
IEEE Communications Magazine • August 2018184 0163-6804/18/$25.00 © 2018 IEEE

Abstract

Network virtualization and softwarizing net-
work functions are trends aiming at higher net-
work efficiency, cost reduction and agility. They
are driven by the evolution in Software Defined
Networking (SDN) and Network Function Vir-
tualization (NFV). This shows that software will
play an increasingly important role within tele-
communication services, which were previously
dominated by hardware appliances. Service pro-
viders can benefit from this, as it enables faster
introduction of new telecom services, combined
with an agile set of possibilities to optimize and
fine-tune their operations. However, the provided
telecom services can only evolve if the adequate
software tools are available. In this article, we
explain how the development, deployment and
maintenance of such an SDN/NFV-based telecom
service puts specific requirements on the platform
providing it. A Software Development Kit (SDK)
is introduced, allowing service providers to ade-
quately design, test and evaluate services before
they are deployed in production and also update
them during their lifetime. This continuous cycle
between development and operations, a concept
known as DevOps, is a well known strategy in
software development. To extend its context fur-
ther to SDN/NFV-based services, the functional-
ities provided by traditional cloud platforms are
not yet sufficient. By giving an overview of the
currently available tools and their limitations, the
gaps in DevOps for SDN/NFV services are high-
lighted. The benefit of such an SDK is illustrat-
ed by a secure content delivery network service
(enhanced with deep packet inspection and elas-
tic routing capabilities). With this use-case, the
dynamics between developing and deploying a
service are further illustrated.

Introduction
Modern-day telecom services show an increasing-
ly dynamic behavior, causing network operators
and service providers to adopt a more unified and
elastic deployment approach. They move away
from (vendor-) specific hardware middleboxes
at centralized locations and instead use resource
virtualization, distributed cloud-based platforms
and global partnerships to respond efficiently to
market demands. Economic viability requires high
automation and scalability of resources, while still
meeting stringent customer requirements such
as fast deployment, zero perceivable interrup-
tion and high personalization of services [1]. In

this context, we investigate how to provide tel-
co-grade solutions for the service development
process.

The Evolution of SDN/NFV Development

A full-fledged development environment for
SDN/NFV-based services builds upon the evo-
lution in three overlapping areas: programming
languages or software tools in general, SDN/NFV
related techniques and service platforms [2]. Fig-
ure 1 describes this evolution. SDN/NFV-based
network services rely on a wide set of standards
and technologies ranging from virtualization and
network programming techniques to automation
and monitoring tools. Auxiliary features help to
deploy, configure and scale the service compo-
nents in different infrastructure environments. An
all-inclusive role is played by the Management
and Orchestration (MANO) platforms, providing
functions for automated deployment and opera-
tion of network services. This calls for dedicated
support to adequately test and debug those ser-
vice control mechanisms, before they are actually
deployed in production.

The next step would be to consolidate all
these discrete SDN/NFV related tools into a uni-
fied SDK environment. But before we select the
most interesting tools, let us take a deeper look
into the specific components and characteristics
of a modern network service.

Service Function Chaining
NFV and SDN are two main advancements
that fundamentally change how network ser-
vices are deployed. NFV aims at softwarizing
(hardware-based) network functionalities such
as packet filtering and forwarding, Network-Ad-
dress-Translation (NAT), Quality-of-Service (QoS)
management, and WAN optimization. The new
Virtualized Network Function (VNF) is now an
isolated software image, ready to be deployed on
generic, common off-the-shelf servers. The infra-
structure is now virtualized, enabling more fine-
grained ways to consume compute, storage, and
network resources. Complementary to NFV, SDN
allows flexible and easier control of the network-
ing between VNFs. The intelligence or algorithm
that decides where traffic should be steered to,
is implemented in a separate, over-looking con-
trol entity or SDN-controller. This control plane
instructs the underlying packet forwarding devices
or data plane using a well-defined protocol such
as Openflow or NETCONF. The result is central-
ized and programmable network management.

Introducing Development Features for
Virtualized Network Services

Steven Van Rossem, Wouter Tavernier, Didier Colle, Mario Pickavet, and Piet Demeester

Accepted from Open Call

Telecom services can only
evolve if the adequate
software tools are avail-
able. The authors explain
how the development,
deployment and main-
tenance of an SDN/NFV-
based telecom service
puts specific requirements
on the platform providing
it. A Software Develop-
ment Kit is introduced,
allowing service providers
to adequately design,
test and evaluate services
before they are deployed
in production and also
update them during their
lifetime.

The authors are with Ghent University.
Digital Object Identifier:
10.1109/MCOM.2018.1600104

Authorized licensed use limited to: University of Piraeus. Downloaded on January 20,2021 at 10:35:28 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • August 2018 185

The fl exibility provided by the above described
technologies, leads to the concept of Service
Function Chaining (SFC). VNFs are deployed on
infrastructure nodes that can be located at both
the network edge and core. The telco-grade net-
work service is now deployed as a chain of VNFs,
dynamically connected into various topologies, as
SDN provides ways to programmatically set up
network links between several servers in one or
more data centers. In the next section, we sketch
a practical example of this.

Example Use-Case: Secure Content Delivery:
To illustrate better the dynamics enabled by NFV,
SDN and SFC, a typical telco service example is
given in Fig. 2. It is a secured Content Delivery
Network (CDN) where service subscribers can
both download and upload content using their
local user applications. Downward, media can be
streamed from a cloud VM which serves as a cen-
tral database, or from Cache-VNFs which cache
often streamed data in edge servers for faster
delivery. Upward, end-users push content to the
cloud VM, by fi rst passing through a Deep Packet
Inspection (DPI)-VNF for security reasons. Both
DPI and Cache VNFs are deployed in a distrib-
uted way, near the network edge, which enables
better quality of experience by locating these
functions closer to the (mobile) end-users. A Rout-
er-VNF aggregates the traffi c before it reaches the
cloud VM. The Router allows easier measurement
of parameters like data volume, needed for billing
or Service-Level-Agreement (SLA) monitoring. It
isolates the service-dedicated routing process into
a dedicated VNF. In case of fl ash crowds or other
sudden data volume changes, the diff erent VNFs
can elastically scale, in function of the needed
packet rate. We will use this use-case through-
out the article to illustrate how SDN/NFV-based
services are deployed and how this impacts their
development environment.

cloud ApplIcAtIon vs. sdn/nfv-bAsed servIce

We want to highlight that SDN/NFV-based
telecom services extend the classic cloud appli-
cations to many additional domains. Cloud
applications are generally application-layer
based, with a three-tier architecture consisting

of a web-, application- and database server in
the backend. A local or mobile device is used
in the frontend. Moreover, cloud application
software is typically not tuned for rapid low-
er-layer packet processing, needed in, for exam-
ple, DPI, Cache or Router VNFs. Instead, cloud
apps focus on endpoint functionality like web
applications. The generic cloud eco-system is
basically a connection from user to data center,
where the network infrastructure in between
is not leveraged. This is diff erent from the SFC
example in Fig. 2, where orchestration also
needs to reach the access and core networks. A
wider orchestration domain enables better opti-
mization regarding the placement and resource
use of the network functions, especially in case
of large-scale services where many users are
distributed over multiple access networks. It is
envisioned that the next generation of telecom
services will rely heavily on dynamic service
chains in the provider networks [1].

Cloud applications have limited, often single

Figure 1. Evolution of the SDN/NFV eco-system. Growing functionality integration and abstraction require a growing set of dedicated
tools for development, testing and debugging.

NFV service programming models:
TOSCA , ETSI-NFV, Heat, JuJu, …

SDN based network programming:
Openflow, Frenetic, Merlin, P4, …

Application programming:
C, C++, Java, Python, HTML,
PHP, Ruby, Node.js, Go, …

Networking test tools:
ping, tcpdump, traceroute, iperf, tcpreplay,
scapy, wireshark, ostinato, TRex… Optimized software-based packet processing:

OpenvSwitch, netmap, DPDK, SR-IOV, FD.io …

VIM APIs:
OpenStack API, Google Cloud Platform (gcloud),
Azure CLI, Amazon AWS CLI, …

SDN controllers:
Ryu, OpenDaylight, OpenContrail, ONOS, …

VNF implementations:
Click, quagga, Snort, pfsense, squid, …

Virtualization techniques and tools:
VM-based: KVM, Vmware, VirtualBox, Vagrant, …
Container-based: LXC, Docker, rkt, …

MANO platforms:
Cloudify, Open - MANO, UNIFY, T-NOVA,
Open -Baton, OSM, SONATA, ONAP…

Operating systems or hardware platforms
(server/mobile) :
Windows, Linux, iOS, Android, x86, ARM, FPGA…

Container orchestration platforms:
Kubernetes, Docker Swarm, Nomad, Mesos,
OpenStack Magnum, …

Configuration management:
Chef, Puppet, Ansible, …

Network and compute simulation/emulation:
ns-3, Omnet++, CloudSim, Mininet, MeDICINE, …

Service platform evolution

Monitoring tools and frameworks:
NetFlow, sFlow, Nagios, Prometheus,
Graphite, Grafana …

NFV development and deployment:
SONATA, ECOMP, ONAP, OPNFV, OSM,
NGPaaS …

Automated SW deployment and testing:
Jenkins, Travis, Cucumber…

Agile SW management and issue tracking:
GitHub, JIRA, …

Software evolution SDN/NFV evolution

Figure 2. Example of an SDN/NFV-based Service Function Chains providing a
secure CDN where each network function is implemented as a VNF.

Access/
aggregation

network

Access/
aggregation

network

Access
NodesService

subscribers

Data Center

DPI

Router
Cloud VM

DPI

Data Center

Data Center

Core
Network

User
application

User
application

Cache

Cache

Authorized licensed use limited to: University of Piraeus. Downloaded on January 20,2021 at 10:35:28 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • August 2018186

data center, orchestration possibilities. There-
fore only sub-optimal scaling strategies can be
used in certain cases. Typically this means clon-
ing VNF images and putting a load-balancer in
front of them, or adding more resources to the
VNF like CPU and memory. In high-speed NFV-
based services, adding a load-balancer is not
always optimal, because a simple load-balancing
action might have a processing cost in the same
order as the original packet-handling itself, thus
not leading to any improved processing speed.
Instead, placing the VNFs closer to the edge
might prove a better solution, as shown with the
DPI and Cache VNFs in Fig. 2. During scaling,
stateful VNFs might also require a more intelli-
gent state migration strategy instead of simple
cloning. The foregoing indicates that pre-defi ned
auto-scaling and data-analytics provided by the
operator do not always unlock the full potential
of SDN/NFV-based services. Customized and
service-specific actions defined by the service
developer can handle certain lifecycle events
more optimally by controlling scaling and place-
ment mechanisms more closely [3, 4].

In the remainder of this article, we discuss the
position of the SDK in the telco-grade eco-system
with its related actors. Then we detail the neces-
sary features for the SDK environment to support
all aspects of the SDN/NFV-based network ser-
vice in practice. We conclude in the fi nal section
with an overview of the SDK’s challenges and
opportunities.

the servIce development And
deploYment process

To understand the requirements for the SDK envi-
ronment, we give an overview of the deployment
process of SDN/NFV-based services, as present-
ed in Fig. 3. We categorize three main groups
of stakeholders in the service’s lifecycle: Vendors
or Service Developers use the SDK to create or
edit services and package them, ready to deploy.
The Operator or Service Provider receives the ser-
vice package compiled by the SDK. They deploy
and manage the service in its operational state by
addressing the Infrastructure Providers at the bot-
tom, to lease the necessary compute, storage and
network capacity. The economic viability of a net-
work service improves greatly if these virtualized
resources can be optimally scaled to fi t real-time
performance needs, without any noticeable inter-
ruption for the service users. The operational cost
would also further decrease if the service is con-
trolled and managed automatically. NFV and SDN
have proven added value regarding resource vir-
tualization and automated network control, and
the SDK should assist in integrating these technol-
ogies. Moreover, vendors have proprietary knowl-
edge about how the service internally works,
while operators have their own private systems to
deploy and manage the service. The SDK offers
a way to bridge this gap by facilitating the inter-
facing between the involved parties and allowing
closer cooperation during the service’s lifetime.

Figure 3. The SDK produces a Service Package which describes the chained VNFs in the network service and the required functions
for customized management and control. This is deployed through the Service Provider’s MANO platform.

NFVO2

Cloud VM
Tenant #1
(Service 1)

Cloud VM
Tenant #2
(Service 2)

Home or Enterprise
Service subscribers

SDN
controller

Cloud data center

Infrastructure
nodes VNF1

(DPI)
VNF3

(Router)
VNF2

(Cache)

VIM

User
application

Infrastructure network

Infrastructure
Provider

Operator /
Service Provider

Vendor /
Service Developer

VIM VIMAdapters

M
essage Broker / API

MANO
platform

NFVO1

SDK
environment

service update
(scaled VNF2)

service update
(scaled VNF1)

service update
(scaled VNF3)

…

VNFM3VNFM2VNFM1 ……VNF
Manager

Service
Manager

Service
Update

Service Package
including:

VNF1

VNF2

VNF3

• VNF and SFC descriptors
• Service-specific managers (NFVO)
• VNF-specific managers (VNFM)

• Feedback analysis

• Operation-aware
testing

• Operation-aware
development

LB

LB LB

VNFM1

VNFM2

VNFM3

NFVO1

Authorized licensed use limited to: University of Piraeus. Downloaded on January 20,2021 at 10:35:28 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • August 2018 187

The MANO Platform
Service operators need to have an adapted
deployment system to support the dynamicity
enabled by SDN/NFV. Such a system is the Man-
agement and Orchestration (MANO) platform,
as can be seen in Fig. 3. In accordance with the
ETSI (ETSI, NFV research group, https://irtf.org/
nfvrg, accessed on 27 June 2017) defined frame-
work for management and orchestration [5], the
high-level functional blocks are as follows.

The NFV Orchestrator (NFVO): Maintains a
global overview of the service topology. It calcu-
lates the placement and orchestrates the (scaled)
VNFs and network links onto the available infra-
structure. In the described use-case, the NFVO
would decide where the Cache and DPI VNFs
would be placed in the available access networks.

The VNF Manager (VNFM): Controls the life-
cycle events of a single VNF such as instantiation,
configuration and scaling. The VNFM of the rout-
er in the selected use-case could decide to scale
in or out according to the required traffic rate.

Virtualized Infrastructure Manager (VIM)
Adapters: Provides the NFVO and VNFM an inter
face to control the compute, storage and network
nodes. Specialized VIMs control the network
between the different infrastructure nodes or
cloud data centers, e.g., a centralized SDN-con-
troller to set up the required links between VNFs
in different access networks.

The communication between the different
modules in the MANO platform happens by using
pre-defined messages over a message broker, or
the modules address each other’s API directly.
Additional features related to monitoring and
automated healing of network services are also
possible parts of the MANO framework [6].

Some of the automated NFVO and VNFM con-
trol functionalities, such as VNF startup and shut-
down, can be quite generic. Other VNF lifecycle
events, such as configuration, updating, migration
or scaling, are likely to include very service-specif-
ic logic, custom-built by the developer. Therefore,
MANO platforms would need to plug in custom-
ized control functions, shown in Fig. 3. Each ser-
vice has its own NFVO and each VNF has its own
VNFM. Suppose a scale-out would be required as
traffic increases: The scaled-out topology is calcu-
lated by the specific VNFM, orchestrated by the
service’s NFVO, and deployed using the involved
VIM adapters. A more detailed explanation of
the MANO framework is out of the scope of this
article, but it is important to understand that the
modular approach and split-up of the various ser-
vice management and control features must be
taken into account during service development.

The Service Package

To abstract the wide range of deployment and
operational aspects of an SDN/NFV-based ser-
vice, a programming model is helpful [7]. Essen-
tially, network services can be seen as graphs,
like the SFC example in Fig. 2. The VNFs are the
nodes that can be enriched with annotations such
as their resource requirements (number of CPU
cores, amount of memory and storage), or other
requirements such as high availability. The edges
are the links in the infrastructure network, spec-
ified by necessary bandwidth or the maximum
delay, further constraining the placement in the

physical infrastructure. Other abstractions, like
network resiliency, can be mapped to redundant
link configurations, for example. Several flavors
of such a model are being devised by ETSI-NFV
[5] and several research projects such as UNIFY,
T-NOVA, OSM and SONATA. Also, open-source
initiatives like TOSCA and OpenStack/HEAT have
own models.

The service package includes everything need-
ed to deploy the service in the operator’s environ-
ment and bridges the boundary between vendors
and operators. Figure 3 shows that the package
should at least consist of:
•	 References to the actual VNF images to

deploy on the infrastructure.
•	 A service graph that describes how the VNFs

in the service are connected.
•	 All service or VNF-specific logic in the form

of NFVOs or VNFMs that can be plugged
into the operator’s platform.
Optionally, a definition of the expected feedback

from the operator can be added. This can include
a set of metrics to be monitored or certain alarms,
triggered by a given threshold. Also shown in Fig. 3
is how multiple, in parallel deployed, service packag-
es support a multi-tenancy scenario. In our example
a second service using only DPI and Router VNFs
is added, reaching a second VM in the cloud data
center. The modules of the service package are
developed by the vendor, and the operator should
deploy all components on the infrastructure while
respecting the constraints defined in the service
package. It can be seen that service abstraction into
packages allows vendors and operators to work in
much closer collaboration, with still enough room
for proprietary knowledge on either side. The role of
the SDK is to support the creation and validation of
this service package.

Telco-Grade DevOps

The softwarized nature of SDN/NFV-based ser-
vices makes them a good fit for DevOps process-
es, a well known methodology from the IT world
for building and maintaining software projects, but
now applied to a collaboration between network
service developers and telecom operators [4, 6].
At a high level, it resembles the “design for manu-
facturing” engineering concept, where the design
facilitates the manufacturing process [1]. How-
ever, in a telco-grade solution, the design should
facilitate the operator’s deployment. As explained
above, the service package allows the operator
to deploy the modular service on its own MANO
platform. By using the SDK, the vendor or service
developer has the ability to do operation-aware
development and testing: After deployment, mon-
itoring data can be analyzed to detect failures and
debug any VNF or service-related functionality. As
shown in Fig. 4, the service can re-iterate through
the SDK, where it is edited and packaged again
with any needed updates. This also enables con-
tinuous integration and continuous deployment
(CI/CD), another common practice in software
development. CI/CD merges development with
testing, making it possible to build code collabo-
ratively and automatically check for issues. Figure
4 also shows that an execution environment can
be chosen from the SDK, so the service can be
checked in parallel to production. The SDK fea-
tures are detailed in the next section.

The softwarized nature

of SDN/NFV-based

services makes them

a good fit for DevOps

processes, a well known

methodology from the

IT world for building

and maintaining soft-

ware projects, but now

applied to a collabora-

tion between network

service developers and

telecom operators.

Authorized licensed use limited to: University of Piraeus. Downloaded on January 20,2021 at 10:35:28 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • August 2018188

IntroducIng sdk feAtures for
sdn/nfv-bAsed servIces

In the previous section we explained how the ser-
vice package enables an open interface between
vendors and operators. As depicted in Fig. 4, we
use the service package to implement two main
categories of SDK features: formal pre-deploy-
ment checks and a functional verification of the
service. The toolset allows a developer or vendor
to fully validate service updates and minimize the
risk of failures, before deployment in production.

formAl verIfIcAtIon methods

By using formal verifi cation methods, the service
package can be logically checked for correctness,
to make sure that the MANO platform is able to
accept and deploy the network service. Service
Graph Analysis can report issues such as invalid
connection points, repeated paths and existence
of cycles in the forwarding graphs, which provide
hints about the service integrity and deployability.
The severity of a found issue may also depend
on the VNF’s capabilities, for example, a cycle
in a forwarding graph may not be problematic if
an involved VNF is able to steer traffi c and avoid
endless loops. Possible bottlenecks for network
congestion can be detected by analyzing the
requested bandwidth for each link in the service
and the performance specifi cations of the VNFs. If
the SDK is tightly coupled to the targeted MANO
platform, a formal Control Function Analysis can
verify the code correctness or the presence of
malicious code in any custom VNFM and NFVO.
For example, it might be required that they are

based on provided templates or parent classes,
to make sure that they can be plugged into the
MANO platform used by the operator. Practically,
formal methods can be integrated into editors for
generating network service descriptions. They can
also be reused at the MANO entry point, to vali-
date incoming service packages.

Previously validated functions or templates can
be made available via a Catalogue for easy access
by the SDK and integration into new services.
Different data modelling languages can be used
to defi ne a service description (e.g., XML, JSON,
YANG, YAML). With an associated schema, for-
mal verification of the descriptor itself can be
done. The integrity is further examined by ensur-
ing all VNF references and images are accessible.
Finally, the service model is packaged by the SDK,
meaning that all required information to deploy
the service is compiled into one single entity. By
pushing the service package to the MANO plat-
form, it is not needed to replicate all deployment
mechanisms inside the SDK. For added security,
the package can be digitally signed, to trust that
it was created by a known user, and to check if
the package file was altered. The same key pair
used for signing the package can also be used
for user management in the execution environ-
ment to authenticate and authorize the SDK user.
This adds a level of security to verify if the pushed
package can be trusted or not.

functIonAl verIfIcAtIon methods

As shown in Fig 4, the SDK has one main south-
bound interface: an adapter to push the service
package to multiple execution environments. On

Figure 4. The SDK can edit and verify diff erent parts of the service package before initiating service deploy-
ment in various execution environments.

Service Control Functions

Infrastructure Provider

MANO Platform (light-weight) MANO Platform

Test – Infrastructure
(eg. Emulation or Simulation,

Test traffic generation)

ca
ta

lo
gu

e
ac

ce
ss

Service Graph Analysis

Create/Validate Service
Package

Ops Dev

SDK environment

Analysis of Monitor Data

Emulate Service Control
Functions

Performance Profiling

Formal Verification Functional Verification

Develop

TestOperate

Service
Package

Service Deployment

push service
package

feedback monitor
data/ VNF state

Deployed
VNFs

Control Function Analysis

execution environment
adapters

For added security, the

package can be digitally

signed, to trust that it

was created by a known

user, and to check if the

package fi le was altered.

The same key pair used

for signing the package

can also be used for

user management in

the execution environ-

ment to authenticate

and authorize the SDK

user. This adds a level

of security to verify if

the pushed package can

be trusted or not.

Authorized licensed use limited to: University of Piraeus. Downloaded on January 20,2021 at 10:35:28 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • August 2018 189

one hand, deployment goes through the opera-
tor’s MANO platform (e.g., leasing operation-qual-
ifi ed hardware confi gurations or operating system
versions). On the other hand, a local emulation or
simulation environment [8-10] can be used as a
sandbox to test the service. This is likely to be less
performant, but can be a cheaper and easier alter-
native for quickly checking basic functionality, to
try confi guration settings or generate test traffi c in
(parts of) the network service.

To gain operational insights, monitor data can
be received through a second interface of the SDK
platform. This interface can also be used to query
the internal state of a VNF. Monitoring agents or
traffic-generating test VNFs could be inserted at
any location in the service, by simply updating
the service graph. Mathematical techniques from
regression analysis or machine learning can be
used to process the monitored metrics through
Performance Profiling of the VNF [11]. The per-
formance profi le enables predictable VNF perfor-
mance and optimized resource usage. Automated
scaling functions manipulate the service graph, as
exemplifi ed in Fig. 3 by load-balancing, hub-and-
spoke or full-mesh topologies which can be seen
as templates where any VNF can be plugged-in
to. The SDK could provide these templates to the
developer for integration into a custom scaling
algorithm. If the scaled topology is combined
with the VNFs’ profi ling data, the performance of
the scaled topology can be estimated before it is
deployed.

With a minimized pay-per-use cost model,
over-provisioning should be limited and scaling
algorithms must be well tested and fine-tuned.
The Emulation of Service Control Functions in the
SDK can reveal, for example, bugs in the ser-

vice-control functions (VNFM, NFVO) that cause
an exponential cost increase because too many
resources are requested. To investigate placement
algorithms, the SDK is not required to implement
the full orchestration. It would be sufficient to
check the NFVO function’s graph output, show-
ing onto which infrastructure nodes the VNFs in
the service are mapped. A graph visualization in
the SDK could, for example, be helpful to evalu-
ate the outcome of these algorithms. As shown
in Fig. 4, the graph output of the service’s control
functions can, in fact, be fed back into the SDK’s
formal analysis tools for verifi cation.

sdk use-cAse: horIZontAl And vertIcAl scAlIng

We revisit the SFC example of Fig. 2 to investi-
gate how an SDK environment could support this
service. Diff erent aspects are highlighted in Fig. 5:
Custom horizontal scaling is implemented on the
Router VNF, which aggregates most of the service
traffi c and will therefore be more prone to chang-
ing loads (such as temporarily popular streams or
night/day differences). The router VNF is made
elastic; it changes the number of dedicated data-
plane servers to forward the traffi c. After deploy-
ing the updated topology, the forwarding tables in
the new data-plane servers are confi gured accord-
ingly. Details of the implementation can be found
in [12]. A local emulation environment [10] is
used to audit the scaling algorithm under test-traf-
fi c. By monitoring the throughput rate and packet
loss of the elastic router, the scaling procedure
can be validated. Additionally, updated placement
or custom orchestration is implemented by the
NFVO. More or less DPI and Cache VNFs can be
part of the service, in function of the location and
amount of service users. By checking the service

Figure 5. Custom control functions for the CDN service that can be created and validated using the SDK.

(emulated) service users

CDN: service scaling

Cache - VNFM function:
Update VNF performance

Estimate resources using pre-measured VNF profile

update service graph
and re-orchestrate via NFVO

configure new Cache VNFs

DPIDPI

0

20

40

60

Time

Restricted CPU usage (%)

0

10

20

30

40

Time

Download speed (Mb/sec)
(test traffic: 50% cached + 50 % non-cached downloads)

0

5

10

15

20

25

30

35

0 10 20 30 40

Do
w

nl
oa

d
sp

ee
d

(M
b/

se
c)

CPU allocation (%)

Cache VNF performance profile

Cache

Router

Cloud
VM

Service
Access
Points

Service Graph

Analyzed VNF performance under
varying resource allocation:

resource
boundaries

VNF
performance

Monitoring router throughput
(packet loss 0%)

trigger scaling
action100

150

200

250

300

350

400

450

eg
re

ss
 p

ac
ke

t r
at

e
(p

ps
)

Time

Router: Horizontal scaling

Cache: Vertical scaling

VNF scale-out
period

performance
fluctuation during
scale-out

Monitored metrics:

Router - VNFM function:
Receive scale alarm

Update service graph
and re-orchestrate via NFVO

Re-configure forwarding table(s)

DP2DP1

DP3

DP

DP: dedicated Data Plane server

Service graph change
during scaling

CDN service - NFVO function:
Monitor users’ location

Calculate optimal placement
of new DPI and Cache VNFs

Update service graph
and (re-)orchestrate

Authorized licensed use limited to: University of Piraeus. Downloaded on January 20,2021 at 10:35:28 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • August 2018190

graph modifications, the custom NFVO algorithm
can be verified in the SDK.

The vertical scaling capabilities of the Cache
VNF are also examined in Fig. 5. Using the auto-
mated profiling features demonstrated in [13],
the throughput of the Cache VNF is tested under
increasing CPU resource allocation. After statisti-
cally analyzing the time-series data, the SDK gen-
erates a more comprehensible way to describe
the performance of the VNF. This helps define
the resource boundaries for a specific VNF perfor-
mance. The performance thresholds can be filled
in a VNFM function that will assign the required
resources and optionally re-configure the VNF
to use the newly allocated resources. Also, while
testing the VNF under different resource alloca-
tions, implementation issues can be discovered
[8], e.g., Is multi-threading support working cor-
rectly? Is the performance scaling linearly while
adding resources?

This use-case exemplifies how the SDK should
assist in validating the custom VNFM or NFVO
control functions that can be plugged into the

MANO platform. Using an execution environ-
ment, configuration and operation is functionally
tested. At the end of the development process, a
fully validated service package with highly auto-
mated control functions can be handed over to
the operator/MANO platform.

Limitations in Existing SDK Environments

Future NFV-based service deployments must tack-
le a wide spectrum of use-cases [2] (e.g., the 5G,
IoT or Telco related service space). Customizable
management and control is therefore an inevita-
ble aspect of the service platform and should be
supported from the design-phase onward. Existing
SDKs focus primarily on cloud applications, which
have a very different nature compared to network
services. Major commercial cloud providers fol-
low a simplified model in their SDK. One part of
the toolset focuses on application development:
operating system or programming language spe-
cific. Another part helps the developer connect
to the data center, deploy the application and
monitor it. Some cloud platforms support the exe-
cution of custom event handling code through
the use of certain hooks inside the application.1
There is, however, no test environment available
to trigger and validate the custom event handlers,
without fully deploying the service.

Distinct open-source tools implement a specif-
ic part of the envisioned SDK environment, such
as monitor data analysis [12, 13]. Adapters for
light-weight or specialized environments [8-10]
can deploy chained virtual machines or containers
for testing or emulate the execution of service
control functions on large scale data center topol-
ogies. A federated testbed uniting different tech-
nologies and administrators is described in [14].
This shows the practical implementation of a dis-
tributed test infrastructure across multiple owners.

Existing NFV technology overviews [2] can be
updated with new concepts of customizable ser-
vice management, implemented by recent open-
source projects. The focus shifts to telco-grade
NFV, beyond cloud provider functionality as
mentioned earlier. Both UNIFY [3] and SONA-
TA [4] define a MANO architecture that allows
custom, service-specific control functionality, like
scaling, configuration and placement. UNIFY has
a SP-DevOps toolkit [6] for post-deployment trou-
bleshooting, and SONATA provides a pre-deploy-
ment tool-chain to describe, validate and package
complete service chains [13]. OSM (Open-Source-
MANO (OSM): https://osm.etsi.org/; accessed on
11 Sept. 2017) and ONAP (The Open Network
Automation Platform (ONAP): https://www.onap.
org/; accessed on 11 Sept. 2017) are MANO plat-
forms devised by industry-driven consortia, and
have a clear roadmap toward an NFV-related SDK.
Like SONATA, they both offer a set of design-time
tools for easy service graph editing and packaging.
ONAP additionally implements a Policy Subsys-
tem that allows the creation of easily-updatable
conditional rules, executed by ONAP’s own con-
trol, orchestration, and management functions. A
formal validation can detect policy conflicts. This
framework, as explained in [15], implies, however,
that the execution of the policy rules is embed-
ded into ONAP and not modifiable by the ser-
vice developer. VNF management is enhanced by
OSM and Open-Baton (Open-Baton: Open-Source

1 Implementing custom
lifecycle events can be done
by, for example, Cloudify
Lifecycle Events, AWS Lifecy-
cle Hooks, Azure Functions
webhooks, and service con-
trol using Google Cloud App
Engine.

Table 1. Specific aspects of SDN/NFV-based services, whose development is
assisted by new SDK features.

Key components SDN/NFV related aspect SDK features

Service package

Network functions (VNFs)
• Support for NFV-specific program languages,
 APIs or libraries
• VNF state verification

Networking control
• Support for SDN-specific program languages,
 APIs or libraries
• Visualization of the network state

Service programming
model

• Service/VNF catalog
• Re-usability of service templates
• Formal pre-deployment check
• Compilation into an easy-to-deploy service
 package
• Graphical verification of customized service
 graphs

Custom service
control functions
(NFVO/VNFM)

VNF configuration

• Programming support for NFVO/VNFM
 functions, tightly coupled to the MANO
 platform.
 • Sandbox/emulator environment to test the
 VNF interfaces

Custom scaling

• Simulation of scaling triggers
• Customization of VNFM templates for high
 availability (auto-scaling, load-balancing)
• Verification of custom state migration
 procedures

Custom placement

• Simulation of VNF orchestration
• Verification of NFVO output
• Visualization of the deployed service graph
 mapped on the available infrastructure

Supporting
functions

Monitored data

• Packet stream analysis
• Data analytics (regression analysis, machine
learning)
• Generation of custom test traffic and
monitoring VNF/service metrics

Performance profile

• Generation of a reliable VNF performance
 profile
• Capacity estimation and optimized resource
 planning
• VNF benchmarking

Authorized licensed use limited to: University of Piraeus. Downloaded on January 20,2021 at 10:35:28 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • August 2018 191

MANO framework: http://openbaton.github.io/;
accessed on 11 Sept. 2017) with a set of libraries
to implement a VNFM with specific VNF configura-
tion scripts and an interface to the NFVO. Recent
initiatives such as OPNFV and NGPaaS focus on
facilitating NFV development and deployment
across multiple open source eco-systems. Neither
of the described platforms has already full devel-
opment support for integrating customized service
control.

Challenges and Opportunities
To avoid the need for bulky and unified devel-
opment software, we proposed a limited but
specialized feature-set for the SDK, built around
the service package, as illustrated in Fig. 4. This
development environment is extended with key
functional verification tools, based on feedback
analysis of monitor data and VNFM/NFVO out-
put. The main features are summarized in Table 1.
We see, however, some challenges to fit the SDK
into the real-world telco eco-system:
•	 A DevOps mindset between operators and

vendors should be cultivated, bringing the
Ops environment closer to development.

•	 The same service package formats should
be supported by the operator’s MANO plat-
form and the SDK. This would require a con-
solidation of several existing service package
formats or the need for multiple package for-
mat translators.

•	 Security risks should be mitigated by autho-
rization and authentication of the SDK user
when pushing to the operator’s environ-
ment. Possible exploits in the service control
functions must be detected before deploy-
ment, for example, infinite scaling, unautho-
rized access to resources.

•	 Workflows for generic VNF tasks (orchestra-
tion, networking, start, update, terminate)
should be defined and guaranteed by the
MANO platform, taken out of the hands of
the SDK.

•	 VNFs should be developed with elasticity in
mind.
However, the proposed SDK environment cre-

ates many opportunities to optimize the service
lifecycle:
•	 Modeling and packaging the service leads to

easier validation, re-usability and (re-)deploy-
ment speedup.

•	 Monitoring and profiling tools allow a reliable
reproducibility and definition of the service
performance.

•	 Creating customized placement and scaling
algorithms enable a more optimized resource
usage.

•	 Implementing highly automated manage-
ment functions decreases operational cost.

•	 Supporting a clear service package format
lowers the barrier between vendors and oper-
ators.
As advances in SDN and NFV help transform

telecom services into software-based network
function chains, it is important that development
tools keep up with this evolution. The holistic
setup of the SDN/NFV-based service implies that
different artefacts can be part of the service pack-
age, including elastic scaling mechanisms and
possible resource and placement constraints. It

requires a generic service programming model
that is not yet standardized. While building further
on DevOps principles and existing NFV architec-
tures, we identified new SDK features to stream-
line the development and deployment of modern
virtualized telecom services. We hope the pre-
sented development flow can give further direc-
tions to the ongoing research in SDN/NFV-based
service creation.

Acknowledgment

This work has been performed in the framework
of the SONATA and NGPaaS projects, funded by
the European Commission through the Horizon
2020 and 5G-PPP programs. The authors would
like to acknowledge the contributions of their col-
leagues of the projects consortia.

References
[1] M. K. Weldon, The Future X Network: A Bell Labs Perspective,

(Chapter 13: The future of network operations) CRC Press,
2016.

[2] R. Mijumbi et al., “Network Function Virtualization: State-of-
the-Art and Research Challenges,” IEEE Commun. Surveys &
Tutorial, 2016 Jan 1. vol. 18, no. 1, pp. 236–62.

[3] R. Szabo et al., “Elastic Network Functions: Opportunities
and Challenges,” IEEE Network, vol. 29, no. 3, 2015, pp.
15–21.

[4] H. Karl et al., “DevOps for Network Function Virtualisation:
An Architectural Approach,“ Trans. Emerging Telecommu-
nications Technologies, vol. 27, no. 9, 2016, pp. 1206–15.

[5] ETSI, Network Functions Virtualisation (NFV); Management
and Orchestration. ETSI GS NFV-MAN 001 V1.1.1 (2014-
12), accessed 10/07/2017, available: http://www.etsi.org/
deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/
gs_nfv-man001v010101p.pdf

[6] W. John et al., “Service Provider DevOps,” IEEE Commun.
Mag. vol. 55, no. 1, 2017, pp. 204–11.

[7] J. Garay et al., “Service Description in the NFV Revolution:
Trends, Challenges and a Way Forward,” IEEE Commun.
Mag., vol. 54, no. 3,2016, pp. 68–74.

[8] M. Peuster, K. Holger, and S. Van Rossem, “MeDICINE:
Rapid Prototyping of Production-Ready Network Services
in Multi-PoP Environments,” Proc. 2016 IEEE Conf. Network
Function Virtualization and Software Defined Networks (NFV-
SDN), pp. 148-153. IEEE, 2016.

[9] R. N. Calheiros et al., “CloudSim: A Toolkit for Modeling and
Simulation pf Cloud Computing Environments and Evalua-
tion of Resource Provisioning Algorithms,” Software: Prac-
tice and Experience, 2011 Jan. 1, vol. 41, no. 1, pp. 23–50.

[10] I. Cerrato et al., “Toward Dynamic Virtualized Network Ser-
vices in Telecom Operator Networks,” Computer Networks,
vol. 92, 2015, pp. 380–95.

[11] G. Kousiouris et al., “Dynamic, Behavioral-Based Estimation
of Resource Provisioning Based on High-Level Application
Terms in Cloud Platforms,” Future Generation Computer
Systems, vol. 32, 2014, pp. 27–40.

[12] S. Van Rossem et al., “NFV Service Dynamicity with a
DevOps Approach: Insights from a Use-Case Realization.”
IM2017, IEEE Int’l. Symposium Integrated Network Manage-
ment, 2017, pp. 674–79.

[13] S. Van Rossem et al., “A Network Service Development
Kit Supporting the End-to-End Lifecycle of NFV-Based Tele-
com Services,” Proc. IEEE NFV-SDN2017, the IEEE Conf. Net-
work Function Virtualization and Software Defined Networks,
2017; accepted, to be published in the conference proceed-
ings on 8 Nov 2017.

[14] M. Berman et al., “GENI: A Federated Testbed for Inno-
vative Network Experiments,“ Computer Networks, vol. 61,
2014, pp. 5-23.

[15] ONAP-ECOMP AT&T Technology and Operations,
“ECOMP (enhanced control orchestration management
policy) architecture white paper,” 2016; available: https://
about.att.com/content/dam/snrdocs/ecomp.pdf, accessed
on 11 Sept/ 2017.

Biographies
Steven Van Rossem received a M. Sc. in electrical engineer-
ing in 2010 from K.U. Leuven (Belgium). After a five-year peri-
od working in the telecom industry, he started a Ph.D. with
the IDLab, imec research group at Ghent University in 2015.
His research targets software-defined networking and network
function virtualization, focusing on elasticity and performance

While building further

on DevOps principles

and existing NFV archi-

tectures, we identified

new SDK features to

streamline the develop-

ment and deployment

of modern virtualized

telecom services. We

hope the presented

development flow can

give further directions

to the ongoing research

in SDN/NFV-based

service creation.

Authorized licensed use limited to: University of Piraeus. Downloaded on January 20,2021 at 10:35:28 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine • August 2018192

profiling of network functions/network services. This work con-
tributed to European research projects such as UNIFY, SONATA
and NGPaaS.

Wouter Tavernier received a M.S. in computer science in
2002, and a Ph.D. degree in computer science engineering in
2012, both from Ghent University. He joined the IDLab, imec
research group of Ghent University in 2006 to research future
Internet topics. His research focus is on software-defined net-
working, network function virtualization, and service orchestra-
tion in the context of European research projects such as TIGER,
ECODE, EULER, UNIFY, and SONATA.

Didier Colle is a full professor at Ghent University. He received
a Ph.D. degree in 2002 and a M.Sc. degree in electrotechnical
engineering in 1997 from the same university. He is group leader
in the imec Software and Applications business unit. He is co-re-
sponsible for the research cluster on network modelling, design
and evaluation (NetMoDeL). This research cluster deals with fixed

Internet architectures and optical networks, Green-ICT, the design
of network algorithms, and techno-economic studies.

Mario Pickavet has been a professor at Ghent University since
2000 where he is teaching courses on discrete mathematics,
broadband networks and network modelling. He is leading the
research cluster on Network Design, Modelling and Evaluation,
together with Prof. Didier Colle. In this context, he is involved
in a large number of European and national research projects,
as well as in the Technical Programme Committee of a dozen
international conferences.

Piet Demeester is a professor at Ghent University and director
of IDLab, imec research group at UGent. The IDLab’s research
activities include distributed intelligence in IoT, machine-learn-
ing and datamining, semantic intelligence, cloud and big data
infrastructures, fixed and wireless networking, electromagnetics
and high-frequency circuit design. He is a Fellow of the IEEE and
holder of an advanced ERC grant.

Authorized licensed use limited to: University of Piraeus. Downloaded on January 20,2021 at 10:35:28 UTC from IEEE Xplore. Restrictions apply.

