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Abstract

The development of smart cities and their 
fast-paced deployment is resulting in the genera-
tion of large quantities of data at unprecedented 
rates. Unfortunately, most of the generated data is 
wasted without extracting potentially useful infor-
mation and knowledge because of the lack of 
established mechanisms and standards that ben-
efit from the availability of such data. Moreover, 
the highly dynamic nature of smart cities calls for 
a new generation of machine learning approach-
es that are flexible and adaptable to cope with 
the dynamicity of data to perform analytics and 
learn from real-time data. In this article, we shed 
light on the challenge of underutilizing the big 
data generated by smart cities from a machine 
learning perspective. In particular, we present 
the phenomenon of wasting unlabeled data. We 
argue that semi-supervision is a must for smart 
cities to address this challenge. We also propose 
a three-level learning framework for smart cities  
that matches the hierarchical nature of big data 
generated by smart cities with a goal of providing 
different levels of knowledge abstraction. The pro-
posed framework is scalable to meet the needs 
of smart city services. Fundamentally, the frame-
work benefits from semi-supervised deep rein-
forcement learning where a small amount of data 
that has users’ feedback serves as labeled data, 
while a larger amount without such users’ feed-
back serves as unlabeled data. The framework 
utilizes a mix of labeled and unlabeled data to 
converge toward better control policies instead 
of wasting the unlabeled data. This article also 
explores how deep reinforcement learning and 
its shift toward semi-supervision can handle the 
cognitive side of smart city services and improve 
their performance by providing several use cases 
spanning the different domains of smart cities. We 
also highlight several challenges as well as prom-
ising future research directions for incorporating 
machine learning and high-level intelligence into 
smart city services.

Introduction
Smart cities provide services that benefit from 
the city-scale deployment of sensors, actuators, 
and smart objects [1]. Such services are mainly 
driven by data and can be broadly classified as 

producers of data, consumers of data, or a com-
bination of both. For example, a parking service 
that deploys a message queue telemetry trans-
port (MQTT) broker to publish parking lots’ avail-
ability data is considered a producer, while cars 
which subscribe to that broker are considered 
consumers. Cars can produce other data for use 
by other smart city components. For instance, 
cars use device-to-device (D2D) communications 
to alert nearby vehicles and pedestrians of their 
presence and potential traffic hazards. In a city-
scale deployment of smart services, data is gener-
ated at high rates, which presents new challenges 
for smart city designers and developers. Beyond 
the challenges for data management of big data 
represented by 3V’s (volume, variety, and veloci-
ty), there are other challenges from the analytics 
and machine learning (ML) perspectives (Fig. 1). 
Unfortunately, only a small fraction of the mas-
sive smart city data is typically utilized by smart 
services to improve the lives of a city’s residents. 
The main culprit is the lack of a large amount 
of labeled data. This calls for the need to utilize 
machine learning algorithms that exploit the avail-
ability of unlabeled and labeled data in the con-
text of smart cities.

Analogous to the waste recycling processes 
and standards in urban cities, there is a need for 
processes and mechanisms for data recycling in 
smart cities where hundreds or thousands of giga-
bytes of data are generated per second. Data ana-
lytics methods and machine learning algorithms 
should be able to extract knowledge and useful 
information from data to reduce the amount of 
digital waste.

Despite the recent advancements in comput-
ing and storage technologies, most of the data 
analytic approaches exploit sampling methods 
that are efficient in terms of time complexity but 
neglect a large part of data that may contain 
important patterns which are not represented 
by the samples. On the other hand, through the 
use of deep neural networks (DNNs), datasets 
with millions of parameters can be considered to 
extract insightful analytics.

Anecdotal data indicates that when smart city 
data is not used for learning and analytics in the 
short term, it is unlikely that it will be used later. It 
is estimated that by 2012 only about 0.5 percent 
of all 2.8 ZB of stored data have been analyzed, 
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and 3 percent of them are labeled based on a 
study by IDC (https://www.emc.com/collateral/
analyst-reports/idc-the-digital-universe-in-2020.
pdf). This highlights the challenge of potentially 
wasting hidden information in 99.5 percent of the 
generated data.

Lately, there have been active discussions on 
the governance, management, and storage of 
smart cities’ big data, but there is no clear answer 
on how to use the enormous amounts of col-
lected data. Should it be directly incorporated 
into analytics and machine learning activities? Or 
should it be sampled? Even though in many cases 
sampling approximates the solution, for smart city 
services where the preference of citizens comes 
into play, or individual activities affect the whole 
community, sampling may not be ideal. For exam-
ple, to predict anomalies in a city’s infrastructure 
considering all collected data from the various 
sensor sources would help to realize such ser-
vices. Another example includes services that pre-
dict criminal or discriminatory activities through 
social media comments (e.g., Twitter, Facebook). 
For such services, considering a wider range of 
data is necessary, since criminal or discriminatory 
comments may constitute a small portion of the 
whole data.

Smart city ecosystems have the following char-
acteristics from a machine learning perspective:
•	 Humans need to interact with the systems to 

provide their feedback.
•	 Many sensors and smart devices generate 

data at a high rate. Not all the data can be 
reviewed by humans for justification, but the 
system should learn and improve itself from 
previous experiences.

•	 They need a general, dynamic, and contin-
uous learning mechanism as the context of 
a smart city application is not always fixed, 
and the operating environment of smart city 
applications evolves over the time.

•	 The data generated by smart city applications 
is noisy or has some degree of uncertainty.
Based on these characteristics, we believe an 

integration of DNNs, reinforcement learning (RL), 
and semi-supervised learning can address these 
issues and deliver complete adaptive solutions.

The need for deep learning approaches stems 
from the need to extract high-level abstractions 
from the raw data. Each layer of a DNN generates 
an abstract representation of its input data. To get 
more levels of abstraction, more hidden layers of 
neurons are needed.

RL has been studied well for control systems 
and systems that need to perform autonomic 
actions. In reinforcement learning, there is no 
output (i.e., classification) for the training data, 
which is the case for many smart city applications; 
instead, choosing the right actions is rewarded. 
The goal of an RL system is to find an action 
for each state of the system such that the total 
reward of the learning agent is maximized in the 
long term. On the other hand, it is infeasible or 
extremely tedious for users to provide reward 
feedback for all the training data. This issue can 
be addressed through the use of semi-super-
vised learning approaches where data is partially 
labeled.

Semi-supervised machine learning approaches 
are a promising method to address the scarcity 

of annotated data in big data streams. Moreover, 
deep RL (DRL) approaches have also shown 
promising results in systems where reward feed-
back from the environment is needed to improve 
the performance of the system instead of a class 
label as in the case of supervised learning meth-
ods. The combination of these techniques can 
help to extract the most value from the big data 
generated by smart cities.

In our proposed method, we combine the 
strength of these approaches for delivering 
semi-supervised DRL agents that learn from the 
smart cities data to perform the best actions on 
the environment. The proposed approach is an 
enabler for cognitive smart city services since the 
learning agent evolves as the conditions of the 
environment change, and performs autonomic 
actions without human intervention.

Related Work
Cognitive smart city refers to the convergence 
of the emerging Internet of Things (IoT) and 
smart city technologies, their generated big 
data, and artificial intelligence techniques. 
Among the commercial products that move 
toward cognitive frameworks, IBM Watson 
offers a cognitive system with several analyt-
ics and machine learning services that rely on 
dynamic learning (i.e., the learning process is 
improved in future rounds based on the feed-
back from previous rounds). Cognitive comput-
ing is a term used by IBM to describe systems 
that can learn from a wide range of datasets, 
are able to provide reasons, can interact with 
humans through natural languages, and gain 
their experiences in the context.

Google Now is another service for mak-
ing suggestions to the user, and bringing the 
most useful information to the user at the 
right time and place. This system learns from 
users’ past behavior and input in their Google 
accounts such as Calendar, Chrome, Gmail, 
Search, and Youtube [2]. Its use of natural 
language understanding integrated with other 
services such as search engines poses it clos-
er to the cognitive era.

Haven OnDemand (http://www.havenonde-
mand.com) is a machine-learning-centric devel-
opment platform by HP Enterprise that provides 
application programming interfaces (APIs) 
for creating cognitive services. Text analysis, 

Figure 1. Challenges of smart cities from a machine learning perspective.
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speech recognition, image analysis, indexing, 
and search are among the APIs that are offered 
to developers.

In the research community, there are several 
works that propose cognitive solutions which fit 
the needs of IoT-based systems. Vlacheas et al. 
[3] proposed a cognitive management frame-
work in the context of smart cities to enable 
smart objects to connect to the most relevant 
objects and consequently bring more value to 
the end user. In their framework, they focused 
on the reuse of the functionality and services of 
available objects through three levels including 
virtual objects (VOs), composite virtual objects 
(CVOs), and service level. The service level 
derives the functionality of the requested ser-
vice that is required by a stakeholder or a given 
application. These functionalities are delegated 
to CVOs to be carried out. The authors showed 
that the service execution time in their proposed 
framework is decreased, leading to lower opera-
tional expenditures.

Cognitive IoT (CIoT) [4] is another research 
study that was conducted by Wu et al. to deliv-
er a cognitive framework for IoT applications. 
The framework offers interactions between five 
cognitive tasks: perception-action cycle, massive 
data analytics, semantic derivation and knowl-
edge discovery, intelligent decision making, and 
on-demand service provisioning. They identi-
fied two areas that are required for objects in a 
cognitive environment to understand and learn: 
derive the semantic from analyzed data, and 
discover valuable patterns and rules as knowl-
edge.

The authors in [5] defined a cognitive frame-
work for smart homes based on cognitive dynam-
ic systems and IoT. In the core of their cognitive 
memory, they used a Bayesian model, a Bayesian 
filter, and RL. The Bayesian model is placed on 
top of the perceptor, which observes the envi-
ronment. The Bayesian filter estimates the state 
of the system, and RL provides the mechanism 

to choose the best possible actions based on the 
total received rewards.

In contrast to centralized intelligence and 
analytics on the cloud, the authors in [6] pro-
posed to integrate artificial intelligence in fog 
computing to facilitate smart city big data anal-
ysis. They introduced a hierarchical fog com-
puting model to analyze big data for smart city 
applications. Using this model, the overall per-
formance is enhanced through reducing the 
communications bandwidth by not having to 
transmit all raw data to the cloud, and perform-
ing real-time analytics due to the closeness of 
the fog to the source of data. They used a hid-
den Markov model (HMM) approach in their 
model to support big data analysis in a smart 
pipeline monitoring system.

Table 1 summarizes the works in this field 
and shows which levels of big data generation 
are covered by their intelligence and analytics. 
It also indicates the position of this study rel-
ative to these works. Compared to the afore-
mentioned works that bring analytics to the fog 
or cloud level, our approach aims to deploy 
analytic solutions on the fog and the cloud, 
which in turn cover a large number of smart 
city applications including time-sensitive and 
non-time-sensitive ones. Moreover, in order to 
improve the accuracy of the analytics, the pro-
posed approach digs into the larger body of 
data where data is untapped and no labels or 
meta-data are provided.

Intelligence for Smart Cities
In this section, we introduce the overall frame-
work for intelligence in smart cities. The frame-
work offers three levels of intelligence: smart 
city and IoT infrastructure, fog computing, and 
cloud computing. Figure 2 illustrates the overall 
position of machine learning approaches within 
the hierarchy of smart city infrastructure where 
each component of the smart city system is 
controlled by an intelligent software agent that 

Table 1. Support of machine learning intelligence in the smart city context.

Related work
ML support level

Domain ML algorithm Use case
Infrastructure Fog Cloud

Commercial

IBM Watson P General Various Healthcare, crime detection

Google Now P User-centric Various Traffic, transit

HPE Haven OnDemand P General Various Sentiment analysis

Research

Cognitive management 
framework [3]

P P Smart city
Pattern recognition, 
semantic reasoning

Smart health, public safety, smart 
transportation

Cognitive IoT [4] P Smart city Multiagent learning
Convenient smart home, real-time traffic 
routing 

Cognitive interactive 
framework [5]

P Smart home Reinforcement learning Convenient smart home 

Intelligence in fog [6] P Smart city HMM Smart pipeline

Intelligent gateway [7] P IoT Rule-based Smart healthcare

Current work P P Smart city
Semi-supervised deep 
reinforcement learning

Energy, water, agriculture, transportation, 
healthcare
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is deployed in the fog or the cloud depending 
on the characteristics of the required analytics 
(e.g., time sensitivity). Consequently, raw data 
can be transferred to the fog or to the cloud. 
The running analytics agent then returns an 
appropriate action to the infrastructure devices 
based on predictions (e.g., adjust traffic light 
timing based on traffic congestion data from 
the corresponding roads).

The motivation behind this architecture is that 
deeper levels of data abstraction and knowledge 
representation can be obtained as the data trav-
els through the smart city infrastructure. At the 
highest level, a city-wide abstraction is needed 
to manage the city’s resources and services on a 
long-term basis. On the other hand, at the lowest 
level, sensor- and smart-object-generated data is 
used to manage the resources and services on a 
short-term basis. Moreover, fog-based analytics 
support local actions in predefined contexts, while 
cloud-based analytics are capable of covering 
larger geographical regions with various contexts.

The level of IoT infrastructure is where the sen-
sors and resource-constrained devices perceive 
the environment. The resource limitation of these 
devices inhibits the deployment of complex and 
large learning models. Instead, several shallow 
machine learning approaches, including unsuper-
vised and semi-supervised methods (K-nearest 
neighbors, support vector machines, etc.) can be 
applied in the context of these devices to make 
them smart. However, to bring analytics and intel-
ligence closer to the source of data (e.g., end 
users, IoT resource-constrained devices), there is 
a need to utilize modern and advanced learning 
models like deep learning. A nascent research 
path is to overcome the resource limitation of 
these devices to allow them to utilize deeper 
neural network models. In recent years, several 
approaches have been proposed to compress 
or prune deep neural networks so that they can 
be loaded into IoT resource-constrained devices, 
wearable electronics, and smartphones [8]. Using 
such compressed neural networks, it is possible to 
integrate DRL with these devices. 

At the fog computing level, the raw data is 

aggregated and transmitted to the cloud com-
puting level. Compressed deep learning models, 
DRL, and semi-supervised methods can be used 
at this level as the resources at this level have 
fewer constraints compared to the IoT resources. 
The proposed semi-supervised DRL approach 
is also applicable at this level. Also at this level, 
light-weight intelligence needs to be brought 
to the IoT gateways and proxies to enable the 
efficient realization of horizontal integration of 
services in support of smart city applications [7].

At the cloud computing level, more complex 
and large-scale machine learning and data min-
ing frameworks and algorithms can be integrated 
with semantic learning and ontologies to extract 
high-level insights and patterns from the collected 
data. Deep learning models are highly fit at this 
level as they are able to provide deeper abstrac-
tions of the data. Recent advancements in graphics 
processing unit (GPU) technology as well as the 
development of efficient neural network param-
eter initialization algorithms (e.g., autoencoders), 
the use of rectified linear units (ReLUs), and the 
introduction of long short-term memory (LSTM) 
neural networks and their variants, help to solve 
the vanishing gradient problem, thereby allowing 
the realization of efficient deeper learning models. 

Emerging Approaches
Reinforcement learning aims to imitate the 
learning process of humans. Through the RL 
method, an agent can sense the environment 
through several sensor inputs. The agent uses 
these raw inputs to generalize the experience 
of the system for confronting new and unknown 
situations. The combination of reinforcement 
learning and deep neural networks, DRL, has 
resolved several limitations of RL including 
the limitation of the diversity of application 
domains, the need for manual engineering fea-
tures, and poor scalability for high-dimensional 
state-space domains [9].

A DRL agent observes the environment param-
eters, takes actions on the environment, and 
receives a reward feedback for each action. The 
objective of the agent is to maximize its total 

Figure 2. The levels of intelligence in smart cities.
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future rewards. A deep neural network is used to 
approximate the optimal action-value function (i.e., 
which action is best to pick for a given state to 
maximize future rewards). Figure 3 illustrates the 
high-level conceptual structure of a DRL system.

In our proposed semi-supervised DRL 
approach, we adapted generative deep neural 
networks (e.g., variational autoencoder, VAE) [10] 
as the semi-supervised component of the model. 
In our proposed model, VAE is extended to pro-
duce the probability of each action in the system.

The proposed approach was applied in a 
smart campus project as part of a smart city 
[11]. The objective of the semi-supervised learn-
ing agent is to provide indoor localization and 
navigation services where its reward function 
is defined to be the reciprocal of the distance 
to the target point. The agent learns from the 
fingerprints of received signal strength indicator 
(RSSI) readings of several Bluetooth Low Energy 
(BLE) iBeacons in the environment to take best 
actions (i.e., moving north, west, etc.). We had a 
dataset of RSSI fingerprints in which 15 percent 
of data points were annotated with the location 
details (i.e., labeled data). 

Figure 4 compares the supervised and semi-su-
pervised DRL models. The results indicate that 
using the semi-supervised DRL model which uses 

the combination of labeled and unlabeled data 
improves the performance of the system. From 
the total rewards point of view, the semi-super-
vised model achieves higher rewards quickly com-
pared to the supervised model. It gains between 
60 and 100 percent more rewards compared to 
the supervised model gains in different numbers 
of epochs. In terms of accuracy of localization, 
the semi-supervised model reaches closer to the 
target point, achieving an improvement between 
6 and 23 percent compared to the accuracy of 
the supervised model.

The proposed semi-supervised DRL model can 
serve the applications in the fog and cloud layers 
of a smart city since the underlying deep neural 
network would be complex and large depending 
on the type of application and cannot reside on 
IoT resource-constrained devices. However, more 
investigation is needed to bring this algorithm to 
IoT devices.

Smart City Use Cases
When we think about a smart city where the 
management and control of the city’s resourc-
es is performed through intelligent information 
systems, we need to consider the food, ener-
gy, and water nexus. Developing IoT-based sys-
tems to address these concerns and the big data 
that stems from such systems are critical for the 
optimal provisioning and efficient utilization of 
the city’s resources. In addition, providing smart 
solutions for transportation, healthcare, con-
venience, agriculture, and government are the 
main premises of a smart city. In this section we 
present smart city use cases that illustrate the 
use of semi-supervised DRL to provide better 
services to the city’s residents.

Water

California has experienced an intense drought 
period in recent years. In early 2017, nearly all 
areas in California were under at least abnormal 
drought conditions. Also, in some areas the high-
est level of drought has been reported by the U.S. 
Drought Monitor (http://droughtmonitor.unl.edu 
(Fig. 5)). Analytics of big data from city tempera-
ture and humidity sensors, weather forecasts, pre-
diction of water usage, and the available water 
resources can help secure water for drought peri-
ods. Moreover, monitoring the level and qual-
ity of water in creeks using crowdsensing data 
(e.g., the amount of trash, level of water, picture 
of trash, etc. in IBM CreekWatch) along with data 
from other IoT-based approaches such as smart 
water meters can help to achieve efficient and 
sustainable water provisioning. In this context, the 
images of trash in water can be used by a semi-su-
pervised DRL system to identify the type of trash 
automatically and perform the required action at 
the location.

Using smart water meters can contribute to fine-
grained monitoring of water consumption at the 
house level as well as at the city level. Water con-
sumption data at the house level can be analyzed 
by unsupervised clustering algorithms for abnor-
mality and leakage detection. Imagine a scenario in 
which the household is on a trip for one week. An 
intelligent system based on DRL has learned that 
the water consumption between 5 and 6 p.m. on 
weekdays is in the range of 20 ±2 liters when the 

Figure 3. A conceptual structure of a deep reinforcement learning system.
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household returns home from work. The intelligent 
system also receives the location information about 
the household and determines that they are far 
from home at the time of the water meter reading, 
which is on Monday at 5 p.m. At this time, a usage 
of 17 liters has been reported by the smart meter 
to the intelligent system. From the previous telem-
etry, the intelligent system can determine that the 
household is away from home and that the tap has 
not been turned off firmly. The intelligent system is 
trained so that the most rewarding policy is to stop 
the flow of water through the tap and notify the 
household accordingly.

This sort of intelligence has the potential to 
greatly impact the whole city, as happened in the 
case of Kalgoorlie-Boulder, Australia, where the 
installation of smart meters on the water pipe-
lines led to early detection of leaks, which in turn 
resulted in 12 percent reduction in water con-
sumption in one year [12].

Energy

Energy conservation is a daily concern for peo-
ple and energy utility service providers. Around 
one third of electricity usage is consumed by the 
residential sector in the European Union, and 
the demand for energy is predicted to double 
in the next decade. Energy providers now can 
monitor consumers’ energy usage profile and 
provide suitable feedback to decrease the high 
peak power load using modern electricity meters 
(i.e., smart meters) that are installed at custom-
ers’ premises.

Smart meters can also be connected to their 
smart home systems to cooperate with other 
devices toward energy management at the smart 
home level using appliance load monitoring 
(ALM). In this context, each electrical device is 
equipped with a smart power outlet. A semi-su-
pervised DRL agent can observe its environment 
including the energy usage profile of electrical 
devices, the ambient temperature, the light inten-
sity, and the status of motion detectors to learn 
the best policies to turn off devices. The duration 
of the off period for the participating electrical 

devices can be considered as a reward function 
for the agent. However, this fine-grained level 
of ALM causes extra equipment cost and com-
plexity. Instead, non-intrusive load monitoring 
(NILM) is an alternative approach that can extract 
the individual devices’ usage from one aggregat-
ed electrical measurement at the scope of the 
whole house. This approach needs to be trained 
one time by the consumption data of individual 
appliances and their events (i.e., on or off) and 
timestamps. A semi-supervised DRL agent can be 
utilized and integrated into this context, aiming 
to keep the optimal power usage by controlling 
when to turn appliances on or off. Due to the 
presence of many unlabeled data generated by 
NILM, the performance of the semi-supervised 
DRL agent is better than that of the supervised 
DRL agent.

The usage of smart energy in the context of 
smart grid has proven its payback, as in the case 
of smart grid in Chattanooga, Tennessee, where 
using the smart grid helped in faster repairs after 
a severe storm outage in July 2012. This single 
incident helped save US$1 million [13].

Agriculture

Agriculture activities are the main source for 
food production. Monitoring the soil parameters 
(moisture, minerals, etc.) powered by decision 
making processes, and consequently perform-
ing corrective actions by actuators (e.g., adding 
water or minerals), can lead to increased crop 
productivity.

Also, for producing healthy crops and efficient-
ly growing plants, disease recognition and rem-
edies are paramount. Plant disease recognition 
can be performed by disease recognition systems 
through various measurements. A viable approach 
is to identify diseased plants visually using a clas-
sification system based on images of the crops 
or their leaves. Farmers can install such systems 
on their smart devices to identify fruits and crops 
with anomalies. By combining those data with 
complementary data sources, the system can rec-
ommend remedies or pesticides to farmers.

Figure 5. The U.S. drought level in early 2017 and the situation of California. (Reproduced using R from 
U.S. Drought Monitor data from January 3, 2017.)
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Challenges and Future Directions
Challenges

Development of smart city applications supported 
by big data analytics is subject to several chal-
lenges that need to be addressed to achieve a 
reliable and accurate system. Some of the major 
challenges beyond the ones introduced by the 
3V’s include the following.

Integrating Big and Fast/Streaming Data Ana-
lytics: In a smart city context, there are many 
time-sensitive applications (e.g., smart and con-
nected vehicles) that need real-time or near-re-
al-time analytics of the stream of data. Such 
applications call for new analytic frameworks that 
support big data analytics in conjunction with 
fast/streaming data analytics.

Preserving Security and Privacy: Data-driven 
machine learning approaches (e.g., deep learn-
ing) can be attacked by false data injection (FDI), 
which compromises the validity and trustworthi-
ness of the system. Resilience against such attacks 
is a must for ML algorithms. Privacy preservation 
is another important factor since a large part of 
smart city data comes from individuals who may 
not prefer their data to be publicly available. 
ML algorithms should address these concerns to 
enable the wide acceptance of smart city systems 
by organizations and citizens.

On-Device Intelligence: Smart city applications 
also call for lightweight machine learning algo-
rithms deployable on resource-constrained devic-
es for hard real-time intelligence. This is also in 
line with the security and privacy preservation 
requirement since data is not transferred to the 
fog or cloud.

Big Dataset Shortage: Development and evalu-
ation of smart city applications need real-world 
datasets, which are not readily available for many 
application domains. It is necessary to confirm 
results based on simulated big data.

Context Awareness: Integrating contextual infor-
mation with raw data is crucial to get more value 
from the data, and perform faster and more accu-
rate reasoning and actuation [14]. For example, 
detecting a sleepy face in a human pose detec-
tion system could lead to totally different actions 
in the contexts of driving a car and relaxing at 
home.

In addition, there are other challenges that 
affect the design of a smart city ecosystem such 
as integration of different analytic frameworks, dis-
tribution of analytic operations, and lack of com-
prehensive testbeds.

Future Directions

The conventional analytic approach for IoT is to 
send raw data to the cloud for processing. How-
ever, this scheme is not effective and scalable for 
smart city deployments. Decentralization of data 
analytic computations is a new trend that aims 
to bring analytics closer to the fog and IoT devic-
es [6, 8]. Here we list several promising future 
research directions in this regard.

•A trained model works well when the same 

feature set and distribution model forms the 
training and test datasets. By changing the dis-
tribution, the trained model needs to be rebuilt 
from new training data. For example, in an 
RF-based localization application (e.g., WiFi, 
BLE), the RSSI values for the same time and posi-
tion in Android and iOS devices are different. 
The trained localization model on one platform 
can be transferred to the new platform without 
the need to collect RSSI values for other devices. 
Transfer learning is a field of research that can 
help in such scenarios [15].

•Integration with semantic technologies is also 
a need for the development of smart city appli-
cations. The need stems from the interaction of 
those systems with citizens and the use of social 
media data.

•Intelligent virtual objects can be used in 
smart city services jointly with DRL algorithms, 
considering that each physical object has a vir-
tual representation in the smart city, and these 
virtual objects can learn, decide, and act auton-
omously.

•Interacting with humans in a natural way is 
a critical need for the new generation of smart 
city systems since citizens are the main players in 
smart cities. The small size of mobile devices and 
wearables nowadays does not allow space for 
touch screens or keyboards. Instead, automatic 
speech recognition and natural language under-
standing constitute the most convenient way of 
interaction with these devices.

Conclusion
There are many machine learning algorithms 
that can be utilized to learn from the big data 
collected through a smart city’s infrastructure. 
However, most traditional machine learning 
techniques assume a fixed training model and a 
static context. These assumptions do not apply 
to smart city applications where the environ-
ment and consequently the training data evolve 
over time.

In this article, we address challenges and 
opportunities that arise when utilizing machine 
learning to realize new smart city services. These 
challenges include data recycling, efficient sam-
pling, and devising scalable models. We review 
state-of-the-art methods and approaches that 
embrace smart city big data toward future cogni-
tive smart cities. Then a hierarchical framework is 
introduced to incorporate machine learning tech-
niques in accordance with the hierarchy of big 
data in the smart city. We propose a semi-super-
vised deep reinforcement learning framework to 
address the presented challenges and highlight 
the position of the framework in various smart city 
application domains. Finally, we articulate several 
challenges and trending research directions for 
incorporating machine learning to realize new 
smart city services.
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