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Abstract

Network virtualization and softwarizing net-
work functions are trends aiming at higher net-
work efficiency, cost reduction and agility. They 
are driven by the evolution in Software Defined 
Networking (SDN) and Network Function Vir-
tualization (NFV). This shows that software will 
play an increasingly important role within tele-
communication services, which were previously 
dominated by hardware appliances. Service pro-
viders can benefit from this, as it enables faster 
introduction of new telecom services, combined 
with an agile set of possibilities to optimize and 
fine-tune their operations. However, the provided 
telecom services can only evolve if the adequate 
software tools are available. In this article, we 
explain how the development, deployment and 
maintenance of such an SDN/NFV-based telecom 
service puts specific requirements on the platform 
providing it. A Software Development Kit (SDK) 
is introduced, allowing service providers to ade-
quately design, test and evaluate services before 
they are deployed in production and also update 
them during their lifetime. This continuous cycle 
between development and operations, a concept 
known as DevOps, is a well known strategy in 
software development. To extend its context fur-
ther to SDN/NFV-based services, the functional-
ities provided by traditional cloud platforms are 
not yet sufficient. By giving an overview of the 
currently available tools and their limitations, the 
gaps in DevOps for SDN/NFV services are high-
lighted. The benefit of such an SDK is illustrat-
ed by a secure content delivery network service 
(enhanced with deep packet inspection and elas-
tic routing capabilities). With this use-case, the 
dynamics between developing and deploying a 
service are further illustrated.

Introduction
Modern-day telecom services show an increasing-
ly dynamic behavior, causing network operators 
and service providers to adopt a more unified and 
elastic deployment approach. They move away 
from (vendor-) specific hardware middleboxes 
at centralized locations and instead use resource 
virtualization, distributed cloud-based platforms 
and global partnerships to respond efficiently to 
market demands. Economic viability requires high 
automation and scalability of resources, while still 
meeting stringent customer requirements such 
as fast deployment, zero perceivable interrup-
tion and high personalization of services [1]. In 

this context, we investigate how to provide tel-
co-grade solutions for the service development 
process.

The Evolution of SDN/NFV Development

A full-fledged development environment for 
SDN/NFV-based services builds upon the evo-
lution in three overlapping areas: programming 
languages or software tools in general, SDN/NFV 
related techniques and service platforms [2]. Fig-
ure 1 describes this evolution. SDN/NFV-based 
network services rely on a wide set of standards 
and technologies ranging from virtualization and 
network programming techniques to automation 
and monitoring tools. Auxiliary features help to 
deploy, configure and scale the service compo-
nents in different infrastructure environments. An 
all-inclusive role is played by the Management 
and Orchestration (MANO) platforms, providing 
functions for automated deployment and opera-
tion of network services. This calls for dedicated 
support to adequately test and debug those ser-
vice control mechanisms, before they are actually 
deployed in production.

The next step would be to consolidate all 
these discrete SDN/NFV related tools into a uni-
fied SDK environment. But before we select the 
most interesting tools, let us take a deeper look 
into the specific components and characteristics 
of a modern network service.

Service Function Chaining
NFV and SDN are two main advancements 
that fundamentally change how network ser-
vices are deployed. NFV aims at softwarizing 
(hardware-based) network functionalities such 
as packet filtering and forwarding, Network-Ad-
dress-Translation (NAT), Quality-of-Service (QoS) 
management, and WAN optimization. The new 
Virtualized Network Function (VNF) is now an 
isolated software image, ready to be deployed on 
generic, common off-the-shelf servers. The infra-
structure is now virtualized, enabling more fine-
grained ways to consume compute, storage, and 
network resources. Complementary to NFV, SDN 
allows flexible and easier control of the network-
ing between VNFs. The intelligence or algorithm 
that decides where traffic should be steered to, 
is implemented in a separate, over-looking con-
trol entity or SDN-controller. This control plane 
instructs the underlying packet forwarding devices 
or data plane using a well-defined protocol such 
as Openflow or NETCONF. The result is central-
ized and programmable network management.
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The fl exibility provided by the above described 
technologies, leads to the concept of Service 
Function Chaining (SFC). VNFs are deployed on 
infrastructure nodes that can be located at both 
the network edge and core. The telco-grade net-
work service is now deployed as a chain of VNFs, 
dynamically connected into various topologies, as 
SDN provides ways to programmatically set up 
network links between several servers in one or 
more data centers. In the next section, we sketch 
a practical example of this.

Example Use-Case: Secure Content Delivery: 
To illustrate better the dynamics enabled by NFV, 
SDN and SFC, a typical telco service example is 
given in Fig. 2. It is a secured Content Delivery 
Network (CDN) where service subscribers can 
both download and upload content using their 
local user applications. Downward, media can be 
streamed from a cloud VM which serves as a cen-
tral database, or from Cache-VNFs which cache 
often streamed data in edge servers for faster 
delivery. Upward, end-users push content to the 
cloud VM, by fi rst passing through a Deep Packet 
Inspection (DPI)-VNF for security reasons. Both 
DPI and Cache VNFs are deployed in a distrib-
uted way, near the network edge, which enables 
better quality of experience by locating these 
functions closer to the (mobile) end-users. A Rout-
er-VNF aggregates the traffi  c before it reaches the 
cloud VM. The Router allows easier measurement 
of parameters like data volume, needed for billing 
or Service-Level-Agreement (SLA) monitoring. It 
isolates the service-dedicated routing process into 
a dedicated VNF. In case of fl ash crowds or other 
sudden data volume changes, the diff erent VNFs  
can elastically scale, in function of the needed 
packet rate. We will use this use-case through-
out the article to illustrate how SDN/NFV-based 
services are deployed and how this impacts their 
development environment.

cloud ApplIcAtIon vs. sdn/nfv-bAsed servIce

We want to highlight that SDN/NFV-based 
telecom services extend the classic cloud appli-
cations to many additional domains. Cloud 
applications are generally application-layer 
based, with a three-tier architecture consisting 

of a web-, application- and database server in 
the backend. A local or mobile device is used 
in the frontend. Moreover, cloud application 
software is typically not tuned for rapid low-
er-layer packet processing, needed in, for exam-
ple, DPI, Cache or Router VNFs. Instead, cloud 
apps focus on endpoint functionality like web 
applications. The generic cloud eco-system is 
basically a connection from user to data center, 
where the network infrastructure in between 
is not leveraged. This is diff erent from the SFC 
example in Fig. 2, where orchestration also 
needs to reach the access and core networks. A 
wider orchestration domain enables better opti-
mization regarding the placement and resource 
use of the network functions, especially in case 
of large-scale services where many users are 
distributed over multiple access networks. It is 
envisioned that the next generation of telecom 
services will rely heavily on dynamic service 
chains in the provider networks [1].

Cloud applications have limited, often single 

Figure 1. Evolution of the SDN/NFV eco-system. Growing functionality integration and abstraction require a growing set of dedicated 
tools for development, testing and debugging.

NFV service programming models: 
TOSCA , ETSI-NFV, Heat, JuJu, …

SDN based network programming: 
Openflow, Frenetic, Merlin, P4, …

Application programming:
C,    C++,     Java,    Python,  HTML, 
PHP, Ruby, Node.js, Go, …                

Networking test tools:
ping, tcpdump, traceroute, iperf, tcpreplay, 
scapy,  wireshark, ostinato, TRex… Optimized software-based packet processing:

OpenvSwitch, netmap, DPDK, SR-IOV, FD.io …

VIM APIs:
OpenStack API, Google Cloud Platform (gcloud), 
Azure CLI, Amazon AWS CLI, …

SDN controllers:
Ryu, OpenDaylight, OpenContrail, ONOS, …

VNF implementations:
Click, quagga, Snort, pfsense, squid, …

Virtualization techniques and tools:
VM-based: KVM, Vmware, VirtualBox, Vagrant, …
Container-based: LXC, Docker, rkt, …

MANO platforms:
Cloudify, Open - MANO, UNIFY, T-NOVA, 
Open -Baton, OSM, SONATA, ONAP…

Operating systems or hardware platforms 
(server/mobile) :
Windows, Linux, iOS, Android, x86, ARM, FPGA…

Container orchestration platforms:
Kubernetes, Docker Swarm, Nomad, Mesos, 
OpenStack Magnum,  …

Configuration management:
Chef, Puppet, Ansible, …

Network and compute simulation/emulation:
ns-3, Omnet++, CloudSim, Mininet, MeDICINE, …

Service platform evolution

Monitoring tools and frameworks:
NetFlow, sFlow, Nagios, Prometheus, 
Graphite, Grafana …

NFV development and deployment:
SONATA, ECOMP, ONAP, OPNFV, OSM, 
NGPaaS …

Automated SW deployment and testing:
Jenkins, Travis, Cucumber…

Agile SW management and issue tracking:
GitHub, JIRA,  …

Software evolution SDN/NFV evolution

Figure 2. Example of an SDN/NFV-based Service Function Chains providing a 
secure CDN where each network function is implemented as a VNF.
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data center, orchestration possibilities. There-
fore only sub-optimal scaling strategies can be 
used in certain cases. Typically this means clon-
ing VNF images and putting a load-balancer in 
front of them, or adding more resources to the 
VNF like CPU and memory. In high-speed NFV-
based services, adding a load-balancer is not 
always optimal, because a simple load-balancing 
action might have a processing cost in the same 
order as the original packet-handling itself, thus 
not leading to any improved processing speed. 
Instead, placing the VNFs closer to the edge 
might prove a better solution, as shown with the 
DPI and Cache VNFs in Fig. 2. During scaling, 
stateful VNFs might also require a more intelli-
gent state migration strategy instead of simple 
cloning. The foregoing indicates that pre-defi ned 
auto-scaling and data-analytics provided by the 
operator do not always unlock the full potential 
of SDN/NFV-based services. Customized and 
service-specific actions defined by the service 
developer can handle certain lifecycle events 
more optimally by controlling scaling and place-
ment mechanisms more closely [3, 4].

In the remainder of this article, we discuss the 
position of the SDK in the telco-grade eco-system 
with its related actors. Then we detail the neces-
sary features for the SDK environment to support 
all aspects of the SDN/NFV-based network ser-
vice in practice. We conclude in the fi nal section 
with an overview of the SDK’s challenges and 
opportunities.

the servIce development And 
deploYment process

To understand the requirements for the SDK envi-
ronment, we give an overview of the deployment 
process of SDN/NFV-based services, as present-
ed in Fig. 3. We categorize three main groups 
of stakeholders in the service’s lifecycle: Vendors 
or Service Developers use the SDK to create or 
edit services and package them, ready to deploy. 
The Operator or Service Provider receives the ser-
vice package compiled by the SDK. They deploy 
and manage the service in its operational state by 
addressing the Infrastructure Providers at the bot-
tom, to lease the necessary compute, storage and 
network capacity. The economic viability of a net-
work service improves greatly if these virtualized 
resources can be optimally scaled to fi t real-time 
performance needs, without any noticeable inter-
ruption for the service users. The operational cost 
would also further decrease if the service is con-
trolled and managed automatically. NFV and SDN 
have proven added value regarding resource vir-
tualization and automated network control, and 
the SDK should assist in integrating these technol-
ogies. Moreover, vendors have proprietary knowl-
edge about how the service internally works, 
while operators have their own private systems to 
deploy and manage the service. The SDK offers 
a way to bridge this gap by facilitating the inter-
facing between the involved parties and allowing 
closer cooperation during the service’s lifetime.

Figure 3. The SDK produces a Service Package which describes the chained VNFs in the network service and the required functions 
for customized management and control. This is deployed through the Service Provider’s MANO platform.
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The MANO Platform
Service operators need to have an adapted 
deployment system to support the dynamicity 
enabled by SDN/NFV. Such a system is the Man-
agement and Orchestration (MANO) platform, 
as can be seen in Fig. 3. In accordance with the 
ETSI (ETSI, NFV research group, https://irtf.org/
nfvrg, accessed on 27 June 2017) defined frame-
work for management and orchestration [5], the 
high-level functional blocks are as follows.

The NFV Orchestrator (NFVO): Maintains a 
global overview of the service topology. It calcu-
lates the placement and orchestrates the (scaled) 
VNFs and network links onto the available infra-
structure. In the described use-case, the NFVO 
would decide where the Cache and DPI VNFs 
would be placed in the available access networks.

The VNF Manager (VNFM): Controls the life-
cycle events of a single VNF such as instantiation, 
configuration and scaling. The VNFM of the rout-
er in the selected use-case could decide to scale 
in or out according to the required traffic rate.

Virtualized Infrastructure Manager (VIM) 
Adapters: Provides the NFVO and VNFM an inter
face to control the compute, storage and network 
nodes. Specialized VIMs control the network 
between the different infrastructure nodes or 
cloud data centers, e.g., a centralized SDN-con-
troller to set up the required links between VNFs 
in different access networks.

The communication between the different 
modules in the MANO platform happens by using 
pre-defined messages over a message broker, or 
the modules address each other’s API directly. 
Additional features related to monitoring and 
automated healing of network services are also 
possible parts of the MANO framework [6].

Some of the automated NFVO and VNFM con-
trol functionalities, such as VNF startup and shut-
down, can be quite generic. Other VNF lifecycle 
events, such as configuration, updating, migration 
or scaling, are likely to include very service-specif-
ic logic, custom-built by the developer. Therefore, 
MANO platforms would need to plug in custom-
ized control functions, shown in Fig. 3. Each ser-
vice has its own NFVO and each VNF has its own 
VNFM. Suppose a scale-out would be required as 
traffic increases: The scaled-out topology is calcu-
lated by the specific VNFM, orchestrated by the 
service’s NFVO, and deployed using the involved 
VIM adapters. A more detailed explanation of 
the MANO framework is out of the scope of this 
article, but it is important to understand that the 
modular approach and split-up of the various ser-
vice management and control features must be 
taken into account during service development.

The Service Package

To abstract the wide range of deployment and 
operational aspects of an SDN/NFV-based ser-
vice, a programming model is helpful [7]. Essen-
tially, network services can be seen as graphs, 
like the SFC example in Fig. 2. The VNFs are the 
nodes that can be enriched with annotations such 
as their resource requirements (number of CPU 
cores, amount of memory and storage), or other 
requirements such as high availability. The edges 
are the links in the infrastructure network, spec-
ified by necessary bandwidth or the maximum 
delay, further constraining the placement in the 

physical infrastructure. Other abstractions, like 
network resiliency, can be mapped to redundant 
link configurations, for example. Several flavors 
of such a model are being devised by ETSI-NFV 
[5] and several research projects such as UNIFY, 
T-NOVA, OSM and SONATA. Also, open-source 
initiatives like TOSCA and OpenStack/HEAT have 
own models.

The service package includes everything need-
ed to deploy the service in the operator’s environ-
ment and bridges the boundary between vendors 
and operators. Figure 3 shows that the package 
should at least consist of:
•	 References to the actual VNF images to 

deploy on the infrastructure.
•	 A service graph that describes how the VNFs 

in the service are connected.
•	 All service or VNF-specific logic in the form 

of NFVOs or VNFMs that can be plugged 
into the operator’s platform.
Optionally, a definition of the expected feedback 

from the operator can be added. This can include 
a set of metrics to be monitored or certain alarms, 
triggered by a given threshold. Also shown in Fig. 3 
is how multiple, in parallel deployed, service packag-
es support a multi-tenancy scenario. In our example 
a second service using only DPI and Router VNFs 
is added, reaching a second VM in the cloud data 
center. The modules of the service package are 
developed by the vendor, and the operator should 
deploy all components on the infrastructure while 
respecting the constraints defined in the service 
package. It can be seen that service abstraction into 
packages allows vendors and operators to work in 
much closer collaboration, with still enough room 
for proprietary knowledge on either side. The role of 
the SDK is to support the creation and validation of 
this service package.

Telco-Grade DevOps

The softwarized nature of SDN/NFV-based ser-
vices makes them a good fit for DevOps process-
es, a well known methodology from the IT world 
for building and maintaining software projects, but 
now applied to a collaboration between network 
service developers and telecom operators [4, 6]. 
At a high level, it resembles the “design for manu-
facturing” engineering concept, where the design 
facilitates the manufacturing process [1]. How-
ever, in a telco-grade solution, the design should 
facilitate the operator’s deployment. As explained 
above, the service package allows the operator 
to deploy the modular service on its own MANO 
platform. By using the SDK, the vendor or service 
developer has the ability to do operation-aware 
development and testing: After deployment, mon-
itoring data can be analyzed to detect failures and 
debug any VNF or service-related functionality. As 
shown in Fig. 4, the service can re-iterate through 
the SDK, where it is edited and packaged again 
with any needed updates. This also enables con-
tinuous integration and continuous deployment 
(CI/CD), another common practice in software 
development. CI/CD merges development with 
testing, making it possible to build code collabo-
ratively and automatically check for issues. Figure 
4 also shows that an execution environment can 
be chosen from the SDK, so the service can be 
checked in parallel to production. The SDK fea-
tures are detailed in the next section.
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IntroducIng sdk feAtures for 
sdn/nfv-bAsed servIces

In the previous section we explained how the ser-
vice package enables an open interface between 
vendors and operators. As depicted in Fig. 4, we 
use the service package to implement two main 
categories of SDK features: formal pre-deploy-
ment checks and a functional verification of the 
service. The toolset allows a developer or vendor 
to fully validate service updates and minimize the 
risk of failures, before deployment in production.

formAl verIfIcAtIon methods

By using formal verifi cation methods, the service 
package can be logically checked for correctness, 
to make sure that the MANO platform is able to 
accept and deploy the network service. Service 
Graph Analysis can report issues such as invalid 
connection points, repeated paths and existence 
of cycles in the forwarding graphs, which provide 
hints about the service integrity and deployability. 
The severity of a found issue may also depend 
on the VNF’s capabilities, for example, a cycle 
in a forwarding graph may not be problematic if 
an involved VNF is able to steer traffi  c and avoid 
endless loops. Possible bottlenecks for network 
congestion can be detected by analyzing the 
requested bandwidth for each link in the service 
and the performance specifi cations of the VNFs. If 
the SDK is tightly coupled to the targeted MANO 
platform, a formal Control Function Analysis can 
verify the code correctness or the presence of 
malicious code in any custom VNFM and NFVO. 
For example, it might be required that they are 

based on provided templates or parent classes, 
to make sure that they can be plugged into the 
MANO platform used by the operator. Practically, 
formal methods can be integrated into editors for 
generating network service descriptions. They can 
also be reused at the MANO entry point, to vali-
date incoming service packages.

Previously validated functions or templates can 
be made available via a Catalogue for easy access 
by the SDK and integration into new services. 
Different data modelling languages can be used 
to defi ne a service description (e.g., XML, JSON, 
YANG, YAML). With an associated schema, for-
mal verification of the descriptor itself can be 
done. The integrity is further examined by ensur-
ing all VNF references and images are accessible. 
Finally, the service model is packaged by the SDK, 
meaning that all required information to deploy 
the service is compiled into one single entity. By 
pushing the service package to the MANO plat-
form, it is not needed to replicate all deployment 
mechanisms inside the SDK. For added security, 
the package can be digitally signed, to trust that 
it was created by a known user, and to check if 
the package file was altered. The same key pair 
used for signing the package can also be used 
for user management in the execution environ-
ment to authenticate and authorize the SDK user. 
This adds a level of security to verify if the pushed 
package can be trusted or not.

functIonAl verIfIcAtIon methods

As shown in Fig 4, the SDK has one main south-
bound interface: an adapter to push the service 
package to multiple execution environments. On 

Figure 4. The SDK can edit and verify diff erent parts of the service package before initiating service deploy-
ment in various execution environments.
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one hand, deployment goes through the opera-
tor’s MANO platform (e.g., leasing operation-qual-
ifi ed hardware confi gurations or operating system 
versions). On the other hand, a local emulation or 
simulation environment [8-10] can be used as a 
sandbox to test the service. This is likely to be less 
performant, but can be a cheaper and easier alter-
native for quickly checking basic functionality, to 
try confi guration settings or generate test traffi  c in 
(parts of) the network service.

To gain operational insights, monitor data can 
be received through a second interface of the SDK 
platform. This interface can also be used to query 
the internal state of a VNF. Monitoring agents or 
traffic-generating test VNFs could be inserted at 
any location in the service, by simply updating 
the service graph. Mathematical techniques from 
regression analysis or machine learning can be 
used to process the monitored metrics through 
Performance Profiling of the VNF [11]. The per-
formance profi le enables predictable VNF perfor-
mance and optimized resource usage. Automated 
scaling functions manipulate the service graph, as 
exemplifi ed in Fig. 3 by load-balancing, hub-and-
spoke or full-mesh topologies which can be seen 
as templates where any VNF can be plugged-in 
to. The SDK could provide these templates to the 
developer for integration into a custom scaling 
algorithm. If the scaled topology is combined 
with the VNFs’ profi ling data, the performance of 
the scaled topology can be estimated before it is 
deployed.

With a minimized pay-per-use cost model, 
over-provisioning should be limited and scaling 
algorithms must be well tested and fine-tuned. 
The Emulation of Service Control Functions in the 
SDK can reveal, for example, bugs in the ser-

vice-control functions (VNFM, NFVO) that cause 
an exponential cost increase because too many 
resources are requested. To investigate placement 
algorithms, the SDK is not required to implement 
the full orchestration. It would be sufficient to 
check the NFVO function’s graph output, show-
ing onto which infrastructure nodes the VNFs in 
the service are mapped. A graph visualization in 
the SDK could, for example, be helpful to evalu-
ate the outcome of these algorithms. As shown 
in Fig. 4, the graph output of the service’s control 
functions can, in fact, be fed back into the SDK’s 
formal analysis tools for verifi cation.

sdk use-cAse: horIZontAl And vertIcAl scAlIng

We revisit the SFC example of Fig. 2 to investi-
gate how an SDK environment could support this 
service. Diff erent aspects are highlighted in Fig. 5: 
Custom horizontal scaling is implemented on the 
Router VNF, which aggregates most of the service 
traffi  c and will therefore be more prone to chang-
ing loads (such as temporarily popular streams or 
night/day differences). The router VNF is made 
elastic; it changes the number of dedicated data-
plane servers to forward the traffi  c. After deploy-
ing the updated topology, the forwarding tables in 
the new data-plane servers are confi gured accord-
ingly. Details of the implementation can be found 
in [12]. A local emulation environment [10] is 
used to audit the scaling algorithm under test-traf-
fi c. By monitoring the throughput rate and packet 
loss of the elastic router, the scaling procedure 
can be validated. Additionally, updated placement 
or custom orchestration is implemented by the 
NFVO. More or less DPI and Cache VNFs can be 
part of the service, in function of the location and 
amount of service users. By checking the service 

Figure 5. Custom control functions for the CDN service that can be created and validated using the SDK.
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graph modifications, the custom NFVO algorithm 
can be verified in the SDK.

The vertical scaling capabilities of the Cache 
VNF are also examined in Fig. 5. Using the auto-
mated profiling features demonstrated in [13], 
the throughput of the Cache VNF is tested under 
increasing CPU resource allocation. After statisti-
cally analyzing the time-series data, the SDK gen-
erates a more comprehensible way to describe 
the performance of the VNF. This helps define 
the resource boundaries for a specific VNF perfor-
mance. The performance thresholds can be filled 
in a VNFM function that will assign the required 
resources and optionally re-configure the VNF 
to use the newly allocated resources. Also, while 
testing the VNF under different resource alloca-
tions, implementation issues can be discovered 
[8], e.g., Is multi-threading support working cor-
rectly? Is the performance scaling linearly while 
adding resources?

This use-case exemplifies how the SDK should 
assist in validating the custom VNFM or NFVO 
control functions that can be plugged into the 

MANO platform. Using an execution environ-
ment, configuration and operation is functionally 
tested. At the end of the development process, a 
fully validated service package with highly auto-
mated control functions can be handed over to 
the operator/MANO platform.

Limitations in Existing SDK Environments

Future NFV-based service deployments must tack-
le a wide spectrum of use-cases [2] (e.g., the 5G, 
IoT or Telco related service space). Customizable 
management and control is therefore an inevita-
ble aspect of the service platform and should be 
supported from the design-phase onward. Existing 
SDKs focus primarily on cloud applications, which 
have a very different nature compared to network 
services. Major commercial cloud providers fol-
low a simplified model in their SDK. One part of 
the toolset focuses on application development: 
operating system or programming language spe-
cific. Another part helps the developer connect 
to the data center, deploy the application and 
monitor it. Some cloud platforms support the exe-
cution of custom event handling code through 
the use of certain hooks inside the application.1 
There is, however, no test environment available 
to trigger and validate the custom event handlers, 
without fully deploying the service.

Distinct open-source tools implement a specif-
ic part of the envisioned SDK environment, such 
as monitor data analysis [12, 13]. Adapters for 
light-weight or specialized environments [8-10] 
can deploy chained virtual machines or containers 
for testing or emulate the execution of service 
control functions on large scale data center topol-
ogies. A federated testbed uniting different tech-
nologies and administrators is described in [14]. 
This shows the practical implementation of a dis-
tributed test infrastructure across multiple owners.

Existing NFV technology overviews [2] can be 
updated with new concepts of customizable ser-
vice management, implemented by recent open-
source projects. The focus shifts to telco-grade 
NFV, beyond cloud provider functionality as 
mentioned earlier. Both UNIFY [3] and SONA-
TA [4] define a MANO architecture that allows 
custom, service-specific control functionality, like 
scaling, configuration and placement. UNIFY has 
a SP-DevOps toolkit [6] for post-deployment trou-
bleshooting, and SONATA provides a pre-deploy-
ment tool-chain to describe, validate and package 
complete service chains [13]. OSM (Open-Source-
MANO (OSM): https://osm.etsi.org/; accessed on 
11 Sept. 2017) and ONAP (The Open Network 
Automation Platform (ONAP): https://www.onap.
org/; accessed on 11 Sept. 2017) are MANO plat-
forms devised by industry-driven consortia, and 
have a clear roadmap toward an NFV-related SDK. 
Like SONATA, they both offer a set of design-time 
tools for easy service graph editing and packaging. 
ONAP additionally implements a Policy Subsys-
tem that allows the creation of easily-updatable 
conditional rules, executed by ONAP’s own con-
trol, orchestration, and management functions. A 
formal validation can detect policy conflicts. This 
framework, as explained in [15], implies, however, 
that the execution of the policy rules is embed-
ded into ONAP and not modifiable by the ser-
vice developer. VNF management is enhanced by 
OSM and Open-Baton (Open-Baton: Open-Source 

1 Implementing custom 
lifecycle events can be done 
by, for example, Cloudify 
Lifecycle Events, AWS Lifecy-
cle Hooks, Azure Functions 
webhooks, and service con-
trol using Google Cloud App 
Engine.

Table 1. Specific aspects of SDN/NFV-based services, whose development is 
assisted by new SDK features.

Key components SDN/NFV related aspect SDK features

Service package

Network functions (VNFs)
• Support for NFV-specific program languages, 
   APIs or libraries  
• VNF state verification

Networking control
• Support for SDN-specific program languages, 
   APIs or libraries  
• Visualization of the network state

Service programming 
model

• Service/VNF catalog  
• Re-usability of service templates  
• Formal pre-deployment check  
• Compilation into an easy-to-deploy service 
    package  
• Graphical verification of customized service 
    graphs

Custom service 
control functions 
(NFVO/VNFM)

VNF configuration

• Programming support for NFVO/VNFM 
    functions, tightly coupled to the MANO 
    platform.  
 • Sandbox/emulator environment to test the 
    VNF interfaces

Custom scaling

• Simulation of scaling triggers  
• Customization of VNFM templates for high 
   availability (auto-scaling, load-balancing)  
• Verification of custom state migration 
   procedures

Custom placement

• Simulation of VNF orchestration  
• Verification of NFVO output  
• Visualization of the deployed service graph 
   mapped on the available infrastructure

Supporting 
functions

Monitored data

• Packet stream analysis  
• Data analytics (regression analysis, machine 
learning)  
• Generation of custom test traffic and 
monitoring VNF/service metrics

Performance profile

• Generation of a reliable VNF performance 
   profile  
• Capacity estimation and optimized resource 
   planning  
• VNF benchmarking
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MANO framework: http://openbaton.github.io/; 
accessed on 11 Sept. 2017) with a set of libraries 
to implement a VNFM with specific VNF configura-
tion scripts and an interface to the NFVO. Recent 
initiatives such as OPNFV and NGPaaS focus on 
facilitating NFV development and deployment 
across multiple open source eco-systems. Neither 
of the described platforms has already full devel-
opment support for integrating customized service 
control.

Challenges and Opportunities
To avoid the need for bulky and unified devel-
opment software, we proposed a limited but 
specialized feature-set for the SDK, built around 
the service package, as illustrated in Fig. 4. This 
development environment is extended with key 
functional verification tools, based on feedback 
analysis of monitor data and VNFM/NFVO out-
put. The main features are summarized in Table 1. 
We see, however, some challenges to fit the SDK 
into the real-world telco eco-system:
•	 A DevOps mindset between operators and 

vendors should be cultivated, bringing the 
Ops environment closer to development.

•	 The same service package formats should 
be supported by the operator’s MANO plat-
form and the SDK. This would require a con-
solidation of several existing service package 
formats or the need for multiple package for-
mat translators.

•	 Security risks should be mitigated by autho-
rization and authentication of the SDK user 
when pushing to the operator’s environ-
ment. Possible exploits in the service control 
functions must be detected before deploy-
ment, for example, infinite scaling, unautho-
rized access to resources.

•	 Workflows for generic VNF tasks (orchestra-
tion, networking, start, update, terminate) 
should be defined and guaranteed by the 
MANO platform, taken out of the hands of 
the SDK.

•	 VNFs should be developed with elasticity in 
mind.
However, the proposed SDK environment cre-

ates many opportunities to optimize the service 
lifecycle:
•	 Modeling and packaging the service leads to 

easier validation, re-usability and (re-)deploy-
ment speedup.

•	 Monitoring and profiling tools allow a reliable 
reproducibility and definition of the service 
performance.

•	 Creating customized placement and scaling 
algorithms enable a more optimized resource 
usage.

•	 Implementing highly automated manage-
ment functions decreases operational cost.

•	 Supporting a clear service package format 
lowers the barrier between vendors and oper-
ators.
As advances in SDN and NFV help transform 

telecom services into software-based network 
function chains, it is important that development 
tools keep up with this evolution. The holistic 
setup of the SDN/NFV-based service implies that 
different artefacts can be part of the service pack-
age, including elastic scaling mechanisms and 
possible resource and placement constraints. It 

requires a generic service programming model 
that is not yet standardized. While building further 
on DevOps principles and existing NFV architec-
tures, we identified new SDK features to stream-
line the development and deployment of modern 
virtualized telecom services. We hope the pre-
sented development flow can give further direc-
tions to the ongoing research in SDN/NFV-based 
service creation.
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