D. Gunawardena, and G. O’Shea, ‘‘Chatty
tenants and the cloud network sharing
problem,’’ in Proc. 10th USENIX Conf.
Netw. Syst. Design Implement., Apr. 2013,
pp. 171–184.

[78] L. Popa, P. Yalagandula, S. Banerjee,
J. C. Mogul, Y. Turner, and J. R. Santos,
‘‘ElasticSwitch: Practical work-conserving
bandwidth guarantees for cloud computing,’’
in Proc. ACM SIGCOMM Conf., Aug. 2013,
pp. 351–362.

[79] L. Popa, G. Kumar, M. Chowdhury,
A. Krishnamurthy, S. Ratnasamy, and I. Stoica,
‘‘FairCloud: Sharing the network in cloud
computing,’’ in Proc. SIGCOMM, Aug. 2012,
pp. 187–198.

[80] J. Guo, F. Liu, H. Tang, Y. Lian, H. Jin, and
J. C. Lui, ‘‘Falloc: Fair network bandwidth
allocation in IaaS datacenters via a bargaining
game approach,’’ in Proc. IEEE Int. Conf. Netw.
Protocols, Oct. 2013, pp. 1–9.

[81] J. Guo, F. Liu, D. Zeng, J. C. Lui, and H. Jin,
‘‘A cooperative game based allocation for
sharing data center networks,’’ in Proc. IEEE
INFOCOM, Apr. 2013, pp. 2139–2147.

[82] H. Rodrigues, J. R. Santos, Y. Turner,
P. Soares, and D. Guedes, ‘‘Gatekeeper:
Supporting bandwidth guarantees for
multi-tenant datacenter networks,’’ in Proc.
3rd Conf. I/O Virtualiz., Jun. 2011.

[83] J.-P. Billaud and A. Gulati, ‘‘hClock:
Hierarchical QoS for packet scheduling in a
hypervisor,’’ in Proc. 8th ACM Eur. Conf.
Comput. Syst., Apr. 2013, pp. 309–322.

[84] D. Xie, N. Ding, Y. C. Hu, and R. Kompella,
‘‘The only constant is change: Incorporating
time-varying network reservations in data
centers,’’ in Proc. ACM SIGCOMM Conf. Appl.
Technol. Architect. Protocols Comput. Commun.,
Aug. 2012, pp. 199–210.

[85] J. Zhu, D. Li, J. Wu, H. Liu, Y. Zhang, and
J. Zhang, ‘‘Towards bandwidth guarantee in
multi-tenancy cloud computing networks,’’ in
Proc. 20th IEEE Int. Conf. Netw. Protocols,
Nov. 2012, DOI: 10.1109/ICNP.2012.
6459986.

[86] G. Kumar, S. Kandula, P. Bodik, and
I. Menache, ‘‘Virtualizing traffic shapers for
practical resource allocation,’’ in Proc.

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

30 Proceedings of the IEEE | Vol. 102, No. 1, January 2014

中国科技论文在线 http://www.paper.edu.cn

USENIX Conf. Hot Topics Cloud Comput.,
Jun. 2013, pp. 13–18.

[87] J. F. Nash, ‘‘The bargaining problem,’’
Econometrica, vol. 18, no. 2, pp. 155–162, 1950.

[88] S. Akiyama, T. Hirofuchi, R. Takano, and
S. Honiden, ‘‘Fast wide area live migration
with a low overhead through page cache
teleportation,’’ in Proc. 13th IEEE/ACM Int.
Symp. Cluster Cloud Grid Comput., May 2013,
pp. 78–82.

[89] S. A.-Kiswany, D. Subhraveti, P. Sarkar, and
M. Ripeanu, ‘‘VMFlock: Virtual machine
co-migration for the cloud,’’ in Proc. 20th Int.
Symp. High Perform. Distrib. Comput.,
Jun. 2011, pp. 159–170.

[90] A. Mashtizadeh, E. Celebi, T. Garfinkel, and
M. Cai, ‘‘The design and evolution of live

storage migration in VMware ESX,’’ in Proc.
ATC, Jun. 2011, p. 14.

[91] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh,
and S. Sekiguchi, ‘‘A live storage migration
mechanism over WAN for relocatable virtual
machine services on clouds,’’ in Proc. 9th
IEEE/ACM Int. Symp. Cluster Comput. Grid,
May 2009, pp. 460–465.

[92] B. Nicolae and F. Cappello, ‘‘A hybrid local
storage transfer scheme for live migration of
I/O intensive workloads,’’ in Proc. 21st Int.
Symp. High Perform. Distrib. Comput.,
Jun. 2012, pp. 85–96.

[93] J. Zheng, T. S. E. Ng, and K. Sripanidkulchai,
‘‘Workload-aware live storage migration for
clouds,’’ in Proc. 7th ACM SIGPLAN/SIGOPS
Int. Conf. Virtual Execution Environ., Jun. 2011,
pp. 133–144.

[94] C. Metz, ‘‘Flash drives replace disks at
Amazon, Facebook, Dropbox,’’ Wired,
Jun. 13, 2012. [Online]. Available: http://
www.wired.com/wiredenterprise/2012/06/
flash-data-centers/.

[95] V. Jeyakumar, M. Alizadeh, D. Mazieres,
B. Prabhakar, and C. Kim, ‘‘EyeQ: Practical
network performance isolation for the
multi-tenant cloud,’’ in Proc. 4th USENIX Conf.
Hot Topics Cloud Comput., Jun. 2012.

[96] L. Schlesinger, ‘‘Cloud strategists weigh in:
Top trends in cloud computing,’’ Right Scale
Cloud Computing, Santa Barbara, CA,
USA, Jul. 2013. [Online]. Available: http://
www.rightscale.com/blog/cloud-industry-
insights/cloud-strategists-weigh-top-trends-
cloud-computing.

ABOUT T HE AUTHO RS

Fei Xu is currently working toward the Ph.D.

degree in computer science and technology at the

School of Computer Science and Technology,

Huazhong University of Science and Technology,

Wuhan, China.

His current research interests focus on cloud

computing and virtualization technology.

Fangming Liu (Member, IEEE) received the B.Eng.

degree in computer science and technology from

the Department of Computer Science and Tech-

nology, Tsinghua University, Beijing, China, in

2005 and the Ph.D. degree in computer science

and engineering from the Hong Kong University of

Science and Technology, Hong Kong, in 2011.

He is an Associate Professor in the School of

Computer Science and Technology, Huazhong

University of Science and Technology, Wuhan,

China. Since 2012, he has been a StarTrack Visiting Young Faculty

member in Microsoft Research Asia (MSRA), Beijing, China. From 2009 to

2010, he was a Visiting Scholar at the Department of Electrical and

Computer Engineering, University of Toronto, Toronto, ON, Canada. His

research interests include cloud computing and datacenter networking,

mobile cloud, green computing and communications, software-defined

networking and virtualization technology, large-scale Internet content

distribution, and video streaming systems.

Prof. Liu was named the CHUTIAN Scholar of Hubei Province, China.

He is the Youth Scientist of the National 973 Basic Research Program

Project on Software-defined Networking (SDN)-based Cloud Datacenter

Networks, which is one of the largest SDN projects in China. He was the

recipient of two Best Paper Awards from the 2011 IEEE Global

Communications Conference, Exhibition, and Industry Forum (GLOBECOM)

and the 2012 IEEE International Conference on Cloud Computing Technology

and Science (CloudCom). He is a member of the Association for Computing

Machinery (ACM) and the China Computer Federation (CCF) Internet

Technical Committee. He was a Guest Editor for the IEEE NETWORK MAGAZINE

and an Associate Editor for Frontiers of Computer Science, and served as the

Technical Program Committee (TPC) member for the 2013–2014 IEEE

International Conference on Computer Communications (INFOCOM) and

the 2012–2013 GLOBECOM Conference.

Hai Jin (Senior Member, IEEE) received the Ph.D.

degree in computer engineering from the Huazhong

University of Science and Technology (HUST),

Wuhan, China, in 1994.

He is a Cheung Kung Scholars Chair Professor

of Computer Science and Engineering at HUST. He

is now the Dean of the School of Computer Science

and Technology at HUST. He worked at the

University of Hong Kong, Hong Kong, between

1998 and 2000, and as a Visiting Scholar at the

University of Southern California, Los Angeles, CA, USA, between 1999

and 2000. His research interests include computer architecture,

virtualization technology, cluster computing and grid computing, peer-

to-peer computing, network storage, and network security.

Prof. Jin was awarded a German Academic Exchange Service

fellowship to visit the Technical University of Chemnitz, Chemnitz,

Germany, in 1996. He was awarded the Excellent Youth Award from the

National Science Foundation of China in 2001. He is the Chief Scientist of

ChinaGrid, the largest grid computing project in China, and the Chief

Scientist of the National 973 Basic Research Program Project of

Virtualization Technology of Computing Systems. He is a member of

the Association for Computing Machinery (ACM).

Athanasios V. Vasilakos (Senior Member, IEEE)

received the B.S. degree in electrical and comput-

er engineering from the University of Thrace,

Xanthi, Greece, in 1983, the M.S. degree in

computer engineering from the University of

Massachusetts, Amherst, MA, USA, in 1986, and

the Ph.D. degree in computer engineering from

the University of Patras, Patras, Greece, in 1988.

He is currently a Professor in the Department of

Computer Science and Engineering, Kuwait Univer-

sity, Safat, Kuwait. He has authored or coauthored over 250 technical papers

in major international journals and conferences. He is the author/coauthor

of five books and 20 book chapters in the areas of communications.

Prof. Vasilakos has served as the General Chair and the Technical

Program Committee Chair for many international conferences. He has

served or is serving as an Editor or/and Guest Editor for many technical

journals, such as the IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT,

the IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON SYSTEMS, MAN,

AND CYBERNETICSVPART B: CYBERNETICS, the IEEE TRANSACTIONS ON INFORMATION

TECHNOLOGY IN BIOMEDICINE, the ACM Transactions on Autonomous and

Adaptive Systems, and the IEEE JOURNAL ON SELECTEDAREAS IN COMMUNICATIONS

special issues inMay 2009, January 2011, andMarch 2011. He is the founding

Editor-in-Chief of the International Journal of Adaptive and Autonomous

Communications Systems and the International Journal of Arts and

Technology. He is the Chairman of the Council of Computing of the European

Alliances for Innovation.

Xu et al. : Managing Performance Overhead of Virtual Machines in Cloud Computing

Vol. 102, No. 1, January 2014 | Proceedings of the IEEE 31

中国科技论文在线 http://www.paper.edu.cn

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

