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Abstract—Virtual tourism is a novel trend that enhances
the experience the users perceive from touristic places, such
as archaeological sites. Drones are equipped with 360o video
cameras and used for video capturing of the heritage sites. The
video material is streamed to the users in real time, enriched
with additional 3D, Augmented Reality (AR) or Mixed Reality
(MR) material. Furthermore, the selection of the appropriate
flying route for each drone should be performed, in order to
provide a satisfactory tour experience to the user, considering his
preferences about specific monuments. To address this issue, this
paper describes a heritage route selection scheme for supporting
real-time virtual tours in sites with cultural interest using drones.
The proposed scheme applies a Fuzzy Multiple Attribute Decision
Making (FMADM) algorithm, the Trapezoidal Fuzzy Topsis
for Heritage Route Selection (TFT-HRS), to accomplish the
ranking of the candidate heritage routes. The algorithm uses
Interval-Valued Trapezoidal Fuzzy Numbers (IVTFN) for the
representation of heritage routes evaluation values. Performance
evaluation shows that the suggested method produces better
results compared to the Fuzzy Topsis (FTOPSIS) by selecting
the most appropriate flying route for the drone.

I. INTRODUCTION

Virtual tourism [1] is a novel paradigm that reduces time
or spatial limitations of real tourism and provides touristic
experience to users. Services such as 360o video streaming
[2], 3D animation [3], Augmented Reality (AR) [4] and Mixed
Reality (MR) [5] are used to construct a totally virtual world
for the user. In this field, drones [6] equipped with 360o

cameras are used for the video capture of the touristic place.
Thereafter, the video material is enriched with 3D, AR or MR
material and streamed to users in real time [7] .

The application of virtual tour services to heritage sites [8]
has obtained increased interest. Drones can provide us with
real time images with a totally new perspective, the ”bird’s
eye view”, that is going to change not only what we see but
also how we perceive and think about tangible heritage and
physical environment. In recent implementations, the drone
interacts with a Fifth Generation (5G) [9] mobile infrastructure
to obtain access to plenty of networking, computational and
storage resources. Indicatively, the enriched 360o video is
streamed to the user through a 5G Mobile Edge Computing

(MEC) or Fog [10][11] infrastructure, which assures the
satisfaction of its constraints in Quality of Service (QoS)
related factors such as throughput, delay, jitter and packet loss.
The 5G infrastructure could support heterogeneous network
access technologies, such as the 3GPP Long Term Evolution
Advanced (LTE-A) [12], the IEEE 802.11p Wireless Access
for Vehicular Environment (WAVE) [13] RSUs and the IEEE
802.16 WiMAX [14].

Each drone is remotely controlled by the user or, in more ad-
vanced implementations, it is autonomous navigated [15][16]
using its own Artificial Intelligence (AI) [17]. A critical task
of the autonomous navigation service is the selection of the
most appropriate flying route for the drone, while factors such
as Points of Interest (PoIs) [18], user preferences or wireless
networks availability could be considered. Specifically, in
heritage sites where multiple monument types exist, the user
preference for each type should be considered, in order the
most appropriate flying route to be selected for the drone.

Virtual tours with drones can be used in numerous cases
dealing with protection, preservation and enhancement of
tangible heritage, as well as servicing special groups of people,
i.e. elderly, children, persons with disabilities that can not
reach the inaccessible monuments. Some of the potential uses
of the proposed virtual tours in this paper are the following:

• Emergency, i.e. in case of fire, earthquake or flood the
local administration can have a short-time check of the
potentially harmed monuments

• Typical Control, i.e. regular control of the heritage sites
dealing with everyday problems like checking the vege-
tation in archaeological sites or monitoring inaccessible
monuments.

• Shared Experience, i.e. groups of visitors can be provided
simultaneously real time experience either by accessing
a monument or not.

• Selective Visit, i.e visitors will have the opportunity to
visit virtually an amount of monuments of an area but
due to time limit they will be able to choose a physical
tour in one or two of them.
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• Educational Purpose, i.e. visitors of areas of natural
beauty like lakes, rivers, and canyons will be able to have
an holistic experience of the sites including inaccessible
spots or monuments.

In general, Multi Attribute Decision Making (MADM)
methods are used to select the best alternative among can-
didate routes. MADM algorithms are able to evaluate differ-
ent alternatives, sometimes even contradictory, using multi-
criteria analysis. Widely used methods include the Analytic
Hierarchy Process (AHP) [19] [20], the Analytic network
process (ANP) [21], the Simple Additive Weighting (SAW)
[20][22],the Multiplicative Exponent Weighting (MEW) [20],
the Gray Relational Analysis (GRA) [20], the Distance to Ideal
Alternative (DIA) [20], the Weighted Product Method (WPM)
[23] and the Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS) [24]. Furthermore, various weighting
methods are used, in order to provide suitable criteria weights
for each alternative. It should also be noted that there is a rate
of uncertainty in evaluating the monuments in each heritage
route. Therefore, Fuzzy MADM (FMADM) methods have
received the interest of many researchers in decision theory.
In particular, several FMADM methods are proposed utiliz-
ing linguistic variables, triangular fuzzy numbers, trapezoidal
fuzzy numbers etc. to evaluate heritage routes. Such methods
include the Fuzzy AHP - SAW (FAS) [25], the Fuzzy TOPSIS
(FTOPSIS) [26], the Fuzzy AHP - TOPSIS (FAT) [27], the
Fuzzy AHP - SAW (FAS) [27], the Fuzzy AHP Mew (FAM)
[27], as well as the Fuzzy AHP - ELECTRE (FAE) [28].

This paper describes a heritage route selection scheme for
supporting real-time virtual tours in heritage sites using drones.
It uses two algorithms, the Analytic Network Process (ANP)
to model the user preferences about monument types and
the Trapezoidal Fuzzy Topsis for Heritage Route Selection
(TFT-HRS) to accomplish the ranking of the candidate flying
routes, considering the aforementioned user preferences. The
TFT-HRS algorithm uses Interval-Valued Trapezoidal Fuzzy
Numbers (IVTFN) for the representation of heritage routes’
evaluation values.

The rest paper is organized as follows: Section II describes
the proposed scheme, while Section III presents the simulation
setup and the evaluation results. Finally, section IV concludes
the discussed work.

II. THE PROPOSED HERITAGE ROUTE SELECTION SCHEME

A. The Analytic Network Process (ANP)
The Analytic Network Process (ANP) was introduced by

Saaty [29] to deal with decision problems that criteria and
alternatives depend on each other. ANP is actually the gen-
eralization of the AHP. A decision problem that is analyzed
with the ANP can be designed either as a control-hierarchy or
as a non-hierarchical network. Nodes of the network represent
components (or clusters) of the system while arcs denote inter-
actions between them. All interactions and feedbacks within
clusters are called inner dependencies, while interactions and
feedbacks between clusters are called outer dependencies. The
ANP is composed of four major steps [30]:

a) Model construction and problem structuring: During
this step the problem is analyzed and decomposed into a
rational system, like a network .

b) Pairwise comparison matrices and priority vectors:
During this step, the pairwise comparison matrix, as in AHP,
is derived using Saatys nine-point importance scale (Table I).

TABLE I: Nine-point importance scale.

Importance Definition
1 Equal Importance
3 Moderate Importance
5 Strong Importance
7 Very Strong Importance
9 Extreme Importance

2, 4, 6, 8 Intermediate Values

c) Supermatrix formation: During this step, matrix, su-
permatrix of the ANP model is constructed to represent the
inner and outer dependencies of the network. It is actually
a partitioned matrix, where each matrix segment represents a
relationship between two clusters in the network. To contrust
the supermatrix the local priority vectors obtained in Step
2 are grouped and placed in the appropriate positions in a
supermatrix based on the flow of influence from one cluster
to another, or from a cluster to itself, as in the loop. Then, the
supermatrix is transformed to a stochastic one,the weighted
supermatrix. Finally, the weighted supermatrix is raised to
limiting powers until all the entries converge to calculate the
overall priorities, and thus the cumulative influence of each
element on every other element with which it interacts is
obtained [31]. At this point, all the columns of the new matrix,
the limit supermatrix, are the same and their values show the
global priority of each element of network.

For example if we assume a network with n clusters, where
each cluster Qk, k = 1, 2, , n, and has mn elements, denoted
as qk1, qk2, , qkmk

, then the standard form for a supermatrix
can be expressed as:

W =

Q1 ... Qk ... Qn
q11...q1m1

... qk1...qkmk
... qn1...qnmn
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d) Obtain the priority weights: If the supermatrix formed
in Step 3 covers the whole network, then the priority weights
of the alternatives can be found in the column of alternatives in
the normalized supermatrix. Otherwise, additional calculations
using matrix operations are required, in order to obtain the
overall priorities of the alternatives.



B. The Trapezoidal Fuzzy Topsis for Heritage Route Selection
(TFT-HRS)

The Trapezoidal Fuzzy Topsis for Heritage Route Se-
lection (TFT-HRS) is used to accomplish the ranking of
candidate heritage routes. Interval-Valued Trapezoidal Fuzzy
Numbers (IVTFN) [32] are used for the representation of
heritage routes’ evaluation values. An IVTFN, is a gen-
eral form of fuzzy number and can be represented as:
ã = [ãL, ãU ] = [(aL1 , a

L
2 , a

L
3 , a

L
4 , v

L), (aU1 , a
U
2 , a

U
3 , a

U
4 , v

U ))]
where: 0 ≤ aL1 ≤ aL2 ≤ aL3 ≤ aL4 ≤ 1, 0 ≤ aU1 ≤ aU2 ≤ aU3 ≤
aU4 ≤ 1, 0 ≤ vL ≤ vU ≤ 1 and ãL ⊂ ãU . The operational
rules of the IVTFNs are defined in [32].

The candidate heritage routes are ranked using the TFT-
HRS method, which adjusts the TFT [33] network selection
algorithm, in order route selection to be performed. Similar
to TFT, TFT-HRS is based on the concept that the best
alternative should have the shortest distance from the positive
ideal solution and the longest distance from the negative
ideal solution. Also, it assumes that the linguistic values of
criteria attributes (e.g. user preferences about specific monu-
ments) are represented by IVTFNs. More specifically, suppose
AL = {AL1, AL2, . . . , ALz} is the set of possible alternative
heritage routes, MT = {MT1,MT2, . . . ,MTn} is the set of
monument types that exist in each route and w1, w2, . . . , wn

are the user preferences of the respective monument types
obtained from the application of the ANP algorithm. The steps
of the method are as follows:

a) Construction of the decision matrix: Each g̃ij element
of the z×n decision matrix D̃ is an IVTFN number expressing
the evaluation value of alternative heritage route i for mon-
ument j, which refers to the percentage of the monument j
covered by route i. Thus:

D̃ =

MT1 ... MTn

AL1 g̃11 ... g̃1n
...

...
. . .

...
ALz g̃z1 ... g̃zn

(2)

where g̃ij =
[
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]
.

In the case that there are multiple monuments belonging to
a specific monument type MT, the decision matrix includes the
average of their evaluation values. Hence, assuming that for the
xth monument g̃ijx is its evaluation value in the heritage route
i, the average of the evaluation values is given by formula 3.
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b) Normalization of the decision matrix: Considering
that Γ is the set of monuments, the elements of the normal-

ized decision matrix are calculated using formula 4, where
bj = maxi g

U
ij4 for each j ∈ Γ.

g̃
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c) Construction of the weighted normalized decision ma-
trix: The weighted normalized decision matrix is constructed
by multiplying each element of the normalized decision matrix
g̃′ij with the respective weight wj according to the formula 5.
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g
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d) Determination of the positive and negative ideal so-
lution: The positive ideal solution is defined in 6, where∧
i

≡ maxi. Correspondingly, the negative ideal solution is

defined in 7, where
∨

i ≡ mini.
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e) Measurement of the distance of each alternative from
the ideal solutions: The distances of each alternative heritage
route from the positive ideal solution are evaluated using
formulas 8 and 9. Likewise the distances of each alternative
from the negative ideal solution are estimated using formulas
10 and 11.
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Consequently, the alternatives distance from the positive and
negative ideal solutions are expressed by intervals such as



[p+i1, p
+
i2] and [p−i1, p

−
i2], instead of single values, while in this

way less information is lost.
f) Calculation of the relative closeness: The relative

closeness of the distances from the ideal solutions are calcu-
lated using formula 12 and 13. Subsequently, the compound
relative closeness is obtained using formula 14.

RCi1 =
p−i1

p+
i1 + p−i1

(12)

RCi2 =
p−i2

p+
i2 + p−i2

(13)

RCi =
RCi1 + RCi2

2
(14)

g) Alternative heritage routes ranking: The alternative
heritage routes are ranked according to their RCi values, while
the best alternative is that with the higher RCi value.

III. SIMULATION SETUP AND RESULTS

In our experiments, we consider a 5G architecture (figure 1)
which includes a Cloud and a Fog infrastructure. The Cloud
infrastructure includes a set of Virtual Machines (VMs), while
each VM hosts a set of 3D, AR and MR heritage models.
Accordingly, the Fog infrastructure includes LTE and WiMAX
Macrocells and Femtocells, as well as WAVE RSUs, with
additional computational and storage resources. Additionally,
inside the area of the Fog, a number of Ancient [34], Byzan-
tine [35], Modern [34] and Natural Beauty [36] monuments
exist. A Software Defined Network (SDN) controller provides
centralized control of the entire architecture.

As it concerns the Hellenic territory, the category of Ancient
monuments consists of prehistoric antiquities, monuments of
Classical, Roman and Hellenistic Era and all of their sub-
categories. In the group of Byzantine monuments, we refer
to the antiquities between 330 AD and 1830 AD, including
the subcategories Early Byzantine, Middle Byzantine, Post
Byzantine monuments (in Western Europe, the term Byzantine
could be replaced by the term Medieval). With the term
Modern monuments, we refer to artifacts after 1830 AD,
i.e. exceptional buildings constructed according to Neoclassic,
Art Nouveau and Bauhaus style, well preserved traditional
complexes, industrial buildings, statues etc. In the category
of Natural Beauty there are landscapes with special features,
remarkable and sensitive ecosystems, i.e. rivers, lakes, forests,
canyons, etc.

The case where 5 users need to perform a virtual tour
using a drone is considered. Initially the preferences of each
user for each type of monument are modeled as presented in
table II, which includes the corresponding pairwise compar-
isons. Subsequently, using the ANP method, the weights that
concern the users’ preferences for each monument type are
estimated. As can be observed in figure 2, the estimated user
preferences are proportional to the aforementioned pairwise
comparisons. Indicatively, user 1 mostly prefers the Ancient
monuments, user 2 prefers the Byzantine monuments, user 3
prefers the Natural Beauty monuments, user 4 prefers both
Ancient and Byzantine monuments and, finally, user 5 prefers
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Fig. 1: The simulated Fog infrastructure.

TABLE II: The pairwise comparisons between the monument types for each
user.

User Ancient Byzantine Modern Natural Beauty

User 1

Ancient 1 3 7 9
Byzantine 1/3 1 5 7
Modern 1/7 1/5 1 3
Natural Beauty 1/9 1/7 1/3 1

User 2

Ancient 1 1/9 1/5 1
Byzantine 9 1 5 9
Modern 5 1/5 1 5
Natural Beauty 1 1/9 1/5 1

User 3

Ancient 1 1 1 1/9
Byzantine 1 1 1 1/9
Modern 1 1 1 1/9
Natural Beauty 9 9 9 1

User 4

Ancient 1 1 5 9
Byzantine 1 1 5 9
Modern 1/5 1/5 1 5
Natural Beauty 1/9 1/9 1/5 1

User 5

Ancient 1 5 9 1
Byzantine 1/5 1 3 1/5
Modern 1/9 1/3 1 1/9
Natural Beauty 1 5 9 1

Ancient and Natural Beauty monuments. Furthermore, table III
represents the linguistic terms and the corresponding interval-
valued trapezoidal fuzzy numbers used for the definition of
the evaluation values of each monument in each flying route.
Accordingly, table IV presents the corresponding value that
each monument obtains in each route.

Each user interacts with the Fog infrastructure and requests
to perform a real-time virtual tour using a drone. Thereafter,
the Fog interacts with the SDN controller, in order the most
appropriate flying route to be selected for the drone, using the
TFT-HRS algorithm which considers the user’s preferences
about each monument type. Also, the Fog retrieves the corre-
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TABLE III: Lingustic terms and the corresponding IVTFNs used for the
definition of the evaluation values of each monument in each heritage route.

Linguistic term Interval-Valued Trapezoidal Fuzzy Number (IVTFN)
Absolutely Poor (AP) [(0.0, 0.0, 0.0, 0.0, 0.9), (0.0, 0.0, 0.0, 0.0, 1.0)]
Very Poor (VP) [(0.01, 0.02, 0.03, 0.07, 0.9), (0.0, 0.01, 0.05, 0.08, 1.0)]
Poor (P) [(0.04, 0.1, 0.18, 0.23, 0.9), (0.02, 0.08, 0.2, 0.25, 1.0)]
Medium Poor (MP) [(0.17, 0.22, 0.36, 0.42, 0.9), (0.14, 0.18, 0.38, 0.45, 1.0)]
Medium (M) [(0.32, 0.41, 0.58, 0.65, 0.9), (0.28, 0.38, 0.6, 0.7, 1.0)]
Medium Good (MG) [(0.58, 0.63, 0.8, 0.86, 0.9), (0.5, 0.6, 0.9, 0.92, 1.0)]
Good (G) [(0.72, 0.78, 0.92, 0.97, 0.9), (0.7, 0.75, 0.95, 0.98, 1.0)]
Very Good (VG) [(0.93, 0.98, 1.0, 1.0, 0.9), (0.9, 0.95, 1.0, 1.0, 1.0)]
Absolutely Good (AG) [(1.0, 1.0, 1.0, 1.0, 0.9), (1.0, 1.0, 1.0, 1.0, 1.0)]

sponding 3D, AR and MR models from the Cloud and informs
the drone about the selected heritage route. Subsequently,
the drone flights along the selected route, while the captured
360o video is enriched with the aforementioned 3D, AR and
MR models and streamed to the user in real-time. Figure 3
illustrates the entire process.
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Fig. 3: The sequence diagram about the entire procedure.

Table V compares the results of the proposed scheme with
the ones obtained using the FTOPSIS algorithm. A critical
weakness of the FTOPSIS is that it does not support the
existence of multiple monuments of the same monument type.
Consequently, the FTOPSIS method considers only the first
monument of each type, namely the Ancient Monument 1,
the Byzantine Monument 1, the Modern Monument 1 and
the Natural Beauty Monument 1, for the Ancient, Byzantine,
Modern and Natural Beauty monument types, respectively.
Both algorithms provide similar results for users 1 and 2, by
selecting the route 7 and the route 4, respectively. However, for
the rest of the users, the TFT-HRS outperforms the FTOPSIS,
by selecting more appropriate heritage routes considering the
evaluation values for multiple monuments of the same type
that exist in each route. Specifically, in the case of user 3,
who mostly prefers the Natural Beauty monuments, the TFT-
HRS selects the route 8, which provides AG and VG for
Natural Beauty 1 and Natural Beauty 2, respectively. On the

contrary, for the same user, the FTOPSIS selects the route
7, which provides AG for Natural Beauty 1 but AP for
Natural Beauty 2. Accordingly, in the case of user 4, who
prefers both Ancient and Byzantine monuments, the TFT-
HRS selects the route 7, which provides AG, AG, VG, G and
AG values for Ancient Monument 1, Ancient Monument 2,
Ancient Monument 3, Byzantine Monument 1 and Byzantine
Monument 2, respectively. On the other hand, the FTOPSIS
selects the route 3, which provides VG instead of AG for
Ancient Monument 1, while the offered values for the rest
of Ancient and Byzantine monuments are similar. Finally, in
the case of user 5 who prefers Ancient and Natural Beauty
monuments, the TFT-HRS selects the route 3, which provides
AG for Natural Beauty 2, while the FTOPSIS selects the route
7, which provides similar values for the most Ancient and
Natural Beauty Monuments, but AP for the Natural Beauty 2
monument.

IV. CONCLUSION

This paper proposes a scheme for the selection of drone
navigation to support virtual tours in sites with cultural interest
using drones. The proposed scheme is called TFT-HRS and
selects the most appropriate heritage route for the drone, in
order the user preferences about specific monument types to
be satisfied. Thereafter, the drone flights along the selected
route and captures video about the corresponding monuments.
The video is transmitted to the user in real time, enriched with
3D, AR and MR material. The scheme is applied to a 5G
architecture which includes a Cloud and a Fog infrastructure.
Performance evaluation showed that the proposed scheme
outperforms the FTOPSIS algorithm in terms of selecting
the most appropriate drone navigation considering the users
preferences about each monument type.
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