
[] | neorv32_logo_riscv.png[pdfwidth=6.25in,align=center]

The NEORV32 RISC-V Processor -
Datasheet

The NEORV32 Community and Stephan Nolting

Version v1.11.0



Documentation

The online documentation of the project (a.k.a. the data sheet) is available on
GitHub-pages: https://stnolting.github.io/neorv32/

The online documentation of the software framework is also available on GitHub-
pages: https://stnolting.github.io/neorv32/sw/files.html

https://stnolting.github.io/neorv32/
https://stnolting.github.io/neorv32/sw/files.html

Table of Contents
1. Overview . 7

1.1. Rationale . 8

1.2. Project Key Features . 10

1.3. Project Folder Structure . 13

1.4. VHDL File Hierarchy . 14

1.4.1. File-List Files . 15

1.5. VHDL Coding Style . 17

1.6. FPGA Implementation Results. 18

1.7. CPU Performance . 20

2. NEORV32 Processor (SoC). 21

2.1. Processor Top Entity - Signals . 23

2.2. Processor Top Entity - Generics. 27

2.3. Processor Clocking . 33

2.3.1. Peripheral Clocks . 33

2.4. Processor Reset . 34

2.5. Processor Interrupts . 35

2.5.1. RISC-V Standard Interrupts . 35

2.5.2. NEORV32-Specific Fast Interrupt Requests. 35

2.6. Address Space . 37

2.6.1. Bus System . 38

2.6.2. Bus Gateway. 40

2.6.3. IO Switch . 41

2.6.4. Atomic Memory Operations Controller . 41

2.6.5. Cache Coherency. 42

2.7. Boot Configuration . 43

2.7.1. Booting via Bootloader . 43

2.7.2. Boot from Custom Address . 43

2.7.3. Boot IMEM Image . 44

2.8. Processor-Internal Modules . 45

2.8.1. Instruction Memory (IMEM) . 46

2.8.2. Data Memory (DMEM) . 48

2.8.3. Bootloader ROM (BOOTROM). 49

2.8.4. Processor-Internal Instruction Cache (iCACHE) . 50

2.8.5. Processor-Internal Data Cache (dCACHE) . 52

2.8.6. Direct Memory Access Controller (DMA) . 54

2.8.7. Processor-External Bus Interface (XBUS) . 58

2.8.8. Stream Link Interface (SLINK). 63

The NEORV32 RISC-V Processor Visit on GitHub

2 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.9. General Purpose Input and Output Port (GPIO) . 68

2.8.10. Cyclic Redundancy Check (CRC) . 70

2.8.11. Watchdog Timer (WDT). 72

2.8.12. Core Local Interruptor (CLINT) . 75

2.8.13. Primary Universal Asynchronous Receiver and Transmitter (UART0) 77

2.8.14. Secondary Universal Asynchronous Receiver and Transmitter (UART1) 82

2.8.15. Serial Peripheral Interface Controller (SPI) . 83

2.8.16. Serial Data Interface Controller (SDI) . 88

2.8.17. Two-Wire Serial Interface Controller (TWI). 91

2.8.18. Two-Wire Serial Device Controller (TWD) . 95

2.8.19. One-Wire Serial Interface Controller (ONEWIRE) . 99

2.8.20. Pulse-Width Modulation Controller (PWM) . 104

2.8.21. True Random-Number Generator (TRNG) . 106

2.8.22. Custom Functions Subsystem (CFS) . 108

2.8.23. Smart LED Interface (NEOLED). 110

2.8.24. General Purpose Timer (GPTMR) . 115

2.8.25. Execute In Place Module (XIP). 117

2.8.26. System Configuration Information Memory (SYSINFO) . 122

3. NEORV32 Central Processing Unit (CPU) . 126

3.1. RISC-V Compatibility . 126

3.2. CPU Top Entity - Signals . 128

3.3. CPU Top Entity - Generics . 129

3.4. Architecture. 130

3.4.1. CPU Register File . 130

3.4.2. CPU Arithmetic Logic Unit . 131

3.4.3. CPU Bus Unit . 132

3.4.4. CPU Control Unit . 132

3.4.5. CPU Tuning Options . 133

3.4.6. Sleep Mode . 134

3.4.7. CPU Clock Gating. 135

3.4.8. Full Virtualization. 135

3.5. Bus Interface . 136

3.5.1. Bus Interface Protocol . 137

3.5.2. Atomic Memory Access . 138

3.6. Instruction Sets and Extensions . 139

3.6.1. B ISA Extension . 140

3.6.2. C ISA Extension . 141

3.6.3. E ISA Extension . 141

3.6.4. I ISA Extension . 141

The NEORV32 RISC-V Processor Visit on GitHub

3 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.6.5. M ISA Extension . 142

3.6.6. U ISA Extension . 143

3.6.7. X ISA Extension . 143

3.6.8. Zaamo ISA Extension . 143

3.6.9. Zifencei ISA Extension . 143

3.6.10. Zfinx ISA Extension . 144

3.6.11. Zicntr ISA Extension . 144

3.6.12. Zicond ISA Extension . 145

3.6.13. Zicsr ISA Extension . 145

3.6.14. Zihpm ISA Extension . 145

3.6.15. Zba ISA Extension . 146

3.6.16. Zbb ISA Extension . 146

3.6.17. Zbs ISA Extension . 147

3.6.18. Zbkb ISA Extension . 147

3.6.19. Zbkc ISA Extension . 147

3.6.20. Zbkx ISA Extension . 148

3.6.21. Zkn ISA Extension . 148

3.6.22. Zknd ISA Extension . 148

3.6.23. Zkne ISA Extension . 149

3.6.24. Zknh ISA Extension . 149

3.6.25. Zks ISA Extension . 149

3.6.26. Zksed ISA Extension . 149

3.6.27. Zksh ISA Extension . 150

3.6.28. Zkt ISA Extension . 150

3.6.29. Zmmul - ISA Extension . 151

3.6.30. Zxcfu ISA Extension . 151

3.6.31. Smpmp ISA Extension . 151

3.6.32. Sdext ISA Extension . 152

3.6.33. Sdtrig ISA Extension . 153

3.7. Custom Functions Unit (CFU). 154

3.7.1. CFU Instruction Formats . 154

3.7.2. Using Custom Instructions in Software . 156

3.7.3. CFU Control and Status Registers (CFU-CSRs) . 157

3.7.4. Custom Instructions Hardware . 158

3.8. Control and Status Registers (CSRs) . 159

3.8.1. Floating-Point CSRs. 164

3.8.2. Machine Trap Setup CSRs . 166

3.8.3. Machine Trap Handling CSRs . 170

3.8.4. Machine Configuration CSRs . 173

The NEORV32 RISC-V Processor Visit on GitHub

4 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.8.5. Machine Physical Memory Protection CSRs . 174

3.8.6. (Machine) Counter and Timer CSRs . 176

3.8.7. Hardware Performance Monitors (HPM) CSRs . 178

3.8.8. Machine Counter Setup CSRs . 181

3.8.9. Machine Information CSRs. 182

3.8.10. NEORV32-Specific CSRs . 184

3.9. Traps, Exceptions and Interrupts . 187

3.9.1. Memory Access Exceptions . 187

3.9.2. Custom Fast Interrupt Request Lines. 188

3.9.3. NEORV32 Trap Listing . 188

3.10. Dual-Core Configuration. 191

3.10.1. SMP Software Library . 192

3.10.2. Inter-Core Communication (ICC) . 192

3.10.3. Dual-Core Boot . 193

4. Software Framework . 195

4.1. Compiler Toolchain . 195

4.2. Core Libraries . 196

4.3. System View Description File (SVD) . 198

4.4. Application Makefile . 199

4.4.1. Makefile Targets . 200

4.4.2. Default Compiler Flags . 201

4.5. Linker Script . 203

4.5.1. RAM Layout . 204

4.6. C Standard Library. 205

4.7. Start-Up Code (crt0) . 206

4.7.1. Early Trap Handler. 206

4.8. Executable Image Formats. 207

4.9. Bootloader . 208

4.9.1. Bootloader SoC/CPU Requirements . 208

4.9.2. Bootloader Flash Requirements . 209

4.9.3. Bootloader TWI memory Requirements . 210

4.9.4. Bootloader Console. 210

4.9.5. Auto Boot Sequence . 213

4.9.6. Bootloader Error Codes . 213

4.10. NEORV32 Runtime Environment . 215

4.10.1. RTE Operation . 215

4.10.2. Using the RTE. 215

4.10.3. Default RTE Trap Handlers . 217

4.10.4. Application Context Handling . 218

The NEORV32 RISC-V Processor Visit on GitHub

5 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

5. On-Chip Debugger (OCD) . 219

5.1. Debug Transport Module (DTM) . 221

5.2. Debug Module (DM) . 223

5.2.1. DM Registers . 224

5.2.2. DM CPU Access . 229

5.3. Debug Authentication . 232

5.3.1. Default Authentication Mechanism . 232

5.4. CPU Debug Mode . 234

5.4.1. CPU Debug Mode CSRs. 235

5.5. Trigger Module . 238

5.5.1. Trigger Module CSRs . 238

6. Legal . 241

About. 241

License . 241

Proprietary Notice . 242

Disclaimer . 242

Limitation of Liability for External Links . 242

Citing. 242

Acknowledgments . 243

The NEORV32 RISC-V Processor Visit on GitHub

6 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Chapter 1. Overview
The NEORV32 RISC-V Processor is an open-source RISC-V compatible processor system that is
intended as ready-to-go auxiliary processor within a larger SoC designs or as stand-alone custom /
customizable microcontroller.

The system is highly configurable and provides optional common peripherals like embedded
memories, timers, serial interfaces, general purpose IO ports and an external bus interface to
connect custom IP like memories, NoCs and other peripherals. On-line and in-system debugging is
supported by an OpenOCD/gdb compatible on-chip debugger accessible via JTAG.

Special focus is paid on execution safety to provide defined and predictable behavior at any time.
Therefore, the CPU ensures that all memory access are acknowledged and no invalid/malformed
instructions are executed. Whenever an unexpected situation occurs, the application code is
informed via hardware exceptions.

The software framework of the processor comes with application makefiles, software libraries for
all CPU and processor features, a bootloader, a runtime environment and several example
programs - including a port of the CoreMark MCU benchmark and the official RISC-V architecture
test suite. RISC-V GCC is used as default toolchain (prebuilt toolchains are also provided).

Check out the processor’s online User Guide that provides hands-on tutorials to get you started.

Structure

2. NEORV32 Processor (SoC)

3. NEORV32 Central Processing Unit (CPU)

4. Software Framework

5. On-Chip Debugger (OCD)

6. Legal

Annotations Types

 Warning

 Important

 Note

 Tip

The NEORV32 RISC-V Processor Visit on GitHub

7 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/riscv-gcc-prebuilt
https://stnolting.github.io/neorv32/ug
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

1.1. Rationale

Why did you make this?

For me, processor and CPU architecture designs are fascinating things: they are the magic frontier
where software meets hardware. This project started as something like a journey into this realm to
understand how things actually work down on the very low level and evolved over time to a quite
capable system-on-chip.

When I started to dive into the emerging RISC-V ecosystem I felt overwhelmed by the complexity. As
a beginner it is hard to get an overview - especially when you want to setup a minimal platform to
tinker with… Which core to use? How to get the right toolchain? What features do I need? How does
booting work? How do I create an actual executable? How to get that into the hardware? How to
customize things? Where to start???

This project aims to provide a simple to understand and easy to use yet powerful and flexible
platform that targets FPGA and RISC-V beginners as well as advanced users.

Why a soft-core processor?

As a matter of fact soft-core processors cannot compete with discrete (ASIC) processors in terms of
performance, energy efficiency and size. But they do fill a niche in the design space: for example,
soft-core processors allow to implement the control flow part of certain applications (like
communication protocol handling) using software like plain C. This provides high flexibility as
software can be easily changed, re-compiled and re-uploaded again.

Furthermore, the concept of flexibility applies to all aspects of a soft-core processor. The user can
add exactly the features that are required by the application: additional memories, custom
interfaces, specialized co-processors and even user-defined instructions. These application-specific
optimization capabilities compensate for many of the limitations of soft-core processors.

Why RISC-V?

RISC-V is a free and open ISA enabling a new era of processor innovation
through open standard collaboration.

— RISC-V International, https://riscv.org/about/

Open-source is a great thing! While open-source has already become quite popular in software,
hardware-focused projects still need to catch up. Although processors and CPUs are the heart of
almost every digital system, having a true open-source platform is still a rarity. RISC-V aims to
change that - and even it is just one approach, it helps paving the road for future development.

Furthermore, I highly appreciate the community aspect of RISC-V. The ISA and everything beyond is

The NEORV32 RISC-V Processor Visit on GitHub

8 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

developed in direct contact with the community: this includes businesses and professionals but also
hobbyist, amateurs and enthusiasts. Everyone can join discussions and contribute to RISC-V in their
very own way.

Finally, I really like the RISC-V ISA itself. It aims to be a clean, orthogonal and "intuitive" ISA that
resembles with the basic concepts of RISC: simple yet effective.

Yet another RISC-V core? What makes it special?

The NEORV32 is not based on another (RISC-V) core. It was build entirely from ground up just
following the official ISA specs. The project does not intend to replace certain RISC-V cores or beat
existing ones in terms of performance or size. It was build having a different design goal in mind.

The project aims to provide another option in the RISC-V / soft-core design space with a different
performance vs. size trade-off and a different focus: embrace concepts like documentation,
platform-independence / portability, RISC-V compatibility, extensibility & customization and - last
but not least - ease of use.

Furthermore, the NEORV32 pays special focus on execution safety using Full Virtualization. The CPU
aims to provide fall-backs for everything that could go wrong. This includes malformed instruction
words, privilege escalations and even memory accesses that are checked for address space holes
and deterministic response times of memory-mapped devices. Precise exceptions allow a defined
and fully-synchronized state of the CPU at every time an in every situation.

To summarize, this project pursues the following objectives (in rough order of importance):

1. RISC-V-compliance and -compatibility

2. Functionality and features

3. Extensibility

4. Safety and security

5. Minimal area

6. Short critical paths, high operating clock

7. Simplicity / easy to understand

8. Low-power design

9. High overall performance

A multi-cycle architecture?!

The primary goal of many mainstream CPUs is pure performance. Deep pipelines and out-of-order
execution are some concepts to boost performance, while also increasing complexity. In contrast,
most CPUs used for teaching are single-cycle designs since they are probably the most easiest to
understand. But what about something in-between?

In terms of energy, throughput, area and maximal clock frequency, multi-cycle architectures are

The NEORV32 RISC-V Processor Visit on GitHub

9 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

somewhere in between single-cycle and fully-pipelined designs: they provide higher throughput
and clock speed when compared to their single-cycle counterparts while having less hardware
complexity (= area) and thus, less performance, then a fully-pipelined designs. So I decided to use
the multi-cycle-approach because of the following reasons:

• Multi-cycle architectures are quite small! There is no need for pipeline hazard
detection/resolution logic (e.g. forwarding). Furthermore, you can "re-use" parts of the core to
do several tasks (e.g. the ALU is used for actual data processing and also for address generation,
branch condition check and branch target computation).

• Single-cycle architectures require memories that can be read asynchronously - a thing that is
not feasible to implement in real-world applications (i.e. FPGA block RAM is entirely
synchronous). Furthermore, such designs usually have a very long critical path tremendously
reducing maximal operating frequency.

• Pipelined designs increase performance by having several instruction "in fly" at the same time.
But this also means there is some kind of "out-of-order" behavior: if an instruction at the end of
the pipeline causes an exception all the instructions in earlier stages have to be invalidated.
Potential architectural state changes have to be made undone requiring additional logic (Spectre
and Meltdown…). In a multi-cycle architecture this situation cannot occur since only a single
instruction is being processed ("in-fly") at a time.

• Having only a single instruction in fly does not only reduce hardware costs, it also simplifies
simulation/verification/debugging, state preservation/restoring during exceptions and
extensibility (no need to care about pipeline hazards) - but of course at the cost of reduced
throughput.

To counteract the loss of performance implied by a pure multi-cycle architecture, the NEORV32 CPU
uses a mixed approach: instruction-fetch (front-end) and instruction-execution (back-end) are de-
coupled to operate independently of each other. Data is interchanged via a queue building a simple
2-stage pipeline. Each "pipeline" stage in terms is implemented as multi-cycle architecture to
simplify the hardware and to provide precise state control (for example during exceptions).

1.2. Project Key Features
Project

• all-in-one package: CPU + SoC + Software Framework & Tooling

• completely described in behavioral, platform-independent VHDL - no vendor- or technology-
specific primitives, attributes, macros, libraries, etc. are used at all

• all-Verilog "version" available (auto-generated by GHDL)

• extensive configuration options for adapting the processor to the requirements of the
application

• highly extensible hardware - on CPU, SoC and system level

• aims to be as small as possible while being as RISC-V-compliant as possible - with a reasonable
area-vs-performance trade-off

The NEORV32 RISC-V Processor Visit on GitHub

10 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

• FPGA friendly (e.g. all internal memories can be mapped to block RAM - including the register
file)

• optimized for high clock frequencies to ease timing closure and integration

• from zero to "hello world!" - completely open source and documented

• easy to use even for FPGA/RISC-V starters – intended to work out of the box

NEORV32 CPU (the core)

• 32-bit RISC-V CPU

• fully compatible to the RISC-V ISA specs. - checked by the official RISCOF architecture tests

• base ISA + privileged ISA + several optional standard and custom ISA extensions

• option to add user-defined RISC-V instructions as custom ISA extension

• rich set of customization options (ISA extensions, design goal: performance / area / energy,
tuning options, …)

• Full Virtualization capabilities to increase execution safety

• official RISC-V open source architecture ID

NEORV32 Processor (the SoC)

• highly-configurable full-scale microcontroller-like processor system

• based on the NEORV32 CPU

• optional standard serial interfaces (UART, TWI, SPI (host and device), 1-Wire)

• optional timers and counters (watchdog, system timer)

• optional general purpose IO and PWM; a native NeoPixel(c)-compatible smart LED interface

• optional embedded memories and caches for data, instructions and bootloader

• optional external memory interface for custom connectivity

• optional execute in-place (XIP) module to execute code directly form an external SPI flash

• optional DMA controller for CPU-independent data transfers

• optional CRC module to check data integrity

• on-chip debugger compatible with OpenOCD and GDB including hardware trigger module and
optional authentication

Software framework

• GCC-based toolchain - prebuilt toolchains available; application compilation based on GNU
makefiles

• internal bootloader with serial user interface (via UART)

• core libraries and HAL for high-level usage of the provided functions and peripherals

• processor-specific runtime environment and several example programs

The NEORV32 RISC-V Processor Visit on GitHub

11 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32-riscof
https://github.com/stnolting/riscv-gcc-prebuilt
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

• doxygen-based documentation of the software framework; a deployed version is available at
https://stnolting.github.io/neorv32/sw/files.html

• FreeRTOS port + demos available

Extensibility and Customization

The NEORV32 processor is designed to ease customization and extensibility and provides several
options for adding application-specific custom hardware modules and accelerators. The three most
common options for adding custom on-chip modules are listed below.

• Processor-External Bus Interface (XBUS) to attach processor-external IP modules (memories and
peripherals)

• Custom Functions Subsystem (CFS) for tightly-coupled processor-internal co-processors

• Custom Functions Unit (CFU) for custom RISC-V instructions


A more detailed comparison of the extension/customization options can be found
in section Adding Custom Hardware Modules of the user guide.

The NEORV32 RISC-V Processor Visit on GitHub

12 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/files.html
https://stnolting.github.io/neorv32/ug/#_adding_custom_hardware_modules
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

1.3. Project Folder Structure
The root directory of the repository is considered the NEORV32 base or home folder (i.e. neorv32/).

Folder Structure

neorv32 - Project home folder
│
├-docs - Project documentation
│ ├-datasheet - AsciiDoc sources for the NEORV32 data sheet
│ ├-figures - Figures and logos
│ ├-references - Data sheets and RISC-V specs
│ ├-sources - Sources for the images in 'figures/'
│ └-userguide - AsciiDoc sources for the NEORV32 user guide
│
├-rtl - VHDL sources
│ ├-core - Core sources of the CPU & SoC
│ ├-processor_templates - Pre-configured SoC wrappers
│ ├-system_integration - System wrappers and bridges for advanced connectivity
│ └-test_setups - Minimal test setup "SoCs" used in the User Guide
│
├-sim - Simulation files
│
└-sw - Software framework
 ├-bootloader - Sources of the processor-internal bootloader
 ├-common - Linker script, crt0.S start-up code and central makefile
 ├-example - Example programs for the core and the SoC modules
 │ ├-eclipse - Pre-configured Eclipse IDE project
 │ └-... - Several example programs
 ├-lib - Processor core library
 │ ├-include - NEORV32 core library header files (*.h)
 │ └-source - NEORV32 core library source files (*.c)
 ├-image_gen - Helper program to generate executables & memory images
 ├-ocd_firmware - Firmware for the on-chip debugger's "park loop"
 ├-openocd - OpenOCD configuration files
 └-svd - Processor system view description file (CMSIS-SVD)

The NEORV32 RISC-V Processor Visit on GitHub

13 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

1.4. VHDL File Hierarchy
All required VHDL hardware source files are located in the project’s rtl/core folder.


VHDL Library

All core VHDL files from the list below have to be assigned to a new library named
neorv32.


Compilation Order

See section File-List Files for more information.

RTL File List (in alphabetical order)

rtl/core
├-neorv32_application_image.vhd - IMEM application initialization image (package)
├-neorv32_boot_rom.vhd - Bootloader ROM
├-neorv32_bootloader_image.vhd - Bootloader ROM memory image (package)
├-neorv32_bus.vhd - SoC bus infrastructure modules
├-neorv32_cache.vhd - Generic cache module
├-neorv32_clint.vhd - Core local interruptor
├-neorv32_clockgate.vhd - Generic clock gating switch
├-neorv32_cfs.vhd - Custom functions subsystem
├-neorv32_cpu.vhd - NEORV32 CPU TOP ENTITY
├-neorv32_cpu_alu.vhd - Arithmetic/logic unit
├-neorv32_cpu_control.vhd - CPU control, exception system and CSRs
├-neorv32_cpu_cp_bitmanip.vhd - Bit-manipulation co-processor (B ext.)
├-neorv32_cpu_cp_cfu.vhd - Custom instructions co-processor (Zxcfu ext.)
├-neorv32_cpu_cp_cond.vhd - Integer conditional co-processor (Zicond ext.)
├-neorv32_cpu_cp_crypto.vhd - Scalar cryptography co-processor (Zk*/Zbk* ext.)
├-neorv32_cpu_cp_fpu.vhd - Floating-point co-processor (Zfinx ext.)
├-neorv32_cpu_cp_muldiv.vhd - Mul/Div co-processor (M ext.)
├-neorv32_cpu_cp_shifter.vhd - Bit-shift co-processor (base ISA)
├-neorv32_cpu_decompressor.vhd - Compressed instructions decoder (C ext.)
├-neorv32_cpu_icc.vhd - Inter-core communication unit
├-neorv32_cpu_lsu.vhd - Load/store unit
├-neorv32_cpu_pmp.vhd - Physical memory protection unit (Smpmp ext.)
├-neorv32_cpu_regfile.vhd - Data register file
├-neorv32_crc.vhd - Cyclic redundancy check unit
├-neorv32_debug_auth.vhd - On-chip debugger: authentication module
├-neorv32_debug_dm.vhd - On-chip debugger: debug module
├-neorv32_debug_dtm.vhd - On-chip debugger: debug transfer module
├-neorv32_dma.vhd - Direct memory access controller
├-neorv32_dmem.vhd - Generic processor-internal data memory
├-neorv32_fifo.vhd - Generic FIFO component
├-neorv32_gpio.vhd - General purpose input/output port unit
├-neorv32_gptmr.vhd - General purpose 32-bit timer
├-neorv32_imem.vhd - Generic processor-internal instruction memory

The NEORV32 RISC-V Processor Visit on GitHub

14 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

├-neorv32_neoled.vhd - NeoPixel (TM) compatible smart LED interface
├-neorv32_onewire.vhd - One-Wire serial interface controller
├-neorv32_package.vhd - Main VHDL package file
├-neorv32_pwm.vhd - Pulse-width modulation controller
├-neorv32_sdi.vhd - Serial data interface controller (SPI device)
├-neorv32_slink.vhd - Stream link interface
├-neorv32_spi.vhd - Serial peripheral interface controller (SPI host)
├-neorv32_sys.vhd - System infrastructure modules
├-neorv32_sysinfo.vhd - System configuration information memory
├-neorv32_top.vhd - NEORV32 PROCESSOR/SOC TOP ENTITY
├-neorv32_trng.vhd - True random number generator
├-neorv32_twd.vhd - Two wire serial device controller
├-neorv32_twi.vhd - Two wire serial interface controller
├-neorv32_uart.vhd - Universal async. receiver/transmitter
├-neorv32_wdt.vhd - Watchdog timer
├-neorv32_xbus.vhd - External (Wishbone) bus interface gateways
└-neorv32_xip.vhd - Execute in place module



Replacing Modules for Customization or Optimization

Any module of the core can be replaced by the user for customization purpose. For
example, the default IMEM and DMEM modules as well as the CPU’s register file
can be replaced by technology-specific primitives to optimize energy, speed and
area utilization. The module, which are dedicated for customization, i.e. CFS and
CFU can be replaced by user-defined modules to implement application-specific
functionality.

1.4.1. File-List Files

Most of the RTL sources use entity instantiation. Hence, the RTL compile order might be relevant
(depending on the synthesis/simulation tool. Therefore, two file-list files are provided in the rtl
folder that list all required HDL files for the CPU core and for the entire processor and also
represent their recommended compile order. These file-list files can be consumed by EDA tools to
simplify project setup.

• file_list_cpu.f - HDL files and compile order for the CPU core; top module: neorv32_cpu

• file_list_soc.f - HDL files and compile order for the entire processor/SoC; top module:
neorv32_top

A simple bash script generate_file_lists.sh is provided for regenerating the file-lists (using GHDL’s
elaborate command). This script can also be invoked using the default application makefile (see
Makefile Targets).

By default, the file-list files include a placeholder in the path of each included hardware source
file. These placeholders need to be replaced by the actual path before being used. Example:

• default: NEORV32_RTL_PATH_PLACEHOLDER/core/neorv32_package.vhd

The NEORV32 RISC-V Processor Visit on GitHub

15 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

• adjusted: path/to/neorv32/rtl/core/neorv32_package.vhd

Listing 1. Example: Processing the File-List Files in a Makefile

NEORV32_HOME = path/to/neorv32 ①
NEORV32_SOC_FILE = $(shell cat $(NEORV32_HOME)/rtl/file_list_soc.f) ②
NEORV32_SOC_SRCS = $(subst NEORV32_RTL_PATH_PLACEHOLDER, $(NEORV32_HOME)/rtl,
$(NEORV32_SOC_FILE)) ③

① Path to the NEORV32 home folder (i.e. the root folder of the GitHub repository).

② Load the content of the file_list_soc.f file-list into a new variable NEORV32_SOC_FILE.

③ Substitute the file-list file’s path placeholder “NEORV32_RTL_PATH_PLACEHOLDER” by the
actual path.

Listing 2. Example: Processing the File-List Files in a TCL Script

set file_list_file [read [open "$neorv32_home/rtl/file_list_soc.f" r]]
set file_list [string map [list "NEORV32_RTL_PATH_PLACEHOLDER" "$neorv32_home/rtl"]
$file_list_file]
puts "NEORV32 source files:"
puts $file_list

The NEORV32 RISC-V Processor Visit on GitHub

16 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

1.5. VHDL Coding Style
• The entire processor including the CPU core is written in platform-/technology-independent

VHDL. The code makes minimal use of VHDL 2008 features to provide compatibility even for
older EDA tools.

• A single package / library file (neorv32_package.vhd) is used to provide global defines and helper
functions. The specific user-defined configuration is done entirely by the generics of the top
entity.

• Internally, the generics are checked to ensure a correct configuration. Asserts and "sanity
checks" are used to inform the user about the actual processor configuration and potential
illegal setting.

• The code uses entity instation for all internal modules. However, if several "submodules" are
specified within the same file component instantiation is used for those.

• When instantiating the processor top module (neorv32_top.vhd) in a custom design either entity
instantiation or component instantiation can be used as the NEORV32 package file / library
already provides an according component declaration.



Verilog Version

A GHDL-generated all-Verilog version of the processor is available at
https://github.com/stnolting/neorv32-verilog. The provided setup generates a
synthesizable Verilog netlist for a custom processor configuration.

The NEORV32 RISC-V Processor Visit on GitHub

17 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32-verilog
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

1.6. FPGA Implementation Results
This section shows exemplary FPGA implementation results for the NEORV32 CPU and NEORV32
Processor modules.


The results are generated by manual synthesis runs. Hence, they might not
represent the latest version of the processor.

CPU

HW version: 1.7.8.5

Top entity: rtl/core/neorv32_cpu.vhd

FPGA: Intel Cyclone IV E EP4CE22F17C6

Toolchain: Quartus Prime Lite 21.1

Constraints: no timing constraints, "balanced optimization", fmax from "Slow 1200mV 0C
Model"

CPU ISA Configuration LEs FFs MEM
bits

DSPs fmax

rv32i_Zicsr 1223 607 1024 0 130
MHz

rv32i_Zicsr_Zicntr 1578 773 1024 0 130
MHz

rv32im_Zicsr_Zicntr 2087 983 1024 0 130
MHz

rv32imc_Zicsr_Zicntr 2338 992 1024 0 130
MHz

rv32imcb_Zicsr_Zicntr 3175 1247 1024 0 130
MHz

rv32imcbu_Zicsr_Zicntr 3186 1254 1024 0 130
MHz

rv32imcbu_Zicsr_Zicntr_Zifencei 3187 1254 1024 0 130
MHz

rv32imcbu_Zicsr_Zicntr_Zifencei_Zfinx 4450 1906 1024 7 123
MHz

rv32imcbu_Zicsr_Zicntr_Zifencei_Zfinx_DebugMode 4825 2018 1024 7 123
MHz


Goal-Driven Optimization

The CPU provides further options to reduce the area footprint or to increase

The NEORV32 RISC-V Processor Visit on GitHub

18 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

performance. See section Processor Top Entity - Generics for more information.
Also, take a look at the User Guide section Application-Specific Processor
Configuration.

The NEORV32 RISC-V Processor Visit on GitHub

19 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/ug/#_application_specific_processor_configuration
https://stnolting.github.io/neorv32/ug/#_application_specific_processor_configuration
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

1.7. CPU Performance
The performance of the NEORV32 was tested and evaluated using the Core Mark CPU benchmark.
The according sources can be found in the sw/example/coremark folder. The resulting CoreMark
score is defined as CoreMark iterations per second per MHz.

Table 1. Configuration

HW version: 1.5.7.10

Hardware: 32kB int. IMEM, 16kB int. DMEM, no caches, 100MHz clock

CoreMark: 2000 iterations, MEM_METHOD is MEM_STACK

Compiler: RISCV32-GCC 10.2.0 (compiled with march=rv32i mabi=ilp32)

Compiler flags: default but with -O3, see makefile

Table 2. CoreMark results

CPU CoreMark
Score

CoreMark
s/MHz

Average
CPI

small (rv32i_Zicsr_Zifencei) 33.89 0.3389 4.04

medium (rv32imc_Zicsr_Zifencei) 62.50 0.6250 5.34

performance (rv32imc_Zicsr_Zifencei + perf. options) 95.23 0.9523 3.54

The NEORV32 CPU is based on a multi-cycle architecture. Each instruction is executed in a sequence
of several consecutive micro operations. The average CPI (cycles per instruction) depends on the
instruction mix of a specific applications and also on the available CPU extensions. More
information regarding the execution time of each implemented instruction can be found in section
Instruction Sets and Extensions.

The NEORV32 RISC-V Processor Visit on GitHub

20 / 243 Version v1.11.0 2025-02-05

https://www.eembc.org/coremark/
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Chapter 2. NEORV32 Processor (SoC)
The NEORV32 Processor is build around the NEORV32 Central Processing Unit (CPU). Together with
common peripheral interfaces and embedded memories it provides a RISC-V-based full-scale
microcontroller-like SoC platform.

Figure 1. The NEORV32 Processor (Block Diagram)

Section Structure

• Processor Top Entity - Signals and Processor Top Entity - Generics

• Processor Clocking and Processor Reset

• Processor Interrupts

• Address Space and Boot Configuration

• Processor-Internal Modules

Key Features

• optional SMP Dual-Core Configuration

• optional processor-internal data and instruction memories (DMEM/IMEM)

• optional caches (I-CACHE, D-CACHE, XIP-CACHE, XBUS-CACHE)

• optional internal bootloader (BOOTROM) with UART console & SPI flash boot option

The NEORV32 RISC-V Processor Visit on GitHub

21 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

• optional RISC-V-compatible core local interruptor (CLINT)

• optional two independent universal asynchronous receivers and transmitters (UART0, UART1)
with optional hardware flow control (RTS/CTS)

• optional serial peripheral interface host controller (SPI) with 8 dedicated CS lines

• optional 8-bit serial data device interface (SDI)

• optional two-wire serial interface controller (TWI), compatible to the I²C standard

• optional two-wire serial device controller (TWD), compatible to the I²C standard

• optional general purpose parallel IO port (GPIO), 32 inputs (interrupt capable), 32 outputs

• optional 32-bit external bus interface, Wishbone b4 / AXI4-Lite compatible (XBUS)

• optional watchdog timer (WDT)

• optional PWM controller with up to 16 individual channels (PWM)

• optional ring-oscillator-based true random number generator (TRNG)

• optional custom functions subsystem for custom co-processor extensions (CFS)

• optional NeoPixel™/WS2812-compatible smart LED interface (NEOLED)

• optional general purpose 32-bit timer (GPTMR)

• optional execute in-place module (XIP)

• optional 1-wire serial interface controller (ONEWIRE), compatible to the 1-wire standard

• optional autonomous direct memory access controller (DMA)

• optional stream link interface (SLINK), AXI4-Stream compatible

• optional cyclic redundancy check unit (CRC)

• optional on-chip debugger with JTAG TAP (OCD)

• optional system configuration information memory to determine hardware configuration via
software (SYSINFO)

The NEORV32 RISC-V Processor Visit on GitHub

22 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.1. Processor Top Entity - Signals
The following table shows all interface signals of the processor top entity (
rtl/core/neorv32_top.vhd). All signals are of type std_ulogic or std_ulogic_vector, respectively.



Default Values of Inputs

All optional input signals provide default values in case they are not explicitly
assigned during instantiation. The weak driver strengths of VHDL ('L' and 'H') are
used to model a pull-down or pull-up resistor.



Variable-Sized Ports

Some peripherals allow to configure the number of channels to-be-implemented
by a generic (for example the number of PWM channels). The according
input/output signals have a fixed sized regardless of the actually configured
amount of channels. If less than the maximum number of channels is configured,
only the LSB-aligned channels are used: in case of an input port the remaining
bits/channels are left unconnected; in case of an output port the remaining
bits/channels are hardwired to zero.


Tri-State Interfaces

Some interfaces (like the TWI, the TWD and the 1-Wire bus) require explicit tri-
state drivers in the final top module.



Input/Output Registers

By default all output signals are driven by register and all input signals are
synchronized into the processor’s clock domain also using registers. However, for
ASIC implementations it is recommended to add another register state to all inputs
and output so the synthesis tool can insert an explicit IO (boundary) scan chain.

Table 3. NEORV32 Processor Signal List

Name Width Direction Default Description

Global Control (Processor Clocking and Processor Reset)

clk_i 1 in none global clock line, all registers triggering
on rising edge

rstn_i 1 in none global reset, asynchronous, low-active

rstn_ocd_o 1 out none Watchdog Timer (WDT) reset output,
synchronous, low-active

rstn_wdt_o 1 out none On-Chip Debugger (OCD) reset output,
synchronous, low-active

JTAG Access Port for On-Chip Debugger (OCD)

jtag_tck_i 1 in 'L' serial clock

The NEORV32 RISC-V Processor Visit on GitHub

23 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Name Width Direction Default Description

jtag_tdi_i 1 in 'L' serial data input

jtag_tdo_o 1 out - serial data output

jtag_tms_i 1 in 'L' mode select

Processor-External Bus Interface (XBUS)

xbus_adr_o 32 out - destination address

xbus_dat_o 32 out - read data

xbus_tag_o 3 out - access tag

xbus_we_o 1 out - write enable ('0' = read transfer)

xbus_sel_o 4 out - byte enable

xbus_stb_o 1 out - strobe

xbus_cyc_o 1 out - valid cycle

xbus_dat_i 32 in 'L' write data

xbus_ack_i 1 in 'L' transfer acknowledge

xbus_err_i 1 in 'L' transfer error

Stream Link Interface (SLINK)

slink_rx_dat_i 32 in 'L' RX data

slink_rx_src_i 4 in 'L' RX source routing information

slink_rx_val_i 1 in 'L' RX data valid

slink_rx_lst_i 1 in 'L' RX last element of stream

slink_rx_rdy_o 1 out - RX ready to receive

slink_tx_dat_o 32 out - TX data

slink_tx_dst_o 4 out - TX destination routing information

slink_tx_val_o 1 out - TX data valid

slink_tx_lst_o 1 out - TX last element of stream

slink_tx_rdy_i 1 in 'L' TX allowed to send

Execute In Place Module (XIP)

xip_csn_o 1 out - chip select, low-active

xip_clk_o 1 out - serial clock

xip_dat_i 1 in 'L' serial data input

xip_dat_o 1 out - serial data output

General Purpose Input and Output Port (GPIO)

gpio_o 32 out - general purpose parallel output

The NEORV32 RISC-V Processor Visit on GitHub

24 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Name Width Direction Default Description

gpio_i 32 in 'L' general purpose parallel input
(interrupt-capable)

Primary Universal Asynchronous Receiver and Transmitter (UART0)

uart0_txd_o 1 out - serial transmitter

uart0_rxd_i 1 in 'L' serial receiver

uart0_rts_o 1 out - RX ready to receive new char

uart0_cts_i 1 in 'L' TX allowed to start sending, low-active

Secondary Universal Asynchronous Receiver and Transmitter (UART1)

uart1_txd_o 1 out - serial transmitter

uart1_rxd_i 1 in 'L' serial receiver

uart1_rts_o 1 out - RX ready to receive new char

uart1_cts_i 1 in 'L' TX allowed to start sending, low-active

Serial Peripheral Interface Controller (SPI)

spi_clk_o 1 out - controller clock line

spi_dat_o 1 out - serial data output

spi_dat_i 1 in 'L' serial data input

spi_csn_o 8 out - select (low-active)

Serial Data Interface Controller (SDI)

sdi_clk_i 1 in 'L' controller clock line

sdi_dat_o 1 out - serial data output

sdi_dat_i 1 in 'L' serial data input

sdi_csn_i 1 in 'H' chip select, low-active

Two-Wire Serial Interface Controller (TWI)

twi_sda_i 1 in 'H' serial data line sense input

twi_sda_o 1 out - serial data line output (pull low only)

twi_scl_i 1 in 'H' serial clock line sense input

twi_scl_o 1 out - serial clock line output (pull low only)

Two-Wire Serial Device Controller (TWD)

twd_sda_i 1 in 'H' serial data line sense input

twd_sda_o 1 out - serial data line output (pull low only)

twd_scl_i 1 in 'H' serial clock line sense input

twd_scl_o 1 out - serial clock line output (pull low only)

The NEORV32 RISC-V Processor Visit on GitHub

25 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Name Width Direction Default Description

One-Wire Serial Interface Controller (ONEWIRE)

onewire_i 1 in 'H' 1-wire bus sense input

onewire_o 1 out - 1-wire bus output (pull low only)

Pulse-Width Modulation Controller (PWM)

pwm_o 16 out - pulse-width modulated channels

Custom Functions Subsystem (CFS)

cfs_in_i 32 in 'L' custom CFS input signal conduit

cfs_out_o 32 out - custom CFS output signal conduit

Smart LED Interface (NEOLED)

neoled_o 1 out - asynchronous serial data output

Core Local Interruptor (CLINT)

mtime_time_o 64 out - CLINT.MTIMER system time output

RISC-V Machine-Mode Processor Interrupts

mtime_irq_i 1 in 'L' machine timer interrupt (RISC-V), high-
level-active; for chip-internal usage
only

msw_irq_i 1 in 'L' machine software interrupt (RISC-V),
high-level-active; for chip-internal
usage only

mext_irq_i 1 in 'L' machine external interrupt (RISC-V),
high-level-active; for chip-internal
usage only

The NEORV32 RISC-V Processor Visit on GitHub

26 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.2. Processor Top Entity - Generics
This section lists all configuration generics of the NEORV32 processor top entity
(rtl/neorv32_top.vhd). These generics allow to configure the system according to your needs. The
generics are used to control implementation of certain CPU extensions and peripheral modules and
even allow to optimize the system for certain design goals like minimal area or maximum
performance.


Default Values

All optional configuration generics provide default values in case they are not
explicitly assigned during instantiation.



Software Discovery of Configuration

Software can determine the actual CPU configuration via the misa and mxisa CSRs.
The Soc/Processor and can be determined via the SYSINFO memory-mapped
registers.



Excluded Modules and Extensions

If optional modules (like CPU extensions or peripheral devices) are not enabled the
according hardware will not be synthesized at all. Hence, the disabled modules do
not increase area and power requirements and do not impact timing.


Table Abbreviations

The generic type “suv(x:y)” is an abbreviation for “std_ulogic_vector(x downto y)”.

Table 4. NEORV32 Processor Generic List

Name Type Default Description

Processor Clocking

CLOCK_FREQUENCY natural 0 The clock frequency of the processor’s clk_i input
port in Hertz (Hz).

Dual-Core Configuration

DUAL_CORE_EN boolean false Enable the SMP dual-core configuration.

Core Identification

JEDEC_ID suv(10:0) "000000000
00"

JEDEC ID; continuation codes plus vendor ID
(passed to mvendorid CSR and to the Debug
Transport Module (DTM)).

Boot Configuration

BOOT_MODE_SELECT natural 0 Boot mode select; see Boot Configuration.

BOOT_ADDR_CUSTOM suv(31:0) x"00000000
"

Custom CPU boot address (available if
BOOT_MODE_SELECT = 1).

The NEORV32 RISC-V Processor Visit on GitHub

27 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Name Type Default Description

On-Chip Debugger (OCD)

OCD_EN boolean false Implement the on-chip debugger and the CPU debug
mode.

OCD_AUTHENTICATION boolean false Implement Debug Authentication module.

CPU Instruction Sets and Extensions

RISCV_ISA_C boolean false Enable C ISA Extension (compressed instructions).

RISCV_ISA_E boolean false Enable E ISA Extension (reduced register file size).

RISCV_ISA_M boolean false Enable M ISA Extension (hardware-based integer
multiplication and division).

RISCV_ISA_U boolean false Enable U ISA Extension (less-privileged user mode).

RISCV_ISA_Zaamo boolean false Enable Zaamo ISA Extension (atomic memory
operations).

RISCV_ISA_Zba boolean false Enable Zba ISA Extension (shifted-add bit-
manipulation instructions).

RISCV_ISA_Zbb boolean false Enable Zbb ISA Extension (basic bit-manipulation
instructions).

RISCV_ISA_Zbkb boolean false Enable Zbkb ISA Extension (scalar cryptography bit
manipulation instructions).

RISCV_ISA_Zbkc boolean false Enable Zbkc ISA Extension (scalar cryptography
carry-less multiplication instructions).

RISCV_ISA_Zbkx boolean false Enable Zbkx ISA Extension (scalar cryptography
crossbar permutations).

RISCV_ISA_Zbs boolean false Enable Zbs ISA Extension (single-bit bit-
manipulation instructions).

RISCV_ISA_Zfinx boolean false Enable Zfinx ISA Extension (single-precision
floating-point unit).

RISCV_ISA_Zicntr boolean true Enable Zicntr ISA Extension (CPU base counters).

RISCV_ISA_Zicond boolean false Enable Zicond ISA Extension (integer conditional
instructions).

RISCV_ISA_Zihpm boolean false Enable Zihpm ISA Extension (hardware performance
monitors).

RISCV_ISA_Zknd boolean false Enable Zknd ISA Extension (scalar cryptography
NIST AES decryption instructions).

RISCV_ISA_Zkne boolean false Enable Zkne ISA Extension (scalar cryptography
NIST AES encryption instructions).

The NEORV32 RISC-V Processor Visit on GitHub

28 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Name Type Default Description

RISCV_ISA_Zknh boolean false Enable Zknh ISA Extension (scalar cryptography
NIST hash instructions).

RISCV_ISA_Zksed boolean false Enable Zksed ISA Extension (scalar cryptography
ShangMi block cyphers).

RISCV_ISA_Zksh boolean false Enable Zksh ISA Extension (scalar cryptography
ShangMi hash functions).

RISCV_ISA_Zmmul boolean false Enable Zmmul - ISA Extension (hardware-based
integer multiplication).

RISCV_ISA_Zxcfu boolean false Enable NEORV32-specific Zxcfu ISA Extension
(custom RISC-V instructions).

CPU Tuning Options

CPU_CLOCK_GATING_E
N

boolean false Implement sleep-mode clock gating; see sections
Sleep Mode and CPU Clock Gating.

CPU_FAST_MUL_EN boolean false Implement fast but large full-parallel multipliers
(trying to infer DSP blocks); see section CPU
Arithmetic Logic Unit.

CPU_FAST_SHIFT_EN boolean false Implement fast but large full-parallel barrel
shifters; see section CPU Arithmetic Logic Unit.

CPU_RF_HW_RST_EN boolean false Implement full hardware reset for register file (use
individual FFs instead of BRAM); see section CPU
Register File.

Physical Memory Protection (Smpmp ISA Extension)

PMP_NUM_REGIONS natural 0 Number of implemented PMP regions (0..16).

PMP_MIN_GRANULARIT
Y

natural 4 Minimal region granularity in bytes. Has to be a
power of two, min 4.

PMP_TOR_MODE_EN boolean true Implement support for top-of-region (TOR) mode.

PMP_NAP_MODE_EN boolean true Implement support for naturally-aligned power-of-
two (NAPOT & NA4) modes.

Hardware Performance Monitors (Zihpm ISA Extension)

HPM_NUM_CNTS natural 0 Number of implemented hardware performance
monitor counters (0..13).

HPM_CNT_WIDTH natural 40 Total LSB-aligned size of each HPM counter. Min 0,
max 64.

Internal Instruction Memory (IMEM)

MEM_INT_IMEM_EN boolean false Implement the processor-internal instruction
memory.

The NEORV32 RISC-V Processor Visit on GitHub

29 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Name Type Default Description

MEM_INT_IMEM_SIZE natural 16*1024 Size in bytes of the processor internal instruction
memory (use a power of 2).

Internal Data Memory (DMEM)

MEM_INT_DMEM_EN boolean false Implement the processor-internal data memory.

MEM_INT_DMEM_SIZE natural 8*1024 Size in bytes of the processor-internal data memory
(use a power of 2).

Processor-Internal Instruction Cache (iCACHE)

ICACHE_EN boolean false Implement the instruction cache.

ICACHE_NUM_BLOCKS natural 4 Number of blocks ("lines") Has to be a power of two.

ICACHE_BLOCK_SIZE natural 64 Size in bytes of each block. Has to be a power of
two.

Processor-Internal Data Cache (dCACHE)

DCACHE_EN boolean false Implement the data cache.

DCACHE_NUM_BLOCKS natural 4 Number of blocks ("lines"). Has to be a power of
two.

DCACHE_BLOCK_SIZE natural 64 Size in bytes of each block. Has to be a power of
two.

Processor-External Bus Interface (XBUS) (Wishbone b4 protocol)

XBUS_EN boolean false Implement the external bus interface.

XBUS_TIMEOUT natural 255 Clock cycles after which a pending external bus
access will auto-terminate and raise a bus fault
exception.

XBUS_REGSTAGE_EN boolean false Implement XBUS register stages to ease timing
closure.

XBUS_CACHE_EN boolean false Implement the external bus cache.

XBUS_CACHE_NUM_BLO
CKS

natural 64 Number of blocks ("lines"). Has to be a power of
two.

XBUS_CACHE_BLOCK_S
IZE

natural 32 Size in bytes of each block. Has to be a power of
two.

Execute In Place Module (XIP)

XIP_EN boolean false Implement the execute in-place module.

XIP_CACHE_EN boolean false Implement XIP cache.

XIP_CACHE_NUM_BLOC
KS

natural 8 Number of blocks in XIP cache. Has to be a power of
two.

The NEORV32 RISC-V Processor Visit on GitHub

30 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Name Type Default Description

XIP_CACHE_BLOCK_SI
ZE

natural 256 Number of bytes per XIP cache block. Has to be a
power of two, min 4.

Peripheral/IO Modules

IO_DISABLE_SYSINFO boolean false Disable System Configuration Information Memory
(SYSINFO) module; ⚠️ not recommended - for
advanced users only!

IO_GPIO_NUM natural 0 Number of general purpose input/output pairs of
the General Purpose Input and Output Port (GPIO),
max 32.

IO_CLINT_EN boolean false Implement the Core Local Interruptor (CLINT).

IO_UART0_EN boolean false Implement the Primary Universal Asynchronous
Receiver and Transmitter (UART0).

IO_UART0_RX_FIFO natural 1 UART0 RX FIFO depth, has to be a power of two,
minimum value is 1, max 32768.

IO_UART0_TX_FIFO natural 1 UART0 TX FIFO depth, has to be a power of two,
minimum value is 1, max 32768.

IO_UART1_EN boolean false Implement the Secondary Universal Asynchronous
Receiver and Transmitter (UART1).

IO_UART1_RX_FIFO natural 1 UART1 RX FIFO depth, has to be a power of two,
minimum value is 1, max 32768.

IO_UART1_TX_FIFO natural 1 UART1 TX FIFO depth, has to be a power of two,
minimum value is 1, max 32768.

IO_SPI_EN boolean false Implement the Serial Peripheral Interface
Controller (SPI).

IO_SPI_FIFO natural 1 Depth of the Serial Peripheral Interface Controller
(SPI) FIFO. Has to be a power of two, min 1, max
32768.

IO_SDI_EN boolean false Implement the Serial Data Interface Controller
(SDI).

IO_SDI_FIFO natural 1 Depth of the Serial Data Interface Controller (SDI)
FIFO. Has to be a power of two, min 1, max 32768.

IO_TWI_EN boolean false Implement the Two-Wire Serial Interface Controller
(TWI).

IO_TWI_FIFO natural 1 Depth of the Two-Wire Serial Interface Controller
(TWI) FIFO. Has to be a power of two, min 1, max
32768.

IO_TWD_EN boolean false Implement the Two-Wire Serial Device Controller
(TWD).

The NEORV32 RISC-V Processor Visit on GitHub

31 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Name Type Default Description

IO_TWD_FIFO natural 1 Depth of the Two-Wire Serial Device Controller
(TWD) FIFO. Has to be a power of two, min 1, max
32768.

IO_PWM_NUM_CH natural 0 Number of channels of the Pulse-Width Modulation
Controller (PWM) to implement (0..16).

IO_WDT_EN boolean false Implement the Watchdog Timer (WDT).

IO_TRNG_EN boolean false Implement the True Random-Number Generator
(TRNG).

IO_TRNG_FIFO natural 1 Depth of the TRNG data FIFO. Has to be a power of
two, min 1, max 32768.

IO_CFS_EN boolean false Implement the Custom Functions Subsystem (CFS).

IO_CFS_CONFIG suv(31:0) x"00000000
"

"Conduit" generic to pass user-defined flags to the
Custom Functions Subsystem (CFS).

IO_CFS_IN_SIZE natural 32 Size of the Custom Functions Subsystem (CFS) input
signal conduit (cfs_in_i).

IO_CFS_OUT_SIZE natural 32 Size of the Custom Functions Subsystem (CFS)
output signal conduit (cfs_out_o).

IO_NEOLED_EN boolean false Implement the Smart LED Interface (NEOLED).

IO_NEOLED_TX_FIFO natural 1 TX FIFO depth of the the Smart LED Interface
(NEOLED). Has to be a power of two, min 1, max
32768.

IO_GPTMR_EN boolean false Implement the General Purpose Timer (GPTMR).

IO_ONEWIRE_EN boolean false Implement the One-Wire Serial Interface Controller
(ONEWIRE).

IO_ONEWIRE_FIFO natural 1 Depth of the One-Wire Serial Interface Controller
(ONEWIRE) FIFO. Has to be a power of two, min 1,
max 32768.

IO_DMA_EN boolean false Implement the Direct Memory Access Controller
(DMA).

IO_SLINK_EN boolean false Implement the Stream Link Interface (SLINK).

IO_SLINK_RX_FIFO natural 1 SLINK RX FIFO depth, has to be a power of two,
minimum value is 1, max 32768.

IO_SLINK_TX_FIFO natural 1 SLINK TX FIFO depth, has to be a power of two,
minimum value is 1, max 32768.

IO_CRC_EN boolean false Implement the Cyclic Redundancy Check (CRC) unit.

The NEORV32 RISC-V Processor Visit on GitHub

32 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.3. Processor Clocking
The processor is implemented as fully-synchronous logic design using a single clock domain that is
driven entirely by the top’s clk_i signal. This clock signal is used by all internal registers and
memories. All of them trigger on the rising edge of this clock signal. External "clocks" like the OCD’s
JTAG clock or the SDI’s serial clock are synchronized into the processor’s clock domain before being
used as "general logic signal" (and not as a dedicated clock).



CPU Clock Gating

The CPU core provides an optional clock-gating feature to switch off large parts of
the core when sleep mode is entered. See section CPU Clock Gating for more
information.

2.3.1. Peripheral Clocks

Many processor modules like the UARTs or the timers provide a programmable time base for
operations. In order to simplify the hardware, the processor implements a global "clock generator"
(neorv32_sys.vhd) that provides single-cycle clock enables for certain frequencies which are derived
from the main clock. These clock enable signals are synchronous to the system’s main clock. The
processor modules can use these enables for sub-main-clock operations while still providing a
single clock domain only.

In total, 8 sub-main-clock signals are available. All processor modules, which feature a time-based
configuration, provide a programmable three-bit prescaler select in their control register to select
one of the 8 available clocks. The mapping of the prescaler select bits to the according clock source
is shown in the table below. Here, f represents the processor main clock from the top entity’s clk_i
signal.

Prescaler bits: 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock: f/2 f/4 f/8 f/64 f/128 f/1024 f/2048 f/4096



Power Saving

If no peripheral modules requires a clock signal from the internal clock generator
(all according modules are disabled by clearing the enable bit in the according
module’s control register) the generator is automatically deactivated to reduce
dynamic power consumption.

The NEORV32 RISC-V Processor Visit on GitHub

33 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.4. Processor Reset
The NEORV32 processor includes a central reset sequencer (neorv32_sys.vhd) that handles all reset
requests and controls the internal reset nets. The processor-wide reset (aka "system reset") can be
triggered by any of the following sources:

• the asynchronous low-active rstn_i top entity input signal (External source)

• the On-Chip Debugger (OCD) (internal source)

• the Watchdog Timer (WDT) (internal source)


Processor Reset Signal

Make sure to connect the processor’s reset signal rstn_i to a valid reset source (a
button, the "locked" signal of a PLL, a dedicated reset controller, etc.).


Reset Cause

The actual reset cause can be determined via the Watchdog Timer (WDT).

If any of these sources triggers a reset, the internal system-wide reset will be active for at least 4
clock cycles ensuring a valid reset of the entire processor. This system reset is asserted
asynchronoulsy if triggered by the external rstn_i signal and is asserted synchronously if triggered
by an internal reset source. However, the system reset is always de-asserted synchronously at the
next rising clock edge.

Internally, all registers that are not meant for mapping to blockRAM (like the register file) do
provide a dedicated and low-active asynchronous hardware reset. This asynchronous reset
ensures that the entire processor logic is reset to a defined state even if the main clock is not
operational yet.

The NEORV32 RISC-V Processor Visit on GitHub

34 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.5. Processor Interrupts
The NEORV32 Processor provides several interrupt request signals (IRQs) for custom platform use.



Trigger Type

All interrupt request lines are level-triggered and high-active. Once set, the
signal should remain high until the interrupt request is explicitly acknowledged
(e.g. writing to a memory-mapped register).

2.5.1. RISC-V Standard Interrupts

The processor setup features the standard machine-level RISC-V interrupt lines for "machine timer
interrupt", "machine software interrupt" and "machine external interrupt". Their usage is defined
by the RISC-V privileged architecture specifications. However, bare-metal system can also
repurpose these interrupts. See CPU section Traps, Exceptions and Interrupts for more information.

Top signal Description

mtime_irq_i Machine timer interrupt from processor-external CLINT (MTI). This
IRQ is only available if the processor-internal Core Local Interruptor
(CLINT) unit is not implemented.

msw_irq_i Machine software interrupt from processor-external CLINT (MSI). This
IRQ is only available if the processor-internal Core Local Interruptor
(CLINT) unit is not implemented.

mext_irq_i Machine external interrupt (MEI). This interrupt is used for any
processor-external interrupt source (like a platform interrupt
controller).

2.5.2. NEORV32-Specific Fast Interrupt Requests

As part of the NEORV32-specific CPU extensions, the processor core features 16 fast interrupt
request signals (FIRQ0 to FIRQ15) providing dedicated bits in the mip and mie CSRs and custom mcause
trap codes. The FIRQ signals are reserved for processor-internal modules only (for example for the
communication interfaces to signal "available incoming data" or "ready to send new data").

The mapping of the 16 FIRQ channels to the according processor-internal modules is shown in the
following table (the channel number also corresponds to the according FIRQ priority: 0 = highest, 15
= lowest):

Table 5. NEORV32 Fast Interrupt Request (FIRQ) Mapping

Channel Source Description

0 TWD TWD FIFO level interrupt

1 CFS Custom functions subsystem (CFS) interrupt (user-defined)

2 UART0 UART0 RX FIFO level interrupt

The NEORV32 RISC-V Processor Visit on GitHub

35 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Channel Source Description

3 UART0 UART0 TX FIFO level interrupt

4 UART1 UART1 RX FIFO level interrupt

5 UART1 UART1 TX FIFO level interrupt

6 SPI SPI FIFO level interrupt

7 TWI TWI FIFO level interrupt

8 GPIO GPIO input pin(s) interrupt

9 NEOLED NEOLED TX FIFO level interrupt

10 DMA DMA transfer done interrupt

11 SDI SDI FIFO level interrupt

12 GPTMR General purpose timer interrupt

13 ONEWIRE 1-wire idle interrupt

14 SLINK SLINK RX FIFO level interrupt

15 SLINK SLINK TX FIFO level interrupt

The NEORV32 RISC-V Processor Visit on GitHub

36 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.6. Address Space
As a 32-bit architecture the NEORV32 can access a 4GB physical address space. By default, this
address space is split into four main regions. All accesses to "unmapped" addresses (a.k.a. "the
void") are redirected to the Processor-External Bus Interface (XBUS). For example, if the internal
IMEM is disabled, the accesses to the entire address space between 0x00000000 and 0x7FFFFFFF are
converted into XBUS requests. If the XBUS interface is not enabled any access to the void will raise a
bus error exception.

Figure 2. NEORV32 Processor Address Space (Default Configuration)

Each region provides specific physical memory attributes ("PMAs") that define the access
capabilities (rwxac; r = read access, w = write access, x - execute access, a = atomic access, c = cached
CPU access).



Custom PMAs

Custom physical memory attributes enforced by the CPU’s physcial memory
protection (Smpmp ISA Extension) can be used to further constrain the physical
memory attributes.

Table 6. Main Address Regions

The NEORV32 RISC-V Processor Visit on GitHub

37 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Region PMAs Description

1 Internal IMEM address
space

rwxac For instructions / code and constants; mapped to
the internal Instruction Memory (IMEM) if
implemented.

2 Internal DMEM address
space

rwxac For application runtime data (heap, stack, etc.);
mapped to the internal Data Memory (DMEM)) if
implemented.

3 Memory-mapped XIP flash r-xac Transparent memory-mapped access to an
external Execute In Place Module (XIP) SPI flash.

4 IO/peripheral address
space

rwxa- Processor-internal peripherals / IO devices
including the Bootloader ROM (BOOTROM).

- The "void" rwxa[c] Unmapped address space. All accesses to this
region(s) are redirected to the Processor-
External Bus Interface (XBUS) if implemented.

2.6.1. Bus System

The CPU provides individual interfaces for instruction fetch and data access. It can can access all of
the 32-bit address space from each of the interface. Both of them can be equipped with optional
caches (Processor-Internal Data Cache (dCACHE) and Processor-Internal Instruction Cache
(iCACHE)).

The two CPU interfaces are multiplexed by a simple bus switch into a single processor-internal bus.
Optionally, this bus is further multiplexed by another instance of the bus switch so the Direct
Memory Access Controller (DMA) controller can also access the entire address space. Accesses via
the resulting SoC bus are split by the Bus Gateway that redirects accesses to the according main
address regions (see table above). Accesses to the processor-internal IO/peripheral devices are
further redirected via a dedicated IO Switch.

The NEORV32 RISC-V Processor Visit on GitHub

38 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Figure 3. Processor-Internal Bus Architecture


Bus System Infrastructure

The components of the processor’s bus system infrastructure are located in
rtl/core/neorv32_bus.vhd.


Bus Interface

See sections CPU Architecture and Bus Interface for more information regarding
the CPU bus accesses.


SMP Dual-Core Configuration

The dual-core configuration adds a second CPU core complex in parallel to the first
one. See section Dual-Core Configuration for more information.

The NEORV32 RISC-V Processor Visit on GitHub

39 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.6.2. Bus Gateway

The central bus gateway serves two purposes: it redirects accesses to the according modules (e.g.
memory accesses vs. memory-mapped IO accesses) and also monitors all bus transactions. The
redirection of access request is based on a customizable memory map implemented via VHDL
constants in the main package file (rtl/core/neorv323_package.vhd):

Listing 3. Main Address Regions Configuration in the VHDL Package File

-- Main Address Regions ---
constant mem_imem_base_c : std_ulogic_vector(31 downto 0) := x"00000000"; -- IMEM size
via generic
constant mem_dmem_base_c : std_ulogic_vector(31 downto 0) := x"80000000"; -- DMEM size
via generic
constant mem_xip_base_c : std_ulogic_vector(31 downto 0) := x"e0000000"; -- page (4
MSBs) only!
constant mem_xip_size_c : natural := 256*1024*1024;
constant mem_io_base_c : std_ulogic_vector(31 downto 0) := x"ffe00000";
constant mem_io_size_c : natural := 32*64*1024; -- = 32 * iodev_size_c

Besides the redirecting of bus requests the gateway also implements a bus monitor (aka "the bus
keeper") that tracks all active bus transactions to ensure safe and deterministic operations.
Whenever a memory-mapped device is accessed (a real memory, a memory-mapped IO or some
processor-external module) the bus monitor starts an internal countdown. The accessed module
has to respond ("ACK") to the bus request within a bound time window. This time window is
defined by a global constant in the processor’s VHDL package file (rtl/core/neorv323_package.vhd).

Listing 4. Internal Bus Timeout Configuration

constant bus_timeout_c : natural := 15;

This constant defines the maximum number of cycles after which a non-responding bus request (i.e.
no ack and no err signal) will time out raising a bus access fault exception. For example this can
happen when accessing "address space holes" - addresses that are not mapped to any physical
module. The resulting exception type corresponds to the according access type, i.e. instruction fetch
access exception, load access exception or store access exception.


XIP Timeout

Accesses to the memory-mapped XIP flash (via the Execute In Place Module (XIP))
will never time out.



External Bus Interface Timeout

Accesses that are delegated to the external bus interface have a different
maximum timeout value that is defined by an explicit specific processor generic.
See section Processor-External Bus Interface (XBUS) for more information.

The NEORV32 RISC-V Processor Visit on GitHub

40 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.6.3. IO Switch

The IO switch further decodes the address when accessing the processor-internal IO/peripheral
devices and forwards the access request to the according module. Note that a total address space
size of 256 bytes is assigned to each IO module in order to simplify address decoding. The IO-
specific address map is also defined in the main VHDL package file (rtl/core/neorv323_package.vhd).

Listing 5. Exemplary Cut-Out from the IO Address Map

-- IO Address Map --
constant iodev_size_c : natural := 256; -- size of a single IO device (bytes)
constant base_io_cfs_c : std_ulogic_vector(31 downto 0) := x"ffffeb00";
constant base_io_slink_c : std_ulogic_vector(31 downto 0) := x"ffffec00";
constant base_io_dma_c : std_ulogic_vector(31 downto 0) := x"ffffed00";

2.6.4. Atomic Memory Operations Controller

The atomic memory operations (AMO) controller is responsible for handling the read-modify-write
operations issued by the CPU’s Zaamo ISA Extension. For each AMO request, the controller executes
an atomic set of three operations:

Table 7. Simplified AMO Controller Operation

Step Pseudo Code Description

1 tmp1 ⇐ MEM[address]; Perform a read operation accessing the addressed
memory cell and store the loaded data into an internal
buffer (tmp1).

2 tmp2 ⇐ tmp1 OP cpu_wdata The buffered data from the first step is processed using the
write data provide by the CPU. The result is stored to
another internal buffer (tmp2).

3 MEM[address] ⇐ tmp2;
cpu_rdata ⇐ tmp1;

The data from the second buffer (tmp2) is written to the
addressed memory cell. In parallel, the data from the first
buffer (tmp1 = original content of the addresses memory
cell) is sent back to the requesting CPU.


Direct Access

Atomic operations always bypass the CPU’s data cache using direct/uncached
accesses. Care must be taken to maintain data Cache Coherency.



Physical Memory Attributes

Atomic memory operations can be executed for any address. This also includes
cached memory, memory-mapped IO devices and processor-external address
spaces.

The controller performs two bus transactions: a read operations and a write operation. Only the

The NEORV32 RISC-V Processor Visit on GitHub

41 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

acknowledge/error handshake of the last transaction is sent back to the CPU.

As the AMO controller is the memory-nearest instance (see Bus System) the previously described set
of operations cannot be interrupted. Hence, they execute in an atomic way.

2.6.5. Cache Coherency

In total the NEORV32 Processor provides up to four optional caches organized in two levels. Level-1
caches are closer to the CPU while level-2 caches are closer to main memory (however, this highly
depends on the the actual cache configurations).

• The Processor-Internal Data Cache (dCACHE) (level-1)

• The Processor-Internal Instruction Cache (iCACHE) (level-1)

• The cache of the Processor-External Bus Interface (XBUS) (level-2)

• The cache of the Execute In Place Module (XIP) (level-2)

As all caches operate transparently for the software, special attention must therefore be paid to
coherence. Note that coherence and cache synchronization is not performed by the hardware itself
(there is no snooping implemented).

The NEORV32 uses two instructions for manual cache synchronization (both instructions are
always available regardless of the actual CPU/ISA configuration):

• fence (I ISA Extension / E ISA Extension)

• fence.i (Zifencei ISA Extension)

By executing the "data" fence instruction the CPU’s data cache is synchronized in four steps:

1. The CPU data cache is flushed: all local modifications are copied to the next higher memory
level; this can be the XBUS cache or main memory.

2. The CPU data cache is cleared invalidating all local entries.

3. The synchronization request is sent to the next-higher memory level (for example to the XBUS
cache so it can perform the same synchronization steps).

4. The CPU data cache is reloaded with up-to-date data from the next higher memory level.

By executing the "instruction" fence.i instruction the CPU’s instruction cache is synchronized in
three steps:

1. The synchronization request is sent to the next-higher memory level (for example to the XBUS
cache so it can perform the same synchronization steps).

2. The CPU instruction cache is cleared invalidating all local entries.

3. The CPU instruction cache is reloaded with up-to-date data from the next higher memory level.

The NEORV32 RISC-V Processor Visit on GitHub

42 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.7. Boot Configuration
The NEORV32 processor provides some pre-defined boot configurations to adjust system start-up to
the requirements of the application. The actual boot configuration is defined by the
BOOT_MODE_SELECT generic (see Processor Top Entity - Generics).

Table 8. NEORV32 Boot Configurations

BOOT_MODE_SELE
CT

Name Boot address Description

0 (default) Bootloader Base of
internal

BOOTROM

Implement the processor-internal Bootloader
ROM (BOOTROM) as pre-initialized ROM and
boot from there.

1 Custom
Address

BOOT_ADDR_CUST
OM generic

Start booting at user-defined address
(BOOT_ADDR_CUSTOM top generic).

2 IMEM Image Base of
internal IMEM

Implement the processor-internal Instruction
Memory (IMEM) as pre-initialized ROM and boot
from there.


Dual-Core Boot

For the SMPA dual-core CPU configuration boot procedure see section Dual-Core
Boot.

2.7.1. Booting via Bootloader

This is the most common and thus, the default boot configuration. When selected, the processor-
internal Bootloader ROM (BOOTROM) is enabled. This ROM contains the executable image
(rtl/core/neorv32_bootloader_image.vhd) of the default NEORV32 Bootloader that will be executed
right after reset. The bootloader provides an interactive user console for executable upload as well
as an automatic boot-configuration targeting external (SPI) memories.

If the processor-internal Instruction Memory (IMEM) is enabled it will be implemented as blank
RAM.

2.7.2. Boot from Custom Address

This is the most flexible boot configuration as it allows the user to specify a custom boot address via
the BOOT_ADDR_CUSTOM generic. Note that this address has to be aligned to 4-byte boundary. The
processor will start executing from the defined address right after reset. For example, this boot
configuration ca be used to execute a custom bootloader from a memory that is attached via the
Processor-External Bus Interface (XBUS).

The Bootloader ROM (BOOTROM) is not enabled / implement at all. If the processor-internal
Instruction Memory (IMEM) is enabled it will be implemented as blank RAM.

The NEORV32 RISC-V Processor Visit on GitHub

43 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.7.3. Boot IMEM Image

This configuration will implement the Instruction Memory (IMEM) as pre-initialized read-only
memory (ROM). The ROM is initialized during synthesis with the according application image file
(rtl/core/neorv32_application_image.vhd). After reset, the CPU will directly start executing this
image. Since the IMEM is implemented as ROM, the executable cannot be altered at runtime at all.

The Bootloader ROM (BOOTROM) is not enabled / implement at all.


Internal IMEM is Required

This boot configuration requires the IMEM to be enabled (MEM_INT_IMEM_EN = true).



Simulation Setup

This boot configuration is handy for simulations as the application software is
executed right away without the need for an explicit initialization / executable
upload.

The NEORV32 RISC-V Processor Visit on GitHub

44 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8. Processor-Internal Modules


Full-Word Write Accesses Only

All peripheral/IO devices should only be accessed in full-word mode (i.e. 32-bit).
Byte or half-word (8/16-bit) write accesses might cause undefined behavior.

IO Module Address Space

Each peripheral/IO module occupies an address space of 64kB bytes. Most devices do not fully
utilize this address space and will mirror the available memory-mapped registers across the entire
64kB address space. However, accessing memory-mapped registers other than the specified ones
should be avoided.



Unimplemented Modules / Address Holes

When accessing an IO device that hast not been implemented (disabled via the
according generic) or when accessing an address that is actually unused, a
load/store access fault exception is raised.



Writing to Read-Only Registers

Unless otherwise specified, writing to registers that are listed as read-only does not
trigger an exception as the write access is simply ignored by the corresponding
hardware module.



IO Access Latency

In order to shorten the critical path of the IO system, the IO switch provides
register stages for the request and response buses.Hence, accesses to the
processor-internal IO region require two additional clock cycles to complete.



Module Interrupts

Several peripheral/IO devices provide some kind of interrupt. These interrupts are
mapped to the CPU’s Custom Fast Interrupt Request Lines. See section Processor
Interrupts for more information.


CMSIS System Description View (SVD)

A CMSIS-compatible System View Description (SVD) file including all peripherals
is available in sw/svd.

The NEORV32 RISC-V Processor Visit on GitHub

45 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.1. Instruction Memory (IMEM)

Hardware source files: neorv32_imem.vhd default platform-agnostic instruction
memory (RAM or ROM)

neorv32_application_image.
vhd

initialization image (a VHDL package)

Software driver files: none implicitly used

Top entity ports: none

Configuration generics: MEM_INT_IMEM_EN implement processor-internal IMEM
when true

MEM_INT_IMEM_SIZE IMEM size in bytes (use a power of 2)

BOOT_MODE_SELECT implement IMEM as ROM when
BOOT_MODE_SELECT = 2; see Boot
Configuration

CPU interrupts: none

Overview

Implementation of the processor-internal instruction memory is enabled by the processor’s
MEM_INT_IMEM_EN generic. The total memory size in bytes is defined via the MEM_INT_IMEM_SIZE
generic. Note that this size should be a power of two to optimize physical implementation. If
enabled, the IMEM is mapped to base address 0x00000000 (see section Address Space).

By default the IMEM is implemented as true RAM so the content can be modified during run time.
This is required when using the Bootloader (or the On-Chip Debugger (OCD)) so it can update the
content of the IMEM at any time.

Alternatively, the IMEM can be implemented as pre-initialized read-only memory (ROM), so the
processor can directly boot from it after reset. This option is configured via the BOOT_MODE_SELECT
generic. See section Boot Configuration for more information. The initialization image is embedded
into the bitstream during synthesis. The software framework provides an option to generate and
override the default VHDL initialization file rtl/core/neorv32_application_image.vhd, which is
automatically inserted into the IMEM (see Makefile Targets. If the IMEM is implemented as RAM
(default), the memory block will not be initialized at all.


Platform-Specific Memory Primitives

If required, the default IMEM can be replaced by a platform-/technology-specific
primitive to optimize area utilization, timing and power consumption.



Memory Size

If the configured memory size (via the MEM_INT_IMEM_SIZE generic) is not a power of
two the actual memory size will be auto-adjusted to the next power of two (e.g.
configuring a memory size of 60kB will result in a physical memory size of 64kB).

The NEORV32 RISC-V Processor Visit on GitHub

46 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32



Legacy HDL Style

If synthesis fails to infer block RAM for the IMEM, turn on the alt_style_c option
inside the memory’s VHDL source file. When enabled, a different HDL style is used
to describe the memory core.


Read-Only Access

If the IMEM is implemented as ROM any write attempt to it will raise a store access
fault exception.

The NEORV32 RISC-V Processor Visit on GitHub

47 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.2. Data Memory (DMEM)

Hardware source files: neorv32_dmem.vhd default platform-agnostic data
memory

Software driver files: none implicitly used

Top entity ports: none

Configuration generics: MEM_INT_DMEM_EN implement processor-internal DMEM
when true

MEM_INT_DMEM_SIZE DMEM size in bytes (use a power of 2)

CPU interrupts: none

Overview

Implementation of the processor-internal data memory is enabled by the processor’s
MEM_INT_DMEM_EN generic. The total memory size in bytes is defined via the MEM_INT_DMEM_SIZE
generic. Note that this size should be a power of two to optimize physical implementation. If the
DMEM is implemented, it is mapped to base address 0x80000000 by default (see section Address
Space). The DMEM is always implemented as true RAM.


Platform-Specific Memory Primitives

If required, the default DMEM can be replaced by a platform-/technology-specific
primitive to optimize area utilization, timing and power consumption.



Memory Size

If the configured memory size (via the MEM_INT_DMEM_SIZE generic) is not a power of
two the actual memory size will be auto-adjusted to the next power of two (e.g.
configuring a memory size of 60kB will result in a physical memory size of 64kB).



Legacy HDL Style

If synthesis fails to infer block RAM for the DMEM, turn on the alt_style_c option
inside the memory’s VHDL source file. When enabled, a different HDL style is used
to describe the memory core.


Execute from RAM

The CPU is capable of executing code also from arbitrary data memory.

The NEORV32 RISC-V Processor Visit on GitHub

48 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.3. Bootloader ROM (BOOTROM)

Hardware source files: neorv32_boot_rom.vhd default platform-agnostic bootloader
ROM

neorv32_bootloader_image.v
hd

initialization image (a VHDL package)

Software driver files: none implicitly used

Top entity ports: none

Configuration generics: BOOT_MODE_SELECT implement BOOTROM when
BOOT_MODE_SELECT = 0; see Boot
Configuration

CPU interrupts: none

Overview

The boot ROM contains the executable image of the default NEORV32 Bootloader. When the Boot
Configuration is set to bootloader mode (0) via the BOOT_MODE_SELECT generic, the boot ROM is
automatically enabled and the CPU boot address is adjusted to the base address of the boot ROM.
Note that the entire boot ROM is read-only.



Bootloader Image

The bootloader ROM is initialized during synthesis with the default bootloader
image (rtl/core/neorv32_bootloader_image.vhd). The physical size of the ROM is
automatically adjusted to the next power of two of the image size. However, note
that the BOOTROM is constrained to a maximum size of 64kB.

The NEORV32 RISC-V Processor Visit on GitHub

49 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.4. Processor-Internal Instruction Cache (iCACHE)

Hardware source files: neorv32_cache.vhd Generic cache module

Software driver files: none implicitly used

Top entity ports: none

Configuration generics: ICACHE_EN implement processor-internal
instruction cache when true

ICACHE_NUM_BLOCKS number of cache blocks (pages/lines)

ICACHE_BLOCK_SIZE size of a cache block in bytes

CPU interrupts: none

Overview

The processor features an optional instruction cache to improve performance when using
memories with high access latency. The cache is connected directly to the CPU’s instruction fetch
interface and provides full-transparent accesses. The cache is direct-mapped and read-only.



Cached/Uncached Accesses

The data cache provides direct accesses (= uncached) to memory in order to access
memory-mapped IO (like the processor-internal IO/peripheral modules). All
accesses that target the address range from 0xF0000000 to 0xFFFFFFFF will not be
cached at all (see section Address Space). Direct/uncached accesses have lower
priority than cache block operations to allow continuous burst transfer and also to
maintain logical instruction forward progress / data coherency. Furthermore, the
atomic memory operations of the Zaamo ISA Extension will always bypass the
cache.



Caching Internal Memories

The data cache is intended to accelerate data access to processor-external
memories. The CPU cache(s) should not be implemented when using only
processor-internal data and instruction memories.


Manual Cache Clear/Reload

By executing the fence.i instruction the instruction cache is cleared and reloaded.
See section Cache Coherency for more information.


Retrieve Cache Configuration from Software

Software can retrieve the cache configuration/layout from the SYSINFO - Cache
Configuration register.


Bus Access Fault Handling

The cache always loads a complete cache block (aligned to the block size) every

The NEORV32 RISC-V Processor Visit on GitHub

50 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

time a cache miss is detected. Each cached word from this block provides a single
status bit that indicates if the according bus access was successful or caused a bus
error. Hence, the whole cache block remains valid even if certain addresses inside
caused a bus error. If the CPU accesses any of the faulty cache words, an
instruction bus error exception is raised.

The NEORV32 RISC-V Processor Visit on GitHub

51 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.5. Processor-Internal Data Cache (dCACHE)

Hardware source files: neorv32_cache.vhd Generic cache module

Software driver files: none implicitly used

Top entity ports: none

Configuration generics: DCACHE_EN implement processor-internal data
cache when true

DCACHE_NUM_BLOCKS number of cache blocks (pages/lines)

DCACHE_BLOCK_SIZE size of a cache block in bytes

CPU interrupts: none

Overview

The processor features an optional data cache to improve performance when using memories with
high access latency. The cache is connected directly to the CPU’s data access interface and provides
full-transparent accesses. The cache is direct-mapped and uses "write-allocate" and "write-back"
strategies.



Cached/Uncached Accesses

The data cache provides direct accesses (= uncached) to memory in order to access
memory-mapped IO (like the processor-internal IO/peripheral modules). All
accesses that target the address range from 0xF0000000 to 0xFFFFFFFF will not be
cached at all (see section Address Space). Direct/uncached accesses have lower
priority than cache block operations to allow continuous burst transfer and also to
maintain logical instruction forward progress / data coherency. Furthermore, the
atomic memory operations of the Zaamo ISA Extension will always bypass the
cache.



Caching Internal Memories

The data cache is intended to accelerate data access to processor-external
memories. The CPU cache(s) should not be implemented when using only
processor-internal data and instruction memories.


Manual Cache Flush/Clear/Reload

By executing the fence instruction the data cache is flushed, cleared and reloaded.
See section Cache Coherency for more information.


Retrieve Cache Configuration from Software

Software can retrieve the cache configuration/layout from the SYSINFO - Cache
Configuration register.

 Bus Access Fault Handling

The NEORV32 RISC-V Processor Visit on GitHub

52 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

The cache always loads a complete cache block (aligned to the block size) every
time a cache miss is detected. Each cached word from this block provides a single
status bit that indicates if the according bus access was successful or caused a bus
error. Hence, the whole cache block remains valid even if certain addresses inside
caused a bus error. If the CPU accesses any of the faulty cache words, a data bus
error exception is raised.

The NEORV32 RISC-V Processor Visit on GitHub

53 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.6. Direct Memory Access Controller (DMA)

Hardware source files: neorv32_dma.vhd

Software driver files: neorv32_dma.c Online software reference (Doxygen)

neorv32_dma.h Online software reference (Doxygen)

Top entity ports: none

Configuration generics: IO_DMA_EN implement DMA when true

CPU interrupts: fast IRQ channel 10 DMA transfer done (see Processor
Interrupts)

Overview

The NEORV32 DMA provides a small-scale scatter/gather direct memory access controller that
allows to transfer and modify data independently of the CPU. A single read/write transfer channel
is implemented that is configured via memory-mapped registers. a configured transfer can either
be triggered manually or by a programmable CPU FIRQ interrupt (see NEORV32-Specific Fast
Interrupt Requests).

The DMA is connected to the central processor-internal bus system (see section Address Space) and
can access the same address space as the CPU core. It uses interleaving mode accessing the central
processor bus only if the CPU does not currently request and bus access.

The controller can handle different data quantities (e.g. read bytes and write them back as sign-
extend words) and can also change the Endianness of data while transferring.


DMA Demo Program

A DMA example program can be found in sw/example/demo_dma.

Theory of Operation

The DMA provides four memory-mapped interface registers: A status and control register CTRL and
three registers for configuring the actual DMA transfer. The base address of the source data is
programmed via the SRC_BASE register. Vice versa, the base address of the destination data is
programmed via the DST_BASE. The third configuration register TTYPE is use to configure the actual
transfer type and the number of elements to transfer.

The DMA is enabled by setting the DMA_CTRL_EN bit of the control register. Manual trigger mode (i.e.
the DMA transfer is triggered by writing to the TTYPE register) is selected if DMA_CTRL_AUTO is cleared.
Alternatively, the DMA transfer can be triggered by a processor internal FIRQ signal if
DMA_CTRL_AUTO is set (see section below).

The DMA uses a load-modify-write data transfer process. Data is read from the bus system,
internally modified and then written back to the bus system. This combination is implemented as
an atomic progress, so canceling the current transfer by clearing the DMA_CTRL_EN bit will stop the
DMA right after the current load-modify-write operation.

The NEORV32 RISC-V Processor Visit on GitHub

54 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__dma_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__dma_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

If the DMA controller detects a bus error during operation, it will set either the DMA_CTRL_ERROR_RD
(error during last read access) or DMA_CTRL_ERROR_WR (error during last write access) and will
terminate the current transfer. Software can read the SRC_BASE or DST_BASE register to retrieve the
address that caused the according error. Alternatively, software can read back the NUM bits of the
control register to determine the index of the element that caused the error. The error bits are
automatically cleared when starting a new transfer.

When the DMA_CTRL_DONE flag is set the DMA has actually executed a transfer. However, the
DMA_CTRL_ERROR_* flags should also be checked to verify that the executed transfer completed
without errors. The DMA_CTRL_DONE flag is automatically cleared when writing the CTRL register.



DMA Access Privilege Level

Transactions performed by the DMA are executed as bus transactions with
elevated machine-mode privilege level. Note that any physical memory protection
rules (Smpmp ISA Extension) are not applied to DMA transfers.

Transfer Configuration

If the DMA is set to manual trigger mode (DMA_CTRL_AUTO = 0) writing the TTRIG register will start
the programmed DMA transfer. Once started, the DMA will read one data quantity from the source
address, processes it internally and then will write it back to the destination address. The
DMA_TTYPE_NUM bits of the TTYPE register define how many times this process is repeated by specifying
the number of elements to transfer.

Optionally, the source and/or destination addresses can be increments according to the data
quantities automatically by setting the according DMA_TTYPE_SRC_INC and/or DMA_TTYPE_DST_INC bit.

Four different transfer quantities are available, which are configured via the DMA_TTYPE_QSEL bits:

• 00: Read source data as byte, write destination data as byte

• 01: Read source data as byte, write destination data as zero-extended word

• 10: Read source data as byte, write destination data as sign-extended word

• 11: Read source data as word, write destination data as word

Optionally, the DMA controller can automatically convert Endianness of the transferred data if the
DMA_TTYPE_ENDIAN bit is set.



Address Alignment

Make sure to align the source and destination base addresses to the according
transfer data quantities. For instance, word-to-word transfers require that the two
LSB of SRC_BASE and DST_BASE are cleared.



Writing to IO Device

When writing data to IO / peripheral devices (for example to the Cyclic
Redundancy Check (CRC)) the destination data quantity has to be set to word (32-

The NEORV32 RISC-V Processor Visit on GitHub

55 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

bit) since all IO registers can only be written in full 32-bit word mode.

Automatic Trigger

As an alternative to the manual trigger mode, the DMA can be set to automatic trigger mode
starting a pre-configured transfer if a specific processor-internal peripheral issues a FIRQ interrupt
request. The automatic trigger mode is enabled by setting the CTRL register’s DMA_CTRL_AUTO bit. In
this configuration no transfer is started when writing to the DMA’s TTYPE register.

The actually triggering FIRQ channel is configured via the control register’s DMA_CTRL_FIRQ_SEL bits.
Writing a 0 will select FIRQ channel 0, writing a 1 will select FIRQ channel 1, and so on. See section
Processor Interrupts for a list of all FIRQ channels and their according sources.

The FIRQ trigger can operate in two trigger mode configured via the DMA_CTRL_FIRQ_TYPE flag:

• DMA_CTRL_FIRQ_TYPE = 0: trigger the automatic DMA transfer on a rising-edge of the selected
FIRQ channel (e.g. trigger DMA transfer only once)

• DMA_CTRL_FIRQ_TYPE = 1: trigger the automatic DMA transfer when the selected FIRQ channel is
active (e.g. trigger DMA transfer again and again)



FIRQ Trigger

The DMA transfer will start if a rising edge is detected on the configured FIRQ
channel. Hence, the DMA is triggered only once even if the selected FIRQ channel
keeps pending.

Memory Barrier / Fence Operation

Optionally, the DMA can issue a FENCE request to the downstream memory system when a transfer
has been completed without errors. This can be used to re-sync caches (flush and reload) and
buffers to maintain data coherency. This automatic fencing is enabled by the setting the control
register’s DMA_CTRL_FENCE bit.

DMA Interrupt

The DMA features a single CPU interrupt that is triggered when the programmed transfer has
completed. This interrupt is also triggered if the DMA encounters a bus error during operation. The
interrupt will remain pending until the control register’s DMA_CTRL_DONE is cleared (this will happen
upon any write access to the control register).

Register Map

Table 9. DMA Register Map (struct NEORV32_DMA)

The NEORV32 RISC-V Processor Visit on GitHub

56 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address Nam
e [C]

Bit(s), Name [C] R/W Function

0xffed0000 CTRL 0 DMA_CTRL_EN r/w DMA module enable

1 DMA_CTRL_AUTO r/w Enable automatic mode (FIRQ-triggered)

2 DMA_CTRL_FENCE r/w Issue a downstream FENCE operation when
DMA transfer completes (without errors)

7:3 reserved r/- reserved, read as zero

8 DMA_CTRL_ERROR_RD r/- Error during read access, clears when
starting a new transfer

9 DMA_CTRL_ERROR_WR r/- Error during write access, clears when
starting a new transfer

10 DMA_CTRL_BUSY r/- DMA transfer in progress

11 DMA_CTRL_DONE r/c Set if a transfer was executed; auto-clears on
write-access

14:12 reserved r/- reserved, read as zero

15 DMA_CTRL_FIRQ_TYPE r/w Trigger on rising-edge (0) or high-level (1) or
selected FIRQ channel

19:16
DMA_CTRL_FIRQ_SEL_MSB :
DMA_CTRL_FIRQ_SEL_LSB

r/w FIRQ trigger select (FIRQ0=0 … FIRQ15=15)

31:20 reserved r/- reserved, read as zero

0xffed0004 SRC_B
ASE

31:0 r/w Source base address (shows the last-accessed
source address when read)

0xffed0008 DST_B
ASE

31:0 r/w Destination base address (shows the last-
accessed destination address when read)

0xffed000c TTYPE 23:0 DMA_TTYPE_NUM_MSB :
DMA_TTYPE_NUM_LSB

r/w Number of elements to transfer (shows the
last-transferred element index when read)

26:24 reserved r/- reserved, read as zero

28:27 DMA_TTYPE_QSEL_MSB
: DMA_TTYPE_QSEL_LSB

r/w Quantity select (00 = byte → byte, 01 = byte →
zero-extended-word, 10 = byte → sign-
extended-word, 11 = word → word)

29 DMA_TTYPE_SRC_INC r/w Constant (0) or incrementing (1) source
address

30 DMA_TTYPE_DST_INC r/w Constant (0) or incrementing (1) destination
address

31 DMA_TTYPE_ENDIAN r/w Swap Endianness when set

The NEORV32 RISC-V Processor Visit on GitHub

57 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.7. Processor-External Bus Interface (XBUS)

Hardware source files: neorv32_xbus.vhd External bus gateway

neorv32_cache.vhd Generic cache module

Software driver files: none implicitly used

Top entity ports: xbus_adr_o address output (32-bit)

xbus_dat_o data output (32-bit)

xbus_tag_o access tag (3-bit)

xbus_we_o write enable (1-bit)

xbus_sel_o byte enable (4-bit)

xbus_stb_o bus strobe (1-bit)

xbus_cyc_o valid cycle (1-bit)

xbus_dat_i data input (32-bit)

xbus_ack_i acknowledge (1-bit)

xbus_err_i bus error (1-bit)

Configuration generics: XBUS_EN enable external bus interface when
true

XBUS_TIMEOUT number of clock cycles after which an
unacknowledged external bus access
will auto-terminate (0 = disabled)

XBUS_REGSTAGE_EN implement XBUS register stages

XBUS_CACHE_EN implement the external bus cache

XBUS_CACHE_NUM_BLOCKS number of blocks ("lines"), has to be a
power of two.

XBUS_CACHE_BLOCK_SIZE size in bytes of each block, has to be a
power of two.

CPU interrupts: none

Overview

The external bus interface provides a Wishbone b4-compatible on-chip bus interface that is
implemented if the XBUS_EN generic is true. This bus interface can be used to attach processor-
external modules like memories, custom hardware accelerators or additional peripheral devices.
An optional cache module ("XCACHE") can be enabled to improve memory access latency.



Address Mapping

The external interface is not mapped to a specific address space. Instead, all CPU
memory accesses that do not target a specific (and actually implemented)
processor-internal address region (hence, accessing the "void"; see section Address

The NEORV32 RISC-V Processor Visit on GitHub

58 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Space) are redirected to the external bus interface.


AXI4-Lite Interface Bridge

A simple bridge that converts the processor’s XBUS into an AXI4-lite-compatible
host interface can be found in in rtl/system_inegration (xbus2axi4lite_bridge.vhd).


AHB3-Lite Interface Bridge

A simple bridge that converts the processor’s XBUS into an AHB3-lite-compatible
host interface can be found in in rtl/system_inegration (xbus2ahblite_bridge.vhd).

Wishbone Bus Protocol

The external bus interface complies to the pipelined Wishbone b4 protocol. Even though this
protocol was explicitly designed to support pipelined transfers, only a single transfer will be "in fly"
at once. Hence, just two types of bus transactions are generated by the XBUS controller (see images
below).

Figure 4. XBUS/Wishbone Write Transaction

The NEORV32 RISC-V Processor Visit on GitHub

59 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Figure 5. XBUS/Wishbone Read Transaction



Wishbone "Classic" Protocol

Native support for the "classic" Wishbone protocol has been deprecated. However,
classic mode can still be emulated by connecting the processor’s xbus_cyc_o directly
to the device’s / bus system’s cyc and stb signals (omitting the processor’s
xbus_stb_o signal).



Atomic Memory Accesses

[_Atomic_Memory_Access] keep the cyc signal active to perform a back-to-back bus
access consisting of two stb strobes (one for the load/read operation and another
one for the store/write operation).


Endianness

Just like the processor itself the XBUS interface uses little-endian byte order.



Wishbone Specs.

A detailed description of the implemented Wishbone bus protocol and the
according interface signals can be found in the data sheet "Wishbone B4 -
WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP
Cores". A copy of this document can be found in the docs folder of this project.

An accessed XBUS/Wishbone device does not have to respond immediately to a bus request by
sending an ACK. Instead, there is a time window where the device has to acknowledge the transfer.
This time window is configured by the XBUS_TIMEOUT generic and it defines the maximum time (in
clock cycles) a bus access can be pending before it is automatically terminated raising an bus fault
exception. If XBUS_TIMEOUT is set to zero, the timeout is disabled and a bus access can take an
arbitrary number of cycles to complete. Note that this is not recommended as a missing ACK will
permanently stall the entire processor!

The NEORV32 RISC-V Processor Visit on GitHub

60 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Furthermore, an accesses XBUS/Wishbone device can signal an error condition at any time by
setting the ERR signal high for one cycle. This will also terminate the current bus transaction before
raising a CPU bus fault exception.



Register Stage

An optional register stage can be added to the XBUS gateway to break up the
critical path easing timing closure. When XBUS_REGSTAGE_EN is true all outgoing and
incoming XBUS signals are registered increasing access latency by two cycles.
Furthermore, all outgoing signals (like the address) will be kept stable if there is no
bus access being initiated.

Access Tag

The XBUS tag signal xbus_tag_o(0) provides additional information about the current access cycle.
It compatible to the the AXI4 ARPROT and AWPROT signals.

• xbus_tag_o(0) P: access is performed from privileged mode (machine-mode) when set

• xbus_tag_o(1) NS: this bit is hardwired to 0 indicating a secure access

• xbus_tag_o(2) I: access is an instruction fetch when set; access is a data access when cleared

External Bus Cache (XBUS-CACHE)

The XBUS interface provides an optional internal cache that can be used to buffer processor-
external accesses. The x-cache is enabled via the XBUS_CACHE_EN generic. The total size of the cache is
split into the number of cache lines or cache blocks (XBUS_CACHE_NUM_BLOCKS generic) and the line or
block size in bytes (XBUS_CACHE_BLOCK_SIZE generic).

Listing 6. Simplified X-Cache Architecture

 Direct Access +----------+
 /|------------------------->| Register |------------------------>|\
 | | +----------+ | |
Core --->| | | |--->
XBUS
 | | +--------------+ +--------------+ +-------------+ | |
 \|--->| Host Arbiter |--->| Cache Memory |<---| Bus Arbiter |--->|/
 +--------------+ +--------------+ +-------------+

The cache uses a direct-mapped architecture that implements "write-allocate" and "write-back"
strategies. The write-allocate strategy will fetch the entire referenced block from main memory
when encountering a cache write-miss. The write-back strategy will gather all writes locally inside
the cache until the according cache block is about to be replaced. In this case, the entire modified
cache block is written back to main memory.


Manual Cache Flush/Clear/Reload

By executing a fence or fence.i instruction the XBUS cache is flushed (local

The NEORV32 RISC-V Processor Visit on GitHub

61 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

modifications are send back to main memory), cleared (all cache entries are
invalidated) and a reloaded (fetching new data from main memory). See section
Cache Coherency for more information.



Cached/Uncached Accesses

The data cache provides direct accesses (= uncached) to memory in order to access
memory-mapped IO. All accesses that target the address range from 0xF0000000 to
0xFFFFFFFF will not be cached at all (see section Address Space). Direct/uncached
accesses have lower priority than cache block operations to allow continuous
burst transfer and also to maintain logical instruction forward progress / data
coherency. Furthermore, the atomic memory operations of the Zaamo ISA Extension
will always bypass the cache.

The NEORV32 RISC-V Processor Visit on GitHub

62 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.8. Stream Link Interface (SLINK)

Hardware source files: neorv32_slink.vhd

Software driver files: neorv32_slink.c Online software reference (Doxygen)

neorv32_slink.h Online software reference (Doxygen)

Top entity ports: slink_rx_dat_i RX link data (32-bit)

slink_rx_src_i RX routing information (4-bit)

slink_rx_val_i RX link data valid (1-bit)

slink_rx_lst_i RX link last element of stream (1-bit)

slink_rx_rdy_o RX link ready to receive (1-bit)

slink_tx_dat_o TX link data (32-bit)

slink_tx_dst_o TX routing information (4-bit)

slink_tx_val_o TX link data valid (1-bit)

slink_tx_lst_o TX link last element of stream (1-bit)

slink_tx_rdy_i TX link allowed to send (1-bit)

Configuration generics: IO_SLINK_EN implement SLINK when true

IO_SLINK_RX_FIFO RX FIFO depth (1..32k), has to be a
power of two, min 1

IO_SLINK_TX_FIFO TX FIFO depth (1..32k), has to be a
power of two, min 1

CPU interrupts: fast IRQ channel 14 RX SLINK IRQ (see Processor
Interrupts)

fast IRQ channel 15 TX SLINK IRQ (see Processor
Interrupts)

Overview

The stream link interface provides independent RX and TX channels for sending and receiving
stream data. Each channel features a configurable internal FIFO to buffer stream data
(IO_SLINK_RX_FIFO for the RX FIFO, IO_SLINK_TX_FIFO for the TX FIFO). The SLINK interface provides
higher bandwidth and less latency than the external bus interface making it ideally suited for
coupling custom stream processors or streaming peripherals.


Example Program

An example program for the SLINK module is available in sw/example/demo_slink.

Interface & Protocol

The SLINK interface consists of four signals for each channel:

The NEORV32 RISC-V Processor Visit on GitHub

63 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__slink_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__slink_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

• dat contains the actual data word

• val marks the current transmission cycle as valid

• lst marks the current transmission cycle as the last element of a stream

• rdy indicates that the receiver is ready to receive

• src and dst provide source/destination routing information (optional)



AXI4-Stream Compatibility

The interface names (except for src and dst) and the underlying protocol is
compatible to the AXI4-Stream protocol standard. A processor top entity with a
AXI4-Stream-compatible interfaces can be found in rtl/system_inegration. More
information regarding this alternate top entity can be found in in the user guide:
https://stnolting.github.io/neorv32/ug/#
_packaging_the_processor_as_vivado_ip_block

Theory of Operation

The SLINK provides four interface registers. The control register (CTRL) is used to configure the
module and to check its status. Two individual data registers (DATA and DATA_LAST) are used to send
and receive the link’s actual data stream.

The DATA register provides direct access to the RX/TX FIFO buffers. Read accesses return data from
the RX FIFO. After reading data from this register the control register’s SLINK_CTRL_RX_LAST flag can
be checked to determine if the according data word has been marked as "end of stream" via the
slink_rx_lst_i signal (this signal is also buffered by the link’s FIFO). Writing to the DATA register will
immediately write to the TX link FIFO. When writing to the TX_DATA_LAST the according data word
will also be marked as "end of stream" via the slink_tx_lst_o signal (this signal is also buffered by
the link’s FIFO).

The configured FIFO sizes can be retrieved by software via the control register’s
SLINK_CTRL_RX_FIFO_* and SLINK_CTRL_TX_FIFO_* bits.

The SLINK is globally activated by setting the control register’s enable bit SLINK_CTRL_EN. Clearing
this bit will reset all internal logic and will also clear both FIFOs. The FIFOs can also be cleared
manually at any time by setting the SLINK_CTRL_RX_CLR and/or SLINK_CTRL_TX_CLR bits (these bits will
auto-clear).



FIFO Overflow

Writing to the TX channel’s FIFO while it is full will have no effect. Reading from
the RX channel’s FIFO while it is empty will also have no effect and will return the
last received data word. There is no overflow indicator implemented yet.

The current status of the RX and TX FIFOs can be determined via the control register’s
SLINK_CTRL_RX_* and SLINK_CTRL_TX_* flags.

Stream Routing Information

The NEORV32 RISC-V Processor Visit on GitHub

64 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/ug/#_packaging_the_processor_as_vivado_ip_block
https://stnolting.github.io/neorv32/ug/#_packaging_the_processor_as_vivado_ip_block
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Both stream link interface provide an optional port for routing information: slink_tx_dst_o (AXI
stream’s TDEST) can be used to set a destination address when using a switch/interconnect to access
several stream sinks. slink_rx_src_i (AXI stream’s TID) can be used to determine the source when
several sources can send data via a switch/interconnect. The routing information can be set/read
via the ROUTE interface registers. Note that all routing information is also fully buffered by the
internal RX/TX FIFOs. RX routing information has to be read after reading the according RX data.
Vice versa, TX routing information has to be set before writing the according TX data.

Interrupts

The SLINK module provides two independent interrupt channels: one for RX events and one for TX
events. The interrupt conditions are based on the according link’s FIFO status flags and are
configured via the control register’s SLINK_CTRL_IRQ_* flags. The according interrupt will fire when
the module is enabled (SLINK_CTRL_EN) and the selected interrupt conditions are met. Note that all
enabled interrupt conditions are logically OR-ed per channel. If any enable interrupt conditions
becomes active the interrupt will become pending until the interrupt-causing condition is resolved
(e.g. by reading from the RX FIFO).

Register Map

Table 10. SLINK register map (struct NEORV32_SLINK)

The NEORV32 RISC-V Processor Visit on GitHub

65 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address Name [C] Bit(s) R/W Function

0xffec0000 CTRL 0 SLINK_CTRL_EN r/w SLINK global enable

1 SLINK_CTRL_RX_CLR -/w Clear RX FIFO when set (bit
auto-clears)

2 SLINK_CTRL_TX_CLR -/w Clear TX FIFO when set (bit
auto-clears)

3 reserved r/- reserved, read as zero

4 SLINK_CTRL_RX_LAST r/- Last word read from RX_DATA
is marked as "end of stream"

7:5 reserved r/- reserved, read as zero

8 SLINK_CTRL_RX_EMPTY r/- RX FIFO empty

9 SLINK_CTRL_RX_HALF r/- RX FIFO at least half full

10 SLINK_CTRL_RX_FULL r/- RX FIFO full

11 SLINK_CTRL_TX_EMPTY r/- TX FIFO empty

12 SLINK_CTRL_TX_HALF r/- TX FIFO at least half full

13 SLINK_CTRL_TX_FULL r/- TX FIFO full

15:14 reserved r/- reserved, read as zero

16 SLINK_CTRL_IRQ_RX_NEMPTY r/w RX interrupt if RX FIFO not
empty

17 SLINK_CTRL_IRQ_RX_HALF r/w RX interrupt if RX FIFO at
least half full

18 SLINK_CTRL_IRQ_RX_FULL r/w RX interrupt if RX FIFO full

19 SLINK_CTRL_IRQ_TX_EMPTY r/w TX interrupt if TX FIFO
empty

20 SLINK_CTRL_IRQ_TX_NHALF r/w TX interrupt if TX FIFO not at
least half full

21 SLINK_CTRL_IRQ_TX_NFULL r/w TX interrupt if TX FIFO not
full

23:22 reserved r/- reserved, read as zero

27:24 SLINK_CTRL_RX_FIFO_MSB
: SLINK_CTRL_RX_FIFO_LSB

r/- log2(RX FIFO size)

31:28 SLINK_CTRL_TX_FIFO_MSB
: SLINK_CTRL_TX_FIFO_LSB

r/- log2(TX FIFO size)

The NEORV32 RISC-V Processor Visit on GitHub

66 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address Name [C] Bit(s) R/W Function

0xffec0004 ROUTE 3:0 r/w TX destination routing
information (slink_tx_dst_o)

7:4 r/- RX source routing
information (slink_rx_src_i)

31:8 -/- reserved

0xffec0008 DATA 31:0 r/w Write data to TX FIFO; read
data from RX FIFO

0xffec000c DATA_LAST 31:0 r/w Write data to TX FIFO (and
also set "last" signal); read
data from RX FIFO

The NEORV32 RISC-V Processor Visit on GitHub

67 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.9. General Purpose Input and Output Port (GPIO)

Hardware source files: neorv32_gpio.vhd

Software driver files: neorv32_gpio.c Online software reference (Doxygen)

neorv32_gpio.h Online software reference (Doxygen)

Top entity ports: gpio_o 32-bit parallel output port

gpio_i 32-bit parallel input port

Configuration generics: IO_GPIO_NUM number of input/output pairs to
implement (0..32)

CPU interrupts: fast IRQ channel 8 GPIO (see Processor Interrupts)

Overview

The general purpose IO unit provides simple uni-directional input and output port. These ports can
be used chip-externally (for example to drive status LEDs, connect buttons, etc.) or chip-internally
to provide control signals for other IP modules. The input port features programmable pin-
individual level or edge interrupts capabilities.

Data written to the PORT_OUT will appear on the processor’s gpio_o port. Vice versa, the PORT_IN
register represents the current state of the processor’s gpio_i.

The actual number of input/output pairs is defined by the IO_GPIO_NUM generic. When set to zero, the
GPIO module is excluded from synthesis and the output port gpio_o is tied to all-zero. If IO_GPIO_NUM
is less than the maximum value of 32, only the LSB-aligned bits in gpio_o and gpio_i are actually
connected while the remaining bits are tied to zero or are left unconnected, respectively. This also
applies to all memory-mapped interface registers of the GPIO module (i.e. the according most-
significant bits are hardwired to zero).

Input Pin Interrupts

Each input pin (gpio_i) provides an individual programmable interrupt trigger. The actual
interrupt trigger type can be configured individually for each input pin using the IRQ_TYPE and
IRQ_POLARITY registers. IRQ_TYPE defines the actual trigger type (level-triggered or edge-triggered),
while IRQ_POLARITY defines the trigger’s polarity (low-level/falling-edge or high-level/rising-edge).
The position of each bit in these registers corresponds the according gpio_i input pin.

Each pin interrupt channel can be enabled or disabled individually using the IRQ_ENABLE register.
Each bit in this register corresponds to the according input pin. If the programmed trigger of a
disabled input (IRQ_ENABLE(i) = 0) fires, the interrupt request is entirely ignored.

Table 11. GPIO Trigger Configuration for Pin i

IRQ_ENABLE(i) IRQ_TYPE(i) IRQ_POLARITY(i) Resulting trigger of gpio_i(i)

1 0 0 low-level (GPIO_TRIG_LEVEL_LOW)

1 0 1 high-level (GPIO_TRIG_LEVEL_HIGH)

The NEORV32 RISC-V Processor Visit on GitHub

68 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__gpio_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__gpio_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

IRQ_ENABLE(i) IRQ_TYPE(i) IRQ_POLARITY(i) Resulting trigger of gpio_i(i)

1 1 0 falling-edge (GPIO_TRIG_EDGE_FALLING)

1 1 1 rising-edge (GPIO_TRIG_EDGE_RISING)

0 - - interrupt disabled

If the configured trigger of an enabled input pin (IRQ_ENABLE(i) = 1) fires, the according interrupt
request is buffered internally in the IRQ_PENDING register. When this register contains a non-zero
value (i.e. any bit becomes set) an interrupt request is sent to the CPU via FIRQ channel 8 (see
Processor Interrupts).

The CPU can determine the interrupt-triggering pins by reading the IRQ_PENDING register. Each set
bit in this register indicates that the according input pin’s interrupt trigger has fired. Then, the CPU
can clear those pending interrupt pin by setting all set bits to zero.


GPIO Interrupts Demo Program

A demo program for the GPIO input interrupts can be found in
sw/example/demo_gpio.

Register Map

Table 12. GPIO unit register map (struct NEORV32_GPIO)

Address Name [C] Bit(s) R/W Function

0xfffc0000 PORT_IN 31:0 r/- Parallel input port; PORT_IN(i) corresponds to
gpio_i(i)

0xfffc0004 PORT_OUT 31:0 r/w Parallel output port; PORT_OUT(i) corresponds to
gpio_o(i)

0xfffc0008 - 31:0 r/- reserved, read as zero

0xfffc000c - 31:0 r/- reserved, read as zero

0xfffc0010 IRQ_TYPE 31:0 r/w Trigger type select (0 = level trigger, 1 = edge
trigger); IRQ_TYPE(i) corresponds to gpio_i(i)

0xfffc0014 IRQ_POLARITY 31:0 r/w Trigger polarity select (0 = low-level/falling-edge,
1 = high-level/rising-edge); IRQ_POLARITY(i)
corresponds to gpio_i(i)

0xfffc0018 IRQ_ENABLE 31:0 r/w Per-pin interrupt enable; IRQ_ENABLE(i)
corresponds to gpio_i(i)

0xfffc001c IRQ_PENDING 31:0 r/c Per-pin interrupt pending, can be cleared by
writing zero to the according bit(s);
IRQ_PENDING(i) corresponds to gpio_i(i)

The NEORV32 RISC-V Processor Visit on GitHub

69 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.10. Cyclic Redundancy Check (CRC)

Hardware source files: neorv32_crc.vhd

Software driver files: neorv32_crc.c Online software reference (Doxygen)

neorv32_crc.h Online software reference (Doxygen)

Top entity ports: none

Configuration generics: IO_CRC_EN implement CRC module when true

CPU interrupts: none

Overview

The cyclic redundancy check unit provides a programmable checksum computation module. The
unit operates on single bytes and can either compute CRC8, CRC16 or CRC32 checksums based on an
arbitrary polynomial and start value.


CRC Demo Program

A CRC example program (also using CPU-independent DMA transfers) can be found
in sw/example/crc_dma.


CPU-Independent Operation

The CRC unit can compute a checksum for an arbitrary memory array without any
CPU overhead by using the processor’s Direct Memory Access Controller (DMA).

Theory of Operation

The module provides four interface registers:

• MODE: selects either CRC8-, CRC16- or CRC32-mode

• POLY: programmable polynomial

• DATA: data input register (single bytes only)

• SREG: the CRC shift register; this register is used to define the start value and to obtain the final
processing result

The MODE, POLY and SREG registers need to be programmed before the actual processing can be
started. Writing a byte to DATA will update the current checksum in SREG.



Access Latency

Write access to the CRC module have an increased latency of 8 clock cycles. This
additional latency ensures that the internal bit-serial processing of the current
data byte has also been completed when the transfer is completed.


Data Size

The NEORV32 RISC-V Processor Visit on GitHub

70 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__crc_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__crc_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

For CRC8-mode only bits 7:0 of POLY and SREG are relevant; for CRC16-mode only
bits 15:0 are used and for CRC32-mode the entire 32-bit of POLY and SREG are used.

Register Map

Table 13. CRC Register Map (struct NEORV32_CRC)

Address Nam
e [C]

Bit(s), Name [C] R/W Function

0xffee0000 CTRL 1:0 r/w CRC mode select (00 CRC8, 01: CRC16, 10:
CRC32)

31:2 r/- reserved, read as zero

0xffee0004 POLY 31:0 r/w CRC polynomial

0xffee0008 DATA 7:0 r/w data input (single byte)

31:8 r/- reserved, read as zero, writes are ignored

0xffee000c SREG 32:0 r/w current CRC shift register value (set start
value on write)

The NEORV32 RISC-V Processor Visit on GitHub

71 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.11. Watchdog Timer (WDT)

Hardware source files: neorv32_wdt.vhd

Software driver files: neorv32_wdt.c Online software reference (Doxygen)

neorv32_wdt.h Online software reference (Doxygen)

Top entity ports: rstn_wdt_o synchronous watchdog reset output,
low-active

Configuration generics: IO_WDT_EN implement watchdog when true

CPU interrupts: none

Overview

The watchdog (WDT) provides a last resort for safety-critical applications. When a pre-programmed
timeout value is reached a system-wide hardware reset is generated. The internal counter has to be
reset explicitly by the application program every now and then to prevent a timeout.

Theory of Operation

The watchdog is enabled by setting the control register’s WDT_CTRL_EN bit. When this bit is cleared,
the internal timeout counter is reset to zero and no system reset can be triggered by this module.

The internal 32-bit timeout counter is clocked at 1/4096th of the processor’s main clock (fWDT[Hz] =
fmain[Hz] / 4096). Whenever this counter reaches the programmed timeout value (WDT_CTRL_TIMEOUT
bits in the control register) a hardware reset is triggered.

The watchdog’s timeout counter is reset ("feeding the watchdog") by writing the reset PASSWORD
to the RESET register. The password is hardwired to hexadecimal 0x709D1AB3.



Watchdog Operation during Debugging

By default, the watchdog stops operation when the CPU enters debug mode and
will resume normal operation after the CPU has left debug mode again. This will
prevent an unintended watchdog timeout during a debug session. However, the
watchdog can also be configured to keep operating even when the CPU is in debug
mode by setting the control register’s WDT_CTRL_DBEN bit.



Watchdog Operation during CPU Sleep

By default, the watchdog stops operating when the CPU enters sleep mode.
However, the watchdog can also be configured to keep operating even when the
CPU is in sleep mode by setting the control register’s WDT_CTRL_SEN bit.

Configuration Lock

The watchdog control register can be locked to protect the current configuration from being
modified. The lock is activated by setting the WDT_CTRL_LOCK bit. In the locked state any write access
to the control register is entirely ignored (see table below, "writable if locked"). However, read

The NEORV32 RISC-V Processor Visit on GitHub

72 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__wdt_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__wdt_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

accesses to the control register as well as watchdog resets are further possible.

The lock bit can only be set if the WDT is already enabled (WDT_CTRL_EN is set). Furthermore, the lock
bit can only be cleared again by a system-wide hardware reset.

Strict Mode

The strict operation mode provides additional safety functions. If the strict mode is enabled by the
WDT_CTRL_STRICT control register bit an immediate hardware reset if enforced if

• the RESET register is written with an incorrect password or

• the CTRL register is written and the WDT_CTRL_LOCK bit is set.

Cause of last Hardware Reset

The cause of the last system hardware reset can be determined via the WDT_CTRL_RCAUSE_* bits:

• WDT_RCAUSE_EXT (0b00): Reset caused by external reset signal/pin

• WDT_RCAUSE_OCD (0b01): Reset caused by on-chip debugger

• WDT_RCAUSE_TMO (0b10): Reset caused by watchdog timeout

• WDT_RCAUSE_ACC (0b11): Reset caused by illegal watchdog access (strict mode)

External Reset Output

The WDT provides a dedicated output (Processor Top Entity - Signals: rstn_wdt_o) to reset processor-
external modules when the watchdog times out. This signal is low-active and synchronous to the
processor clock. It is available if the watchdog is implemented; otherwise it is hardwired to 1. Note
that the signal also becomes active (low) when the processor’s main reset signal is active (even if
the watchdog is deactivated or disabled for synthesis).

Register Map

Table 14. WDT register map (struct NEORV32_WDT)

The NEORV32 RISC-V Processor Visit on GitHub

73 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address Nam
e [C]

Bit(s), Name [C] R/W Rese
t

valu
e

Writable if
locked

Function

0xfffb0000 CTRL 0 WDT_CTRL_EN r/w 0 no watchdog enable

1 WDT_CTRL_LOCK r/w 0 no lock configuration when
set, clears only on system
reset, can only be set if
enable bit is set already

2 WDT_CTRL_DBEN r/w 0 no set to allow WDT to
continue operation even
when CPU is in debug
mode

3 WDT_CTRL_SEN r/w 0 no set to allow WDT to
continue operation even
when CPU is in sleep
mode

4 WDT_CTRL_STRICT r/w 0 no set to enable strict mode
(force hardware reset if
reset password is
incorrect or if write
access to locked CTRL
register)

6:5 WDT_CTRL_RCAUSE_HI :
WDT_CTRL_RCAUSE_LO

r/- 0 - cause of last system
reset; 0=external reset,
1=ocd-reset, 2=watchdog
reset

7 - r/- - - reserved, reads as zero

31:8
WDT_CTRL_TIMEOUT_MSB :
WDT_CTRL_TIMEOUT_LSB

r/w 0 no 24-bit watchdog timeout
value

0xfffb0004 RESET 31:0 -/w - yes Write PASSWORD to
reset WDT timeout
counter

The NEORV32 RISC-V Processor Visit on GitHub

74 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.12. Core Local Interruptor (CLINT)

Hardware source files: neorv32_clint.vhd

Software driver files: neorv32_clint.c Online software reference (Doxygen)

neorv32_clint.h Online software reference (Doxygen)

Top entity ports: mtime_irq_i RISC-V machine timer IRQ if CLINT is
not implemented

msw_irq_i RISC-V software IRQ if CLINT is not
implemented

mtime_time_o Current system time (from CLINT’s
MTIMER)

Configuration generics: IO_CLINT_EN implement core local interruptor
when true

CPU interrupts: MTI machine timer interrupt (see
Processor Interrupts)

MSI machine software interrupt (see
Processor Interrupts)

Overview

The core local interruptor provides machine-level timer and software interrupts for a set of CPU
cores (also called harts). It is compatible to the original SiFive® CLINT specifications and it is also
backwards-compatible to the upcoming RISC-V _Advanced Core Local Interruptor (ACLINT)
specifications. In terms of the ACLINT spec the NEORV32 CLINT implements three devices that are
placed next to each other in the address space: an MTIMER and an MSWI device.

The CLINT can support up to 4095 harts. However, the NEORV32 CLINT is configured for a single
hart only (yet). Hence, only the according registers are implemented while the remaining ones are
hardwired to zero.

MTIMER Device

The MTIMER device provides a global 64-bit machine timer (NEORV32_CLINT→MTIME) that increments
with every main processor clock tick. Upon reset the timer is reset to all zero. Each hart provides an
individual 64-bit timer-compare register (NEORV32_CLINT→MTIMECMP[0] for hart 0). Whenever MTIMECMP
>= MTIME the according machine timer interrupt is pending.

MSIW Device

The MSIV provides software interrupts for each hart via hart-individual memory-mapped registers
(NEORV32_CLINT→MSWI[0] for hart 0). Setting bit 0 of this register will bring the machine software
interrupt into pending state.

 External Machine Timer and Software Interrupts

The NEORV32 RISC-V Processor Visit on GitHub

75 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__clint_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__clint_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

If the NEORV32 CLINT module is disabled (IO_CLINT_EN = false) the core’s machine
timer interrupt and machine software interrupt become available as processor-
external signals (mtime_irq_i and msw_irq_i, respectively).

Register Map

Table 15. CLINT register map (struct NEORV32_CLINT)

Address Name [C] Bits R/W Function

0xfff40000 MSWI[0] 0 r/w trigger machine software interrupt for
hart 0 when set

31:1 r/- hardwired to zero

0xfff40004 MSWI[1] 0 r/w trigger machine software interrupt for
hart 1 when set

31:1 r/- hardwired to zero

0xfff44000 MTIMECMP[0] 63:0 r/w 64-bit time compare for hart 0

0xfff44008 MTIMECMP[1] 63:0 r/w 64-bit time compare for hart 1

0xfff4bff8 MTIME 63:0 r/w 64-bit global machine timer

The NEORV32 RISC-V Processor Visit on GitHub

76 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.13. Primary Universal Asynchronous Receiver and Transmitter (UART0)

Hardware source files: neorv32_uart.vhd

Software driver files: neorv32_uart.c Online software reference (Doxygen)

neorv32_uart.h Online software reference (Doxygen)

Top entity ports: uart0_txd_o serial transmitter output

uart0_rxd_i serial receiver input

uart0_rts_o flow control: RX ready to receive, low-
active

uart0_cts_i flow control: RX ready to receive, low-
active

Configuration generics: IO_UART0_EN implement UART0 when true

UART0_RX_FIFO RX FIFO depth (power of 2, min 1)

UART0_TX_FIFO TX FIFO depth (power of 2, min 1)

CPU interrupts: fast IRQ channel 2 RX interrupt

fast IRQ channel 3 TX interrupt (see Processor Interrupts)

Overview

The NEORV32 UART provides a standard serial interface with independent transmitter and receiver
channels, each equipped with a configurable FIFO. The transmission frame is fixed to 8N1: 8 data
bits, no parity bit, 1 stop bit. The actual transmission rate (Baud rate) is programmable via software.
The module features two memory-mapped registers: CTRL and DATA. These are used for
configuration, status check and data transfer.



Standard Console

All default example programs and software libraries of the NEORV32 software
framework (including the bootloader and the runtime environment) use the
primary UART (UART0) as default user console interface. Furthermore, UART0 is
used to implement the "standard consoles" (STDIN, STDOUT and STDERR).

RX and TX FIFOs

The UART provides individual data FIFOs for RX and TX to allow data transmission without CPU
intervention. The sizes of these FIFOs can be configured via the according configuration generics
(UART0_RX_FIFO and UART0_TX_FIFO). Both FIFOs a re automatically cleared when disabling the
module via the UART_CTRL_EN flag. However, the FIFOs can also be cleared individually by setting the
UART_CTRL_RX_CLR / UART_CTRL_TX_CLR flags.

Theory of Operation

The module is enabled by setting the UART_CTRL_EN bit in the UART0 control register CTRL. The Baud

The NEORV32 RISC-V Processor Visit on GitHub

77 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__uart_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__uart_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

rate is configured via a 10-bit UART_CTRL_BAUDx baud divisor (baud_div) and a 3-bit UART_CTRL_PRSCx
clock prescaler (clock_prescaler).

Table 16. UART0 Clock Configuration

UART_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

Baud rate = (fmain[Hz] / clock_prescaler) / (baud_div + 1)

The control register’s UART_CTRL_RX_* and UART_CTRL_TX_* flags provide information about the RX
and TX FIFO fill level. Disabling the module via the UART_CTRL_EN bit will also clear these FIFOs.

A new TX transmission is started by writing to the DATA register. The transfer is completed when the
UART_CTRL_TX_BUSY control register flag returns to zero. RX data is available when the
UART_CTRL_RX_NEMPTY flag becomes set. The UART_CTRL_RX_OVER will be set if the RX FIFO overflows.
This flag is cleared only by disabling the module via UART_CTRL_EN.

UART Interrupts

The UART module provides independent interrupt channels for RX and TX. These interrupts are
triggered by certain RX and TX FIFO levels. The actual configuration is programmed independently
for the RX and TX interrupt channel via the control register’s UART_CTRL_IRQ_RX_* and
UART_CTRL_IRQ_TX_* bits:

1. RX IRQ The RX interrupt can be triggered by three different RX FIFO level states: If
UART_CTRL_IRQ_RX_NEMPTY is set the interrupt fires if the RX FIFO is not empty (e.g. when incoming
data is available). If UART_CTRL_IRQ_RX_HALF is set the RX IRQ fires if the RX FIFO is at least half-
full. If UART_CTRL_IRQ_RX_FULL the interrupt fires if the RX FIFO is full. Note that all these
programmable conditions are logically OR-ed (interrupt fires if any enabled conditions is true).

2. TX IRQ The TX interrupt can be triggered by two different TX FIFO level states: If
UART_CTRL_IRQ_TX_EMPTY is set the interrupt fires if the TX FIFO is empty. If
UART_CTRL_IRQ_TX_NHALF is set the interrupt fires if the TX FIFO is not at least half full. Note that
all these programmable conditions are logically OR-ed (interrupt fires if any enabled conditions
is true).

Once an UART interrupt has fired it remains pending until the actual cause of the interrupt is
resolved; for example if just the UART_CTRL_IRQ_RX_NEMPTY bit is set, the RX interrupt will keep firing
until the RX FIFO is empty again.


RX/TX FIFO Size

Software can retrieve the configured sizes of the RX and TX FIFO via the according
UART_DATA_RX_FIFO_SIZE and UART_DATA_TX_FIFO_SIZE bits from the DATA register.

RTS/CTS Hardware Flow Control

The NEORV32 UART supports optional hardware flow control using the standard CTS uart0_cts_i
("clear to send") and RTS uart0_rts_o ("ready to send" / "ready to receive (RTR)") signals. Both

The NEORV32 RISC-V Processor Visit on GitHub

78 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

signals are low-active. Hardware flow control is enabled by setting the UART_CTRL_HWFC_EN bit in the
modules control register CTRL.

When hardware flow control is enabled:

1. The UART’s transmitter will not start a new transmission until the uart0_cts_i signal goes low.
During this time, the UART busy flag UART_CTRL_TX_BUSY remains set.

2. The UART will set uart0_rts_o signal low if the RX FIFO is less than half full (to have a wide
safety margin). As long as this signal is low, the connected device can send new data.
uart0_rts_o is always low if the hardware flow-control is disabled. Disabling the UART (setting
UART_CTRL_EN low) while having hardware flow-control enabled, will set uart0_rts_o high to
signal that the UARt is not capable of receiving new data.


Note that RTS and CTS signaling can only be activated together. If the RTS
handshake is not required the signal can be left unconnected. If the CTS handshake
is not required it has to be tied to zero.

Simulation Mode

The UART provides a simulation-only mode to dump console data as well as raw data directly to a
file. When the simulation mode is enabled (by setting the UART_CTRL_SIM_MODE bit) there will be no
physical transaction on the uart0_txd_o signal. Instead, all data written to the DATA register is
immediately dumped to a file. Data written to DATA[7:0] will be dumped as ASCII chars to a file
named neorv32.uart0_sim_mode.out. Additionally, the ASCII data is printed to the simulator console.

Both file are created in the simulation’s home folder.

Register Map

Table 17. UART0 register map (struct NEORV32_UART0)

The NEORV32 RISC-V Processor Visit on GitHub

79 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/W Function

0xfff50000 CTRL 0 UART_CTRL_EN r/w UART enable

1 UART_CTRL_SIM_MODE r/w enable simulation mode

2 UART_CTRL_HWFC_EN r/w enable RTS/CTS hardware
flow-control

5:3 UART_CTRL_PRSC2 :
UART_CTRL_PRSC0

r/w Baud rate clock prescaler
select

15:6 UART_CTRL_BAUD9 :
UART_CTRL_BAUD0

r/w 12-bit Baud value
configuration value

16 UART_CTRL_RX_NEMPTY r/- RX FIFO not empty

17 UART_CTRL_RX_HALF r/- RX FIFO at least half-full

18 UART_CTRL_RX_FULL r/- RX FIFO full

19 UART_CTRL_TX_EMPTY r/- TX FIFO empty

20 UART_CTRL_TX_NHALF r/- TX FIFO not at least half-
full

21 UART_CTRL_TX_FULL r/- TX FIFO full

22
UART_CTRL_IRQ_RX_NEMPTY

r/w fire IRQ if RX FIFO not
empty

23 UART_CTRL_IRQ_RX_HALF r/w fire IRQ if RX FIFO at least
half-full

24 UART_CTRL_IRQ_RX_FULL r/w fire IRQ if RX FIFO full

25 UART_CTRL_IRQ_TX_EMPTY r/w fire IRQ if TX FIFO empty

26 UART_CTRL_IRQ_TX_NHALF r/w fire IRQ if TX not at least
half full

27 - r/- reserved read as zero

28 UART_CTRL_RX_CLR r/w Clear RX FIFO, flag auto-
clears

29 UART_CTRL_TX_CLR r/w Clear TX FIFO, flag auto-
clears

30 UART_CTRL_RX_OVER r/- RX FIFO overflow; cleared
by disabling the module

31 UART_CTRL_TX_BUSY r/- TX busy or TX FIFO not
empty

The NEORV32 RISC-V Processor Visit on GitHub

80 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address Name [C] Bit(s), Name [C] R/W Function

0xfff50004 DATA 7:0 UART_DATA_RTX_MSB :
UART_DATA_RTX_LSB

r/w receive/transmit data

11:8
UART_DATA_RX_FIFO_SIZE_MS
B :
UART_DATA_RX_FIFO_SIZE_LS
B

r/- log2(RX FIFO size)

15:12
UART_DATA_TX_FIFO_SIZE_MS
B :
UART_DATA_TX_FIFO_SIZE_LS
B

r/- log2(TX FIFO size)

31:16 r/- reserved, read as zero

The NEORV32 RISC-V Processor Visit on GitHub

81 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.14. Secondary Universal Asynchronous Receiver and Transmitter
(UART1)

Hardware source files: neorv32_uart.vhd

Software driver files: neorv32_uart.c

neorv32_uart.h

Top entity ports: uart1_txd_o serial transmitter output

uart1_rxd_i serial receiver input

uart1_rts_o flow control: RX ready to receive, low-
active

uart1_cts_i flow control: RX ready to receive, low-
active

Configuration generics: IO_UART1_EN implement UART1 when true

UART1_RX_FIFO RX FIFO depth (power of 2, min 1)

UART1_TX_FIFO TX FIFO depth (power of 2, min 1)

CPU interrupts: fast IRQ channel 4 RX interrupt

fast IRQ channel 5 TX interrupt (see Processor Interrupts)

Access restrictions: privileged access only, non-32-bit write accesses are ignored

Overview

The secondary UART (UART1) is functionally identical to the primary UART (Primary Universal
Asynchronous Receiver and Transmitter (UART0)). Obviously, UART1 uses different addresses for
the control register (CTRL) and the data register (DATA). The register’s bits/flags use the same bit
positions and naming as for the primary UART. The RX and TX interrupts of UART1 are mapped to
different CPU fast interrupt (FIRQ) channels.

Simulation Mode

The secondary UART (UART1) provides the same simulation options as the primary UART (UART0).
However, output data is written to UART1-specific file neorv32.uart1_sim_mode.out. This data is also
printed to the simulator console.

Register Map

Table 18. UART1 register map (struct NEORV32_UART1)

Address Name [C] Bit(s), Name
[C]

R/W Function

0xfff60000 CTRL … … Same as UART0

0xfff60004 DATA … … Same as UART0

The NEORV32 RISC-V Processor Visit on GitHub

82 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.15. Serial Peripheral Interface Controller (SPI)

Hardware source files: neorv32_spi.vhd

Software driver files: neorv32_spi.c Online software reference (Doxygen)

neorv32_spi.h Online software reference (Doxygen)

Top entity ports: spi_clk_o 1-bit serial clock output

spi_dat_o 1-bit serial data output

spi_dat_i 1-bit serial data input

spi_csn_o 8-bit dedicated chip select output (low-
active)

Configuration generics: IO_SPI_EN implement SPI controller when true

IO_SPI_FIFO FIFO depth, has to be a power of two,
min 1

CPU interrupts: fast IRQ channel 6 configurable SPI interrupt (see
Processor Interrupts)

Overview

The NEORV32 SPI module is a host transceiver. Hence, it is responsible for generating transmission.
The module operates on a byte.wide data granularity, supports all 4 standard clock modes, a fine-
tunable SPI clock generator and provides up to 8 dedicated chip select signals via the top entity’s
spi_csn_o signal. An optional receive/transmit ring-buffer/FIFO can be configured via the
IO_SPI_FIFO generic to support block-based transmissions without CPU interaction.



Host-Mode Only

The NEORV32 SPI module only supports host mode. Transmission are initiated only
by the processor’s SPI module and not by an external SPI module. If you are
looking for a device-mode serial peripheral interface (transactions initiated by an
external host) check out the Serial Data Interface Controller (SDI).

The SPI module provides a single control register CTRL to configure the module and to check it’s
status and a single data register DATA for receiving/transmitting data.

Theory of Operation

The SPI module is enabled by setting the SPI_CTRL_EN bit in the CTRL control register. No transfer can
be initiated and no interrupt request will be triggered if this bit is cleared. Clearing this bit will
reset the entire module, clear the FIFO and terminate any transfer being in process.

The actual SPI transfer (receiving one byte while sending one byte) as well as control of the chip-
select lines is handled via the module’s DATA register. Note that this register will access the TX FIFO
of the ring-buffer when writing and will access the RX FIFO of the ring-buffer when reading.

The NEORV32 RISC-V Processor Visit on GitHub

83 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__spi_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__spi_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

The most significant bit of the DATA register (SPI_DATA_CMD) is used to select the purpose of the data
being written. When the SPI_DATA_CMD is cleared, the lowest 8-bit represent the actual SPI TX data.
This data will be transmitted by the SPI bus engine. After completion, the received data is stored to
the RX FIFO.

If SPI_DATA_CMD is cleared, the lowest 4-bit control the chip-select lines. In this case, bis 2:0 select one
of the eight chip-select lines. The selected line will become enabled when bit 3 is also set. If bit 3 is
cleared, all chip-select lines will be disabled.

Examples:

• Enable chip-select line 3: NEORV32_SPI→DATA = (1 << SPI_DATA_CMD) | (1 << 3) | 3;

• Enable chip-select line 7: NEORV32_SPI→DATA = (1 << SPI_DATA_CMD) | (1 << 3) | 7;

• Disable all chip-select lines: NEORV32_SPI→DATA = (1 << SPI_DATA_CMD) | (0 << 3);

• Send data byte 0xAB: NEORV32_SPI→DATA = (0 << SPI_DATA_CMD) | 0xAB;

Since all SPI operations are controlled via the FIFO, entire SPI sequences (chip-enable, data
transmissions, chip-disable) can be "programmed". Thus, SPI operations can be executed without
any CPU interaction at all.

Application software can check if any chip-select is enabled by reading the control register’s
SPI_CS_ACTIVE flag.

SPI Clock Configuration

The SPI module supports all standard SPI clock modes (0, 1, 2, 3), which are configured via the two
control register bits SPI_CTRL_CPHA and SPI_CTRL_CPOL. The SPI_CTRL_CPHA bit defines the clock phase
and the SPI_CTRL_CPOL bit defines the clock polarity.

The NEORV32 RISC-V Processor Visit on GitHub

84 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Figure 6. SPI clock modes; image from https://en.wikipedia.org/wiki/File:SPI_timing_diagram2.svg (license:
(Wikimedia) Creative Commons Attribution-Share Alike 3.0 Unported)

The SPI clock frequency (spi_clk_o) is programmed by the 3-bit SPI_CTRL_PRSCx clock prescaler for a
coarse clock selection and a 4-bit clock divider SPI_CTRL_CDIVx for a fine clock configuration. The
following clock prescalers (SPI_CTRL_PRSCx) are available:

Table 19. SPI prescaler configuration

SPI_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

Based on the programmed clock configuration, the actual SPI clock frequency fSPI is derived from
the processor’s main clock fmain according to the following equation:

fSPI = fmain[Hz] / (2 * clock_prescaler * (1 + SPI_CTRL_CDIVx))

Hence, the maximum SPI clock is fmain / 4 and the lowest SPI clock is fmain / 131072. The SPI clock is
always symmetric having a duty cycle of exactly 50%.

High-Speed Mode

The SPI provides a high-speed mode to further boost the maximum SPI clock frequency. When
enabled via the control register’s SPI_CTRL_HIGHSPEED bit the clock prescaler configuration
(SPI_CTRL_PRSCx bits) is overridden setting it to a minimal factor of 1. However, the clock speed can
still be fine-tuned using the SPI_CTRL_CDIVx bits.

fSPI = fmain[Hz] / (2 * 1 * (1 + SPI_CTRL_CDIVx))

Hence, the maximum SPI clock is fmain / 2 when in high-speed mode.

The NEORV32 RISC-V Processor Visit on GitHub

85 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://en.wikipedia.org/wiki/File:SPI_timing_diagram2.svg
https://en.wikipedia.org/wiki/Creative_Commons
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

SPI Interrupt

The SPI module provides a set of programmable interrupt conditions based on the level of the
RX/TX FIFO. The different interrupt sources are enabled by setting the according control register’s
SPI_CTRL_IRQ_* bits. All enabled interrupt conditions are logically OR-ed, so any enabled interrupt
source will trigger the module’s interrupt signal.

Once the SPI interrupt has fired it remains pending until the actual cause of the interrupt is
resolved; for example if just the SPI_CTRL_IRQ_RX_AVAIL bit is set, the interrupt will keep firing until
the RX FIFO is empty again.

Register Map

Table 20. SPI register map (struct NEORV32_SPI)

The NEORV32 RISC-V Processor Visit on GitHub

86 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address Nam
e [C]

Bit(s), Name [C] R/W Function

0xfff80000 CTRL 0 SPI_CTRL_EN r/w SPI module enable

1 SPI_CTRL_CPHA r/w clock phase

2 SPI_CTRL_CPOL r/w clock polarity

5:3 SPI_CTRL_PRSC2 :
SPI_CTRL_PRSC0

r/w 3-bit clock prescaler select

9:6 SPI_CTRL_CDIV2 :
SPI_CTRL_CDIV0

r/w 4-bit clock divider for fine-tuning

10 SPI_CTRL_HIGHSPEED r/w high-speed mode enable (overriding
SPI_CTRL_PRSC*)

15:11 reserved r/- reserved, read as zero

16 SPI_CTRL_RX_AVAIL r/- RX FIFO data available (RX FIFO not empty)

17 SPI_CTRL_TX_EMPTY r/- TX FIFO empty

18 SPI_CTRL_TX_NHALF r/- TX FIFO not at least half full

19 SPI_CTRL_TX_FULL r/- TX FIFO full

20 SPI_CTRL_IRQ_RX_AVAIL r/w Trigger IRQ if RX FIFO not empty

21 SPI_CTRL_IRQ_TX_EMPTY r/w Trigger IRQ if TX FIFO empty

22 SPI_CTRL_IRQ_TX_NHALF r/w Trigger IRQ if TX FIFO not at least half full

23 SPI_CTRL_IRQ_IDLE r/w Trigger IRQ if TX FIFO is empty and SPI bus
engine is idle

27:24 SPI_CTRL_FIFO_MSB
: SPI_CTRL_FIFO_LSB

r/- FIFO depth; log2(IO_SPI_FIFO)

30:28 reserved r/- reserved, read as zero

30 SPI_CS_ACTIVE r/- Set if any chip-select line is active

31 SPI_CTRL_BUSY r/- SPI module busy when set (serial engine
operation in progress and TX FIFO not empty
yet)

0xfff80004 DATA 7:0 SPI_DATA_MSB :
SPI_DATA_LSB

r/w receive/transmit data (FIFO)

30:8 reserved r/- reserved, read as zero

31 SPI_DATA_CMD -/w data (0) / chip-select-command (1) select

The NEORV32 RISC-V Processor Visit on GitHub

87 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.16. Serial Data Interface Controller (SDI)

Hardware source files: neorv32_sdi.vhd

Software driver files: neorv32_sdi.c Online software reference (Doxygen)

neorv32_sdi.h Online software reference (Doxygen)

Top entity ports: sdi_clk_i 1-bit serial clock input

sdi_dat_o 1-bit serial data output

sdi_dat_i 1-bit serial data input

sdi_csn_i 1-bit chip-select input (low-active)

Configuration generics: IO_SDI_EN implement SDI controller when true

IO_SDI_FIFO data FIFO size, has to a power of two,
min 1

CPU interrupts: fast IRQ channel 11 configurable SDI interrupt (see
Processor Interrupts)

Overview

The serial data interface module provides a device-class SPI interface and allows to connect the
processor to an external SPI host, which is responsible of performing the actual transmission - the
SDI is entirely passive. An optional receive/transmit ring buffer (FIFOs) can be configured via the
IO_SDI_FIFO generic to support block-based transmissions without CPU interaction.



Device-Mode Only

The NEORV32 SDI module only supports device mode. Transmission are initiated
by an external host and not by the the processor itself. If you are looking for a
host-mode serial peripheral interface (transactions performed by the NEORV32)
check out the Serial Peripheral Interface Controller (SPI).

The SDI module provides a single control register CTRL to configure the module and to check it’s
status and a single data register DATA for receiving/transmitting data. Any access to the DATA register
actually accesses the internal ring buffer.

Theory of Operation

The SDI module is enabled by setting the SDI_CTRL_EN bit in the CTRL control register. Clearing this
bit resets the entire module and will also clear the entire RX/TX ring buffer.

The SDI operates on byte-level only. Data written to the DATA register will be pushed to the TX FIFO.
Received data can be retrieved by reading the RX FIFO via the DATA register. The current state of
these FIFOs is available via the control register’s SDI_CTRL_RX_* and SDI_CTRL_TX_* flags. If no data is
available in the TX FIFO while an external device performs a transmission the external device will
read all-zero from the SDI controller.

The NEORV32 RISC-V Processor Visit on GitHub

88 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__sdi_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__sdi_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Application software can check the current state of the SDI chip-select input via the control
register’s SDI_CTRL_CS_ACTIVE flag (the flag is set when the chip-select line is active (pulled low)).


MSB-first Only

The NEORV32 SDI module only supports MSB-first mode.



In-Transmission Abort

If the external SPI controller aborts the transmission by setting the chip-select
signal high again before 8 data bits have been transferred, no data is written to the
RX FIFO.

SDI Clocking

The SDI module supports both SPI clock polarity modes ("CPOL") but only "CPHA=0"-clock-phase is
officially supported yet. However, experiments have shown that the SDI module can also deal with
both clock phase modes (for slow SDI clock speeds).

All SDI operations are clocked by the external sdi_clk_i signal. This signal is synchronized to the
processor’s clock domain to simplify timing behavior. This clock synchronization requires the
external SDI clock (sdi_clk_i) does not exceed 1/4 of the processor’s main clock.

SDI Interrupt

The SDI module provides a set of programmable interrupt conditions based on the level of the RX &
TX FIFOs. The different interrupt sources are enabled by setting the according control register’s
SDI_CTRL_IRQ_* bits. All enabled interrupt conditions are logically OR-ed so any enabled interrupt
source will trigger the module’s interrupt signal.

Once the SDI interrupt has fired it will remain active until the actual cause of the interrupt is
resolved; for example if just the SDI_CTRL_IRQ_RX_AVAIL bit is set, the interrupt will keep firing until
the RX FIFO is empty again.

Register Map

Table 21. SDI register map (struct NEORV32_SDI)

The NEORV32 RISC-V Processor Visit on GitHub

89 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address Nam
e [C]

Bit(s), Name [C] R/W Function

0xfff70000 CTRL 0 SDI_CTRL_EN r/w SDI module enable

3:1 reserved r/- reserved, read as zero

7:4 SDI_CTRL_FIFO_MSB :
SDI_CTRL_FIFO_LSB

r/- FIFO depth; log2(IO_SDI_FIFO)

14:8 reserved r/- reserved, read as zero

15 SDI_CTRL_IRQ_RX_AVAIL r/w fire interrupt if RX FIFO is not empty

16 SDI_CTRL_IRQ_RX_HALF r/w fire interrupt if RX FIFO is at least half full

17 SDI_CTRL_IRQ_RX_FULL r/w fire interrupt if if RX FIFO is full

18 SDI_CTRL_IRQ_TX_EMPTY r/w fire interrupt if TX FIFO is empty

19 SDI_CTRL_IRQ_TX_NHALF r/w fire interrupt if TX FIFO is not at least half
full

22:20 reserved r/- reserved, read as zero

23 SDI_CTRL_RX_AVAIL r/- RX FIFO data available (RX FIFO not empty)

24 SDI_CTRL_RX_HALF r/- RX FIFO at least half full

25 SDI_CTRL_RX_FULL r/- RX FIFO full

26 SDI_CTRL_TX_EMPTY r/- TX FIFO empty

27 SDI_CTRL_TX_NHALF r/- TX FIFO not at least half full

28 SDI_CTRL_TX_FULL r/- TX FIFO full

30:29 reserved r/- reserved, read as zero

31 SDI_CTRL_CS_ACTIVE r/- Chip-select is active when set

0xfff70004 DATA 7:0 r/w receive/transmit data (FIFO)

31:8 reserved r/- reserved, read as zero

The NEORV32 RISC-V Processor Visit on GitHub

90 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.17. Two-Wire Serial Interface Controller (TWI)

Hardware source files: neorv32_twi.vhd

Software driver files: neorv32_twi.c Online software reference (Doxygen)

neorv32_twi.h Online software reference (Doxygen)

Top entity ports: twi_sda_i 1-bit serial data line sense input

twi_sda_o 1-bit serial data line output (pull low
only)

twi_scl_i 1-bit serial clock line sense input

twi_scl_o 1-bit serial clock line output (pull low
only)

Configuration generics: IO_TWI_EN implement TWI controller when true

IO_TWI_FIFO FIFO depth, has to be a power of two,
min 1

CPU interrupts: fast IRQ channel 7 FIFO empty and module idle interrupt
(see Processor Interrupts)

Overview

The NEORV32 TWI implements a I²C-compatible host controller to communicate with arbitrary I2C-
devices. Note that peripheral-mode (controller acts as a device) and multi-controller mode are not
supported yet.



Host-Mode Only

The NEORV32 TWI controller only supports host mode. Transmission are initiated
by the processor’s TWI controller and not by an external I²C module. If you are
looking for a device-mode module (transactions initiated by an external host) check
out the Two-Wire Serial Device Controller (TWD).

Key features:

• Programmable clock speed

• Optional clock stretching

• Generate START / repeated-START and STOP conditions

• Sending & receiving 8 data bits including ACK/NACK

• Generating a host-ACK (ACK send by the TWI controller)

• Configurable data/command FIFO to "program" large I²C sequences without further
involvement of the CPU

The TWI controller provides two memory-mapped registers that are used for configuring the
module and for triggering operations: the control and status register CTRL and the command and

The NEORV32 RISC-V Processor Visit on GitHub

91 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__twi_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__twi_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

data register DCMD.

Tristate Drivers

The TWI module requires two tristate drivers (actually: open-drain drivers - signals can only be
actively driven low) for the SDA and SCL lines, which have to be implemented by the user in the
setup’s top module / IO ring. A generic VHDL example is shown below (here, sda_io and scl_io are
the actual I²C bus lines, which are of type std_logic).

Listing 7. TWI VHDL Tristate Driver Example

sda_io <= '0' when (twi_sda_o = '0') else 'Z'; -- drive
scl_io <= '0' when (twi_scl_o = '0') else 'Z'; -- drive
twi_sda_i <= std_ulogic(sda_io); -- sense
twi_scl_i <= std_ulogic(scl_io); -- sense

TWI Clock Speed

The TWI clock frequency is programmed by two bit-fields in the device’s control register CTRL: a 3-
bit clock prescaler (TWI_CTRL_PRSCx) is used for a coarse clock configuration and a 4-bit clock divider
(TWI_CTRL_CDIVx) is used for a fine clock configuration.

Table 22. TWI prescaler configuration

TWI_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

Based on the clock configuration, the actual TWI clock frequency fSCL is derived from the processor’s
main clock fmain according to the following equation:

fSCL = fmain[Hz] / (4 * clock_prescaler * (1 + TWI_CTRL_CDIV))

Hence, the maximum TWI clock is fmain / 8 and the lowest TWI clock is fmain / 262144. The generated
TWI clock is always symmetric having a duty cycle of exactly 50% (if the clock is not haled by a
device during clock stretching).



Clock Stretching

An accessed peripheral can slow down/halt the controller’s bus clock by using
clock stretching (= actively keeping the SCL line low). The controller will halt
operation in this case. Clock stretching is enabled by setting the TWI_CTRL_CLKSTR bit
in the module’s control register CTRL.

TWI Transfers

The TWI is enabled via the TWI_CTRL_EN bit in the CTRL control register. All TWI operations are
controlled by the DCMD register. The actual operation is selected by a 2-bit value that is written to the
register’s TWI_DCMD_CMD_* bit-field:

The NEORV32 RISC-V Processor Visit on GitHub

92 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

• 00: NOP (no-operation); all further bit-fields in DCMD are ignored

• 01: Generate a (repeated) START conditions; all further bit-fields in DCMD are ignored

• 10: Generate a STOP conditions; all further bit-fields in DCMD are ignored

• 11: Trigger a data transmission; the data to be send has to be written to the register’s
TWI_DCMD_MSB : TWI_DCMD_LSB bit-field; if TWI_DCMD_ACK is set the controller will send a host-ACK in
the ACK/NACK time slot; after the transmission is completed TWI_DCMD_MSB : TWI_DCMD_LSB
contains the RX data and TWI_DCMD_ACK the device’s response if no host-ACK was configured (0 =
ACK, 1 = ACK)

All operations/data written to the DCMD register are buffered by a configurable data/command FIFO.
The depth of the FIFO is configured by the IO_TWI_FIFO top generic. Software can retrieve this size
by reading the control register’s TWI_CTRL_FIFO bits.

The command/data FIFO is internally split into a TX FIFO and a RX FIFO. Writing to DCMD will write
to the TX FIFO while reading from DCMD will read from the RX FIFO. The TX FIFO is full when the
TWI_CTRL_TX_FULL flag is set. Accordingly, the RX FIFO contains valid data when the
TWI_CTRL_RX_AVAIL flag is set.

The control register’s busy flag TWI_CTRL_BUSY is set as long as the TX FIFO contains valid data (i.e.
programmed TWI operations that have not been executed yet) or of the TWI bus engine is still
processing an operation.


An active transmission can be terminated at any time by disabling the TWI
module. This will also clear the data/command FIFO.


The current state of the I²C bus lines (SCL and SDA) can be checked by software via
the TWI_CTRL_SENSE_* control register bits.


When reading data from a device, an all-one byte (0xFF) has to be written to TWI
data register NEORV32_TWI.DATA so the accessed device can actively pull-down SDA
when required.

TWI Interrupt

The TWI module provides a single interrupt to signal "idle condition" to the CPU. The interrupt
becomes active when the TWI module is enabled (TWI_CTRL_EN = 1) and the TX FIFO is empty and the
TWI bus engine is idle.

Register Map

Table 23. TWI register map (struct NEORV32_TWI)

The NEORV32 RISC-V Processor Visit on GitHub

93 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address Nam
e [C]

Bit(s), Name [C] R/W Function

0xfff90000 CTRL 0 TWI_CTRL_EN r/w TWI enable, reset if cleared

3:1 TWI_CTRL_PRSC2 :
TWI_CTRL_PRSC0

r/w 3-bit clock prescaler select

7:4 TWI_CTRL_CDIV3 :
TWI_CTRL_CDIV0

r/w 4-bit clock divider

8 TWI_CTRL_CLKSTR r/w Enable (allow) clock stretching

14:9 - r/- reserved, read as zero

18:15 TWI_CTRL_FIFO_MSB
: TWI_CTRL_FIFO_LSB

r/- FIFO depth; log2(IO_TWI_FIFO)

26:12 - r/- reserved, read as zero

27 TWI_CTRL_SENSE_SCL r/- current state of the SCL bus line

28 TWI_CTRL_SENSE_SDA r/- current state of the SDA bus line

29 TWI_CTRL_TX_FULL r/- set if the TWI bus is claimed by any
controller

30 TWI_CTRL_RX_AVAIL r/- RX FIFO data available

31 TWI_CTRL_BUSY r/- TWI bus engine busy or TX FIFO not empty

0xfff90004 DCMD 7:0 TWI_DCMD_MSB :
TWI_DCMD_LSB

r/w RX/TX data byte

8 TWI_DCMD_ACK r/w write: ACK bit sent by controller; read: 1 =
device NACK, 0 = device ACK

10:9 TWI_DCMD_CMD_HI :
TWI_DCMD_CMD_LO

r/w TWI operation (00 = NOP, 01 = START
conditions, 10 = STOP condition, 11 = data
transmission)

The NEORV32 RISC-V Processor Visit on GitHub

94 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.18. Two-Wire Serial Device Controller (TWD)

Hardware source files: neorv32_twd.vhd

Software driver files: neorv32_twd.c Online software reference (Doxygen)

neorv32_twd.h Online software reference (Doxygen)

Top entity ports: twd_sda_i 1-bit serial data line sense input

twd_sda_o 1-bit serial data line output (pull low
only)

twd_scl_i 1-bit serial clock line sense input

twd_scl_o 1-bit serial clock line output (pull low
only)

Configuration generics: IO_TWD_EN implement TWD controller when true

IO_TWD_FIFO RX/TX FIFO depth, has to be a power of
two, min 1

CPU interrupts: fast IRQ channel 0 FIFO status interrupt (see Processor
Interrupts)

Overview

The NEORV32 TWD implements a I2C-compatible device-mode controller. Processor-external hosts
can communicate with this module by issuing I2C transactions. The TWD is entirely passive an only
reacts on those external transmissions.

Key features:

• Programmable 7-bit device address

• Programmable interrupt conditions

• Configurable RX/TX data FIFO to "program" large TWD sequences without further involvement
of the CPU



Device-Mode Only

The NEORV32 TWD controller only supports device mode. Transmission are
initiated by processor-external modules and not by an external TWD. If you are
looking for a host-mode module (transactions initiated by the processor) check out
the Two-Wire Serial Interface Controller (TWI).

Theory of Operation

The TWD module provides two memory-mapped registers that are used for configuration & status
check (CTRL) and for accessing transmission data (DATA). The DATA register is transparently buffered
by separate RX and TX FIFOs. The size of those FIFOs can be configured by the IO_TWD_FIFO generic.
Software can determine the FIFO size via the control register’s TWD_CTRL_FIFO_* bits.

The NEORV32 RISC-V Processor Visit on GitHub

95 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__twd_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__twd_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

The module is globally enabled by setting the control register’s TWD_CTRL_EN bit. Clearing this bit will
disable and reset the entire module also clearing the internal RX and TX FIFOs. Each FIFO can also
be cleared individually at any time by setting TWD_CTRL_CLR_RX or TWD_CTRL_CLR_TX, respectively.

The external two wire bus is sampled sampled and synchronized into the processor’s clock domain
with a sampling frequency of 1/8 of the processor’s main clock. In order to increase the resistance
to glitches the sampling frequency can be lowered to 1/64 of the processor clock by setting the
control register’s TWD_CTRL_FSEL bit.



Current Bus State

The current state of the I2C bus lines (SCL and SDA) can be checked by software via
the TWD_CTRL_SENSE_* control register bits. Note that the TWD module needs to be
enabled in order to sample the bus state.

The actual 7-bit device address of the TWD is programmed by the TWD_CTRL_DEV_ADDR bits. Note that
the TWD will only response to a host transactions if the host issues the according address. Specific
general-call or broadcast addresses are not supported.

Depending on the transaction type, data is either read from the RX FIFO and transferred to the host
("read operation") or data is received from the host and written to the TX FIFO ("write operation").
Hence, data sequences can be programmed to the TX FIFO to be fetched from the host. If the TX
FIFO is empty and the host keeps performing read transaction, the transferred data byte is
automatically set to all-one.

The current status of the RX and TX FIFO can be polled by software via the TWD_CTRL_RX_* and
TWD_CTRL_TX_* flags.

TWD Interrupt

The TWD module provides a single interrupt to signal certain FIFO conditions to the CPU. The
control register’s TWD_CTRL_IRQ_* bits are used to enabled individual interrupt conditions. Note that
all enabled conditions are logically OR-ed.

• TWD_CTRL_IRQ_RX_AVAIL: trigger interrupt if at least one data byte is available in the RX FIFO

• TWD_CTRL_IRQ_RX_FULL: trigger interrupt if the RX FIFO is completely full

• TWD_CTRL_IRQ_TX_EMPTY: trigger interrupt if the TX FIFO is empty

The interrupt remains active until all enabled interrupt-causing conditions are resolved. The
interrupt can only trigger if the module is actually enabled (TWD_CTRL_EN is set).

TWD Transmissions

Two standard I2C-compatible transaction types are supported: read operations and write
operations. These two operation types are illustrated in the following figure (note that the
transactions are split across two lines to improve readability).

The NEORV32 RISC-V Processor Visit on GitHub

96 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Figure 7. TWD single-byte read and write transaction timing (not to scale)

Any new transaction starts with a START condition. Then, the host transmits the 7 bit device
address MSB-first (green signals A6 to A0) plus a command bit. The command bit can be either write
(pulling the SDA line low) or read (leaving the SDA line high). If the transferred address matches
the one programmed to to TWD_CTRL_DEV_ADDR control register bits the TWD module will response
with an ACK (acknowledge) by pulling the SDA bus line actively low during the 9th SCL clock pulse.
If there is no address match the TWD will not interfere with the bus and move back to idle state.

For a write transaction (upper timing diagram) the host can now transfer an arbitrary number of
bytes (blue signals D7 to D0, MSB-first) to the TWD module. Each byte is acknowledged by the TWD
by pulling SDA low during the 9th SCL clock pules (ACK). Each received data byte is pushed to the
internal RX FIFO. Data will be lost if the FIFO overflows. The transaction is terminated when the
host issues a STOP condition after the TWD has acknowledged the last data transfer.

For a read transaction (lower timing diagram) the host keeps the SDA line at high state while
sending the clock pulse. The TWD will read a byte from the internal TX FIFO and will transmit it
MSB-first to the host (blue signals D7 to D0). During the 9th clock pulse the host has to acknowledged
the transfer (ACK) by pulling SDA low. If no ACK is received by the TWD no data is taken from the
TX FIFO and the same byte can be transmitted in the next data phase. If the TX FIFO becomes empty
while the host keeps reading data, all-one bytes are transmitted. To terminate the transmission the
host hast so send a NACK after receiving the last data byte by keeping SDA high. After that, the host
has to issue a STOP condition.

A repeated-START condition can be issued at any time (but after the complete transaction of a data
byte and there according ACK/NACK) bringing the TWD back to the start of the address/command
transmission phase. The control register’s TWD_CTRL_BUSY flag remains high while a bus transaction
is in progress.


Abort / Termination

An active or even stuck transmission can be terminated at any time by disabling
the TWD module. This will also clear the RX/TX FIFOs.

Tristate Drivers

The TWD module requires two tristate drivers (actually: open-drain drivers - signals can only be
actively driven low) for the SDA and SCL lines, which have to be implemented by the user in the
setup’s top module / IO ring. A generic VHDL example is shown below (here, sda_io and scl_io are
the actual TWD bus lines, which are of type std_logic).

The NEORV32 RISC-V Processor Visit on GitHub

97 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Listing 8. TWD VHDL Tristate Driver Example

sda_io <= '0' when (twd_sda_o = '0') else 'Z'; -- drive
scl_io <= '0' when (twd_scl_o = '0') else 'Z'; -- drive
twd_sda_i <= std_ulogic(sda_io); -- sense
twd_scl_i <= std_ulogic(scl_io); -- sense

Register Map

Table 24. TWD register map (struct NEORV32_TWD)

Address Nam
e [C]

Bit(s), Name [C] R/W Function

0xffea0000 CTRL 0 TWD_CTRL_EN r/w TWD enable, reset if cleared

1 TWD_CTRL_CLR_RX -/w Clear RX FIFO, flag auto-clears

2 TWD_CTRL_CLR_TX -/w Clear TX FIFO, flag auto-clears

3 TWD_CTRL_FSEL r/w Bus sample clock / filter select

10:4 TWD_CTRL_DEV_ADDR6
: TWD_CTRL_DEV_ADDR0

r/w Device address (7-bit)

11 TWD_CTRL_IRQ_RX_AVAIL r/w IRQ if RX FIFO data available

12 TWD_CTRL_IRQ_RX_FULL r/w IRQ if RX FIFO full

13 TWD_CTRL_IRQ_TX_EMPTY r/w IRQ if TX FIFO empty

14:9 - r/- reserved, read as zero

18:15 TWD_CTRL_FIFO_MSB
: TWD_CTRL_FIFO_LSB

r/- FIFO depth; log2(IO_TWD_FIFO)

24:12 - r/- reserved, read as zero

25 TWD_CTRL_RX_AVAIL r/- RX FIFO data available

26 TWD_CTRL_RX_FULL r/- RX FIFO full

27 TWD_CTRL_TX_EMPTY r/- TX FIFO empty

28 TWD_CTRL_TX_FULL r/- TX FIFO full

29 TWD_CTRL_SENSE_SCL r/- current state of the SCL bus line

30 TWD_CTRL_SENSE_SDA r/- current state of the SDA bus line

31 TWD_CTRL_BUSY r/- bus engine is busy (transaction in progress)

0xffea0004 DATA 7:0 TWD_DATA_MSB :
TWD_DATA_LSB

r/w RX/TX data FIFO access

31:8 - r/- reserved, read as zero

The NEORV32 RISC-V Processor Visit on GitHub

98 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.19. One-Wire Serial Interface Controller (ONEWIRE)

Hardware source files: neorv32_onewire.vhd

Software driver files: neorv32_onewire.c Online software reference (Doxygen)

neorv32_onewire.h Online software reference (Doxygen)

Software reference: Online Doxygen

Top entity ports: onewire_i 1-bit 1-wire bus sense input

onewire_o 1-bit 1-wire bus output (pull low only)

Configuration generics: IO_ONEWIRE_EN implement ONEWIRE interface
controller when true

IO_ONEWIRE_FIFO RTX fifo depth, has to be zero or a
power of two, min 1

CPU interrupts: fast IRQ channel 13 operation done interrupt (see
Processor Interrupts)

Overview

The NEORV32 ONEWIRE module implements a single-wire interface controller that is compatible to
the Dallas/Maxim 1-Wire protocol, which is an asynchronous half-duplex bus requiring only a
single signal wire (plus ground) for communication.

The bus is based on a single open-drain signal. The controller as well as all devices on the bus can
only pull-down the bus (similar to TWI/I2C). The default high-level is provided by a single pull-up
resistor connected to the positive power supply close to the bus controller. Recommended values
are between 1kΩ and 10kΩ depending on the bus characteristics (wire length, number of devices,
etc.).

Tri-State Drivers

The ONEWIRE module requires a tristate driver (actually, just an open-drain driver) for the 1-wire
bus line, which has to be implemented in the top module / IO ring of the design. A generic VHDL
example is given below (onewire_io is the actual 1-wire bus signal, which is of type std_logic;
onewire_o and onewire_i are the processor’s ONEWIRE port signals).

Listing 9. ONEWIRE VHDL Tristate Driver Example

onewire_io <= '0' when (onewire_o = '0') else 'Z'; -- drive (low)
onewire_i <= std_ulogic(onewire_io); -- sense

Theory of Operation

The ONEWIRE controller provides two interface registers: CTRL and DCMD. The control register (CTRL)
is used to configure the module and to monitor the current state. The DCMD register, which can
optionally by buffered by a configurable FIFO (IO_ONEWIRE_FIFO generic), is used to read/write data

The NEORV32 RISC-V Processor Visit on GitHub

99 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__onewire_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__onewire_8h.html
https://stnolting.github.io/neorv32/sw/neorv32__onewire_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

from/to the bus and to trigger bus operations.

The module is enabled by setting the ONEWIRE_CTRL_EN bit in the control register. If this bit is cleared,
the module is automatically reset, any bus operation is aborted, the bus is brought to high-level
(due to the external pull-up resistor) and the internal FIFO is cleared. The basic timing
configuration is programmed via a coarse clock prescaler (ONEWIRE_CTRL_PRSCx bits) and a fine clock
divider (ONEWIRE_CTRL_CLKDIVx bits).

The controller can execute four basic bus operations, which are triggered by writing the according
command bits in the DCMD register (ONEWIRE_DCMD_DATA_* bits) while also writing the actual data bits
(ONEWIRE_DCMD_CMD_* bits).

1. 0b00 (ONEWIRE_CMD_NOP) - no operation (dummy)

2. 0b01 (ONEWIRE_CMD_BIT) - transfer a single-bit (read-while-write)

3. 0b10 (ONEWIRE_CMD_BYTE) - transfer a full-byte (read-while-write)

4. 0b11 (ONEWIRE_CMD_RESET) - generate reset pulse and check for device presence

Every command (except NOP) will result in a bus operation when dispatched from the
data/command FIFO. Each command (except NOP) will also sample a bus response (a read bit, a
read byte or a presence pulse) to a shadowed receive FIFO that is accessed when reading the DCMD
register.

When the single-bit operation (ONEWIRE_CMD_BIT) is executed, the data previously written to DCMD[0]
will be send to the bus and the response is sample to DCMD[7]. Accordingly, a full-byte transmission
(ONEWIRE_CMD_BYTE) will send the byte written to DCMD[7:0] to the bus and will sample the response to
DCMD[7:0] (LSB-first). Finally, the reset command (ONEWIRE_CMD_RESET) will generate a bus reset and
will also sample the "presence pulse" from the device(s) to the DCMD[ONEWIRE_DCMD_PRESENCE].



Read from Bus

In order to read a single bit from the bus DCMD[0] has to set to 1 before triggering
the bit transmission operation to allow the accessed device to pull-down the bus.
Accordingly, DCMD[7:0] has to be set to 0xFF before triggering the byte transmission
operation when the controller shall read a byte from the bus.

As soon as the current bus operation has completed (and there are no further operations pending
in the FIFO) the ONEWIRE_CTRL_BUSY bit in the control registers clears.

Bus Timing

The control register provides a 2-bit clock prescaler select (ONEWIRE_CTRL_PRSC) and a 8-bit clock
divider (ONEWIRE_CTRL_CLKDIV) for timing configuration. Both are used to define the elementary base
time Tbase. All bus operations are timed using multiples of this elementary base time.

Table 25. ONEWIRE Clock Prescaler Configurations

ONEWIRE_CTRL_PRSCx 0b00 0b01 0b10 0b11

Resulting clock_prescaler 2 4 8 64

The NEORV32 RISC-V Processor Visit on GitHub

100 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Together with the clock divider value (ONEWIRE_CTRL_PRSCx bits = clock_divider) the base time is
defined by the following formula:

Tbase = (1 / fmain[Hz]) * clock_prescaler * (clock_divider + 1)

Example:

• fmain = 100MHz

• clock prescaler select = 0b01 → clock_prescaler = 4

• clock divider clock_divider = 249

Tbase = (1 / 100000000Hz) * 4 * (249 + 1) = 10000ns = 10µs

The base time is used to coordinate all bus interactions. Hence, all delays, time slots and points in
time are quantized as multiples of the base time Tbase. The following images show the two basic
operations of the ONEWIRE controller: single-bit (0 or 1) transaction and reset with presence detect.
Note that the full-byte operations just repeats the single-bit operation eight times. The relevant
points in time are shown as absolute time points (in multiples of the time base Tbase) with the falling
edge of the bus as reference points.

Single-bit data transmission (not to scale) Reset pulse and presence detect (not to scale)

Table 26. Data Transmission Timing

Symbol Description Multiples of Tbase Time when Tbase =
10µs

Single-bit data transmission

t0 (a→b) Time until end of active low-phase when
writing a '1' or when reading

1 10µs

t1 (a→c) Time until controller samples bus state
(read operation)

2 20µs

t2 (a→d) Time until end of bit time slot (when
writing a '0' or when reading)

7 70µs

t3 (a→e) Time until end of inter-slot pause (= total
duration of one bit)

9 90µs

Reset pulse and presence detect

t4 (f→g) Time until end of active reset pulse 48 480µs

The NEORV32 RISC-V Processor Visit on GitHub

101 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Symbol Description Multiples of Tbase Time when Tbase =
10µs

t5 (f→h) Time until controller samples bus
presence

55 550µs

t6 (f→i) Time until end of presence phase 96 960µs


Default Timing Parameters

The "known-good" default values for base time multiples were chosen for stable
and reliable bus operation and not for maximum throughput.

The absolute points in time are hardwired by the VHDL code and cannot be changed during
runtime. However, the timing parameter can be customized (if necessary) by editing the
ONEWIRE’s VHDL source file. The times t0 to t6 correspond to the previous timing diagrams.

Listing 10. Hardwired timing configuration in neorv32_onewire.vhd

-- timing configuration (absolute time in multiples of the base tick time t_base) --
constant t_write_one_c : unsigned(6 downto 0) := to_unsigned(1, 7); -- t0
constant t_read_sample_c : unsigned(6 downto 0) := to_unsigned(2, 7); -- t1
constant t_slot_end_c : unsigned(6 downto 0) := to_unsigned(7, 7); -- t2
constant t_pause_end_c : unsigned(6 downto 0) := to_unsigned(9, 7); -- t3
constant t_reset_end_c : unsigned(6 downto 0) := to_unsigned(48, 7); -- t4
constant t_presence_sample_c : unsigned(6 downto 0) := to_unsigned(55, 7); -- t5
constant t_presence_end_c : unsigned(6 downto 0) := to_unsigned(96, 7); -- t6



Overdrive Mode

The ONEWIRE controller does not support the overdrive mode natively. However,
it can be implemented by reducing the base time Tbase (and by eventually changing
the hardwired timing configuration in the VHDL source file).

Interrupt

A single interrupt is provided by the ONEWIRE module to signal "idle" condition to the CPU.
Whenever the controller is idle (again) and the data/command FIFO is empty, the interrupt
becomes active.

Register Map

Table 27. ONEWIRE register map (struct NEORV32_ONEWIRE)

The NEORV32 RISC-V Processor Visit on GitHub

102 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address Name
[C]

Bit(s), Name [C] R/W Function

0xfff20000 CTRL 0 ONEWIRE_CTRL_EN r/w ONEWIRE enable, reset if
cleared

1 ONEWIRE_CTRL_CLEAR -/w clear RXT FIFO, auto-clears

3:2 ONEWIRE_CTRL_PRSC1 :
ONEWIRE_CTRL_PRSC0

r/w 2-bit clock prescaler select

11:4 ONEWIRE_CTRL_CLKDIV7 :
ONEWIRE_CTRL_CLKDIV0

r/w 8-bit clock divider value

14:12 - r/- reserved, read as zero

18:15 ONEWIRE_CTRL_FIFO_MSB
: ONEWIRE_CTRL_FIFO_LSB

r/- FIFO depth;
log2(IO_ONEWIRE_FIFO)

27:19 - r/- reserved, read as zero

28 ONEWIRE_CTRL_TX_FULL r/- TX FIFO full

29 ONEWIRE_CTRL_RX_AVAIL r/- RX FIFO data available

30 ONEWIRE_CTRL_SENSE r/- current state of the bus line

31 ONEWIRE_CTRL_BUSY r/- operation in progress when
set or TX FIFO not empty

0xfff20004 DCMD 7:0 ONEWIRE_DCMD_DATA_MSB :
ONEWIRE_DCMD_DATA_LSB

r/w receive/transmit data

9:8 ONEWIRE_DCMD_CMD_HI :
ONEWIRE_DCMD_CMD_LO

-/w operation command LSBs

10 ONEWIRE_DCMD_PRESENCE -/w bus presence detected

31:11 - r/- reserved, read as zero

The NEORV32 RISC-V Processor Visit on GitHub

103 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.20. Pulse-Width Modulation Controller (PWM)

Hardware source files: neorv32_pwm.vhd

Software driver files: neorv32_pwm.c Online software reference (Doxygen)

neorv32_pwm.h Online software reference (Doxygen)

Top entity ports: pwm_o PWM output channels (16-bit)

Configuration generics: IO_PWM_NUM_CH number of PWM channels to
implement (0..16)

CPU interrupts: none

Overview

The PWM module implements a pulse-width modulation controller with up to 16 independent
channels. Duty cycle and carrier frequency can be programmed individually for each channel.The
total number of implemented channels is defined by the IO_PWM_NUM_CH generic. The PWM output
signal pwm_o has a static size of 16-bit. Channel 0 corresponds to bit 0, channel 1 to bit 1 and so on. If
less than 16 channels are configured, only the LSB-aligned channel bits are connected while the
remaining ones are hardwired to zero.

Theory of Operation

Depending on the configured number channels, the PWM module provides 16 configuration
registers CHANNEL_CFG[0] to CHANNEL_CFG[15] - one for each channel. Regardless of the configuration
of IO_PWM_NUM_CH all channel registers can be accessed without raising an exception. However,
registers above IO_PWM_NUM_CH-1 are read-only and hardwired to all-zero.

Each configuration provides a 1-bit enable flag to enable/disable the according channel, an 8-bit
register for setting the duty cycle and a 3-bit clock prescaler select as well as a 10-bit clock diver for
coarse and fine tuning of the carrier frequency, respectively.

A channel is enabled by setting the PWM_CFG_EN bit. If this bit is cleared the according PWM output is
set to zero. The duty cycle is programmed via the 8 PWM_CFG_DUTY bits. Based on the value
programmed to this bits the duty cycle the resulting duty cycle of the according channel can be
computed by the following formula:

Duty Cycle[%] = PWM_CFG_DUTY / 28

The PWM period (carrier frequency) is derived from the processor’s main clock (fmain). The
PWM_CFG_PRSC register bits allow to select one out of eight pre-defined clock prescalers for a coarse
clock scaling. The 10 PWM_CFG_CDIV register bits can be used to apply another fine clock scaling.

Table 28. PWM prescaler configuration

PWM_CFG_PRSC 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

The NEORV32 RISC-V Processor Visit on GitHub

104 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__pwm_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__pwm_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

The resulting PWM carrier frequency is defined by:

fPWM[Hz] = fmain[Hz] / (28 * clock_prescaler * (1 + PWM_CFG_CDIV))

Register Map

Table 29. PWM register map (struct NEORV32_PWM)

Address Name
[C]

Bit(s), Name [C] R/W Function

0xfff00000 CHANNEL
_CFG[0]

31 - PWM_CFG_EN r/w Channel 0: channel enabled when
set

30:28 -
PWM_CFG_PRSC_MSB:PWM_CFG
_PRSC_LSB

r/w Channel 0: 3-bit clock prescaler
select

27:18 r/- Channel 0: reserved, hardwired to
zero

17:8 -
PWM_CFG_CDIV_MSB:PWM_CFG
_CDIV_LSB

r/w Channel 0: 10-bit clock divider

7:0 -
PWM_CFG_DUTY_MSB:PWM_CFG
_DUTY_LSB

r/w Channel 0: 8-bit duty cycle

0xfff00004 …
0xfff00038

CHANNEL
_CFG[1]
…
CHANNEL
_CFG[14
]

… r/w Channels 1 to 14

0xfff0003C CHANNEL
_CFG[15
]

31 - PWM_CFG_EN r/w Channel 15: channel enabled when
set

30:28 -
PWM_CFG_PRSC_MSB:PWM_CFG
_PRSC_LSB

r/w Channel 15: 3-bit clock prescaler
select

27:18 r/- Channel 15: reserved, hardwired to
zero

17:8 -
PWM_CFG_CDIV_MSB:PWM_CFG
_CDIV_LSB

r/w Channel 15: 10-bit clock divider

7:0 -
PWM_CFG_DUTY_MSB:PWM_CFG
_DUTY_LSB

r/w Channel 15: 8-bit duty cycle

The NEORV32 RISC-V Processor Visit on GitHub

105 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.21. True Random-Number Generator (TRNG)

Hardware source files: neorv32_trng.vhd

Software driver files: neorv32_trng.c Online software reference (Doxygen)

neorv32_trng.h Online software reference (Doxygen)

Top entity ports: none

Configuration generics: IO_TRNG_EN implement TRNG when true

IO_TRNG_FIFO data FIFO depth, min 1, has to be a
power of two

Overview

The NEORV32 true random number generator provides physically true random numbers. It is based
on free-running ring-oscillators that generate phase noise when being sampled by a constant clock.
This phase noise is used as physical entropy source. The TRNG features a platform independent
architecture without FPGA-specific primitives, macros or attributes so it can be synthesized for any
FPGA.



In-Depth Documentation

For more information about the neoTRNG architecture and an analysis of its
random quality check out the neoTRNG repository: https://github.com/stnolting/
neoTRNG



Inferring Latches

The synthesis tool might emit warnings regarding inferred latches or
combinatorial loops. However, this is not design flaw as this is exactly what we
want. ;)

Theory of Operation

The TRNG provides two memory mapped interface register. One control register (CTRL) for
configuration and status check and one data register (DATA) for obtaining the random data. The
TRNG is enabled by setting the control register’s TRNG_CTRL_EN. As soon as the TRNG_CTRL_AVAIL bit is
set a new random data byte is available and can be obtained from the lowest 8 bits of the DATA
register. If this bit is cleared, there is no valid data available and the reading DATA will return all-
zero.

An internal entropy FIFO can be configured using the IO_TRNG_FIFO generic. This FIFO automatically
samples new random data from the TRNG to provide some kind of random data pool for
applications which require a larger number of random data in a short time. The random data FIFO
can be cleared at any time either by disabling the TRNG or by setting the TRNG_CTRL_FIFO_CLR flag.
The FIFO depth can be retrieved by software via the TRNG_CTRL_FIFO_* bits.

 Simulation

The NEORV32 RISC-V Processor Visit on GitHub

106 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__trng_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__trng_8h.html
https://github.com/stnolting/neoTRNG
https://github.com/stnolting/neoTRNG
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

When simulating the processor the TRNG is automatically set to "simulation
mode". In this mode the physical entropy sources (the ring oscillators) are replaced
by a simple pseudo RNG based on a LFSR providing only deterministic pseudo-
random data. The TRNG_CTRL_SIM_MODE flag of the control register is set if simulation
mode is active.

Register Map

Table 30. TRNG register map (struct NEORV32_TRNG)

Address Nam
e [C]

Bit(s), Name [C] R/W Function

0xfffa0000 CTRL 0 TRNG_CTRL_EN r/w TRNG enable

1 TRNG_CTRL_FIFO_CLR -/w flush random data FIFO when set; flag auto-
clears

5:2 TRNG_CTRL_FIFO_MSB :
TRNG_CTRL_FIFO_LSB

r/- FIFO depth, log2(IO_TRNG_FIFO)

6 TRNG_CTRL_SIM_MODE r/- simulation mode (PRNG!)

7 TRNG_CTRL_AVAIL r/- random data available when set

0xfffa0004 DATA 7:0 TRNG_DATA_MSB :
TRNG_DATA_LSB

r/- random data byte

31:8 reserved r/- reserved, read as zero

The NEORV32 RISC-V Processor Visit on GitHub

107 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.22. Custom Functions Subsystem (CFS)

Hardware source files: neorv32_cfs.vhd

Software driver files: neorv32_cfs.c Online software reference (Doxygen)

neorv32_cfs.h Online software reference (Doxygen)

Top entity ports: cfs_in_i custom input conduit

cfs_out_o custom output conduit

Configuration generics: IO_CFS_EN implement CFS when true

IO_CFS_CONFIG custom generic conduit

IO_CFS_IN_SIZE size of cfs_in_i

IO_CFS_OUT_SIZE size of cfs_out_o

CPU interrupts: fast IRQ channel 1 CFS interrupt (see Processor
Interrupts)

Overview

The custom functions subsystem is meant for implementing custom tightly-coupled co-processors
or interfaces. IT provides up to 16384 32-bit memory-mapped read/write registers (REG, see register
map below) that can be accessed by the CPU via normal load/store operations. The actual
functionality of these register has to be defined by the hardware designer. Furthermore, the CFS
provides two IO conduits to implement custom on-chip or off-chip interfaces.

Just like any other externally-connected IP, logic implemented within the custom functions
subsystem can operate independently of the CPU providing true parallel processing capabilities.
Potential use cases might include dedicated hardware accelerators for en-/decryption (AES), signal
processing (FFT) or AI applications (CNNs) as well as custom IO systems like fast memory interfaces
(DDR) and mass storage (SDIO), networking (CAN) or real-time data transport (I2S).


If you like to implement custom instructions that are executed right within the
CPU’s ALU see the Zxcfu ISA Extension and the according Custom Functions Unit
(CFU).


Take a look at the template CFS VHDL source file (rtl/core/neorv32_cfs.vhd). The
file is highly commented to illustrate all aspects that are relevant for implementing
custom CFS-based co-processor designs.


The CFS can also be used to replicate existing NEORV32 modules - for example to
implement several TWI controllers.

CFS Software Access

The CFS memory-mapped registers can be accessed by software using the provided C-language
aliases (see register map table below). Note that all interface registers are defined as 32-bit words of

The NEORV32 RISC-V Processor Visit on GitHub

108 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__cfs_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__cfs_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

type uint32_t.

Listing 11. CFS Software Access Example

// C-code CFS usage example
NEORV32_CFS->REG[0] = (uint32_t)some_data_array(i); // write to CFS register 0
int temp = (int)NEORV32_CFS->REG[20]; // read from CFS register 20

CFS Interrupt

The CFS provides a single high-level-triggered interrupt request signal mapped to the CPU’s fast
interrupt channel 1.

CFS Configuration Generic

By default, the CFS provides a single 32-bit std_ulogic_vector configuration generic IO_CFS_CONFIG
that is available in the processor’s top entity. This generic can be used to pass custom configuration
options from the top entity directly down to the CFS. The actual definition of the generic and it’s
usage inside the CFS is left to the hardware designer.

CFS Custom IOs

By default, the CFS also provides two unidirectional input and output conduits cfs_in_i and
cfs_out_o. These signals are directly propagated to the processor’s top entity. These conduits can be
used to implement application-specific interfaces like memory or peripheral connections. The
actual use case of these signals has to be defined by the hardware designer.

The size of the input signal conduit cfs_in_i is defined via the top’s IO_CFS_IN_SIZE configuration
generic (default = 32-bit). The size of the output signal conduit cfs_out_o is defined via the top’s
IO_CFS_OUT_SIZE configuration generic (default = 32-bit). If the custom function subsystem is not
implemented (IO_CFS_EN = false) the cfs_out_o signal is tied to all-zero.

If the CFU output signals are to be used outside the chip, it is recommended to register these signals.

Register Map

Table 31. CFS register map (struct NEORV32_CFS)

Address Name [C] Bit(s) R/W Function

0xffeb0000 REG[0] 31:0 (r)/(w) custom CFS register 0

0xffeb0004 REG[1] 31:0 (r)/(w) custom CFS register 1

… … 31:0 (r)/(w) …

0xffebfff8 REG[16382] 31:0 (r)/(w) custom CFS register 16382

0xffebfffc REG[16383] 31:0 (r)/(w) custom CFS register 16383

The NEORV32 RISC-V Processor Visit on GitHub

109 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.23. Smart LED Interface (NEOLED)

Hardware source files: neorv32_neoled.vhd

Software driver files: neorv32_neoled.c Online software reference (Doxygen)

neorv32_neoled.h Online software reference (Doxygen)

Top entity ports: neoled_o 1-bit serial data output

Configuration generics: IO_NEOLED_EN implement NEOLED controller when
true

IO_NEOLED_TX_FIFO TX FIFO depth, has to be a power of 2,
min 1

CPU interrupts: fast IRQ channel 9 configurable NEOLED data FIFO
interrupt (see Processor Interrupts)

Overview

The NEOLED module provides a dedicated interface for "smart RGB LEDs" like WS2812, WS2811 or
any other compatible LEDs. These LEDs provide a single-wire interface that uses an asynchronous
serial protocol for transmitting color data. Using the NEOLED module allows CPU-independent
operation of an arbitrary number of smart LEDs. A configurable data buffer (FIFO) allows to utilize
block transfer operation without requiring the CPU.



The NEOLED interface is compatible to the "Adafruit Industries NeoPixel™"
products, which feature WS2812 (or older WS2811) smart LEDs. Other LEDs might
be compatible as well when adjusting the controller’s programmable timing
configuration.

The interface provides a single 1-bit output neoled_o to drive an arbitrary number of cascaded
LEDs. Since the NEOLED module provides 24-bit and 32-bit operating modes, a mixed setup with
RGB LEDs (24-bit color) and RGBW LEDs (32-bit color including a dedicated white LED chip) is
possible.

Theory of Operation

The NEOLED modules provides two accessible interface registers: the control register CTRL and the
write-only TX data register DATA. The NEOLED module is globally enabled via the control register’s
NEOLED_CTRL_EN bit. Clearing this bit will terminate any current operation, clear the TX buffer, reset
the module and set the neoled_o output to zero. The precise timing (e.g. implementing the WS2812
protocol) and transmission mode are fully programmable via the CTRL register to provide maximum
flexibility.

RGB / RGBW Configuration

NeoPixel™ LEDs are available in two "color" version: LEDs with three chips providing RGB color
and LEDs with four chips providing RGB color plus a dedicated white LED chip (= RGBW). Since the
intensity of every LED chip is defined via an 8-bit value the RGB LEDs require a frame of 24-bit per

The NEORV32 RISC-V Processor Visit on GitHub

110 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__neoled_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__neoled_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

module and the RGBW LEDs require a frame of 32-bit per module.

The data transfer quantity of the NEOLED module can be programmed via the NEOLED_MODE_EN
control register bit. If this bit is cleared, the NEOLED interface operates in 24-bit mode and will
transmit bits 23:0 of the data written to DATA to the LEDs. If NEOLED_MODE_EN is set, the NEOLED
interface operates in 32-bit mode and will transmit bits 31:0 of the data written to DATA to the LEDs.

The mode bit can be reconfigured before writing a new data word to DATA in order to support an
arbitrary setup/mixture of RGB and RGBW LEDs.

Protocol

The interface of the WS2812 LEDs uses an 800kHz carrier signal. Data is transmitted in a serial
manner starting with LSB-first. The intensity for each R, G & B (& W) LED chip (= color code) is
defined via an 8-bit value. The actual data bits are transferred by modifying the duty cycle of the
signal (the timings for the WS2812 are shown below). A RESET command is "send" by pulling the
data line LOW for at least 50μs.

Figure 8. WS2812 bit-level timing (timing does not scale)

Table 32. WS2812 interface timing

Ttotal (Tcarrier) 1.25μs +/- 300ns period for a single bit

T0H 0.4μs +/- 150ns high-time for sending a 1

T0L 0.8μs +/- 150ns low-time for sending a 1

T1H 0.85μs +/- 150ns high-time for sending a 0

T1L 0.45μs +/- 150 ns low-time for sending a 0

RESET Above 50μs low-time for sending a RESET command

Timing Configuration

The basic carrier frequency (800kHz for the WS2812 LEDs) is configured via a 3-bit main clock
prescaler (NEOLED_CTRL_PRSC*, see table below) that scales the main processor clock fmain and a 5-bit
cycle multiplier NEOLED_CTRL_T_TOT_*.

Table 33. NEOLED Prescaler Configuration

NEOLED_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

The duty-cycles (or more precisely: the high- and low-times for sending either a '1' bit or a '0' bit)
are defined via the 5-bit NEOLED_CTRL_T_ONE_H_* and NEOLED_CTRL_T_ZERO_H_* values, respectively.

The NEORV32 RISC-V Processor Visit on GitHub

111 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

These programmable timing constants allow to adapt the interface for a wide variety of smart LED
protocol (for example WS2812 vs. WS2811).

Timing Configuration - Example (WS2812)

Generate the base clock fTX for the NEOLED TX engine:

• processor clock fmain = 100 MHz

• NEOLED_CTRL_PRSCx = 0b001 = fmain / 4

fTX = fmain[Hz] / clock_prescaler = 100MHz / 4 = 25MHz

TTX = 1 / fTX = 40ns

Generate carrier period (Tcarrier) and high-times (duty cycle) for sending 0 (T0H) and 1 (T1H) bits:

• NEOLED_CTRL_T_TOT = 0b11110 (= decimal 30)

• NEOLED_CTRL_T_ZERO_H = 0b01010 (= decimal 10)

• NEOLED_CTRL_T_ONE_H = 0b10100 (= decimal 20)

Tcarrier = TTX * NEOLED_CTRL_T_TOT = 40ns * 30 = 1.4µs

T0H = TTX * NEOLED_CTRL_T_ZERO_H = 40ns * 10 = 0.4µs

T1H = TTX * NEOLED_CTRL_T_ONE_H = 40ns * 20 = 0.8µs


The NEOLED SW driver library (neorv32_neoled.h) provides a simplified
configuration function that configures all timing parameters for driving WS2812
LEDs based on the processor clock frequency.

TX Data FIFO

The interface features a configurable TX data buffer (a FIFO) to allow more CPU-independent
operation. The buffer depth is configured via the IO_NEOLED_TX_FIFO top generic (default = 1 entry).
The FIFO size configuration can be read via the NEOLED_CTRL_BUFS_x control register bits, which
result log2(IO_NEOLED_TX_FIFO).

When writing data to the DATA register the data is automatically written to the TX buffer. Whenever
data is available in the buffer the serial transmission engine will take and transmit it to the LEDs.
The data transfer size (NEOLED_MODE_EN) can be modified at any time since this control register bit is
also buffered in the FIFO. This allows an arbitrary mix of RGB and RGBW LEDs in the chain.

Software can check the FIFO fill level via the control register’s NEOLED_CTRL_TX_EMPTY,
NEOLED_CTRL_TX_HALF and NEOLED_CTRL_TX_FULL flags. The NEOLED_CTRL_TX_BUSY flags provides
additional information if the the serial transmit engine is still busy sending data.


Please note that the timing configurations (NEOLED_CTRL_PRSCx, NEOLED_CTRL_T_TOT_x,
NEOLED_CTRL_T_ONE_H_x and NEOLED_CTRL_T_ZERO_H_x) are NOT stored to the buffer.

The NEORV32 RISC-V Processor Visit on GitHub

112 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Changing these value while the buffer is not empty or the TX engine is still busy
will cause data corruption.

Strobe Command ("RESET")

According to the WS2812 specs the data written to the LED’s shift registers is strobed to the actual
PWM driver registers when the data line is low for 50μs ("RESET" command, see table above). This
can be implemented using busy-wait for at least 50μs. Obviously, this concept wastes a lot of
processing power.

To circumvent this, the NEOLED module provides an option to automatically issue an idle time for
creating the RESET command. If the NEOLED_CTRL_STROBE control register bit is set, all data written to
the data FIFO (via DATA, the actually written data is irrelevant) will trigger an idle phase (neoled_o =
zero) of 127 periods (= Tcarrier). This idle time will cause the LEDs to strobe the color data into the
PWM driver registers.

Since the NEOLED_CTRL_STROBE flag is also buffered in the TX buffer, the RESET command is treated
just as another data word being written to the TX buffer making busy wait concepts obsolete and
allowing maximum refresh rates.

NEOLED Interrupt

The NEOLED modules features a single interrupt that triggers based on the current TX buffer fill
level. The interrupt can only become pending if the NEOLED module is enabled. The specific
interrupt condition is configured via the NEOLED_CTRL_IRQ_CONF bit in the unit’s control register.

If NEOLED_CTRL_IRQ_CONF is set, the module’s interrupt is generated whenever the TX FIFO is less than
half-full. In this case software can write up to IO_NEOLED_TX_FIFO/2 new data words to DATA without
checking the FIFO status flags. If NEOLED_CTRL_IRQ_CONF is cleared, an interrupt is generated when
the TX FIFO is empty.

Once the NEOLED interrupt has fired it remains pending until the actual cause of the interrupt is
resolved.

Register Map

Table 34. NEOLED register map (struct NEORV32_NEOLED)

The NEORV32 RISC-V Processor Visit on GitHub

113 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address Nam
e [C]

Bit(s), Name [C] R/W Function

0xfffd0000 CTRL 0 NEOLED_CTRL_EN r/w NEOLED enable

1 NEOLED_CTRL_MODE r/w data transfer size; 0=24-bit; 1=32-
bit

2 NEOLED_CTRL_STROBE r/w 0=send normal color data; 1=send
RESET command on data write
access

5:3 NEOLED_CTRL_PRSC2 :
NEOLED_CTRL_PRSC0

r/w 3-bit clock prescaler, bit 0

9:6 NEOLED_CTRL_BUFS3 :
NEOLED_CTRL_BUFS0

r/- 4-bit log2(IO_NEOLED_TX_FIFO)

14:10 NEOLED_CTRL_T_TOT_4 :
NEOLED_CTRL_T_TOT_0

r/w 5-bit pulse clock ticks per total
single-bit period (Ttotal)

19:15 NEOLED_CTRL_T_ZERO_H_4 :
NEOLED_CTRL_T_ZERO_H_0

r/w 5-bit pulse clock ticks per high-
time for sending a zero-bit (T0H)

24:20 NEOLED_CTRL_T_ONE_H_4 :
NEOLED_CTRL_T_ONE_H_0

r/w 5-bit pulse clock ticks per high-
time for sending a one-bit (T1H)

27 NEOLED_CTRL_IRQ_CONF r/w TX FIFO interrupt configuration:
0=IRQ if FIFO is empty, 1=IRQ if
FIFO is less than half-full

28 NEOLED_CTRL_TX_EMPTY r/- TX FIFO is empty

29 NEOLED_CTRL_TX_HALF r/- TX FIFO is at least half full

30 NEOLED_CTRL_TX_FULL r/- TX FIFO is full

31 NEOLED_CTRL_TX_BUSY r/- TX serial engine is busy when set

0xfffd0004 DATA 31:0 / 23:0 -/w TX data (32- or 24-bit, depending
on NEOLED_CTRL_MODE bit)

The NEORV32 RISC-V Processor Visit on GitHub

114 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.24. General Purpose Timer (GPTMR)

Hardware source files: neorv32_gptmr.vhd

Software driver files: neorv32_gptmr.c Online software reference (Doxygen)

neorv32_gptmr.h Online software reference (Doxygen)

Top entity ports: none

Configuration generics: IO_GPTMR_EN implement general purpose timer
when true

CPU interrupts: fast IRQ channel 12 timer interrupt (see Processor
Interrupts)

Overview

The general purpose timer module implements a simple yet universal 32-bit timer. It is
implemented if the processor’s IO_GPTMR_EN top generic is set true. The timer provides a pre-scaled
counter register that can trigger an interrupt when reaching a programmable threshold value.

The GPTMR provides three interface registers : a control register (CTRL), a 32-bit counter register
(COUNT) and a 32-bit threshold register (THRES). The timer is globally enabled by setting the
GPTMR_CTRL_EN bit in the module’s control register. When the timer is enable the COUNT register will
start incrementing from zero at a programmable rate that scales the main processor clock. this pre-
scaler is configured via the three GPTMR_CTRL_PRSCx control register bits:

Table 35. GPTMR prescaler configuration

GPTMR_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

Whenever the counter register COUNT equals the programmable threshold value THRES the module’s
interrupt signal becomes pending (indicated by GPTMR_CTRL_IRQ_PND being set). Note that a pending
interrupt has to be cleared manually by writing a 1 to GPTMR_CTRL_IRQ_CLR.

The control register’s GPTMR_CTRL_MODE bit defines what will happen when COUNT == THRES.

• GPTMR_CTRL_MODE = 0: single-shot mode - the COUNT register will stop incrementing

• GPTMR_CTRL_MODE = 1: continuous mode - the COUNT register is automatically reset and restarts
incrementing from zero


Resetting the Counter

Disabling the GPTMR will also clear the COUNT register.

Interrupt

The GPTRM provides a single interrupt line is triggered whenever COUNT equals THRES. Once
triggered, the interrupt will stay pending until explicitly cleared by writing a 1 to

The NEORV32 RISC-V Processor Visit on GitHub

115 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__gptmr_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__gptmr_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

GPTMR_CTRL_IRQ_CLR.

Register Map

Table 36. GPTMR register map (struct NEORV32_GPTMR)

Address Name [C] Bit(s), Name [C] R/W Function

0xfff10000 CTRL 0 GPTMR_CTRL_EN r/w Timer enable flag

3:1 GPTMR_CTRL_PRSC2
: GPTMR_CTRL_PRSC0

r/w 3-bit clock prescaler select

4 GPTMR_CTRL_MODE r/w Operation mode (0=single-shot,
1=continuous)

29:5 - r/- reserved, read as zero

30
GPTMR_CTRL_IRQ_CLR

-/w Write 1 to clear timer-match
interrupt; auto-clears

31
GPTMR_CTRL_IRQ_PND

r/- Timer-match interrupt pending

0xfff10004 THRES 31:0 r/w Threshold value register

0xfff10008 COUNT 31:0 r/- Counter register

The NEORV32 RISC-V Processor Visit on GitHub

116 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.25. Execute In Place Module (XIP)

Hardware source files: neorv32_xip.vhd XIP module

neorv32_cache.vhd Generic cache module

Software driver files: neorv32_xip.c Online software reference (Doxygen)

neorv32_xip.h Online software reference (Doxygen)

Top entity ports: xip_csn_o 1-bit chip select, low-active

xip_clk_o 1-bit serial clock output

xip_dat_i 1-bit serial data input

xip_dat_o 1-bit serial data output

Configuration generics: XIP_EN implement XIP module when true

XIP_CACHE_EN implement XIP cache when true

XIP_CACHE_NUM_BLOCKS number of blocks in XIP cache; has to
be a power of two

XIP_CACHE_BLOCK_SIZE number of bytes per XIP cache block;
has to be a power of two, min 4

CPU interrupts: none

Overview

The execute in-place (XIP) module allows to execute code (and read constant data) directly from an
external SPI flash memory. The standard serial peripheral interface (SPI) is used as transfer
protocol. All bus requests issued by the CPU are converted transparently into SPI flash access
commands. Hence, the external XIP flash behaves like a simple on-chip ROM.

From the CPU side, the modules provides two independent interfaces: one for transparently
accessing the XIP flash and another one for accessing the module’s control and status registers. The
first interface provides the transparent gateway to the SPI flash, so the CPU can directly fetch and
execute instructions and/or read constant data. Note that this interface is read-only. Any write
access will raise a bus error exception. The second interface is mapped to the processor’s IO space
and allows accesses to the XIP module’s configuration registers as well as conducting individual SPI
transfers.

The XIP module provides an optional configurable cache to accelerate SPI flash accesses.



XIP Address Mapping

When XIP mode is enabled the flash is mapped to fixed address space region
starting at address 0xE0000000 (see section Address Space) supporting a maximum
flash size of 256MB.


XIP Example Program

The NEORV32 RISC-V Processor Visit on GitHub

117 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__xip_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__xip_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

An example program is provided in sw/example/demo_xip that illustrate how to
program and configure an external SPI flash to run a program from it.

SPI Configuration

The XIP module accesses external flash using the standard SPI protocol. The module always sends
data MSB-first and provides all of the standard four clock modes (0..3), which are configured via the
XIP_CTRL_CPOL (clock polarity) and XIP_CTRL_CPHA (clock phase) control register bits, respectively. The
flash’s "read command", which initiates a read access, is defined by the XIP_CTRL_RD_CMD control
register bits. For most SPI flash memories this is 0x03 for normal SPI mode.

The SPI clock (xip_clk_o) frequency is programmed by the 3-bit XIP_CTRL_PRSCx clock prescaler for a
coarse clock selection and a 4-bit clock divider XPI_CTRL_CDIVx for a fine clock selection. The
following clock prescalers (XIP_CTRL_PRSCx) are available:

Table 37. XIP clock prescaler configuration

XIP_CTRL_PRSCx 0b000 0b001 0b010 0b011 0b100 0b101 0b110 0b111

Resulting clock_prescaler 2 4 8 64 128 1024 2048 4096

Based on the programmed clock configuration, the actual SPI clock frequency fSPI is derived from
the processor’s main clock fmain according to the following equation:

fSPI = fmain[Hz] / (2 * clock_prescaler * (1 + XPI_CTRL_CDIVx))

Hence, the maximum SPI clock is fmain / 4 and the lowest SPI clock is fmain / 131072. The SPI clock is
always symmetric having a duty cycle of 50%.

High-Speed Mode

The XIP module provides a high-speed mode to further boost the maximum SPI clock frequency.
When enabled via the control register’s XIP_CTRL_HIGHSPEED bit the clock prescaler configuration
(XIP_CTRL_PRSCx bits) is overridden setting it to a minimal factor of 1. However, the clock speed can
still be fine-tuned using the XPI_CTRL_CDIVx bits.

fSPI = fmain[Hz] / (2 * 1 * (1 + XPI_CTRL_CDIVx))

Hence, the maximum SPI clock when in high-speed mode is fmain / 2.

Direct SPI Access

The XIP module allows to initiate direct SPI transactions. This feature can be used to configure the
attached SPI flash or to perform direct read and write accesses to the flash memory. Two data
registers DATA_LO and DATA_HI are provided to send up to 64-bit of SPI data. The DATA_HI register is
write-only, so a total of just 32-bits of receive data is provided. Note that the module handles the
chip-select line (xip_csn_o) by itself so it is not possible to construct larger consecutive transfers.

The actual data transmission size in bytes is defined by the control register’s XIP_CTRL_SPI_NBYTES
bits. Any configuration from 1 byte to 8 bytes is valid. Other value will result in unpredictable

The NEORV32 RISC-V Processor Visit on GitHub

118 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

behavior.

Since data is always transferred MSB-first, the data in DATA_HI:DATA_LO also has to be MSB-aligned.
Receive data is available in DATA_LO only since DATA_HI is write-only. Writing to DATA_HI triggers the
actual SPI transmission. The XIP_CTRL_PHY_BUSY control register flag indicates a transmission being
in progress.

The chip-select line of the XIP module (xip_csn_o) will only become asserted (enabled, pulled low) if
the XIP_CTRL_SPI_CSEN control register bit is set. If this bit is cleared, xip_csn_o is always disabled
(pulled high).


Direct SPI mode is only possible when the module is enabled (setting XIP_CTRL_EN)
but before the actual XIP mode is enabled via XIP_CTRL_XIP_EN.


When the XIP mode is not enabled, the XIP module can also be used as additional
general purpose SPI controller with a transfer size of up to 64 bits per
transmission.

Using the XIP Mode

The XIP module is globally enabled by setting the XIP_CTRL_EN bit in the device’s CTRL control
register. Clearing this bit will reset the whole module and will also terminate any pending SPI
transfer.

Since there is a wide variety of SPI flash components with different sizes, the XIP module allows to
specify the address width of the flash: the number of address bytes used for addressing flash
memory content has to be configured using the control register’s XIP_CTRL_XIP_ABYTES bits. These
two bits contain the number of SPI address bytes (minus one). For example for a SPI flash with 24-
bit addresses these bits have to be set to 0b10.

The transparent XIP accesses are transformed into SPI transmissions with the following format
(starting with the MSB):

• 8-bit command: configured by the XIP_CTRL_RD_CMD control register bits ("SPI read command")

• 8 to 32 bits address: defined by the XIP_CTRL_XIP_ABYTES control register bits ("number of
address bytes")

• 32-bit data: sending zeros and receiving the according flash word (32-bit)

Hence, the maximum XIP transmission size is 72-bit, which has to be configured via the
XIP_CTRL_SPI_NBYTES control register bits. Note that the 72-bit transmission size is only available in
XIP mode. The transmission size of the direct SPI accesses is limited to 64-bit.


When using four SPI flash address bytes, the most significant 4 bits of the address
are always hardwired to zero allowing a maximum accessible flash size of 256MB.

 The XIP module always fetches a full naturally aligned 32-bit word from the SPI

The NEORV32 RISC-V Processor Visit on GitHub

119 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

flash. Any sub-word data masking or alignment will be performed by the CPU core
logic.


The XIP mode requires the 4-byte data words in the flash to be ordered in little-
endian byte order.

After the SPI properties (including the amount of address bytes and the total amount of SPI transfer
bytes) and XIP address mapping are configured, the actual XIP mode can be enabled by setting the
control register’s XIP_CTRL_XIP_EN bit. This will enable the "transparent SPI access port" of the
module and thus, the transparent conversion of access requests into proper SPI flash transmissions.
Hence, any access to the processor’s memory-mapped XIP region (0xE0000000 to 0xEFFFFFFF) will be
converted into SPI flash accesses. Make sure XIP_CTRL_SPI_CSEN is also set so the module can actually
select/enable the attached SPI flash. No more direct SPI accesses via DATA_HI:DATA_LO are possible
when the XIP mode is enabled. However, the XIP mode can be disabled at any time.



If the XIP module is disabled (XIP_CTRL_EN = 0) any accesses to the memory-
mapped XIP flash address region will raise a bus access exception. If the XIP
module is enabled (XIP_CTRL_EN = 1) but XIP mode is not enabled yet
(XIP_CTRL_XIP_EN = '0') any access to the programmed XIP memory segment will
also raise a bus access exception.


It is highly recommended to enable the Processor-Internal Instruction Cache
(iCACHE) to cover some of the SPI access latency.

XIP Cache

Since every single instruction fetch request from the CPU is translated into serial SPI transmissions
the access latency is very high resulting in a low throughput. In order to improve performance, the
XIP module provides an optional cache that allows to buffer recently-accessed data. The cache is
implemented as a simple direct-mapped read-only cache with a configurable cache layout:

• XIP_CACHE_EN: when set to true the CIP cache is implemented

• XIP_CACHE_NUM_BLOCKS defines the number of cache blocks (or lines)

• XIP_CACHE_BLOCK_SIZE defines the size in bytes of each cache block

When the cache is implemented, the XIP module operates in burst mode utilizing the flash’s
incremental read capabilities. Thus, several bytes (= XIP_CACHE_BLOCK_SIZE) are read consecutively
from the flash using a single read command.

The XIP cache is cleared when the XIP module is disabled (XIP_CTRL_EN = 0), when XIP mode is
disabled (XIP_CTRL_XIP_EN = 0) or when the CPU issues a fence[.i] instruction.

Register Map

Table 38. XIP Register Map (struct NEORV32_XIP)

The NEORV32 RISC-V Processor Visit on GitHub

120 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address Nam
e [C]

Bit(s), Name [C] R/W Function

0xffff4000 CTRL 0 XIP_CTRL_EN r/w XIP module enable

3:1 XIP_CTRL_PRSC2 :
XIP_CTRL_PRSC0

r/w 3-bit SPI clock prescaler select

4 XIP_CTRL_CPOL r/w SPI clock polarity

5 XIP_CTRL_CPHA r/w SPI clock phase

9:6
XIP_CTRL_SPI_NBYTES_MSB
:
XIP_CTRL_SPI_NBYTES_LSB

r/w Number of bytes in SPI transaction (1..9)

10 XIP_CTRL_XIP_EN r/w XIP mode enable

12:11
XIP_CTRL_XIP_ABYTES_MSB
:
XIP_CTRL_XIP_ABYTES_LSB

r/w Number of address bytes for XIP flash (minus
1)

20:13
XIP_CTRL_RD_CMD_MSB :
XIP_CTRL_RD_CMD_LSB

r/w Flash read command

21 XIP_CTRL_SPI_CSEN r/w Allow SPI chip-select to be actually asserted
when set

22 XIP_CTRL_HIGHSPEED r/w enable SPI high-speed mode (ignoring
XIP_CTRL_PRSCx)

26:23 XIP_CTRL_CDIV3 :
XIP_CTRL_CDIV0

r/- 4-bit clock divider for fine-tuning

29:27 - r/- reserved, read as zero

30 XIP_CTRL_PHY_BUSY r/- SPI PHY busy when set

31 XIP_CTRL_XIP_BUSY r/- XIP access in progress when set

0xffff4004 reser
ved

31:0 r/- reserved, read as zero

0xffff4008 DATA_
LO

31:0 r/w Direct SPI access - data register low

0xffff400C DATA_
HI

31:0 -/w Direct SPI access - data register high; write
access triggers SPI transfer

The NEORV32 RISC-V Processor Visit on GitHub

121 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

2.8.26. System Configuration Information Memory (SYSINFO)

Hardware source files: neorv32_sysinfo.vhd

Software driver files: neorv32_sysinfo.h Online software reference (Doxygen)

Top entity ports: none

Configuration generics: * most of the top’s configuration
generics

CPU interrupts: none

Overview

The SYSINFO module allows the application software to determine the setting of most of the
Processor Top Entity - Generics that are related to CPU and processor/SoC configuration. This device
is always implemented - regardless of the actual hardware configuration since the NEORV32
software framework requires information from this device for correct operation. However,
advanced users that do not want to use the default NEORV32 software framework can choose to
disable the entire SYSINFO module. This might also be suitable for setups that use the processor just
as wrapper for a CPU-only configuration.



Disabling the SYSINFO Module

Setting the IO_DISABLE_SYSINFO top entity generic to true will remove the SYSINFO
module from the design. This option is suitable for advanced uses that wish to use
a CPU-only setup that still contains the bus infrastructure. As a result, large parts
of the NEORV32 software framework no longer work (e.g. most IO drivers, the RTE
and the bootloader). Hence, this option is not recommended.

Register Map

All registers of this module are read-only except for the CLK register. Upon reset, the CLK registers is
initialized from the CLOCK_FREQUENCY top entity generic. Application software can override this
default value in order, for example, to take into account a dynamic frequency scaling of the
processor.

Table 39. SYSINFO register map (struct NEORV32_SYSINFO)

Address Name
[C]

R/W Description

0xfffe0000 CLK r/w clock frequency in Hz (initialized from top’s CLOCK_FREQUENCY
generic)

0xfffe0004 MISC[4] r/- miscellaneous system configurations (see SYSINFO -
Miscellaneous Configuration)

0xfffe0008 SOC r/- specific SoC configuration (see SYSINFO - SoC Configuration)

0xfffe000c CACHE r/- cache configuration information (see SYSINFO - Cache
Configuration)

The NEORV32 RISC-V Processor Visit on GitHub

122 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__sysinfo_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

SYSINFO - Miscellaneous Configuration


Bit fields in this register are set to all-zero if the according memory system is not
implemented.

Table 40. SYSINFO MEM Bytes

Byte Name [C] Description

0 SYSINFO_MISC_IMEM log2(internal IMEM size in bytes), via top’s MEM_INT_IMEM_SIZE generic

1 SYSINFO_MISC_DMEM log2(internal DMEM size in bytes), via top’s MEM_INT_DMEM_SIZE
generic

2 SYSINFO_MISC_HART number of physical CPU cores ("harts")

3 SYSINFO_MISC_BOOT boot mode configuration, via top’s BOOT_MODE_SELECT generic (see
Boot Configuration))

SYSINFO - SoC Configuration

Table 41. SYSINFO SOC Bits

Bit Name [C] Description

0 SYSINFO_SOC_BOOTLOADER set if processor-internal bootloader is implemented
(via top’s BOOT_MODE_SELECT generic; see Boot
Configuration)

1 SYSINFO_SOC_XBUS set if external Wishbone bus interface is implemented
(via top’s XBUS_EN generic)

2 SYSINFO_SOC_MEM_INT_IMEM set if processor-internal DMEM is implemented (via
top’s MEM_INT_IMEM_EN generic)

3 SYSINFO_SOC_MEM_INT_DMEM set if processor-internal IMEM is implemented (via
top’s MEM_INT_DMEM_EN generic)

4 SYSINFO_SOC_OCD set if on-chip debugger is implemented (via top’s
OCD_EN generic)

5 SYSINFO_SOC_ICACHE set if processor-internal instruction cache is
implemented (via top’s ICACHE_EN generic)

6 SYSINFO_SOC_DCACHE set if processor-internal data cache is implemented
(via top’s DCACHE_EN generic)

7 - reserved, read as zero

8 SYSINFO_SOC_XBUS_CACHE set if external bus interface cache is implemented (via
top’s XBUS_CACHE_EN generic)

9 SYSINFO_SOC_XIP set if XIP module is implemented (via top’s XIP_EN
generic)

The NEORV32 RISC-V Processor Visit on GitHub

123 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Bit Name [C] Description

10 SYSINFO_SOC_XIP_CACHE set if XIP cache is implemented (via top’s XIP_CACHE_EN
generic)

11 SYSINFO_SOC_OCD_AUTH set if on-chip debugger authentication is implemented
(via top’s OCD_AUTHENTICATION generic)

12 SYSINFO_SOC_IMEM_ROM set if processor-internal IMEM is implemented as pre-
initialized ROM (via top’s BOOT_MODE_SELECT generic;
see Boot Configuration)

13 SYSINFO_SOC_IO_TWD set if TWD is implemented (via top’s IO_TWD_EN
generic)

14 SYSINFO_SOC_IO_DMA set if direct memory access controller is implemented
(via top’s IO_DMA_EN generic)

15 SYSINFO_SOC_IO_GPIO set if GPIO is implemented (via top’s IO_GPIO_EN
generic)

16 SYSINFO_SOC_IO_CLINT set if CLINT is implemented (via top’s IO_CLINT_EN
generic)

17 SYSINFO_SOC_IO_UART0 set if primary UART0 is implemented (via top’s
IO_UART0_EN generic)

18 SYSINFO_SOC_IO_SPI set if SPI is implemented (via top’s IO_SPI_EN generic)

19 SYSINFO_SOC_IO_TWI set if TWI is implemented (via top’s IO_TWI_EN generic)

20 SYSINFO_SOC_IO_PWM set if PWM is implemented (via top’s IO_PWM_NUM_CH
generic)

21 SYSINFO_SOC_IO_WDT set if WDT is implemented (via top’s IO_WDT_EN
generic)

22 SYSINFO_SOC_IO_CFS set if custom functions subsystem is implemented (via
top’s IO_CFS_EN generic)

23 SYSINFO_SOC_IO_TRNG set if TRNG is implemented (via top’s IO_TRNG_EN
generic)

24 SYSINFO_SOC_IO_SDI set if SDI is implemented (via top’s IO_SDI_EN generic)

25 SYSINFO_SOC_IO_UART1 set if secondary UART1 is implemented (via top’s
IO_UART1_EN generic)

26 SYSINFO_SOC_IO_NEOLED set if NEOLED is implemented (via top’s IO_NEOLED_EN
generic)

27 - reserved, read as zero

28 SYSINFO_SOC_IO_GPTMR set if GPTMR is implemented (via top’s IO_GPTMR_EN
generic)

29 SYSINFO_SOC_IO_SLINK set if stream link interface is implemented (via top’s
IO_SLINK_EN generic)

The NEORV32 RISC-V Processor Visit on GitHub

124 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Bit Name [C] Description

30 SYSINFO_SOC_IO_ONEWIRE set if ONEWIRE interface is implemented (via top’s
IO_ONEWIRE_EN generic)

31 SYSINFO_SOC_IO_CRC set if cyclic redundancy check unit is implemented
(via top’s IO_CRC_EN generic)

SYSINFO - Cache Configuration

The SYSINFO cache register provides information about the configuration of the processor caches:

• Processor-Internal Instruction Cache (iCACHE)

• Processor-Internal Data Cache (dCACHE)

• Execute In Place Module (XIP) cache (XIP-CACHE)

• Processor-External Bus Interface (XBUS) cache (XBUS-CACHE)

Table 42. SYSINFO CACHE Bits

Bit Name [C] Description

3:0 SYSINFO_CACHE_INST_BLOCK_SIZE_3 :
SYSINFO_CACHE_INST_BLOCK_SIZE_0

log2(i-cache block size in bytes), via top’s
ICACHE_BLOCK_SIZE generic

7:4 SYSINFO_CACHE_INST_NUM_BLOCKS_3 :
SYSINFO_CACHE_INST_NUM_BLOCKS_0

log2(i-cache number of cache blocks), via top’s
ICACHE_NUM_BLOCKS generic

11:
8

SYSINFO_CACHE_DATA_BLOCK_SIZE_3 :
SYSINFO_CACHE_DATA_BLOCK_SIZE_0

log2(d-cache block size in bytes), via top’s
DCACHE_BLOCK_SIZE generic

15:
12

SYSINFO_CACHE_DATA_NUM_BLOCKS_3 :
SYSINFO_CACHE_DATA_NUM_BLOCKS_0

log2(d-cache number of cache blocks), via
top’s DCACHE_NUM_BLOCKS generic

19:
16

SYSINFO_CACHE_XIP_BLOCK_SIZE_3 :
SYSINFO_CACHE_XIP_BLOCK_SIZE_0

log2(xip-cache block size in bytes), via top’s
XIP_CACHE_BLOCK_SIZE generic

23:
20

SYSINFO_CACHE_XIP_NUM_BLOCKS_3 :
SYSINFO_CACHE_XIP_NUM_BLOCKS_0

log2(xip-cache number of cache blocks), via
top’s XIP_CACHE_NUM_BLOCKS generic

27:
24

SYSINFO_CACHE_XBUS_BLOCK_SIZE_3 :
SYSINFO_CACHE_XBUS_BLOCK_SIZE_0

log2(xbus-cache block size in bytes), via top’s
XBUS_CACHE_BLOCK_SIZE generic

31:
28

SYSINFO_CACHE_XBUS_NUM_BLOCKS_3 :
SYSINFO_CACHE_XBUS_NUM_BLOCKS_0

log2(xbus-cache number of cache blocks), via
top’s XBUS_CACHE_NUM_BLOCKS generic

The NEORV32 RISC-V Processor Visit on GitHub

125 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Chapter 3. NEORV32 Central Processing Unit
(CPU)
The NEORV32 CPU is an area-optimized RISC-V core implementing the rv32i_zicsr_zifencei base
(privileged) ISA and supporting several additional/optional ISA extensions. The CPU’s micro
architecture is based on a von-Neumann machine build upon a mixture of multi-cycle and
pipelined execution schemes. Optionally, the core can be implemented as SMP Dual-Core
Configuration.


RISC-V Specifications

This chapter assumes that the reader is familiar with the official RISC-V User and
Privileged Architecture specifications.

Section Structure

• RISC-V Compatibility

• CPU Top Entity - Signals and CPU Top Entity - Generics

• Architecture and Full Virtualization

• Instruction Sets and Extensions and Custom Functions Unit (CFU)

• Control and Status Registers (CSRs)

• Traps, Exceptions and Interrupts

• Bus Interface

3.1. RISC-V Compatibility
The NEORV32 CPU passes the tests of the official RISCOF RISC-V Architecture Test Framework.
This framework is used to check RISC-V implementations for compatibility to the official RISC-V
user/privileged ISA specifications. The NEORV32 port of this test framework is available in a
separate repository at GitHub: https://github.com/stnolting/neorv32-riscof


Unsupported ISA Extensions

Executing instructions or accessing CSRs from yet unsupported ISA extensions will
raise an illegal instruction exception (see section Full Virtualization).

Incompatibility Issues and Limitations



time[h] CSRs (Wall Clock Time)

The NEORV32 does not implement the time[h] registers. Any access to these
registers will trap. It is recommended that the trap handler software provides a
means of accessing the the machine timer of the Core Local Interruptor (CLINT).

The NEORV32 RISC-V Processor Visit on GitHub

126 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32-riscof
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32



No Hardware Support of Misaligned Memory Accesses

The CPU does not support resolving unaligned memory access by the hardware
(this is not a RISC-V-incompatibility issue but an important thing to know!). Any
kind of unaligned memory access will raise an exception to allow a software-based
emulation provided by the application. However, unaligned memory access can be
emulated using the NEORV32 runtime environment. See section Application
Context Handling for more information.

The NEORV32 RISC-V Processor Visit on GitHub

127 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.2. CPU Top Entity - Signals
The following table shows all interface signals of the CPU top entity rtl/core/neorv32_cpu.vhd. The
type of all signals is std_ulogic or std_ulogic_vector, respectively. The "Dir." column shows the signal
direction as seen from the CPU.

Table 43. NEORV32 CPU Signal List

Signal Width/Type Dir Description

Global Signals

clk_i 1 in Global clock line, all registers triggering on rising edge.

rstn_i 1 in Global reset, low-active.

Interrupts (Traps, Exceptions and Interrupts)

msi_i 1 in RISC-V machine software interrupt.

mei_i 1 in RISC-V machine external interrupt.

mti_i 1 in RISC-V machine timer interrupt.

firq_i 16 in Custom fast interrupt request signals.

dbi_i 1 in Request CPU to halt and enter debug mode (RISC-V On-Chip
Debugger (OCD)).

Instruction Bus Interface

ibus_req_o bus_req_t out Instruction fetch bus request.

ibus_rsp_i bus_rsp_t in Instruction fetch bus response.

Data Bus Interface

dbus_req_o bus_req_t out Data access (load/store) bus request.

dbus_rsp_i bus_rsp_t in Data access (load/store) bus response.

Inter-Core Communication (ICC) TX links

icc_tx_rdy_o 2 out Data available for cores 0..1.

icc_tx_ack_i 2 in Read-enable from cores 0..1.

icc_tx_dat_o 2*32 out Data for cores 0..1.

Inter-Core Communication (ICC) RX links

icc_rx_rdy_i 2 in Data available from cores 0..1.

icc_rx_ack_o 2 out Read-enable for cores 0..1.

icc_rx_dat_i 2*32 in Data from cores 0..1.


Bus Interface Protocol

See section Bus Interface for the instruction fetch and data access interface
protocol and the according interface types (bus_req_t and bus_rsp_t).

The NEORV32 RISC-V Processor Visit on GitHub

128 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.3. CPU Top Entity - Generics
Most of the CPU configuration generics are a subset of the actual Processor configuration generics
(see section Processor Top Entity - Generics). and are not listed here. However, the CPU provides
some specific generics that are used to configure the CPU for the NEORV32 processor setup. These
generics are assigned by the processor setup only and are not available for user defined
configuration. The specific generics are listed below.


Table Abbreviations

The generic type "suv(x:y)" represents a std_ulogic_vector(x downto y).

Table 44. NEORV32 CPU-Exclusive Generic List

Name Type Description

HART_ID natural ID of the core (for mhartid CSR).

NUM_HARTS natural Total number of cores in the system.

VENDOR_ID suv(31:0) Vendor identification (for mvendorid CSR).

BOOT_ADDR suv(31:0) CPU reset address. See section Address Space.

DEBUG_PARK_ADDR suv(31:0) "Park loop" entry address for the On-Chip Debugger
(OCD), has to be 4-byte aligned.

DEBUG_EXC_ADDR suv(31:0) "Exception" entry address for the On-Chip Debugger
(OCD), has to be 4-byte aligned.

ICC_EN boolean Implement Inter-Core Communication (ICC) module.
Automatically enabled for the SMP Dual-Core
Configuration.

RISCV_ISA_Sdext boolean Implement RISC-V-compatible "debug" CPU operation
mode required for the On-Chip Debugger (OCD).

RISCV_ISA_Sdtrig boolean Implement RISC-V-compatible trigger module. See
section On-Chip Debugger (OCD).

RISCV_ISA_Smpmp boolean Implement RISC-V-compatible physical memory
protection (PMP). See section Smpmp ISA Extension.


Tuning Option Generics

Additional generics that are related to certain tuning options are listed in section
CPU Tuning Options.

The NEORV32 RISC-V Processor Visit on GitHub

129 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.4. Architecture

The CPU implements a pipelined multi-cycle architecture: each instruction is executed as a series of
consecutive micro-operations. In order to increase performance, the CPU’s front-end (instruction
fetch) and back-end (instruction execution) are de-couples via a FIFO (the instruction prefetch
buffer. Thus, the front-end can already fetch new instructions while the back-end is still processing
the previously-fetched instructions.

Basically, the CPU’s micro architecture is somewhere between a classical pipelined architecture,
where each stage requires exactly one processing cycle (if not stalled) and a classical multi-cycle
architecture, which executes every single instruction (including fetch) in a series of consecutive
micro-operations. The combination of these two design paradigms allows an increased instruction
execution in contrast to a pure multi-cycle approach (due to overlapping operation of fetch and
execute) at a reduced hardware footprint (due to the multi-cycle concept).

As a Von-Neumann machine, the CPU provides independent interfaces for instruction fetch and
data access. However, these two bus interfaces are merged into a single processor-internal bus via a
prioritizing bus switch (data accesses have higher priority). Hence, all memory addresses including
peripheral devices are mapped to a single unified 32-bit Address Space.



Linear/In-Order Execution Only

The CPU does not perform any speculative/out-of-order operations at all. Hence, it
is not vulnerable to security issues caused by speculative execution (like Spectre or
Meltdown).

3.4.1. CPU Register File

The data register file contains the general purpose architecture registers x0 to x31. For the rv32e ISA
only the lower 16 registers are implemented. Register zero (x0/zero) always read as zero and any
write access to it has no effect. Up to four individual synchronous read ports allow to fetch up to 4

The NEORV32 RISC-V Processor Visit on GitHub

130 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

register operands at once. The write and read accesses are mutually exclusive as they happen in
separate cycles. Hence, there is no need to consider things like "read-during-write" behavior.



Memory Tuning Options

The physical implementation of the register file’s memory core can be tuned for
certain design goals like area or throughput. See section CPU Tuning Options for
more information.



Implementation of the zero Register within FPGA Block RAM

Register zero is also mapped to a physical memory location within the register file’s
block RAM. By this, there is no need to add a further multiplexer to "insert" zero if
reading from register zero reducing logic requirements and shortening the critical
path. However, this also requires that the physical storage bits of register zero are
explicitly initialized (set to zero) by the hardware. This is done transparently by
the CPU control requiring no additional processing overhead.



Block RAM Ports

The default register file configuration uses two access ports: a read-only port for
reading register rs2 (second source operand) and a read/write port for reading
register rs1 (first source operand) and for writing processing results to register rd
(destination register). Hence, a simple dual-port RAM can be used to implement
the entire register file. From a functional point of view, read and write accesses to
the register file do never occur in the same clock cycle, so no bypass logic is
required at all.

3.4.2. CPU Arithmetic Logic Unit

The arithmetic/logic unit (ALU) is used for actual data processing as well as generating memory and
branch addresses. All "simple" I ISA Extension computational instructions (like add and or) are
implemented as plain combinatorial logic requiring only a single cycle to complete. More
sophisticated instructions like shift operations or multiplications are processed by so-called "ALU
co-processors".

The co-processors are implemented as iterative units that require several cycles to complete
processing. Besides the base ISA’s shift instructions, the co-processors are used to implement all
further processing-based ISA extensions (e.g. M ISA Extension and B ISA Extension).



Multi-Cycle Execution Monitor

The CPU control will raise an illegal instruction exception if a multi-cycle
functional unit (like the Custom Functions Unit (CFU)) does not complete
processing in a bound amount of time (configured via the package’s
monitor_mc_tmo_c constant; default = 512 clock cycles).

The NEORV32 RISC-V Processor Visit on GitHub

131 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.4.3. CPU Bus Unit

The bus unit takes care of handling data memory accesses via load and store instructions. It
handles data adjustment when accessing sub-word data quantities (16-bit or 8-bit) and performs
sign-extension for singed load operations. The bus unit also includes the optional Smpmp ISA
Extension that performs permission checks for all data and instruction accesses.

A list of the bus interface signals and a detailed description of the protocol can be found in section
Bus Interface. All bus interface signals are driven/buffered by registers; so even a complex SoC
interconnection bus network will not effect maximal operation frequency.



Unaligned Accesses

The CPU does not support a hardware-based handling of unaligned memory
accesses! Any unaligned access will raise a bus load/store unaligned address
exception. The exception handler can be used to emulate unaligned memory
accesses in software. See the NEORV32 Runtime Environment’s Application
Context Handling section for more information.

3.4.4. CPU Control Unit

The CPU control unit is responsible for generating all the control signals for the different CPU
modules. The control unit is split into a "front-end" and a "back-end".

Front-End

The front-end is responsible for fetching instructions in chunks of 32-bits. This can be a single
aligned 32-bit instruction, two aligned 16-bit instructions or a mixture of those. The instructions
including control and exception information are stored to a FIFO queue - the instruction prefetch
buffer (IPB). This FIFO has a depth of two entries by default but can be customized via the
ipb_depth_c VHDL package constant.

The FIFO allows the front-end to do "speculative" instruction fetches, as it keeps fetching the next
consecutive instruction all the time. This also allows to decouple front-end (instruction fetch) and
back-end (instruction execution) so both modules can operate in parallel to increase performance.
However, all potential side effects that are caused by this "speculative" instruction fetch are already
handled by the CPU front-end ensuring a defined execution stage while preventing security side
attacks.

Back-End

Instruction data from the instruction prefetch buffer is decompressed (if the C ISA extension is
enabled) and sent to the CPU back-end for actual execution. Execution is conducted by a state-
machine that controls all of the CPU modules. The back-end also includes the Control and Status
Registers (CSRs) as well as the trap controller.

The NEORV32 RISC-V Processor Visit on GitHub

132 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.4.5. CPU Tuning Options

The top module provides several tuning options to optimize the CPU for a specific goal. Note that
these configuration options have no impact on the actual functionality (e.g. ISA compatibility).


Software Tuning Options Discovery

Software can check for configured tuning options via specific flags in the mxisa
CSR.

CPU_CLOCK_GATING_EN

Name Clock gating

Type boolean

Default false, disabled

Descripti
on

When enabled the CPU’s primary clock is switched off when the CPU enters Sleep
Mode. See CPU Clock Gating.

When disabled the CPU clock system is implemented as single always-on clock domain.

CPU_FAST_MUL_EN

Name Fast multiplication

Type boolean

Default false, disabled

Descripti
on

When enabled the M/Zmmul extension’s multiplier is implemented as "plain
multiplication" allowing the synthesis tool to infer DSP blocks / multiplication
primitives. Multiplication operations only require a few cycles due to the DSP-internal
register stages. The execution time is time-independent of the provided operands.

When disabled the M/Zmmul extension’s multiplier is implemented as bit-serial
multiplier that computes one result bit in every cycle. Multiplication operations only
requires at least 32 cycles but the entire execution time is still time-independent of the
provided operands.

CPU_FAST_SHIFT_EN

Name Fast bit shifting

Type boolean

Default false, disabled

The NEORV32 RISC-V Processor Visit on GitHub

133 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Descripti
on

When enabled the ALU’s shifter unit is implemented as full-parallel barrel shifter that
is capable of shifting a data word by an arbitrary number of positions within a single
cycle. Hence, the execution time of any base-ISA shift operation is independent of the
provided operands. Note that the barrel shifter requires a lot of hardware resources
and might also increase the core’s critical path.

When disabled the ALU’s shifter unit is implemented as bit-serial shifter that can shift
the input data only by one position per cycle. Hence, several cycles might be required
to complete any base-ISA shift-related operations. Therefore, the execution time of the
serial approach is not time-independent of the provided operands. However, the serial
approach requires only a few hardware resources and does not impact the critical
path.

CPU_RF_HW_RST_EN

Name Register file hardware reset

Type boolean

Default false, disabled

Descripti
on

When enabled the CPU register file is implemented using single flip flops that provide
a full hardware reset. The register file is reset to all-zero after each hardware reset.
Note that this options requires a lot of flip flops and LUTs to build the register file.
However, timing might be optimized as there is no need to route to far blockRAM
resources.

When disabled the CPU register file is implemented in a way to allow synthesis to infer
memory primitives like blockRAM. Note that these primitives do not provide any kind
of hardware reset. Hence, the data content is undefined after reset.

3.4.6. Sleep Mode

The NEORV32 CPU provides a single sleep mode that can be entered to power-down the core
reducing dynamic power consumption. Sleep mode is entered by executing the RISC-V wfi ("wait for
interrupt") instruction.



Execution Details

The wfi instruction will raise an illegal instruction exception when executed in
user-mode if TW in mstatus is set. When executed in debug-mode or during single-
stepping wfi will behave as simple nop without entering sleep mode.

After executing the wfi instruction the sleep signal of the CPU’s request buses (Bus Interface will
become set as soon as the CPU has fully halted:

There is no enabled interrupt being pending.

CPU-external modules like memories, timers and peripheral interfaces are not affected by this.

The NEORV32 RISC-V Processor Visit on GitHub

134 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Furthermore, the CPU will continue to buffer/enqueue incoming interrupts. The CPU will leave
sleep mode as soon as any enabled interrupt (via mie) source becomes pending or if a debug session
is started.

3.4.7. CPU Clock Gating

The single clock domain of the CPU core can be split into an always-on clock domain and a
switchable clock domain. The switchable clock domain can be deactivated to further reduce reduce
dynamic power consumption. CPU-external modules like timers, interfaces and memories are not
affected by the clock gating.

The splitting into two clock domain is enabled by the CPU_CLOCK_GATING_EN generic (Processor Top
Entity - Generics / CPU Tuning Options). When enabled, a generic clock switching gate is added to
decouple the switchable clock from the always-on clock domain. Whenever the CPU enters Sleep
Mode the switchable clock domain is shut down.



Clock Switch Hardware

By default, a generic clock switch is used (rtl/core/neorv32_clockgate.vhd).
Especially for FPGA setups it is highly recommended to replace this default module
by a technology-specific primitive or macro wrapper to improve synthesis results
(clock skew, global clock tree usage, etc.).

3.4.8. Full Virtualization

Just like the RISC-V ISA, the NEORV32 aims to provide maximum virtualization capabilities on CPU
and SoC level to allow a high standard of execution safety. The CPU supports all traps specified by
the official RISC-V specifications. Thus, the CPU provides defined hardware fall-backs via traps for
any expected and unexpected situations (e.g. executing a malformed or not supported instruction
or accessing a non-allocated memory address). For any kind of trap the core is always in a defined
and fully synchronized state throughout the whole system (i.e. there are no out-of-order operations
that might have to be reverted). This allows a defined and predictable execution behavior at any
time improving overall execution safety.

The NEORV32 RISC-V Processor Visit on GitHub

135 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.5. Bus Interface
The NEORV32 CPU provides separated instruction fetch and data access interfaces making it a
Harvard Architecture: the instruction fetch interface (i_bus_* signals) is used for fetching
instructions and the data access interface (d_bus_* signals) is used to access data via load and store
operations. Each of these interfaces can access an address space of up to 232 bytes (4GB).

The bus interface uses two custom interface types: bus_req_t is used to propagate the bus access
requests downstream from a host to a device. These signals are driven by the request-issuing device
(i.e. the CPU core). Vice versa, bus_rsp_t is used to return the bus response upstream from a device
back to the host and is driven by the accessed device or bus system (i.e. a processor-internal
memory or IO device).

The signals of the request bus are split in to two categories: in-band signals and out-of-band signals.
In-band signals always belong to a certain bus transaction and are only valid between stb being set
and the according response (err or ack). being set. In contrast, the out-of-band signals are not
associated with any bus transaction and are always valid when set.

Table 45. Bus Interface - Request Bus (bus_req_t)

Signal Width Description

In-Band Signals

addr 32 Access address (byte addressing)

data 32 Write data

ben 4 Byte-enable for each byte in data

stb 1 Request trigger ("strobe", single-shot)

rw 1 Access direction (0 = read, 1 = write)

src 1 Access source (0 = instruction fetch, 1 = load/store)

priv 1 Set if privileged (M-mode) access

amo 1 Set if current access is an atomic memory operation (Atomic Memory
Access)

amoop 4 Type of atomic memory operation (Atomic Memory Access)

Out-Of-Band Signals

fence 1 Data/instruction fence request; single-shot

sleep 1 Set if ALL upstream devices are in Sleep Mode

debug 1 Set if the upstream device is in debug-mode

Table 46. Bus Interface - Response Bus (bus_rsp_t)

Signal Width Description

data 32 Read data (single-shot)

The NEORV32 RISC-V Processor Visit on GitHub

136 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Signal Width Description

ack 1 Transfer acknowledge / success (single-shot)

err 1 Transfer error / fail (single-shot)

3.5.1. Bus Interface Protocol

Transactions are triggered entirely by the request bus. A new bus request is initiated by setting the
strobe signal stb high for exactly one cycle. All remaining signals of the bus are set together with
stb and will remain unchanged until the transaction is completed.

The transaction is completed when the accessed device returns a response via the response
interface: ack is high for exactly one cycle if the transaction was completed successfully. err is high
for exactly one cycle if the transaction failed to complete. These two signals are mutually exclusive.
In case of a read access the read data is returned together with the ack signal. Otherwise, the return
data signal is kept at all-zero allowing wired-or interconnection of all response buses.

The figure below shows three exemplary bus accesses:

1. A read access to address A_addr returning rdata after several cycles (slow response; ACK arrives
after several cycles).

2. A write access to address B_addr writing wdata (fastest response; ACK arrives right in the next
cycle).

3. A failing read access to address C_addr (slow response; ERR arrives after several cycles).

Figure 9. Three Exemplary Bus Transactions (showing only in-band signals)


Adding Register Stages

The NEORV32 RISC-V Processor Visit on GitHub

137 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Arbitrary pipeline stages can be added to the request and response buses at any
point to relax timing (at the cost of additional latency). However, all bus signals
(request and response) need to be registered.

3.5.2. Atomic Memory Access

The Zaamo ISA Extension adds atomic read-modify-write memory operations. Since the Bus Interface
Protocol only supports read-or-write operations, the atomic memory requests are handled by a
dedicated module of the bus infrastructure - the Atomic Memory Operations Controller.

For the CPU, the atomic memory accesses are handled as plain "load" operation but with the amo
signal set and also providing write data (see Bus Interface). The amoop signal defines the actual
atomic processing operation:

Table 47. AMO Operation Type Encoding

bus_req_t.amoop Description

-000 swap

-001 unsigned add

-010 logical xor

-011 logical and

-100 logical or

0110 unsigned minimum

0111 unsigned maximum

1110 signed minimum

1111 signed maximum


Cache Coherency

Atomic operations always bypass the CPU caches using direct/uncached accesses.
Care must be taken to maintain data Cache Coherency.

The NEORV32 RISC-V Processor Visit on GitHub

138 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.6. Instruction Sets and Extensions
The NEORV32 CPU provides several optional RISC-V-compliant and custom/user-defined ISA
extensions. The extensions can be enabled/configured via the according Processor Top Entity -
Generics. This chapter gives a brief overview of all available ISA extensions.

Table 48. NEORV32 Instruction Set Extensions

Name Description Enabled by Generic

B Bit manipulation instructions Implicitly enabled

C Compressed (16-bit) instructions RISCV_ISA_C

E Embedded CPU extension (reduced register file
size)

RISCV_ISA_E

I Integer base ISA Enabled if RISCV_ISA_E is not
enabled

M Integer multiplication and division instructions RISCV_ISA_M

U Less-privileged user mode extension RISCV_ISA_U

X Platform-specific / NEORV32-specific extension Always enabled

Zaamo Atomic memory operations RISCV_ISA_Zaamo

Zba Shifted-add bit manipulation instructions RISCV_ISA_Zba

Zbb Basic bit manipulation instructions RISCV_ISA_Zbb

Zbkb Scalar cryptographic bit manipulation
instructions

RISCV_ISA_Zbkb

Zbkc Scalar cryptographic carry-less multiplication
instructions

RISCV_ISA_Zbkc

Zbkx Scalar cryptographic crossbar permutation
instructions

RISCV_ISA_Zbkx

Zbs Single-bit bit manipulation instructions RISCV_ISA_Zbs

Zfinx Floating-point instructions using integer
registers

RISCV_ISA_Zfinx

Zifencei Instruction stream synchronization instruction Always enabled

Zicntr Base counters extension RISCV_ISA_Zicntr

Zicond Integer conditional operations RISCV_ISA_Zicond

Zicsr Control and status register access instructions Always enabled

Zihpm Hardware performance monitors extension RISCV_ISA_Zihpm

Zkn Scalar cryptographic NIST algorithm suite Implicitly enabled

Zknd Scalar cryptographic NIST AES decryption
instructions

RISCV_ISA_Zknd

The NEORV32 RISC-V Processor Visit on GitHub

139 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Name Description Enabled by Generic

Zkne Scalar cryptographic NIST AES encryption
instructions

RISCV_ISA_Zkne

Zknh Scalar cryptographic NIST hash function
instructions

RISCV_ISA_Zknh

Zkt Data independent execution time (of
cryptographic operations)

Implicitly enabled

Zks Scalar cryptographic ShangMi algorithm suite Implicitly enabled

Zksed Scalar cryptographic ShangMi block cypher
instructions

RISCV_ISA_Zksed

Zksh Scalar cryptographic ShangMi hash instructions RISCV_ISA_Zksh

Zmmul Integer multiplication-only instructions RISCV_ISA_Zmmul

Zcfu Custom / user-defined instructions RISCV_ISA_Zxcfu

Smpmp Physical memory protection (PMP) extension RISCV_ISA_Smpmp

Sdext External debug support extension OCD_EN

Sdtrig Trigger module extension OCD_EN



RISC-V ISA Specification

For more information regarding the RISC-V ISA extensions please refer to the
"RISC-V Instruction Set Manual - Volume I: Unprivileged ISA" and "The RISC-V
Instruction Set Manual Volume II: Privileged Architecture". A copy of these
documents can be found in the projects docs/references folder.



Discovering ISA Extensions

Software can discover available ISA extensions via the misa and mxisa CSRs or by
executing an instruction and checking for an illegal instruction exception (i.e. Full
Virtualization).



Instruction Cycles

This chapter shows the CPI values (cycles per instruction) for each individual
instruction/type. Note that values reflect optimal conditions (i.e. no additional
memory delay, no cache misses, no pipeline waits, etc.). To benchmark a certain
processor configuration for its setup-specific CPI value please refer to the
sw/example/performance_tests test programs.

3.6.1. B ISA Extension

The B ISA extension adds instructions for bit-manipulation operations. This ISA extension cannot be
enabled by a specific generic. Instead, it is enabled if a specific set of bit-manipulation sub-
extensions are enabled.

The NEORV32 RISC-V Processor Visit on GitHub

140 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

The B extension is shorthand for the following set of other extensions:

• Zba ISA Extension - Address-generation / shifted-add instructions.

• Zbb ISA Extension - Basic bit manipulation instructions.

• Zbs ISA Extension - Single-bit operations.

A processor configuration which implements B must implement all of the above extensions.

3.6.2. C ISA Extension

The "compressed" ISA extension provides 16-bit encodings of commonly used instructions to reduce
code space size.

Table 49. Instructions and Timing

Class Instructions Execution cycles

ALU c.addi4spn c.nop c.add[i] c.li c.addi16sp
c.lui c.and[i] c.sub c.xor c.or c.mv

2

ALU c.srli c.srai c.slli 3 + 1..32; CPU_FAST_SHIFT_EN: 4

Branches c.beqz c.bnez taken: 6; not taken: 3

Jumps / calls c.jal[r] c.j c.jr 6

Memory access c.lw c.sw c.lwsp c.swsp 4

System c.break 3

3.6.3. E ISA Extension

The "embedded" ISA extensions reduces the size of the general purpose register file from 32 entries
to 16 entries to shrink hardware size. It provides the same instructions as the the base I ISA
extensions.


Alternative MABI

Due to the reduced register file size an alternate toolchain ABI (ilp32e*) is
required.

3.6.4. I ISA Extension

The I ISA extensions is the base RISC-V integer ISA that is always enabled.

Table 50. Instructions and Timing

Class Instructions Execution cycles

ALU add[i] slt[i] slt[i]u xor[i] or[i] and[i]
sub lui auipc

2

No-operation “nop” 2

The NEORV32 RISC-V Processor Visit on GitHub

141 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Class Instructions Execution cycles

ALU shifts sll[i] srl[i] sra[i] 3 + 1..32; CPU_FAST_SHIFT_EN: 4

Branches beq bne blt bge bltu bgeu taken: 6; not taken: 3

Jump/call jal[r] 6

Load/store lb lh lw lbu lhu sb sh sw 5

System ecall ebreak 3

Data fence fence 5

System wfi 3

System mret 5

Illegal inst. - 3



fence Instruction

Analogous to the fence.i instruction (Zifencei ISA Extension) the fence instruction
triggers a data cache synchronization operation. See section Cache Coherency for
more information. Furthermore, the fence instruction word’s predecessor and
successor bits (used for memory ordering) are not evaluated by the hardware at
all.


wfi Instruction

The wfi instruction is used to enter Sleep Mode. Executing the wfi instruction in
user-mode will raise an illegal instruction exception if the TW bit of mstatus is set.



Shifter Tuning Options

The physical implementation of the bit-shifter can be tuned for certain design
goals like area or throughput. See section CPU Tuning Options for more
information.

3.6.5. M ISA Extension

Hardware-accelerated integer multiplication and division operations are available via the RISC-V M
ISA extension. This ISA extension is implemented as multi-cycle ALU co-process
(rtl/core/neorv32_cpu_cp_muldiv.vhd).

Table 51. Instructions and Timing

Class Instructions Execution cycles

Multiplication mul mulh mulhsu mulhu 36; CPU_FAST_MUL_EN: 4

Division div divu rem remu 36


Multiplication Tuning Options

The NEORV32 RISC-V Processor Visit on GitHub

142 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

The physical implementation of the multiplier can be tuned for certain design
goals like area or throughput. See section CPU Tuning Options for more
information.

3.6.6. U ISA Extension

In addition to the highest-privileged machine-mode, the user-mode ISA extensions adds a second
less-privileged operation mode. Code executed in user-mode has reduced CSR access rights.
Furthermore, user-mode accesses to the address space (like peripheral/IO devices) can be
constrained via the physical memory protection. Any kind of privilege rights violation will raise an
exception to allow Full Virtualization.

3.6.7. X ISA Extension

The NEORV32-specific ISA extensions X is always enabled. The most important points of the
NEORV32-specific extensions are: * The CPU provides 16 fast interrupt interrupts (FIRQ), which are
controlled via custom bits in the mie and mip CSRs. These extensions are mapped to CSR bits, that are
available for custom use according to the RISC-V specs. Also, custom trap codes for mcause are
implemented. * All undefined/unimplemented/malformed/illegal instructions do raise an illegal
instruction exception (see Full Virtualization). * There are NEORV32-Specific CSRs.

3.6.8. Zaamo ISA Extension

The Zaamo ISA extension is a sub-extension of the RISC-V A ISA extension and compromises
instructions for read-modify-write Atomic Memory Access operations. It is enabled by the top’s
RISCV_ISA_Zaamo generic.

Table 52. Instructions and Timing

Class Instructions Execution
cycles

Atomic memory operations amoswap.w amoadd.w amoand.w amoor.w amoxor.w
amomax[u].w amomin[u].w

5 + 2 *
memory_late
ncy


aq and rl Bits

The instruction word’s aq and lr memory ordering bits are not evaluated by the
hardware at all.

3.6.9. Zifencei ISA Extension

The Zifencei CPU extension allows manual synchronization of the instruction stream. This
extension is always enabled.

Analogous to the fence instruction the fence.i instruction triggers an instruction cache
synchronization operation. See section Cache Coherency for more information.

The NEORV32 RISC-V Processor Visit on GitHub

143 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Table 53. Instructions and Timing

Class Instructions Execution cycles

Instruction fence fence.i 5

3.6.10. Zfinx ISA Extension

The Zfinx floating-point extension is an alternative of the standard F floating-point ISA extension. It
also uses the integer register file x to store and operate on floating-point data instead of a dedicated
floating-point register file. Thus, the Zfinx extension requires less hardware resources and features
faster context changes. This also implies that there are NO dedicated f register file-related
load/store or move instructions. The Zfinx extension’S floating-point unit is controlled via dedicated
Floating-Point CSRs. This ISA extension is implemented as multi-cycle ALU co-process
(rtl/core/neorv32_cpu_cp_fpu.vhd).



Fused / Multiply-Add Instructions

Fused multiply-add instructions f[n]m[add/sub].s are not supported. A special GCC
switch is used to prevent the compiler from emitting contracted/fused floating-
point operations (see Default Compiler Flags).


Division and Squarer Root Instructions

Division fdiv.s and square root fsqrt.s instructions are not supported yet.



Subnormal Number

Subnormal numbers ("de-normalized" numbers, i.e. exponent = 0) are not
supported by the NEORV32 FPU. Subnormal numbers are flushed to zero setting
them to +/- 0 before being processed by any FPU operation. If a computational
instruction generates a subnormal result it is also flushed to zero during
normalization.

Table 54. Instructions and Timing

Class Instructions Execution cycles

Artihmetic fadd.s 110

Artihmetic fsub.s 112

Artihmetic fmul.s 22

Compare fmin.s fmax.s feq.s flt.s fle.s 13

Conversion fcvt.w.s fcvt.wu.s fcvt.s.w fcvt.s.wu 48

Misc fsgnj.s fsgnjn.s fsgnjx.s fclass.s 12

3.6.11. Zicntr ISA Extension

The Zicntr ISA extension adds the basic cycle[h], mcycle[h], instret[h] and minstret[h] counter

The NEORV32 RISC-V Processor Visit on GitHub

144 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

CSRs. Section (Machine) Counter and Timer CSRs shows a list of all Zicntr-related CSRs.


Time CSRs

The user-mode time[h] CSRs are not implemented. Any access will trap allowing
the trap handler to retrieve system time from the Core Local Interruptor (CLINT).


Mandatory Extension

This extensions is stated as mandatory by the RISC-V spec. However, area-
constrained setups may remove support for these counters.


Constrained Access

User-level access to the counter CSRs can be constrained by the mcounteren CSR.

3.6.12. Zicond ISA Extension

The Zicond ISA extension adds integer conditional move primitives that allow to implement branch-
less control flows. It is enabled by the top’s RISCV_ISA_Zicond generic. This ISA extension is
implemented as multi-cycle ALU co-processor (rtl/core/neorv32_cpu_cp_cond.vhd).

Table 55. Instructions and Timing

Class Instructions Execution cycles

Conditional czero.eqz czero.nez 3

3.6.13. Zicsr ISA Extension

This ISA extensions provides instructions for accessing the Control and Status Registers (CSRs) as
well as further privileged-architecture extensions. This extension is mandatory and cannot be
disabled. Hence, there is no generic for enabling/disabling this ISA extension.



Side-Effects if Destination is Zero-Register

If rd=x0 for the csrrw[i] instructions there will be no actual read access to the
according CSR. However, access privileges are still enforced so these instruction
variants do cause side-effects (the RISC-V spec. state that these combinations
"shall" not cause any side-effects).

Table 56. Instructions and Timing

Class Instructions Execution cycles

System csrrw[i] csrrs[i] csrrc[i] 3

3.6.14. Zihpm ISA Extension

In additions to the base counters the NEORV32 CPU provides up to 13 hardware performance
monitors (HPM 3..15), which can be used to benchmark applications. Each HPM consists of an N-bit

The NEORV32 RISC-V Processor Visit on GitHub

145 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

wide counter (split in a high-word 32-bit CSR and a low-word 32-bit CSR), where N is defined via the
top’s HPM_CNT_WIDTH generic and a corresponding event configuration CSR.

The event configuration CSR defines the architectural events that lead to an increment of the
associated HPM counter. See section Hardware Performance Monitors (HPM) CSRs for a list of all
HPM-related CSRs and event configurations.



Machine-Mode HPMs Only

Note that only the machine-mode hardware performance counter CSR are
available (mhpmcounter*[h]). Accessing any user-mode HPM CSR (hpmcounter*[h])
will raise an illegal instruction exception.


Increment Inhibit

The event-driven increment of the HPMs can be deactivated individually via the
mcountinhibit CSR.

3.6.15. Zba ISA Extension

The Zba sub-extension is part of the RISC-V bit manipulation ISA specification (B ISA Extension) and
adds shifted-add / address-generation instructions. It is enabled by the top’s RISCV_ISA_Zba generic.
This ISA extension is implemented as multi-cycle ALU co-processor
(rtl/core/neorv32_cpu_cp_bitmanip.vhd).

Table 57. Instructions and Timing

Class Instructions Execution cycles

Shifted-add sh1add sh2add sh3add 4

3.6.16. Zbb ISA Extension

The Zbb sub-extension is part of the RISC-V bit manipulation ISA specification (B ISA Extension) and
adds the basic bit manipulation instructions. It is enabled by the top’s RISCV_ISA_Zbb generic. This
ISA extension is implemented as multi-cycle ALU co-processor
(rtl/core/neorv32_cpu_cp_bitmanip.vhd).

Table 58. Instructions and Timing

Class Instructions Execution cycles

Logic with negate andn orn xnor 4

Count leading/trailing zeros clz ctz 6 + 1..32; CPU_FAST_SHIFT_EN: 4

Count population cpop 6 + 32; CPU_FAST_SHIFT_EN: 4

Integer maximum/minimum min[u] max[u] 4

Sign/zero extension sext.b sext.h zext 4

The NEORV32 RISC-V Processor Visit on GitHub

146 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Class Instructions Execution cycles

Bitwise rotation rol ror[i] 6 + shift_amount;
CPU_FAST_SHIFT_EN: 4

OR-combine orc.b 4

Byte-reverse rev8 4



shifter Tuning Options

The physical implementation of the bit-shifter can be tuned for certain design
goals like area or throughput. See section CPU Tuning Options for more
information.

3.6.17. Zbs ISA Extension

The Zbs sub-extension is part of the RISC-V bit manipulation ISA specification (B ISA Extension) and
adds single-bit operations. It is enabled by the top’s RISCV_ISA_Zbs generic. This ISA extension is
implemented as multi-cycle ALU co-processor (rtl/core/neorv32_cpu_cp_bitmanip.vhd).

Table 59. Instructions and Timing

Single-bit sbset[i] sbclr[i] sbinv[i] sbext[i] 4

3.6.18. Zbkb ISA Extension

The Zbkb sub-extension is part of the RISC-V scalar cryptography ISA specification and extends the
RISC-V bit manipulation ISA extension with additional instructions. It is enabled by the top’s
RISCV_ISA_Zbkb generic. Note that enabling this extension will also enable the Zbb basic bit-
manipulation ISA extension (which is extended by Zknb). This ISA extension is implemented as
multi-cycle ALU co-processor (rtl/core/neorv32_cpu_cp_bitmanip.vhd).

Table 60. Instructions and Timing (in addition to Zbb)

Class Instructions Execution cycles

Packing pack packh 4

Interleaving zip unzip 4

Byte-wise bit
reversal

brev8 4

3.6.19. Zbkc ISA Extension

The Zbkc sub-extension is part of the RISC-V scalar cryptography ISA extension and adds carry-less
multiplication instruction. ISA extension with additional instructions. It is enabled by the top’s
RISCV_ISA_Zbkc generic. This ISA extension is implemented as multi-cycle ALU co-processor
(rtl/core/neorv32_cpu_cp_bitmanip.vhd).

Table 61. Instructions and Timing

The NEORV32 RISC-V Processor Visit on GitHub

147 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Class Instructions Execution cycles

Carry-less multiply clmul clmulh 6 + 32

3.6.20. Zbkx ISA Extension

The Zbkx sub-extension is part of the RISC-V scalar cryptography ISA specification and adds crossbar
permutation instructions. It is enabled by the top’s RISCV_ISA_Zbkx generic. This ISA extension is
implemented as multi-cycle ALU co-processor (rtl/core/neorv32_cpu_cp_crypto.vhd).

Table 62. Instructions and Timing

Class Instructions Execution cycles

Crossbar
permutation

xperm8 xperm4 4

3.6.21. Zkn ISA Extension

The Zkn ISA extension is part of the RISC-V scalar cryptography ISA specification and defines the
"NIST algorithm suite". This ISA extension cannot be enabled by a specific generic. Instead, it is
enabled if a specific set of cryptography-related sub-extensions is enabled.

The Zkn extension is shorthand for the following set of other extensions:

• Zbkb ISA Extension - Bit manipulation instructions for cryptography.

• Zbkc ISA Extension - Carry-less multiply instructions.

• Zbkx ISA Extension - Cross-bar permutation instructions.

• Zkne ISA Extension - AES encryption instructions.

• Zknd ISA Extension - AES decryption instructions.

• Zknh ISA Extension - SHA2 hash function instructions.

A processor configuration which implements Zkn must implement all of the above extensions.

3.6.22. Zknd ISA Extension

The Zknd sub-extension is part of the RISC-V scalar cryptography ISA specification and adds NIST
AES decryption instructions. It is enabled by the top’s RISCV_ISA_Zknd generic. This ISA extension is
implemented as multi-cycle ALU co-processor (rtl/core/neorv32_cpu_cp_crypto.vhd).

Table 63. Instructions and Timing

Class Instructions Execution cycles

AES decryption aes32dsi aes32dsmi 6

The NEORV32 RISC-V Processor Visit on GitHub

148 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.6.23. Zkne ISA Extension

The Zkne sub-extension is part of the RISC-V scalar cryptography ISA specification and adds NIST
AES encryption instructions. It is enabled by the top’s RISCV_ISA_Zkne generic. This ISA extension is
implemented as multi-cycle ALU co-processor (rtl/core/neorv32_cpu_cp_crypto.vhd).

Table 64. Instructions and Timing

Class Instructions Execution cycles

AES decryption aes32esi aes32esmi 6

3.6.24. Zknh ISA Extension

The Zknh sub-extension is part of the RISC-V scalar cryptography ISA specification and adds NIST
hash function instructions. It is enabled by the top’s RISCV_ISA_Zknh generic. This ISA extension is
implemented as multi-cycle ALU co-processor (rtl/core/neorv32_cpu_cp_crypto.vhd).

Table 65. Instructions and Timing

Class Instructions Execution cycles

sha256 sha256sig0 sha256sig1 sha256sum0
sha256sum1

4

sha512 sha512sig0h sha512sig0l sha512sig1h
sha512sig1l sha512sum0r sha512sum1r

4

3.6.25. Zks ISA Extension

The Zks ISA extension is part of the RISC-V scalar cryptography ISA specification and defines the
"ShangMi algorithm suite". This ISA extension cannot be enabled by a specific generic. Instead, it is
enabled if a specific set of cryptography-related sub-extensions is enabled.

The Zks extension is shorthand for the following set of other extensions:

• Zbkb ISA Extension - Bit manipulation instructions for cryptography.

• Zbkc ISA Extension - Carry-less multiply instructions.

• Zbkx ISA Extension - Cross-bar permutation instructions.

• Zksed ISA Extension - SM4 block cipher instructions.

• Zksh ISA Extension - SM3 hash function instructions.

A processor configuration which implements Zks must implement all of the above extensions.

3.6.26. Zksed ISA Extension

The Zksed sub-extension is part of the RISC-V scalar cryptography ISA specification and adds
ShangMi block cypher and key schedule instructions. It is enabled by the top’s RISCV_ISA_Zksed
generic. This ISA extension is implemented as multi-cycle ALU co-processor

The NEORV32 RISC-V Processor Visit on GitHub

149 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

(rtl/core/neorv32_cpu_cp_crypto.vhd).

Table 66. Instructions and Timing

Class Instructions Execution cycles

Block cyphers sm4ed 6

Key schedule sm4ks 6

3.6.27. Zksh ISA Extension

The Zksh sub-extension is part of the RISC-V scalar cryptography ISA specification and adds ShangMi
hash function instructions. It is enabled by the top’s RISCV_ISA_Zksh generic. This ISA extension is
implemented as multi-cycle ALU co-processor (rtl/core/neorv32_cpu_cp_crypto.vhd).

Table 67. Instructions and Timing

Class Instructions Execution cycles

Hash sm3p0 sm3p1 6

3.6.28. Zkt ISA Extension

The Zkt sub-extension is part of the RISC-V scalar cryptography ISA specification and guarantees
data independent execution times of cryptographic and cryptography-related instructions. The ISA
extension cannot be enabled by a specific generic. Instead, it is enabled implicitly by certain CPU
configurations.

The RISC-V Zkt specifications provides a list of instructions that are included within this
specification. However, not all instructions are required to be implemented. Rather, every one of
these instructions that the core does implement must adhere to the requirements of Zkt.

Table 68. Zkt instruction listing

Parent
extensi
on

Instructions Data independent
execution time?

RVI lui auipc add[i] slt[i][u] xor[i] or[i] and[i] sub yes

sll[i] srl[i] sra[i] yes if CPU_FAST_SHIFT_EN
enabled

RVM mul[h] mulh[s]u yes

RVC c.nop c.addi c.lui c.andi c.sub c.xor c.and c.mv c.add yes

c.srli c.srai c.slli yes if CPU_FAST_SHIFT_EN
enabled

RVK aes32ds[m]i aes32es[m]i sha256sig* sha512sig* sha512sum*
sm3p0 sm3p1 sm4ed sm4ks

yes

The NEORV32 RISC-V Processor Visit on GitHub

150 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Parent
extensi
on

Instructions Data independent
execution time?

RVB xperm4 xperm8 andn orn xnor pack[h] brev8 rev8 yes

ror[i] rol yes if CPU_FAST_SHIFT_EN
enabled

3.6.29. Zmmul - ISA Extension

This is a sub-extension of the M ISA Extension ISA extension. It implements only the multiplication
operations of the M extensions and is intended for size-constrained setups that require hardware-
based integer multiplications but not hardware-based divisions, which will be computed entirely in
software. Note that the Zmmul - ISA Extension and M ISA Extension are mutually exclusive.

3.6.30. Zxcfu ISA Extension

The Zxcfu presents a NEORV32-specific ISA extension. It adds the Custom Functions Unit (CFU) to
the CPU core, which allows to add custom RISC-V instructions to the processor core. For detailed
information regarding the CFU, its hardware and the according software interface see section
Custom Functions Unit (CFU).

Software can utilize the custom instructions by using intrinsics, which are basically inline assembly
functions that behave like regular C functions but that evaluate to a single custom instruction word
(no calling overhead at all).



CFU Execution Time

The actual CFU execution time depends on the logic being implemented. The CPU
architecture requires a minimal execution time of 3 cycles (purely combinatorial
CFU operation) and automatically terminates execution after 512 cycles if the CFU
does not complete operation within this time window.

Table 69. Instructions and Timing

Class Instructions Execution cycles

Custom instructions Instruction words with custom-0 or custom-1 opcode 3 … 3+512

3.6.31. Smpmp ISA Extension

The NEORV32 physical memory protection (PMP) provides an elementary memory protection
mechanism that can be used to configure read/write(execute permission of arbitrary memory
regions. In general, the PMP can grant permissions to user mode, which by default has none, and
can revoke permissions from M-mode, which by default has full permissions. The NEORV32 PMP
is fully compatible to the RISC-V Privileged Architecture Specifications and is configured via several
CSRs (Machine Physical Memory Protection CSRs). Several Processor Top Entity - Generics are
provided to adjust the CPU’s PMP capabilities according to the application requirements (pre-

The NEORV32 RISC-V Processor Visit on GitHub

151 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

synthesis):

1. PMP_NUM_REGIONS defines the number of implemented PMP regions (0..16); setting this generic to
zero will result in absolutely no PMP logic being implemented

2. PMP_MIN_GRANULARITY defines the minimal granularity of each region (has to be a power of 2,
minimal granularity = 4 bytes); note that a smaller granularity will lead to wider comparators
and thus, to higher area footprint and longer critical path

3. PMP_TOR_MODE_EN controls the implementation of the top-of-region (TOR) mode (default = true);
disabling this mode will reduce area footprint

4. PMP_NAP_MODE_EN controls the implementation of the naturally-aligned-power-of-two (NA4 and
NAPOT) modes (default = true); disabling this mode will reduce area footprint and critical path
length


PMP Permissions when in Debug Mode

When in debug-mode all PMP rules are bypassed/ignored granting the debugger
maximum access permissions.



PMP Time-Multiplex

Instructions are executed in a multi-cycle manner. Hence, data access (load/store)
and instruction fetch cannot occur at the same time. Therefore, the PMP hardware
uses only a single set of comparators for memory access permissions checks that
are switched in an iterative, time-multiplex style reducing hardware footprint by
approx. 50% while maintaining full security features and RISC-V compatibility.



PMP Memory Accesses

Load/store accesses for which there are insufficient access permission do not
trigger any memory/bus accesses at all. In contrast, instruction accesses for which
there are insufficient access permission nevertheless lead to a memory/bus access
(causing potential side effects on the memory side=. However, the fetched
instruction will be discarded and the corresponding exception will still be
triggered precisely.

3.6.32. Sdext ISA Extension

This ISA extension enables the RISC-V-compatible "external debug support" by implementing the
CPU "debug mode", which is required for the on-chip debugger. See section On-Chip Debugger
(OCD) / CPU Debug Mode for more information.

Table 70. Instructions and Timing

Class Instructions Execution cycles

System dret 5

The NEORV32 RISC-V Processor Visit on GitHub

152 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.6.33. Sdtrig ISA Extension

This ISA extension implements the RISC-V-compatible "trigger module". See section On-Chip
Debugger (OCD) / Trigger Module for more information.

The NEORV32 RISC-V Processor Visit on GitHub

153 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.7. Custom Functions Unit (CFU)
The Custom Functions Unit (CFU) is the central part of the NEORV32-specific Zxcfu ISA Extension
and represents the actual hardware module that can be used to implement custom RISC-V
instructions.

The CFU is intended for operations that are inefficient in terms of performance, latency, energy
consumption or program memory requirements when implemented entirely in software. Some
potential application fields and exemplary use-cases might include:

• AI: sub-word / vertical vector/SIMD operations like processing all four sub-bytes of a 32-bit data
word individually

• Cryptographic: bit substitution and permutation

• Communication: data conversions like binary to gray-code

• Arithmetic: BCD (binary-coded decimal) operations; multiply-add operations; shift-and-add
algorithms like CORDIC or BKM

• Image processing: look-up-tables for color space transformations

• implementing instructions from other RISC-V ISA extensions that are not yet supported by
NEORV32

The NEORV32 CFU supports two different instruction formats (R3-type and R4-type; see CFU
Instruction Formats) and also allows to implement up to 4 CFU-internal custom control and status
registers (see CFU Control and Status Registers (CFU-CSRs)).



CFU Complexity

The CFU is not intended for complex and CPU-independent functional units that
implement complete accelerators (like block-based AES encryption). These kind of
accelerators should be implemented as memory-mapped co-processor via the
Custom Functions Subsystem (CFS) to allow CPU-independent operation. A
comparative survey of all NEORV32-specific hardware extension/customization
options is provided in the user guide section Adding Custom Hardware Modules.


Default CFU Hardware Example

The default CFU module (rtl/core/neorv32_cpu_cp_cfu.vhd) implements the
Extended Tiny Encryption Algorithm (XTEA) as "real world" application example.

3.7.1. CFU Instruction Formats

The custom instructions executed by the CFU utilize a specific opcode space in the rv32 32-bit
instruction encoding space that has been explicitly reserved for user-defined extensions by the
RISC-V specifications ("Guaranteed Non-Standard Encoding Space"). The NEORV32 CFU uses the
custom-0 and custom-1 opcodes to identify the instruction implemented by the CFU and to
differentiate between the predefined instruction formats.

The NEORV32 RISC-V Processor Visit on GitHub

154 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/ug/#_adding_custom_hardware_modules
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

The NEORV32 CFU utilizes these two opcodes to support user-defined R3-type instructions (2 source
registers, 1 destination register) and R4-type instructions (3 source registers, 1 destination register).
Both instruction formats are compliant to the RISC-V specification.

• custom-0: 0001011 RISC-V standard, used for NEORV32 CFU R3-Type Instructions (3x register
addresses)

• custom-1: 0101011 RISC-V standard, used for NEORV32 CFU R4-Type Instructions (4x register
addresses)


The provided instructions formats are predefined to allow an easy integration
framework. However, system designers are free to ignore these and use their own
instruction types and formats.

CFU R3-Type Instructions

The R3-type CFU instructions operate on two source registers rs1 and rs2 and return the processing
result to the destination register rd. The actual operation can be defined by using the funct7 and
funct3 bit fields. These immediates can also be used to pass additional data to the CFU like offsets,
look-up-tables addresses or shift-amounts. However, the actual functionality is entirely user-
defined. Note that all immediate values are always compile-time-static.

Example operation: rd ⇐ rs1 xnor rs2 (bit-wise logical XNOR)

Figure 10. CFU R3-type instruction format

• funct7: 7-bit immediate (immediate data or function select)

• rs2: address of second source register (providing 32-bit source data)

• rs1: address of first source register (providing 32-bit source data)

• funct3: 3-bit immediate (immediate data or function select)

• rd: address of destination register (32-bit processing result)

• opcode: 0001011 (RISC-V custom-0 opcode)



Instruction encoding space

By using the funct7 and funct3 bit fields entirely for selecting the actual operation
a total of 1024 custom R3-type instructions can be implemented (7-bit + 3-bit = 10
bit → 1024 different values).

CFU R4-Type Instructions

The R4-type CFU instructions operate on three source registers rs1, rs2 and rs2 and return the
processing result to the destination register rd. The actual operation can be defined by using the
funct3 bit field. Alternatively, this immediate can also be used to pass additional data to the CFU like

The NEORV32 RISC-V Processor Visit on GitHub

155 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

offsets, look-up-tables addresses or shift-amounts. However, the actual functionality is entirely
user-defined. Note that all immediate values are always compile-time-static.

Example operation: rd ⇐ (rs1 * rs2 + rs3)[31:0] (multiply-and-accumulate; "MAC")

Figure 11. CFU R4-type instruction format

• rs3: address of third source register (providing 32-bit source data)

• rs2: address of second source register (providing 32-bit source data)

• rs1: address of first source register (providing 32-bit source data)

• funct3: 3-bit immediate (immediate data or function select)

• rd: address of destination register (32-bit processing result)

• opcode: 0101011 (RISC-V custom-1 opcode)

• ⚠️ bits [26:25] of the R4-type instruction word are unused. However, these bits are ignored by
CPU’s instruction decoder and can be retrieved via the CFU’s funct7_i(6 downto 5) signal.


Instruction encoding space

By using the funct3 bit field entirely for selecting the actual operation a total of 8
custom R4-type instructions can be implemented (3-bit → 8 different values).


Re-purposing R4-type instructions as additional R3-type instructions

Advanced user can use the custom-1 opcode to implement additional R3-type
instructions instead of the predefined r4-type instructions.

3.7.2. Using Custom Instructions in Software

The custom instructions provided by the CFU can be used in plain C code by using intrinsics.
Intrinsics behave like "normal" C functions but under the hood they are a set of macros that hide
the complexity of inline assembly, which is used to construct the custom 32-bit instruction words.
Using intrinsics removes the need to modify the compiler, built-in libraries or the assembler when
using custom instructions. Each intrinsic will be compiled into a single 32-bit instruction word
without any overhead providing maximum code efficiency.

The NEORV32 software framework provides two pre-defined prototypes for custom instructions,
which are defined in sw/lib/include/neorv32_cpu_cfu.h:

Listing 12. CFU instruction prototypes

uint32_t neorv32_cfu_r3_instr(funct7, funct3, rs1, rs2); // R3-type instructions
uint32_t neorv32_cfu_r4_instr(funct3, rs1, rs2, rs3); // R4-type instructions

The NEORV32 RISC-V Processor Visit on GitHub

156 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

The intrinsic functions always return a 32-bit value of type uint32_t (the processing result), which
can be discarded if not needed. Each intrinsic function requires several arguments depending on
the instruction type/format:

• funct7 - 7-bit immediate (R3-type)

• funct3 - 3-bit immediate (R3-type, R4-type)

• rs1 - source operand 1, 32-bit (R3-type, R4-type)

• rs2 - source operand 2, 32-bit (R3-type, R4-type)

• rs3 - source operand 3, 32-bit (R4-type)

The funct3 and funct7 bit-fields are used to pass 3-bit or 7-bit literals to the CFU. The rs1, rs2 and rs3
arguments pass the actual data to the CFU via register addresses. These register arguments can be
populated with variables or literals; the compiler will add the required code to move the data into a
register before passing it to the CFU. The following examples shows how to pass arguments:

Listing 13. CFU instruction usage example

uint32_t tmp = some_function();
...
uint32_t res = neorv32_cfu_r3_instr(0b0000000, 0b101, tmp, 123);
uint32_t foo = neorv32_cfu_r4_instr(0b011, tmp, res, (uint32_t)some_array[i]);
neorv32_cfu_r3_instr(0b0100100, 0b001, tmp, foo); // discard result


CFU Example Program

There is an example program for the CFU, which shows how to use the default CFU
hardware module. This example program is located in sw/example/demo_cfu.

3.7.3. CFU Control and Status Registers (CFU-CSRs)

The CPU provides up to four control and status registers (cfureg*) to be used within the CFU. These
CSRs are mapped to the "custom user-mode read/write" CSR address space, which is explicitly
reserved for platform-specific application by the RISC-V spec. For example, these CSRs can be used
to pass additional operands to the CFU, to obtain additional results, to check processing status or to
configure operation modes.

Listing 14. CFU CSR Access Example

neorv32_cpu_csr_write(CSR_CFUREG0, 0xabcdabcd); // write data to CFU CSR 0
uint32_t tmp = neorv32_cpu_csr_read(CSR_CFUREG3); // read data from CFU CSR 3



Additional CFU-internal CSRs

If more than four CFU-internal CSRs are required the designer can implement an
"indirect access mechanism" based on just two of the default CSRs: one CSR is used
to configure the index while the other is used as alias to exchange data with the

The NEORV32 RISC-V Processor Visit on GitHub

157 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

indexed CFU-internal CSR - this concept is similar to the RISC-V Indirect CSR Access
Extension Specification (Smcsrind).


Security Considerations

The CFU CSRs are mapped to the user-mode CSR space so software running at any
privilege level can access these CSRs.

3.7.4. Custom Instructions Hardware

The actual functionality of the CFU’s custom instructions is defined by the user-defined logic inside
the CFU hardware module (rtl/core/neorv32_cpu_cp_cfu.vhd). This file is highly commented to
explain the interface and to illustrate hardware design considerations.

CFU operations can be entirely combinatorial (like bit-reversal) so the result is available at the end
of the current clock cycle. However, operations can also take several clock cycles to complete (like
multiplications) and may also include internal states and memories.



CFU Hardware Resource Requirements

Enabling the CFU and actually implementing R4-type instructions (or more
precisely, using the third register source rs3) will add an additional read port to
the core’s register file increasing resource requirements of the register file by 50%.



CFU Execution Time

The CFU has to complete computation within a bound time window (default = 512
clock cycles). Otherwise, the CFU operation is terminated by the CPU execution
logic and an illegal instruction exception is raised. See section CPU Arithmetic
Logic Unit for more information.



CFU Exception

The CFU can intentionally raise an illegal instruction exception by not asserting
the done at all causing an execution timeout. For example this can be used to signal
invalid configurations/operations to the runtime environment. See the
documentation in the CFU’s VHDL source file for more information.

The NEORV32 RISC-V Processor Visit on GitHub

158 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.8. Control and Status Registers (CSRs)
The following table shows a summary of all available NEORV32 CSRs. The address field defines the
CSR address for the CSR access instructions. The "Name [ASM]" column provides the CSR name
aliases that can be used in (inline) assembly. The "Name [C]" column lists the name aliases that are
defined by the NEORV32 core library. These can be used in plain C code. The "Access" column shows
the minimal required privilege mode required for accessing the according CSR (M = machine-mode,
U = user-mode, D = debug-mode) and the read/write capabilities (RW = read-write, RO = read-only)



Unused, Reserved, Unimplemented and Disabled CSRs

All CSRs and CSR bits that are not listed in the table below are unimplemented and
are hardwired to zero. Additionally, CSRs that are unavailable ("disabled") because
the according ISA extension is not enabled are also considered unimplemented and
are also hardwired to zero. Any access to such a CSR will raise an illegal
instruction exception. All writable CSRs provide WARL behavior (write all values;
read only legal values). Application software should always read back a CSR after
writing to check if the targeted bits can actually be modified.

Table 71. NEORV32 Control and Status Registers (CSRs)

Addres
s

Name [ASM] Name [C] Ac
ces

s

Description

Floating-Point CSRs

0x001 fflags CSR_FFLAGS UR
W

Floating-point accrued exceptions

0x002 frm CSR_FRM UR
W

Floating-point dynamic rounding mode

0x003 fcsr CSR_FCSR UR
W

Floating-point control and status

Machine Trap Setup CSRs

0x300 mstatus CSR_MSTATUS M
R
W

Machine status register - low word

0x301 misa CSR_MISA M
R
W

Machine CPU ISA and extensions

0x304 mie CSR_MIE M
R
W

Machine interrupt enable register

The NEORV32 RISC-V Processor Visit on GitHub

159 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Addres
s

Name [ASM] Name [C] Ac
ces

s

Description

0x305 mtvec CSR_MTVEC M
R
W

Machine trap-handler base address for ALL
traps

0x306 mcounteren CSR_MCOUNTEREN M
R
W

Machine counter-enable register

0x310 mstatush CSR_MSTATUSH M
R
W

Machine status register - high word

Machine Configuration CSRs

0x30a menvcfg CSR_MENVCFG M
R
W

Machine environment configuration register -
low word

0x31a menvcfgh CSR_MENVCFGH M
R
W

Machine environment configuration register -
high word

Machine Counter Setup CSRs

0x320 mcountinhibit CSR_MCOUNTINHIBIT M
R
W

Machine counter-inhibit register

Machine Trap Handling CSRs

0x340 mscratch CSR_MSCRATCH M
R
W

Machine scratch register

0x341 mepc CSR_MEPC M
R
W

Machine exception program counter

0x342 mcause CSR_MCAUSE M
R
W

Machine trap cause

0x343 mtval CSR_MTVAL M
R
W

Machine trap value

0x344 mip CSR_MIP M
R
W

Machine interrupt pending register

The NEORV32 RISC-V Processor Visit on GitHub

160 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Addres
s

Name [ASM] Name [C] Ac
ces

s

Description

0x34a mtinst CSR_MTINST M
R
W

Machine trap instruction

Machine Physical Memory Protection CSRs

0x3a0 ..
0x303

pmpcfg0 ..
pmpcfg3

CSR_PMPCFG0 ..
CSR_PMPCFG3

M
R
W

Physical memory protection configuration
registers

0x3b0 ..
0x3bf

pmpaddr0 ..
pmpaddr15

CSR_PMPADDR0 ..
CSR_PMPADDR15

M
R
W

Physical memory protection address registers

Trigger Module CSRs

0x7a0 tselect CSR_TSELECT M
R
W

Trigger select register

0x7a1 tdata1 CSR_TDATA1 M
R
W

Trigger data register 1

0x7a2 tdata2 CSR_TDATA2 M
R
W

Trigger data register 2

0x7a4 tinfo CSR_TINFO M
R
W

Trigger information register

CPU Debug Mode CSRs

0x7b0 dcsr - DR
W

Debug control and status register

0x7b1 dpc - DR
W

Debug program counter

0x7b2 dscratch0 - DR
W

Debug scratch register 0

(Machine) Counter and Timer CSRs

0xb00 mcycle CSR_MCYCLE M
R
W

Machine cycle counter low word

The NEORV32 RISC-V Processor Visit on GitHub

161 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Addres
s

Name [ASM] Name [C] Ac
ces

s

Description

0xb02 minstret CSR_MINSTRET M
R
W

Machine instruction-retired counter low word

0xb80 mcycleh CSR_MCYCLEH M
R
W

Machine cycle counter high word

0xb82 minstreth CSR_MINSTRETH M
R
W

Machine instruction-retired counter high
word

0xc00 cycle CSR_CYCLE UR
O

Cycle counter low word

0xc02 instret CSR_INSTRET UR
O

Instruction-retired counter low word

0xc80 cycleh CSR_CYCLEH UR
O

Cycle counter high word

0xc82 instreth CSR_INSTRETH UR
O

Instruction-retired counter high word

Hardware Performance Monitors (HPM) CSRs

0x323 ..
0x32f

mhpmevent3 ..
mhpmevent15

CSR_MHPMEVENT3 ..
CSR_MHPMEVENT15

M
R
W

Machine performance-monitoring event select
for counter 3..15

0xb03 ..
0xb0f

mhpmcounter3 ..
mhpmcounter15

CSR_MHPMCOUNTER3 ..
CSR_MHPMCOUNTER15

M
R
W

Machine performance-monitoring counter
3..15 low word

0xb83 ..
0xb8f

mhpmcounter3h ..
mhpmcounter15h

CSR_MHPMCOUNTER3H ..
CSR_MHPMCOUNTER15H

M
R
W

Machine performance-monitoring counter
3..15 high word

Machine Information CSRs

0xf11 mvendorid CSR_MVENDORID M
RO

Machine vendor ID

0xf12 marchid CSR_MARCHID M
RO

Machine architecture ID

0xf13 mimpid CSR_MIMPID M
RO

Machine implementation ID / version

0xf14 mhartid CSR_MHARTID M
RO

Machine hardware thread ID

The NEORV32 RISC-V Processor Visit on GitHub

162 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Addres
s

Name [ASM] Name [C] Ac
ces

s

Description

0xf15 mconfigptr CSR_MCONFIGPTR M
RO

Machine configuration pointer register

NEORV32-Specific CSRs

0xbc0 mxiccsreg CSR_MXICCSREG M
R
W

Inter-core communication status register

0xbc1 mxiccdata CSR_MXICCDATA M
R
W

Inter-core communication data register

0x800 ..
0x803

cfureg0 ..
cfureg3

CSR_CFUCREG0 ..
CSR_CFUCREG3

UR
W

Custom CFU registers 0 to 3

0xfc0 mxisa CSR_MXISA M
RO

Extended machine CPU ISA and extensions

The NEORV32 RISC-V Processor Visit on GitHub

163 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.8.1. Floating-Point CSRs

fflags

Name Floating-point accrued exceptions

Address 0x001

Reset
value

0x00000000

ISA Zicsr & Zfinx

Descripti
on

FPU status flags.

Table 72. fflags CSR bits

Bit R/W Function

0 r/w NX: inexact

1 r/w UF: underflow

2 r/w OF: overflow

3 r/w DZ: division by zero

4 r/w NV: invalid operation

frm

Name Floating-point dynamic rounding mode

Address 0x002

Reset
value

0x00000000

ISA Zicsr & Zfinx

Descripti
on

The frm CSR is used to configure the rounding mode of the FPU.

Table 73. frm CSR bits

Bit R/W Function

2:0 r/w Rounding mode

fcsr

Name Floating-point control and status register

The NEORV32 RISC-V Processor Visit on GitHub

164 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Address 0x003

Reset
value

0x00000000

ISA Zicsr & Zfinx

Descripti
on

The fcsr provides combined access to the fflags and frm flags.

Table 74. fcsr CSR bits

Bit R/W Function

4:0 r/w Accrued exception flags (fflags)

7:5 r/w Rounding mode (frm)

The NEORV32 RISC-V Processor Visit on GitHub

165 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.8.2. Machine Trap Setup CSRs

mstatus

Name Machine status register - low word

Address 0x300

Reset
value

0x00001800

ISA Zicsr

Descripti
on

The mstatus CSR is used to configure general machine environment parameters.

Table 75. mstatus CSR bits

Bit Name [C] R/W Function

3 CSR_MSTATUS_MIE r/w MIE: Machine-mode interrupt enable flag

7 CSR_MSTATUS_MPIE r/w MPIE: Previous machine-mode interrupt enable flag state

12:11 CSR_MSTATUS_MPP_H :
CSR_MSTATUS_MPP_L

r/w MPP: Previous machine privilege mode, 11 = machine-mode
"M", 00 = user-mode "U"; other values will fall-back to machine-
mode

17 CSR_MSTATUS_MPRV r/w MPRV: Effective privilege mode for load/stores; use MPP as
effective privilege mode when set; hardwired to zero if user-
mode not implemented

21 CSR_MSTATUS_TW r/w TW: Trap on execution of wfi instruction in user mode when
set; hardwired to zero if user-mode not implemented



If the core is in user-mode, machine-mode interrupts are globally enabled even if
mstatus.mie is cleared: "Interrupts for higher-privilege modes, y>x, are always
globally enabled regardless of the setting of the global yIE bit for the higher-
privilege mode." - RISC-V ISA Spec.

misa

Name ISA and extensions

Address 0x301

Reset
value

DEFINED, according to enabled ISA extensions

ISA Zicsr

Descripti
on

The misa CSR provides information regarding the availability of basic RISC-V ISa
extensions.

The NEORV32 RISC-V Processor Visit on GitHub

166 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32



The NEORV32 misa CSR is read-only. Hence, active CPU extensions are entirely
defined by pre-synthesis configurations and cannot be switched on/off during
runtime. For compatibility reasons any write access to this CSR is simply ignored
and will not cause an illegal instruction exception.

Table 76. misa CSR bits

Bit Name [C] R/W Function

1 CSR_MISA_B_EXT r/- B: CPU extension (bit-manipulation) available, set when B ISA
Extension enabled

2 CSR_MISA_C_EXT r/- C: CPU extension (compressed instruction) available, set when
C ISA Extension enabled

4 CSR_MISA_E_EXT r/- E: CPU extension (embedded) available, set when E ISA
Extension enabled

8 CSR_MISA_I_EXT r/- I: CPU base ISA, cleared when E ISA Extension enabled

12 CSR_MISA_M_EXT r/- M: CPU extension (mul/div) available, set when M ISA Extension
enabled

20 CSR_MISA_U_EXT r/- U: CPU extension (user mode) available, set when U ISA
Extension enabled

23 CSR_MISA_X_EXT r/- X: bit is always set to indicate non-standard / NEORV32-specific
extensions

31:30 CSR_MISA_MXL_HI_EXT
:

CSR_MISA_MXL_LO_EXT

r/- MXL: 32-bit architecture indicator (always 01)


Machine-mode software can discover available Z* sub-extensions (like Zicsr or
Zfinx) by checking the NEORV32-specific mxisa CSR.

mie

Name Machine interrupt-enable register

Address 0x304

Reset
value

0x00000000

ISA Zicsr

Descripti
on

The mie CSR is used to enable/disable individual interrupt sources.

Table 77. mie CSR bits

The NEORV32 RISC-V Processor Visit on GitHub

167 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Bit Name [C] R/W Function

3 CSR_MIE_MSIE r/w MSIE: Machine software interrupt enable (from Core Local
Interruptor (CLINT))

7 CSR_MIE_MTIE r/w MTIE: Machine timer interrupt enable (from Core Local
Interruptor (CLINT))

11 CSR_MIE_MEIE r/w MEIE: Machine external interrupt enable

31:16 CSR_MIE_FIRQ15E :
CSR_MIE_FIRQ0E

r/w Fast interrupt channel 15..0 enable

mtvec

Name Machine trap-handler base address

Address 0x305

Reset
value

0x00000000

ISA Zicsr

Descripti
on

The mtvec CSR holds the trap vector configuration.

Table 78. mtvec CSR bits

Bit R/W Function

1:0 r/w MODE: mode configuration, 00 = DIRECT, 01 = VECTORED; other encodings are
reserved.

31:2 r/w BASE: in DIRECT mode = 4-byte-aligned base address of trap base handler, all
traps jump to pc = BASE; in VECTORED mode = 128-byte-aligned base address of
trap vector table, interrupts cause a jump to pc = BASE + 4 * mcause and
exceptions a jump to pc = BASE.



Interrupt Latency

The vectored mtvec mode is useful for reducing the time between interrupt request
(IRQ) and servicing it (ISR). As software does not need to determine the interrupt
cause the reduction in latency can be 5 to 10 times and as low as 26 cycles.

mcounteren

Name Machine counter enable

Address 0x306

The NEORV32 RISC-V Processor Visit on GitHub

168 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Reset
value

0x00000000

ISA Zicsr & Zicntr & U

Descripti
on

The mcounteren CSR is used to constrain user-mode access to the CPU’s counter CSRs.

Table 79. mcounteren CSR bits

Bit Name
[C]

R/W

Function 0 CSR_MCOUNTEREN_CY

r/w CY:
User-

mode is
allowed
to read
cycle[h]

CSRs
when set

1

- r/- TM: not implemented, hardwired to zero

2 CSR_MCOU
NTEREN_I

R

r/w

IR: User-
mode is
allowed
to read
instret[
h] CSRs

when set

31:3 -

mstatush

Name Machine status register - high word

Address 0x310

Reset
value

0x00000000

ISA Zicsr

Descripti
on

The features of this CSR are not implemented yet. The register is read-only and always
returns zero.

The NEORV32 RISC-V Processor Visit on GitHub

169 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.8.3. Machine Trap Handling CSRs

mscratch

Name Scratch register for machine trap handlers

Address 0x340

Reset
value

0x00000000

ISA Zicsr

Descripti
on

The mscratch is a general-purpose machine-mode scratch register.

mepc

Name Machine exception program counter

Address 0x341

Reset
value

0x00000000

ISA Zicsr

Descripti
on

The mepc CSR provides the instruction address where execution has stopped/failed
when an interrupt is triggered / an exception is raised. See section Traps, Exceptions
and Interrupts for a list of all legal values. The mret instruction will return to the
address stored in mepc by automatically moving mepc to the program counter.


mepc[0] is hardwired to zero. If IALIGN = 32 (i.e. C ISA Extension is disabled) then
mepc[1] is also hardwired to zero.

mcause

Name Machine trap cause

Address 0x342

Reset
value

0x00000000

ISA Zicsr

Descripti
on

The mcause CSRs shows the exact cause of a trap. See section Traps, Exceptions and
Interrupts for a list of all legal values.

Table 80. mcause CSR bits

The NEORV32 RISC-V Processor Visit on GitHub

170 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Bit R/W Function

4:0 r/w Exception code: see NEORV32 Trap Listing

31 r/w Interrupt: 1 if the trap is caused by an interrupt (0 if the trap is caused by an
exception)

mtval

Name Machine trap value

Address 0x343

Reset
value

0x00000000

ISA Zicsr

Descripti
on

The mtval CSR provides additional information why a trap was entered. See section
Traps, Exceptions and Interrupts for more information.



Read-Only

Note that the NEORV32 mtval CSR is updated by the hardware only and cannot be
written from software. However, any write-access will be ignored and will not
cause an exception to maintain RISC-V compatibility.

mip

Name Machine interrupt pending

Address 0x344

Reset
value

0x00000000

ISA Zicsr

Descripti
on

The mip CSR shows currently pending machine-mode interrupt requests. Any write
access to this register is ignored.

Table 81. mip CSR bits

Bit Name [C] R/W Function

3 CSR_MIP_MSIP r/- MSIP: Machine software interrupt pending, triggered by msi_i
top port (see CPU Top Entity - Signals); cleared by source-
specific mechanism

The NEORV32 RISC-V Processor Visit on GitHub

171 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Bit Name [C] R/W Function

7 CSR_MIP_MTIP r/- MTIP: Machine timer interrupt pending, triggered by mei_i top
port (see CPU Top Entity - Signals) or by the processor-internal
Core Local Interruptor (CLINT); cleared by source-specific
mechanism

11 CSR_MIP_MEIP r/- MEIP: Machine external interrupt pending, triggered by mti_i
top port (see CPU Top Entity - Signals) or by the processor-
internal Core Local Interruptor (CLINT); cleared by source-
specific mechanism

31:16 CSR_MIP_FIRQ15P :
CSR_MIP_FIRQ0P

r/- FIRQxP: Fast interrupt channel 15..0 pending, see NEORV32-
Specific Fast Interrupt Requests; cleared by source-specific
mechanism


FIRQ Channel Mapping

See section NEORV32-Specific Fast Interrupt Requests for the mapping of the FIRQ
channels and the according interrupt-triggering processor module.

mtinst

Name Machine trap instruction

Address 0x34a

Reset
value

0x00000000

ISA Zicsr

Descripti
on

The mtinst CSR provides additional information why a trap was entered. See section
Traps, Exceptions and Interrupts for more information.



Read-Only

Note that the NEORV32 mtinst CSR is updated by the hardware only and cannot be
written from software. However, any write-access will be ignored and will not
cause an exception to maintain RISC-V compatibility.



Instruction Transformation

The RISC-V priv. spec. suggests that the instruction word written to mtinst by the
hardware should be "transformed". However, the NEORV32 mtinst CSR uses a
simplified transformation scheme: if the trap-causing instruction is a standard 32-
bit instruction, mtinst contains the exact instruction word that caused the trap. If
the trap-causing instruction is a compressed instruction, mtinst contains the de-
compressed 32-bit equivalent with bit 1 being cleared while all remaining bits
represent the pre-decoded 32-bit instruction equivalent.

The NEORV32 RISC-V Processor Visit on GitHub

172 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.8.4. Machine Configuration CSRs

menvcfg

Name Machine environment configuration register - low word

Address 0x30a

Reset
value

0x00000000

ISA Zicsr & U

Descripti
on

Currently, the features of this CSR are not supported. Hence, the entire register is
hardwired to all-zero.

menvcfgh

Name Machine environment configuration register - high word

Address 0x31a

Reset
value

0x00000000

ISA Zicsr & U

Descripti
on

Currently, the features of this CSR are not supported. Hence, the entire register is
hardwired to all-zero.

The NEORV32 RISC-V Processor Visit on GitHub

173 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.8.5. Machine Physical Memory Protection CSRs

The physical memory protection system is configured via the PMP_NUM_REGIONS and
PMP_MIN_GRANULARITY top entity generics. PMP_NUM_REGIONS defines the total number of implemented
regions. Note that the maximum number of regions is constrained to 16. If trying to access a PMP-
related CSR beyond PMP_NUM_REGIONS no illegal instruction exception is triggered. The according
CSRs are read-only (writes are ignored) and always return zero. See section Smpmp ISA Extension for
more information.

pmpcfg

Name Physical memory protection region configuration registers

Address 0x3a0 (pmpcfg0)

0x3a1 (pmpcfg1)

0x3a2 (pmpcfg2)

0x3a3 (pmpcfg3)

Reset
value

0x00000000

ISA Zicsr & Smpmp

Descripti
on

Configuration of physical memory protection regions. Each region provides an
individual 8-bit array in these CSRs.

Table 82. pmpcfg* CSR Bits

Bit Name [C] R/W Function

0 PMPCFG_R r/w R: Read permission

1 PMPCFG_W r/w W: Write permission

2 PMPCFG_X r/w X: Execute permission

4:3 PMPCFG_A_MS
B :

PMPCFG_A_LS
B

r/w A: Mode configuration (00 = OFF, 01 = TOR, 10 = NA4, 11 = NAPOT)

7 PMPCFG_L r/w L: Lock bit, prevents further write accesses, also enforces access rights
in machine-mode, can only be cleared by CPU reset



Implemented Modes

In order to reduce the CPU size certain PMP modes (A bits) can be excluded from
synthesis. Use the PMP_TOR_MODE_EN and PMP_NAP_MODE_EN Processor Top Entity -
Generics to control implementation of the according modes.

The NEORV32 RISC-V Processor Visit on GitHub

174 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

pmpaddr

Name Physical memory protection region address registers

Address 0x3b0 (pmpaddr1)

0x3b1 (pmpaddr2)

0x3b2 (pmpaddr3)

0x3b3 (pmpaddr4)

0x3b4 (pmpaddr5)

0x3b5 (pmpaddr6)

0x3b6 (pmpaddr6)

0x3b7 (pmpaddr7)

0x3b8 (pmpaddr8)

0x3b9 (pmpaddr9)

0x3ba (pmpaddr10)

0x3bb (pmpaddr11)

0x3bc (pmpaddr12)

0x3bd (pmpaddr13)

0x3be (pmpaddr14)

0x3bf (pmpaddr15)

Reset
value

0x00000000

ISA Zicsr & Smpmp

Descripti
on

Region address/boundaries configuration.

Table 83. pmpaddr* CSR Bits

Bit R/W Desc
ripti
on

31:30

r-w address bits
33 downto

32´,
hardwired

to zero

29:0 r/w

The NEORV32 RISC-V Processor Visit on GitHub

175 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.8.6. (Machine) Counter and Timer CSRs



time[h] CSRs (Wall Clock Time)

The NEORV32 does not implement the user-mode time[h] registers. Any access to
these registers will trap. It is recommended that the trap handler software
provides a means of accessing the machine timer oft the Core Local Interruptor
(CLINT).



Instruction Retired Counter Increment

The [m]instret[h] counter always increments when a instruction enters the
pipeline’s execute stage no matter if this instruction is actually going to retire or if
it causes an exception.

cycle[h]

Name Cycle counter

Address 0xc00 (cycle)

0xc80 (cycleh)

Reset
value

0x00000000

ISA Zicsr & Zicntr

Descripti
on

The cycle[h] CSRs are user-mode shadow copies of the according mcycle[h] CSRs. The
user-mode counter are read-only. Any write access will raise an illegal instruction
exception.

instret[h]

Name Instructions-retired counter

Address 0xc02 (instret)

0xc82 (instreth)

Reset
value

0x00000000

ISA Zicsr & Zicntr

Descripti
on

The instret[h] CSRs are user-mode shadow copies of the according minstret[h] CSRs.
The user-mode counter are read-only. Any write access will raise an illegal instruction
exception.

The NEORV32 RISC-V Processor Visit on GitHub

176 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

mcycle[h]

Name Machine cycle counter

Address 0xb00 (mcycle)

0xb80 (mcycleh)

Reset
value

0x00000000

ISA Zicsr & Zicntr

Descripti
on

If not halted via the mcountinhibit CSR the cycle[h] CSRs will increment with every
active CPU clock cycle (CPU not in sleep mode). These registers are read/write only for
machine-mode software.

minstret[h]

Name Machine instructions-retired counter

Address 0xb02 (minstret)

0xb82 (minstreth)

Reset
value

0x00000000

ISA Zicsr & Zicntr

Descripti
on

If not halted via the mcountinhibit CSR the minstret[h] CSRs will increment with every
retired instruction. These registers are read/write only for machine-mode software


Instruction Retiring

Note that all executed instruction do increment the [m]instret[h] counters even if
they do not retire (e.g. if the instruction causes an exception).

The NEORV32 RISC-V Processor Visit on GitHub

177 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.8.7. Hardware Performance Monitors (HPM) CSRs



Machine-Mode HPMs Only

Note that only the machine-mode hardware performance counter CSR are
available (mhpmcounter*[h]). Accessing any user-mode HPM CSR (hpmcounter*[h])
will raise an illegal instruction exception.

The actual number of implemented hardware performance monitors is configured via the
HPM_NUM_CNTS top entity generic, Note that always all 13 HPM counter and configuration registers
(mhpmcounter*[h]) are implemented, but only the actually configured ones are implemented as "real"
physical registers - the remaining ones will be hardwired to zero. If trying to access an HPM-related
CSR beyond HPM_NUM_CNTS no illegal instruction exception is triggered. These CSRs are read-only,
writes are ignored and reads always return zero.

The total counter width of the HPMs can be configured before synthesis via the HPM_CNT_WIDTH
generic (0..64-bit). If HPM_NUM_CNTS is less than 64, all remaining MSB-aligned bits are hardwired to
zero.

mhpmevent

Name Machine hardware performance monitor event select

Address 0x233 (mhpmevent3)

0x234 (mhpmevent4)

0x235 (mhpmevent5)

0x236 (mhpmevent6)

0x237 (mhpmevent7)

0x238 (mhpmevent8)

0x239 (mhpmevent9)

0x23a (mhpmevent10)

0x23b (mhpmevent11)

0x23c (mhpmevent12)

0x23d (mhpmevent13)

0x23e (mhpmevent14)

0x23f (mhpmevent15)

Reset
value

0x00000000

ISA Zicsr & Zihpm

The NEORV32 RISC-V Processor Visit on GitHub

178 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Descripti
on

The value in these CSRs define the architectural events that cause an increment of the
according mhpmcounter*[h] counter(s). All available events are listed in the table below.
If more than one event is selected, the according counter will increment if any of the
enabled events is observed (logical OR). Note that the counter will only increment by 1
step per clock cycle even if more than one trigger event is observed.

Table 84. mhpmevent* CSR Bits

Bit Name [C] R/W Event Description

RISC-V-compatible

0 HPMCNT_EVENT_CY r/w active clock cycle (CPU not in Sleep Mode)

1 HPMCNT_EVENT_TM r/- not implemented, hardwired to zero

2 HPMCNT_EVENT_IR r/w any executed instruction (16-bit/compressed or 32-
bit/uncompressed)

NEORV32-specific

3 HPMCNT_EVENT_COMPR r/w any executed 16-bit/compressed (C ISA Extension) instruction

4 HPMCNT_EVENT_WAIT_D
IS

r/w instruction dispatch wait cycle (wait for instruction prefetch-
buffer refill (CPU Control Unit IPB); caused by a fence
instruction, a control flow transfer or a instruction fetch bus
wait cycle)

5 HPMCNT_EVENT_WAIT_A
LU

r/w any delay/wait cycle caused by a multi-cycle CPU Arithmetic
Logic Unit operation

6 HPMCNT_EVENT_BRANCH r/w any executed branch instruction (unconditional, conditional-
taken or conditional-not-taken)

7 HPMCNT_EVENT_BRANCH
ED

r/w any control transfer operation (unconditional jump, taken
conditional branch or trap entry/exit)

8 HPMCNT_EVENT_LOAD r/w any executed load operation (including any atomic memory
operations)

9 HPMCNT_EVENT_STORE r/w any executed store operation (including any atomic memory
operations)

10 HPMCNT_EVENT_WAIT_L
SU

r/w any memory/bus/cache/etc. delay/wait cycle while executing
any load or store operation (caused by a data bus wait cycle))

11 HPMCNT_EVENT_TRAP r/w starting processing of any trap (Traps, Exceptions and
Interrupts)



Instruction Retiring ("Retired == Executed")

The CPU HPM/counter logic treats all executed instruction as "retired" even if they
raise an exception, cause an interrupt, trigger a privilege mode change or were not
meant to retire (i.e. claimed by the RISC-V spec.).

The NEORV32 RISC-V Processor Visit on GitHub

179 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

mhpmcounter[h]

Name Machine hardware performance monitor (HPM) counter

Address 0xb03, 0xb83 (mhpmcounter3, mhpmcounter3h)

0xb04, 0xb84 (mhpmcounter4, mhpmcounter4h)

0xb05, 0xb85 (mhpmcounter5, mhpmcounter5h)

0xb06, 0xb86 (mhpmcounter6, mhpmcounter6h)

0xb07, 0xb87 (mhpmcounter7, mhpmcounter7h)

0xb08, 0xb88 (mhpmcounter8, mhpmcounter8h)

0xb09, 0xb89 (mhpmcounter9, mhpmcounter9h)

0xb0a, 0xb8a (mhpmcounter10, mhpmcounter10h)

0xb0b, 0xb8b (mhpmcounter11, mhpmcounter11h)

0xb0c, 0xb8c (mhpmcounter12, mhpmcounter12h)

0xb0d, 0xb8d (mhpmcounter13, mhpmcounter13h)

0xb0e, 0xb8e (mhpmcounter14, mhpmcounter14h)

0xb0f, 0xb8f (mhpmcounter15, mhpmcounter15h)

Reset
value

0x00000000

ISA Zicsr & Zihpm

Descripti
on

If not halted via the mcountinhibit CSR the HPM counter CSR(s) increment whenever the
configured event from the according mhpmevent CSR occurs. The counter registers are
read/write for machine mode and are not accessible for lower-privileged software.

The NEORV32 RISC-V Processor Visit on GitHub

180 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.8.8. Machine Counter Setup CSRs

mcountinhibit

Name Machine counter-inhibit register

Address 0x320

Reset
value

0x00000000

ISA Zicsr

Descripti
on

Set bit to halt the according counter CSR.

Table 85. mcountinhibit CSR Bits

Bit Name [C] R/W Description

0 CSR_MCOUNTINHIBIT_I
R

r/w IR: Set to 1 to halt [m]instret[h]; hardwired to zero if Zicntr
ISA extension is disabled

1 - r/- TM: Hardwired to zero as time[h] CSRs are not implemented

2 CSR_MCOUNTINHIBIT_C
Y

r/w CY: Set to 1 to halt [m]cycle[h]; hardwired to zero if Zicntr ISA
extension is disabled

15:3 CSR_MCOUNTINHIBIT_H
PM3 :

CSR_MCOUNTINHIBIT_H
PM15

r/w HPMx: Set to 1 to halt [m]hpmcount*[h]; hardwired to zero if
Zihpm ISA extension is disabled

The NEORV32 RISC-V Processor Visit on GitHub

181 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.8.9. Machine Information CSRs

mvendorid

Name Machine vendor ID

Address 0xf11

Reset
value

DEFINED

ISA Zicsr

Descripti
on

Vendor ID (JEDEC identifier, lowest 11 bits), assigned via the JEDEC_ID top generic
(Processor Top Entity - Generics).

marchid

Name Machine architecture ID

Address 0xf12

Reset
value

0x00000013

ISA Zicsr

Descripti
on

The marchid CSR is read-only and provides the NEORV32 official RISC-V open-source
architecture ID (decimal: 19, 32-bit hexadecimal: 0x00000013).

mimpid

Name Machine implementation ID

Address 0xf13

Reset
value

DEFINED

ISA Zicsr

Descripti
on

The mimpid CSR is read-only and provides the version of the NEORV32 as BCD-coded
number (example: mimpid = 0x01020312 → 01.02.03.12 → version 1.2.3.12).

mhartid

Name Machine hardware thread ID

Address 0xf14

The NEORV32 RISC-V Processor Visit on GitHub

182 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Reset
value

DEFINED

ISA Zicsr

Descripti
on

The mhartid CSR is read-only and provides the core’s hart ID. For a multi-core system
each core’s hart ID is unique starting at 0 for the first core.

mconfigptr

Name Machine configuration pointer register

Address 0xf15

Reset
value

0x00000000

ISA Zicsr

Descripti
on

The features of this CSR are not implemented yet. The register is read-only and always
returns zero.

The NEORV32 RISC-V Processor Visit on GitHub

183 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.8.10. NEORV32-Specific CSRs



RISC-V-Compliant Mapping

All NEORV32-specific CSRs are mapped to addresses that are explicitly reserved for
custom/implementation-specific use (assured by the RISC-V privileged
specifications).

cfureg

Name Custom (user-defined) CFU CSRs

Address 0x800 (cfureg0)

0x801 (cfureg1)

0x802 (cfureg2)

0x803 (cfureg3)

Reset
value

0x00000000

ISA Zicsr & Zxcfu

Descripti
on

User-defined CSRs to be used within the Custom Functions Unit (CFU).

mxiccsreg

Name Inter-Core Communication (ICC) status register

Address 0xbc0

Reset
value

0x40000000

ISA Zicsr & X

Descripti
on

Shows the status of the core’s inter-core communication link (message queue / FIFO
status flags). The entire CSR is read-only. However, write accesses are ignored. This CSR
is hardwired to all-zero if the Dual-Core Configuration is disabled.

Table 86. mxiccsreg CSR Bits

Bit Name [C] R/W Description

0 CSR_MXICCSREG_RX_AVA
IL

r/- Set if RX data from the other core is available.

1 CSR_MXICCSREG_TX_FRE
E

r/- Set if there is free space for TX data for the other core.

31:2 - r/- Reserved; hardwired to zero.

The NEORV32 RISC-V Processor Visit on GitHub

184 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

mxiccdata

Name Inter-Core Communication (ICC) data register

Address 0xbc1

Reset
value

0x00000000

ISA Zicsr & X

Descripti
on

This CSR provides access to the inter-core communication message queues that are
implemented as simple FIFOs. Writing to this register will put data into the message
queue so it can be read by the other core. Reading from this register will return data
received from the other core (i.e. this CSR has side effects when reading). A read access
will return all-zero of no RX data is available from the other core. This CSR is
hardwired to all-zero if the Dual-Core Configuration is disabled.

mxisa

Name Machine extended ISA and extensions register

Address 0xfc0

Reset
value

DEFINED

ISA Zicsr & X

Descripti
on

The mxisa CSRs is a NEORV32-specific read-only CSR that helps machine-mode software
to discover additional ISA (sub-)extensions and CPU configuration options.

Table 87. mxisa CSR Bits

Bit Name [C] R/W Description

0 CSR_MXISA_ZICSR r/- Zicsr ISA Extension available

1 CSR_MXISA_ZIFENCEI r/- Zifencei ISA Extension available

2 CSR_MXISA_ZMMUL r/- Zmmul - ISA Extension available

3 CSR_MXISA_ZXCFU r/- Zxcfu ISA Extension available

4 CSR_MXISA_ZKT r/- Zkt ISA Extension available

5 CSR_MXISA_ZFINX r/- Zfinx ISA Extension available

6 CSR_MXISA_ZICOND r/- Zicond ISA Extension available

7 CSR_MXISA_ZICNTR r/- Zicntr ISA Extension available

8 CSR_MXISA_SMPMP r/- Smpmp ISA Extension available

The NEORV32 RISC-V Processor Visit on GitHub

185 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Bit Name [C] R/W Description

9 CSR_MXISA_ZIHPM r/- Zihpm ISA Extension available

10 CSR_MXISA_SDEXT r/- Sdext ISA Extension available

11 CSR_MXISA_SDTRIG r/- Sdtrig ISA Extension available

12 CSR_MXISA_ZBKX r/- Zbkx ISA Extension available

13 CSR_MXISA_ZKND r/- Zknd ISA Extension available

14 CSR_MXISA_ZKNE r/- Zkne ISA Extension available

15 CSR_MXISA_ZKNH r/- Zknh ISA Extension available

16 CSR_MXISA_ZBKB r/- Zbkb ISA Extension available

17 CSR_MXISA_ZBKC r/- Zbkc ISA Extension available

18 CSR_MXISA_ZKN r/- Zkn ISA Extension available

19 CSR_MXISA_ZKSH r/- Zksh ISA Extension available

20 CSR_MXISA_ZKSED r/- Zksed ISA Extension available

21 CSR_MXISA_ZKS r/- Zks ISA Extension available

22 CSR_MXISA_ZBA r/- Zba ISA Extension available

23 CSR_MXISA_ZBB r/- Zbb ISA Extension available

24 CSR_MXISA_ZBS r/- Zbs ISA Extension available

25 CSR_MXISA_ZAAMO r/- Zaamo ISA Extension available

28:26 - r/- reserved, hardwired to zero

27 CSR_MXISA_CLKGATE r/- sleep-mode clock gating implemented when set
(CPU_CLOCK_GATING_EN), see CPU Tuning Options

28 CSR_MXISA_RFHWRST r/- full hardware reset of register file available
when set (CPU_RF_HW_RST_EN), see CPU Tuning
Options

29 CSR_MXISA_FASTMUL r/- fast multiplication available when set
(CPU_FAST_MUL_EN), see CPU Tuning Options

30 CSR_MXISA_FASTSHIFT r/- fast shifts available when set (
CPU_FAST_SHIFT_EN), see CPU Tuning Options

31 CSR_MXISA_IS_SIM r/- set if CPU is being simulated

The NEORV32 RISC-V Processor Visit on GitHub

186 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.9. Traps, Exceptions and Interrupts
In this document the following terminology is used (derived from the RISC-V trace specification
available at https://github.com/riscv-non-isa/riscv-trace-spec):

• exception: an unusual condition occurring at run time associated (i.e. synchronous) with an
instruction in a RISC-V hart

• interrupt: an external asynchronous event that may cause a RISC-V hart to experience an
unexpected transfer of control

• trap: the transfer of control to a trap handler caused by either an exception or an interrupt

Whenever an exception or interrupt is triggered, the CPU switches to machine-mode (if not already
in machine-mode) and continues operation at the address being stored in the mtvec CSR. The cause
of the the trap can be determined via the mcause CSR. A list of all implemented mcause values and the
according description can be found below in section NEORV32 Trap Listing. The address that
reflects the current program counter when a trap was taken is stored to mepc CSR. Additional
information regarding the cause of the trap can be retrieved from the mtval and mtinst CSRs.

The traps are prioritized. If several exceptions occur at once only the one with highest priority is
triggered while all remaining exceptions are ignored and discarded. If several interrupts trigger at
once, the one with highest priority is serviced first while the remaining ones stay pending. After
completing the interrupt handler the interrupt with the second highest priority will get serviced
and so on until no further interrupts are pending.


Interrupts when in User-Mode

If the core is currently operating in less privileged user-mode, interrupts are
globally enabled even if mstatus.mie is cleared.



Interrupt Signal Requirements - Standard RISC-V Interrupts

All interrupt request signals are high-active. Once triggered, a interrupt request
line should stay high until it is explicitly acknowledged by a source-specific
mechanism (for example by writing to a specific memory-mapped register).



Instruction Atomicity and Forward-Progress

All instructions execute as atomic operations - interrupts can only trigger between
consecutive instructions. Additionally, if there is a permanent interrupt request,
exactly one instruction from the interrupted program will be executed before
another interrupt handler can start. This allows program progress even if there
are permanent interrupt requests.

3.9.1. Memory Access Exceptions

If a load operation causes any exception, the instruction’s destination register is not written at all.
Furthermore, exceptions caused by a misaligned memory address a physical memory protection

The NEORV32 RISC-V Processor Visit on GitHub

187 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/riscv-non-isa/riscv-trace-spec
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

fault do not trigger a memory access request at all.

For 32-bit-only instructions (= no C extension) the misaligned instruction exception is raised if bit 1
of the fetch address is set (i.e. not on a 32-bit boundary). If the C extension is implemented there will
never be a misaligned instruction exception at all.

3.9.2. Custom Fast Interrupt Request Lines

As a custom extension, the NEORV32 CPU features 16 fast interrupt request (FIRQ) lines via the
firq_i CPU top entity signals. These interrupts have custom configuration and status flags in the mie
and mip CSRs and also provide custom trap codes in mcause. These FIRQs are reserved for NEORV32
processor-internal usage only.

3.9.3. NEORV32 Trap Listing

The following tables show all traps that are currently supported by the NEORV32 CPU. It also shows
the prioritization and the CSR side-effects.


FIRQ Mapping

See section NEORV32-Specific Fast Interrupt Requests for the mapping of the FIRQ
channels to the according hardware modules.

Table Annotations

The "Prio." column shows the priority of each trap with the highest priority being 1. The "RTE Trap
ID" aliases are defined by the NEORV32 core library (the runtime environment RTE) and can be
used in plain C code when interacting with the pre-defined RTE function. The mcause, mepc, mtval and
mtinst columns show the value being written to the according CSRs when a trap is triggered:

• I-PC - address of intercepted instruction (instruction has not been executed yet)

• PC - address of instruction that caused the trap (instruction has been executed)

• ADR - bad data memory access address that caused the trap

• INS - the transformed/decompressed instruction word that caused the trap

• 0 - zero

Table 88. NEORV32 Trap Listing

Pr
io
.

mcause RTE Trap ID Cause mepc mtval mtins
t

Exceptions (synchronous to instruction execution)

1 0x00000001 TRAP_CODE_I_ACCESS instruction access fault I-PC 0 INS

2 0x00000002 TRAP_CODE_I_ILLEGAL illegal instruction PC 0 INS

3 0x00000000 TRAP_CODE_I_MISALIGNED instruction address misaligned PC 0 INS

The NEORV32 RISC-V Processor Visit on GitHub

188 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Pr
io
.

mcause RTE Trap ID Cause mepc mtval mtins
t

4 0x0000000b TRAP_CODE_MENV_CALL environment call from M-mode PC 0 INS

5 0x00000008 TRAP_CODE_UENV_CALL environment call from U-mode PC 0 INS

6 0x00000003 TRAP_CODE_BREAKPOINT software breakpoint / trigger
firing

PC 0 INS

7 0x00000006 TRAP_CODE_S_MISALIGNED store address misaligned PC ADR INS

8 0x00000004 TRAP_CODE_L_MISALIGNED load address misaligned PC ADR INS

9 0x00000007 TRAP_CODE_S_ACCESS store access fault PC ADR INS

10 0x00000005 TRAP_CODE_L_ACCESS load access fault PC ADR INS

Interrupts (asynchronous to instruction execution)

11 0x80000010 TRAP_CODE_FIRQ_0 fast interrupt request channel 0 I-PC 0 0

12 0x80000011 TRAP_CODE_FIRQ_1 fast interrupt request channel 1 I-PC 0 0

13 0x80000012 TRAP_CODE_FIRQ_2 fast interrupt request channel 2 I-PC 0 0

14 0x80000013 TRAP_CODE_FIRQ_3 fast interrupt request channel 3 I-PC 0 0

15 0x80000014 TRAP_CODE_FIRQ_4 fast interrupt request channel 4 I-PC 0 0

16 0x80000015 TRAP_CODE_FIRQ_5 fast interrupt request channel 5 I-PC 0 0

17 0x80000016 TRAP_CODE_FIRQ_6 fast interrupt request channel 6 I-PC 0 0

18 0x80000017 TRAP_CODE_FIRQ_7 fast interrupt request channel 7 I-PC 0 0

19 0x80000018 TRAP_CODE_FIRQ_8 fast interrupt request channel 8 I-PC 0 0

20 0x80000019 TRAP_CODE_FIRQ_9 fast interrupt request channel 9 I-PC 0 0

21 0x8000001a TRAP_CODE_FIRQ_10 fast interrupt request channel 10 I-PC 0 0

22 0x8000001b TRAP_CODE_FIRQ_11 fast interrupt request channel 11 I-PC 0 0

23 0x8000001c TRAP_CODE_FIRQ_12 fast interrupt request channel 12 I-PC 0 0

24 0x8000001d TRAP_CODE_FIRQ_13 fast interrupt request channel 13 I-PC 0 0

25 0x8000001e TRAP_CODE_FIRQ_14 fast interrupt request channel 14 I-PC 0 0

26 0x8000001f TRAP_CODE_FIRQ_15 fast interrupt request channel 15 I-PC 0 0

27 0x8000000b TRAP_CODE_MEI machine external interrupt
(MEI)

I-PC 0 0

28 0x80000003 TRAP_CODE_MSI machine software interrupt
(MSI)

I-PC 0 0

29 0x80000007 TRAP_CODE_MTI machine timer interrupt (MTI) I-PC 0 0

Table 89. NEORV32 Trap Description

The NEORV32 RISC-V Processor Visit on GitHub

189 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Trap ID [C] Triggered when …

TRAP_CODE_I_ACCESS bus timeout, bus access error or PMP rule violation during
instruction fetch

TRAP_CODE_I_ILLEGAL trying to execute an invalid instruction word (malformed or not
supported) or on a privilege violation

TRAP_CODE_I_MISALIGNED fetching a 32-bit instruction word that is not 32-bit-aligned (see note
below)

TRAP_CODE_MENV_CALL executing ecall instruction in machine-mode

TRAP_CODE_UENV_CALL executing ecall instruction in user-mode

TRAP_CODE_BREAKPOINT executing ebreak instruction or if Trigger Module fires

TRAP_CODE_S_MISALIGNED storing data to an address that is not naturally aligned to the data
size (half/word)

TRAP_CODE_L_MISALIGNED loading data from an address that is not naturally aligned to the data
size (half/word)

TRAP_CODE_L_ACCESS bus timeout, bus access error or PMP rule violation during load data
operation

TRAP_CODE_S_ACCESS bus timeout, bus access error or PMP rule violation during store
data operation

TRAP_CODE_FIRQ_* caused by interrupt-condition of processor-internal modules, see
NEORV32-Specific Fast Interrupt Requests

TRAP_CODE_MEI machine external interrupt (via dedicated Processor Top Entity -
Signals)

TRAP_CODE_MSI machine software interrupt (internal Core Local Interruptor (CLINT)
or via dedicated Processor Top Entity - Signals)

TRAP_CODE_MTI machine timer interrupt (internal Core Local Interruptor (CLINT) or
via dedicated Processor Top Entity - Signals)



Resumable Exceptions

Note that not all exceptions are resumable. For example, the "instruction access
fault" exception or the "instruction address misaligned" exception are not
resumable in most cases. These exception might indicate a fatal memory hardware
failure.

The NEORV32 RISC-V Processor Visit on GitHub

190 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

3.10. Dual-Core Configuration


Dual-Core Example Programs

A set of rather simple dual-core example programs can be found in
sw/example/demo_dual_core*.

Optionally, the CPU core can be implemented as symmetric multiprocessing (SMP) dual-core
system. This dual-core configuration is enabled by the DUAL_CORE_EN top generic. When enabled, two
core complexes are implemented. Each core complex consists of a CPU core and optional instruction
(I$) and data (D$) caches. Similar to the single-core Bus System, the instruction and data interfaces
are switched into a single bus interface by a prioritizing bus switch. The bus interfaces of both core
complexes are further switched into a single system bus using a round-robin arbiter.

Both CPU cores are fully identical and use the same ISA, tuning and cache configurations provided
by the according top generics. However, each core can be identified by the according "hart ID" that
can be retrieved from the mhartid CSR. CPU core 0 (the primary core) has mhartid = 0 while core 1
(the secondary core) has mhartid = 1.

The following table summarizes the most important aspects when using the dual-core
configuration.

CPU
configuration

Both cores use the same cache, CPU and ISA configuration provided by the
according top generics.

Debugging A special SMP openOCD script (sw/openocd/openocd_neorv32.dual_core.cfg) is
required to debug both cores at once. SMP-debugging is fully supported by the
RISC-V gdb port.

Clock and
reset

Both cores use the same global processor clock and reset. If CPU Clock Gating is
enabled, the clock of each core can be individually halted by putting the core into
Sleep Mode.

Address space Both cores have full access to the same physical Address Space.

The NEORV32 RISC-V Processor Visit on GitHub

191 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Interrupts All Processor Interrupts are routed to both cores. Hence, each core has access to
all NEORV32-Specific Fast Interrupt Requests (FIRQs). Additionally, the RISC-V
machine-level external interrupt (via the top mext_irq_i port) is also send to both
cores. In contrast, the RISC-V machine level software and timer interrupts are
core-exclusive (provided by the Core Local Interruptor (CLINT)).

RTE The NEORV32 Runtime Environment can be used for both cores. However, the
RTE needs to be explicitly initialized on each core (executing neorv32_rte_setup()).
Note that the installed trap handlers apply to both cores. The installed user-
defined trap handlers can determine the core’s ID to perform core-specific trap
handling.

Memory Each core has its own stack. The top of stack of core 0 is defined by the Linker
Script while the top of stack of core 1 has to be explicitly defined by core 0 (see
Dual-Core Boot). Both cores share the same heap, .data and .bss sections. Hence,
only core 0 setups the .data and .bss sections at boot-up.

Constructors
and
destructors

Constructors and destructors are executed by core 0 only (see section C Standard
Library).

Cache
coherency

Be aware that there is no cache snooping available. If any level-1 cache is enabled
(Processor-Internal Instruction Cache (iCACHE) and/or Processor-Internal Data
Cache (dCACHE)) care must be taken to prevent access to outdated data - either by
using cache synchronization (fence / fence.i instructions) or by using Atomic
Memory Access.

Inter-core
communicatio
n

See section Inter-Core Communication (ICC).

Bootloader Only core 0 will boot and execute the bootloader while core 1 is held in standby.

Booting See section Dual-Core Boot.

3.10.1. SMP Software Library

An SMP library provides basic functions for launching the secondary core and for performing
direct core-to-core communication:

neorv32_
smp.c

Online software reference (Doxygen)

neorv32_
smp.h

Online software reference (Doxygen)

3.10.2. Inter-Core Communication (ICC)

Both cores can communicate with each other via a direct point-to-point connection based on FIFO-
like message queues. These direct communication links are faster (in terms of latency) compared to
a memory-mapped or shared-memory communication. Additionally, communication using these

The NEORV32 RISC-V Processor Visit on GitHub

192 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__smp_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__smp_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

links is guaranteed to be atomic.

The inter-core communication (ICC) module is implemented as dedicated hardware module within
each CPU core (VHDL file rtl/core/neorv32_cpu_icc.vhd). This module is automatically included if
the dual-core option is enabled. Each core provides a 32-bit wide and 4 entries deep FIFO for
sending data to the other core. Hence, there are two FIFOs: one for sending data from core 0 to core
1 and another one for sending data the opposite way.

The ICC communication links are accessed via two NEORV32-specific CSRs. Hence, those FIFOs are
accessible only by the CPU core itself and cannot be accessed by the DMA or any other CPU core.

The mxiccsreg provides read-only status information about the core’s ICC links: bit 0 becomes set if
there is RX data available for this core (send from the the other core). Bit 1 is set as long there is free
space in this core’s TX data FIFO. The mxiccdata CSR is used for actual data send/receive operations.
Writing this register will put the according data word into the TX link FIFO of this core. Reading this
CSR will return a data word from the RX FIFO of this core.

The ICC FIFOs do not provide any interrupt capabilities. Software is expected to use the machine-
software interrupt of the receiving core (provided by the Core Local Interruptor (CLINT)) to inform
it about available messages.

3.10.3. Dual-Core Boot

After reset, both cores start booting. However, core 1 will - regardless of the Boot Configuration -
always enter Sleep Mode right inside the default Start-Up Code (crt0) that is linked with any
compiled application. The primary core (core 0) will continue booting, executing either the
Bootloader or the pre-installed image from the internal instruction memory (depending on the boot
configuration).

To boot-up core 1, the primary core has to use a special library function provided by the NEORV32
software framework:

Listing 15. CPU Core 1 launch function prototype (note that this function can only be executed on core 0)

int neorv32_smp_launch(int (*entry_point)(void), uint8_t* stack_memory, size_t
stack_size_bytes);

When executed, core 0 uses the Inter-Core Communication (ICC) to send launch data that includes
the entry point for core 1 (via entry_point) and the actual stack configuration (via stack_memory and
stack_size_bytes). Note that the main function for core 1 has to use a specific type (return int, no
arguments):

Listing 16. CPU Core 1 Main Function

int core1_main(void) {
 return 0; // return to crt0 and go to sleep mode
}

The NEORV32 RISC-V Processor Visit on GitHub

193 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32



Core 1 Stack Memory

The memory for the stack of core 1 (stack_memory) can be either statically allocated
(i.e. a global volatile memory array; placed in the .data or .bss section of core 0) or
dynamically allocated (using malloc; placed on the heap of core 0). In any case the
memory should be aligned to a 16-byte boundary.´

After that, the primary core triggers the machine software interrupt of core 1 using the Core Local
Interruptor (CLINT). Core 1 wakes up from sleep mode, consumes the configuration structure and
finally starts executing at the provided entry point. When neorv32_smp_launch() returns (with no
error code) the secondary core is online and running.

The NEORV32 RISC-V Processor Visit on GitHub

194 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Chapter 4. Software Framework
The NEORV32 project comes with a complete software ecosystem called the "software framework"
which is based on the C-language RISC-V GCC port and consists of the following parts:

• Compiler Toolchain

• Core Libraries

• System View Description File (SVD)

• Application Makefile

• Default Compiler Flags

• Linker Script

• C Standard Library

• Start-Up Code (crt0)

• Executable Image Formats

• NEORV32 Runtime Environment

• Bootloader



Software Documentation

All core libraries and example programs are documented "in-code" using
Doxygen. The documentation is automatically built and deployed to GitHub pages
and is available online at https://stnolting.github.io/neorv32/sw/files.html.


Example Programs

A collection of annotated example programs illustrating how to use certain CPU
functions and peripheral/IO modules can be found in sw/example.

4.1. Compiler Toolchain
The toolchain for this project is based on the free and open RISC-V GCC-port. You can find the
compiler sources and build instructions in the official RISC-V GNU toolchain GitHub repository:
https://github.com/riscv/riscv-gnutoolchain.


Toolchain Installation

More information regarding the toolchain (building from scratch or downloading
prebuilt ones) can be found in the user guide section Software Toolchain Setup.

The NEORV32 RISC-V Processor Visit on GitHub

195 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/sw/files.html
https://github.com/riscv/riscv-gnutoolchain
https://stnolting.github.io/neorv32/ug/#_software_toolchain_setup
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

4.2. Core Libraries
The NEORV32 project provides a set of pre-defined C libraries that allow an easy integration of the
processor/CPU features (also called "HAL" - hardware abstraction layer). All driver and runtime-
related files are located in sw/lib. These library files are automatically included and linked by
adding the following include statement:

#include <neorv32.h> // NEORV32 HAL, core and runtime libraries

The NEORV32 HAL consists of the following files.

Table 90. NEORV32 Hardware Abstraction Layer File List

C source file C header file Description

- neorv32.h Main NEORV32 library file

neorv32_aux.c neorv32_aux.h General auxiliary/helper function

neorv32_cfs.c neorv32_cfs.h Custom Functions Subsystem (CFS) HAL

neorv32_clint.c neorv32_clint.h Core Local Interruptor (CLINT) HAL

neorv32_cpu.c neorv32_cpu.h NEORV32 Central Processing Unit (CPU) HAL

neorv32_cpu_csr.h Control and Status Registers (CSRs) definitions

neorv32_cpu_cfu.c neorv32_cpu_cfu.h Custom Functions Unit (CFU) HAL

neorv32_crc.c neorv32_crc.h Cyclic Redundancy Check (CRC) HAL

neorv32_dma.c neorv32_dma.h Direct Memory Access Controller (DMA) HAL

neorv32_gpio.c neorv32_gpio.h General Purpose Input and Output Port (GPIO)
HAL

neorv32_gptmr.c neorv32_gptmr.h General Purpose Timer (GPTMR) HAL

- neorv32_intrinsics.h Macros for intrinsics and custom instructions

neorv32_neoled.c neorv32_neoled.h Smart LED Interface (NEOLED) HAL

neorv32_onewire.c neorv32_onewire.h One-Wire Serial Interface Controller (ONEWIRE)
HAL

neorv32_pwm.c neorv32_pwm.h Pulse-Width Modulation Controller (PWM) HAL

neorv32_rte.c neorv32_rte.h NEORV32 Runtime Environment

neorv32_sdi.c neorv32_sdi.h Serial Data Interface Controller (SDI) HAL

neorv32_slink.c neorv32_slink.h Stream Link Interface (SLINK) HAL

neorv32_smp.c neorv32_smp.h HAL for the SMP Dual-Core Configuration

neorv32_spi.c neorv32_spi.h Serial Peripheral Interface Controller (SPI) HAL

The NEORV32 RISC-V Processor Visit on GitHub

196 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

C source file C header file Description

neorv32_sysinfo.h System Configuration Information Memory
(SYSINFO) HAL

neorv32_trng.c neorv32_trng.h True Random-Number Generator (TRNG) HAL

neorv32_twd.c neorv32_twd.h Two-Wire Serial Device Controller (TWD) HAL

neorv32_twi.c neorv32_twi.h Two-Wire Serial Interface Controller (TWI) HAL

neorv32_uart.c neorv32_uart.h Primary Universal Asynchronous Receiver and
Transmitter (UART0) and UART1 HAL

neorv32_wdt.c neorv32_wdt.h Watchdog Timer (WDT) HAL

neorv32_xip.c neorv32_xip.h Execute In Place Module (XIP) HAL

neorv32_newlib.c - Platform-specific system calls for newlib


Core Libraries Documentation

The Doxygen-based documentation of the software framework including all core
libraries is available online at https://stnolting.github.io/neorv32/sw/files.html.

The NEORV32 RISC-V Processor Visit on GitHub

197 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/sw/files.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

4.3. System View Description File (SVD)
A CMSIS-SVD-compatible System View Description (SVD) file including all peripherals is available
in sw/svd.

The NEORV32 RISC-V Processor Visit on GitHub

198 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

4.4. Application Makefile
Application compilation is based on a centralized GNU makefile (sw/common/common.mk). Each
software project (for example the ones in sw/example folder) should provide a local makefile that
just includes the central makefile:

Set path to NEORV32 root directory
NEORV32_HOME ?= ../../..
Include the main NEORV32 makefile
include $(NEORV32_HOME)/sw/common/common.mk

Thus, the functionality of the central makefile (including all targets) becomes available for the
project. The project-local makefile should be used to define all setup-relevant configuration options
instead of changing the central makefile to keep the code base clean. Setting variables in the
project-local makefile will override the default configuration. Most example projects already
provide a makefile that list all relevant configuration options.

The following example shows all relevant configuration variables:

Override the default CPU ISA
MARCH = rv32imc_zicsr_zifencei

Override the default RISC-V GCC prefix
RISCV_PREFIX ?= riscv-none-elf-

Override default optimization goal
EFFORT = -Os

Add extended debug symbols
USER_FLAGS += -ggdb -gdwarf-3

Additional sources
APP_SRC += $(wildcard ./*.c)
APP_INC += -I .

Adjust processor IMEM size
USER_FLAGS += -Wl,--defsym,__neorv32_rom_size=16k

Adjust processor DMEM size
USER_FLAGS += -Wl,--defsym,__neorv32_ram_size=8k

Adjust maximum heap size
USER_FLAGS += -Wl,--defsym,__neorv32_heap_size=1k

Reduce library footprint when no UART is synthesized
#USER_FLAGS += -DUART_DISABLED

The NEORV32 RISC-V Processor Visit on GitHub

199 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Enable link-time-optimization
#USER_FLAGS += -flto

Additional compiler flags (append to this variable)
#USER_FLAGS += ...

Set path to NEORV32 root directory
NEORV32_HOME ?= ../../..

Include the main NEORV32 makefile
include $(NEORV32_HOME)/sw/common/common.mk



Setup of a New Project

When creating a new project, copy an existing project folder or at least the
makefile to the new project folder. It is recommended to create new projects also
in sw/example to keep the file dependencies. However, these dependencies can be
manually configured via makefile variables if the new project is located
somewhere else. For more complex projects, it may be useful to use explicit source
and include folders. See sw/example/coremark for an example.

4.4.1. Makefile Targets

Invoking a project-local makefile (executing make or make help) will show the help menu that lists all
available targets as well as all variable including their current setting.

neorv32/sw/example/hello_world$ make
NEORV32 Software Makefile
Find more information at https://github.com/stnolting/neorv32

Targets:

 help - show this text
 check - check toolchain
 info - show makefile/toolchain configuration
 gdb - start GNU debugging session
 asm - compile and generate <main.asm> assembly listing file for manual
debugging
 elf - compile and generate <main.elf> ELF file
 exe - compile and generate <neorv32_exe.bin> executable image file for
bootloader upload (includes a HEADER!)
 bin - compile and generate <neorv32_raw_exe.bin> executable memory image
 hex - compile and generate <neorv32_raw_exe.hex> executable memory image
 coe - compile and generate <neorv32_raw_exe.coe> executable memory image
 mem - compile and generate <neorv32_raw_exe.mem> executable memory image
 mif - compile and generate <neorv32_raw_exe.mif> executable memory image
 image - compile and generate VHDL IMEM application boot image
<neorv32_application_image.vhd> in local folder

The NEORV32 RISC-V Processor Visit on GitHub

200 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

 install - compile, generate and install VHDL IMEM application boot image
<neorv32_application_image.vhd>
 sim - in-console simulation using default/simple testbench and GHDL
 hdl_lists - regenerate HDL file-lists (*.f) in NEORV32_HOME/rtl
 all - exe + install + hex + bin + asm
 elf_info - show ELF layout info
 elf_sections - show ELF sections
 clean - clean up project home folder
 clean_all - clean up project home folder and image generator
 bl_image - compile and generate VHDL BOOTROM bootloader boot image
<neorv32_bootloader_image.vhd> in local folder
 bootloader - compile, generate and install VHDL BOOTROM bootloader boot image
<neorv32_bootloader_image.vhd>

Variables:

 USER_FLAGS - Custom toolchain flags [append only]: "-ggdb -gdwarf-3 -Wl,
--defsym,__neorv32_rom_size=16k -Wl,--defsym,__neorv32_ram_size=8k"
 USER_LIBS - Custom libraries [append only]: ""
 EFFORT - Optimization level: "-Os"
 MARCH - Machine architecture: "rv32i_zicsr_zifencei"
 MABI - Machine binary interface: "ilp32"
 APP_INC - C include folder(s) [append only]: "-I ."
 APP_SRC - C source folder(s) [append only]: "./main.c "
 ASM_INC - ASM include folder(s) [append only]: "-I ."
 RISCV_PREFIX - Toolchain prefix: "riscv-none-elf-"
 NEORV32_HOME - NEORV32 home folder: "../../.."
 GDB_ARGS - GDB (connection) arguments: "-ex target extended-remote
localhost:3333"
 GHDL_RUN_FLAGS - GHDL simulation run arguments: ""



Build Artifacts

All intermediate build artifacts (like object files and binaries) will be places into a
(new) project-local folder named build. The resulting build artifacts (like
executable, the main ELF and all memory initialization/image files) will be placed
in the root project folder.

4.4.2. Default Compiler Flags

The central makefile uses specific compiler flags to tune the code to the NEORV32 hardware. Hence,
these flags should not be altered. However, experienced users can modify them to further tune
compilation.

Table 91. Compiler Options (CC_OPTS)

-Wall Enable all compiler warnings.

The NEORV32 RISC-V Processor Visit on GitHub

201 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

-ffunction-sections Put functions in independent sections. This allows a code optimization as
dead code can be easily removed.

-fdata-sections Put data segment in independent sections. This allows a code
optimization as unused data can be easily removed.

-nostartfiles Do not use the default start code. Instead, the NEORV32-specific start-up
code (sw/common/crt0.S) is used (pulled-in by the linker script).

-mno-fdiv Use built-in software functions for floating-point divisions and square
roots (since the according instructions are not supported yet).

-mstrict-align Unaligned memory accesses cannot be resolved by the hardware and
require emulation.

-mbranch-cost=10 Branching costs a lot of cycles.

-Wl,--gc-sections Make the linker perform dead code elimination.

-ffp-contract=off Disable floating-point expression contraction.

-g Add (simple) debug information.


Checking Compiler Flags from a Compiled Program

The makefile’s CC_OPTS is exported as define to be available within a C program;
for example neorv32_uart0_printf("%s\n", CC_OPTS);.

Table 92. Linker Libraries (LD_LIBS)

-lm Include/link with math.h.

-lc Search for the standard C library when linking.

-lgcc Make sure we have no unresolved references to internal GCC library
subroutines.



Advanced Debug Symbols

By default, only "simple" symbols are added to the ELF (-g). Extended debug flags
(e.g. for Eclipse) can be added using the USER_FLAGS variable (e.g. USER_FLAGS +=
-ggdb -gdwarf-3). Note that other debug flags may be required depending of the
GCC/GDB version

The NEORV32 RISC-V Processor Visit on GitHub

202 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

4.5. Linker Script
The NEORV32-specific linker script (sw/common/neorv32.ld) is used to link the compiled sources
according to the processor’s Address Space). For the final executable, only two memory segments
are required:

Table 93. Linker script - Memory Segments

Memory section Description

rom Instruction memory address space (processor-internal Instruction Memory
(IMEM) and/or external memory)

ram Data memory address space (processor-internal Data Memory (DMEM) and/or
external memory)

These two sections are configured by several variables defined in the linker script and exposed to
the build framework (aka the makefile). Those variable allow to customized the RAM/ROM sizes
and base addresses. Additionally, a certain amount of the RAM can be reserved for the software-
managed heap (see RAM Layout).

Table 94. Linker script - Configuration

Memory section Description Default

__neorv32_rom_size "ROM" size (instruction memory / IMEM) 16kB

__neorv32_ram_size "RAM" size (data memory / DMEM) 8kB

__neorv32_rom_base "ROM" base address (instruction memory / IMEM) 0x000000
00

__neorv32_ram_base "RAM" base address (data memory / DMEM) 0x800000
00

__neorv32_heap_siz
e

Maximum heap size; part of the "RAM" 0kB

Each variable provides a default value (e.g. "16K" for the instruction memory /ROM /IMEM size).
These defaults can be overridden by setup-specific values to take the user-defined processor
configuration into account (e.g. a different IMEM size). The USER_FLAGS variable provided by the
Application Makefile can also be used to customize the memory configuration. For example, the
following line can be added to a project-specific local makefile to adjust the memory sizes:

Listing 17. Overriding Default Memory Sizes (configuring 64kB IMEM and 32kB DMEM)

USER_FLAGS += "-Wl,--defsym,__neorv32_rom_size=64k -Wl,
--defsym,__neorv32_ram_size=32k"


Memory Configuration Constraints

Memory sizes have to be a multiple of 4 bytes. Memory base addresses have to be
32-bit-aligned.

The NEORV32 RISC-V Processor Visit on GitHub

203 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

4.5.1. RAM Layout

The default NEORV32 linker script uses the defined RAM size to map several sections. Note that
depending on the application some sections might have zero size.

Figure 12. Default RAM Layout

1. Constant data (.data): The constant data section is placed right at the beginning of the RAM.
For example, this section contains explicitly initialized global variables. This section is initialized
by the Start-Up Code (crt0).

2. Dynamic data (.bss): The constant data section is followed by the dynamic data section that
contains uninitialized data like global variables without explicit initialization. This section is
cleared by the Start-Up Code (crt0).

3. Heap (.heap): The heap is used for dynamic memory that is managed by functions like malloc()
and free(). The heap grows upwards. This section is not initialized at all.

4. Stack: The stack starts at the end of the RAM at the last 16-byte aligned address. According to
the RISC-V ABI / calling convention the stack is 128-bit-aligned before procedure entry. The stack
grows downwards.



Heap Size

The maximum size of the heap is defined by the __neorv32_heap_size variable. This
variable has to be explicitly defined in order to define a heap size (and to use
dynamic memory allocation at all) other than zero.



Heap-Stack Collision

Take care when using dynamic memory to avoid collision of the heap and stack
memory areas. There is no compile-time protection mechanism available as the
actual heap and stack size are defined by runtime data.

The NEORV32 RISC-V Processor Visit on GitHub

204 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

4.6. C Standard Library
The default software framework relies on newlib as default C standard library. Newlib provides
hooks for common "system calls" (like file handling and standard input/output) that are used by
other C libraries like stdio. These hooks are available in sw/lib/source/newlib.c and were adapted
for the NEORV32 processor.



Standard Consoles

The UART0 is used to implement all the standard input, output and error consoles
(STDIN, STDOUT and STDERR). Note that \n (newline) is automatically converted to \r\n
(carriage-return and newline).



Constructors and Destructors

Constructors and destructors for plain C code or for C++ applications are
supported by the software framework. See sw/example/hello_cpp for a minimal
example. Note that constructor and destructors are only executed by core 0
(primary core) in the SMP Dual-Core Configuration.


Newlib Test/Demo Program

A simple test and demo program that uses some of newlib’s system functions (like
malloc/free and read/write) is available in sw/example/demo_newlib.

The NEORV32 RISC-V Processor Visit on GitHub

205 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

4.7. Start-Up Code (crt0)
The CPU and also the processor require a minimal start-up and initialization code to bring the
hardware into an operational state. Furthermore, the C runtime requires an initialization before
compiled code can be executed. This setup is done by the start-up code (sw/common/crt0.S) which is
automatically linked with every application program and gets mapped before the actual application
code so it gets executed right after boot.

The crt0.S start-up performs the following operations:

1. Setup the stack pointer and the global pointer according to the RAM Layout provided by the
Linker Script symbols.

2. Initialize mstatus CSR disabling machine-level interrupts.

3. Install an Early Trap Handler to mtvec CSR.

4. Clear mie CSR disabling all interrupt sources.

5. Initialize all integer register x1 - x31 (only x1 - x15 if the E CPU extension is enabled).

6. If the executing CPU core is not core 0 an SMP-specific code is executed and the CPU is halted in
sleep mode. See section Dual-Core Boot for more information.

7. Setup .data section to configure initialized variables.

8. Clear the .bss section.

9. Call all constructors (if there are any).

10. Call the application’s main() function (with no arguments; argc = argv = 0).

11. If main() returns:

◦ All interrupt sources are disabled by clearing mie CSR.

◦ The return value of main() is copied to the mscratch CSR to allow inspection by the debugger.

◦ The Early Trap Handler is re-installed to mtvec CSR.

◦ Call all destructors (if there are any).

◦ Execute an ebreak instruction to enter debug mode if an external debugger is connected.

◦ The CPU enters sleep mode executing the wfi instruction in an endless loop.

4.7.1. Early Trap Handler

The start-up code provides a very basic trap handler for the early boot phase. This handler does
nothing but trying to move on to the next linear instruction whenever an interrupt or synchronous
exception is encountered. This simple trap handler does not interact with the stack at all as it just
uses a single register that is backup-ed using the mscratch CSR.

The NEORV32 RISC-V Processor Visit on GitHub

206 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

4.8. Executable Image Formats
The compiled and linked executable (ELF file) is further processed by the NEORV32 image
generator (sw/image_gen) to generate the final executable file. The image generator can generate
several types of executable file formats selected by a flag when calling the generator. Note that all
these options are managed by the makefile (see Makefile Targets).

-app_bin Generates an executable binary file (including a bootloader header) for upload
via the bootloader.

-app_vhd Generates an executable VHDL memory initialization image for the processor-
internal IMEM.

-bld_vhd Generates an executable VHDL memory initialization image for the processor-
internal BOOT ROM.

-raw_hex Generates a raw 8x ASCII hex-char file for custom purpose.

-raw_bin Generates a raw binary file `for custom purpose.

-raw_coe Generates a raw COE file for FPGA memory initialization.

-raw_mem Generates a raw MEM file for FPGA memory initialization.

-raw_mif Generates a raw MIF file for FPGA memory initialization.


Image Generator Compilation

The sources of the image generator are automatically compiled when invoking the
makefile (requiring a native GCC installation).



Executable Header

for the app_bin option the image generator adds a small header to the executable.
This header is required by the Bootloader to identify and manage the executable.
The header consists of three 32-bit words located right at the beginning of the file.
The first word of the executable is the signature word and is always 0x4788cafe.
Based on this word the bootloader can identify a valid image file. The next word
represents the size in bytes of the actual program image in bytes. A simple
complement checksum of the actual program image is given by the third word.
This provides a simple protection against data transmission or storage errors. Note
that this executable format cannot be used for direct execution (e.g. via XIP
or direct memory access).

The NEORV32 RISC-V Processor Visit on GitHub

207 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

4.9. Bootloader



Pre-Built Bootloader Image

This section refers to the default NEORV32 bootloader. A pre-compiled memory
image for the processor-internal Bootloader ROM (BOOTROM) is available in the
project’s rtl folder: rtl/core/neorv32_bootloader_image.vhd. This image is
automatically inserted into the boot ROM when synthesizing the processor with
the bootloader being enabled.



Minimal RISC-V ISA and Memory Configuration

The default bootloader image was compiled for a minimal rv32e_zicsr_zifencei
ISA configuration and only requires a RAM size of at least 256 bytes. Both
constraints ensure that the bootloader can be executed by any actual
CPU/processor configuration. However, the bootloader can recompiled with
different capabilities. See the User Guide https://stnolting.github.io/neorv32/ug/#
_customizing_the_internal_bootloader for more information.



SMP Dual-Core Configuration

For the SMP Dual-Core Configuration only the primary core (core 0) will boot and
execute the bootloader while the secondary core (core 1) will be halted in sleep
mode.

The NEORV32 bootloader (sw/bootloader/bootloader.c) provides an optional built-in firmware that
allows to upload new application executables at any time without the need to re-synthesize the
FPGA’s bitstream. A UART connection is used to provide a simple text-based user interface that
allows to upload executables.

Furthermore, the bootloader provides options to store an executable to a processor-external SPI
flash. An "auto boot" feature can optionally fetch this executable right after reset if there is no user
interaction via UART. This allows to build processor setups with non-volatile application storage
while maintaining the option to update the application software at any timer.


Software Documentation

The Doxygen-based documentation of the bootloader’s software is available
online: https://stnolting.github.io/neorv32/sw/bootloader_8c.html

4.9.1. Bootloader SoC/CPU Requirements

The bootloader requires certain CPU and SoC extensions and modules to be enabled in order to
operate correctly.

REQUIRED The Boot Configuration (BOOT_MODE_SELECT generic) has to be set to "bootloader"
mode.

The NEORV32 RISC-V Processor Visit on GitHub

208 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/ug/#_customizing_the_internal_bootloader
https://stnolting.github.io/neorv32/ug/#_customizing_the_internal_bootloader
https://stnolting.github.io/neorv32/sw/bootloader_8c.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

REQUIRED The bootloader requires the privileged architecture CPU extension (Zicsr ISA
Extension) to be enabled.

REQUIRED At least 512 bytes of data memory (processor-internal DMEM or processor-
external DMEM) are required for the bootloader’s stack and global variables.

RECOMMENDED For user interaction via the Bootloader Console (like uploading executables)
the primary UART (Primary Universal Asynchronous Receiver and
Transmitter (UART0)) is required.

RECOMMENDED The default bootloader uses bit 0 of the General Purpose Input and Output Port
(GPIO) output port to drive a high-active "heart beat" status LED.

RECOMMENDED The machine timer of the Core Local Interruptor (CLINT) is used to control
blinking of the status LED and also to automatically trigger the Auto Boot
Sequence.

OPTIONAL The SPI controller (Serial Peripheral Interface Controller (SPI)) is needed to
store/load executable from external flash using the Auto Boot Sequence.

OPTIONAL The XIP controller (Execute In Place Module (XIP)) is needed to boot/execute
code directly from a pre-programmed SPI flash.

OPTIONAL The TWI controller (Two-Wire Serial Interface Controller (TWI)) is needed to
boot/execute code directly from pre-programmed TWI memory.

4.9.2. Bootloader Flash Requirements

The bootloader can access an SPI-compatible flash via the processor’s top entity SPI port. By default,
the flash chip-select line is driven by spi_csn_o(0) and the SPI clock uses 1/8 of the processor’s main
clock as clock frequency. The SPI flash has to support single-byte read and write operations, 24-bit
addresses and at least the following standard commands:

• 0x02: Program page (write byte)

• 0x03: Read data (byte)

• 0x04: Write disable (for volatile status register)

• 0x05: Read (first) status register

• 0x06: Write enable (for volatile status register)

• 0xAB: Wake-up from sleep mode (optional)

• 0xD8: Block erase (64kB)



Custom Configuration

Most properties (like chip select line, flash address width, SPI clock frequency, …)
of the default bootloader can be reconfigured without the need to change the
source code. Custom configuration can be made using command line switches
(defines) when recompiling the bootloader. See the User Guide
https://stnolting.github.io/neorv32/ug/#_customizing_the_internal_bootloader for

The NEORV32 RISC-V Processor Visit on GitHub

209 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/ug/#_customizing_the_internal_bootloader
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

more information.

4.9.3. Bootloader TWI memory Requirements

The bootloader can access an TWI-compatible memory via the processor’s top entity TWI port.
Single- and dual address memory is supported, and reading is done in the following pattern Device
Address + Enabled Read | Memory Address Byte 0 | Memory Address 1 (optional) | Read Byte 0 |
Read Byte 1 | Read Byte 2 | Read Byte 3. The addresses are incremented until the end of the
program binary is reached.

A python upload script for uploading is provided in the sw/eeprom_upload folder. Currently only for
the USB-ISS module.

Clock speed information can be read here: Two-Wire Serial Interface Controller (TWI).

4.9.4. Bootloader Console

To interact with the bootloader, connect the primary UART (UART0) signals (uart0_txd_o and
uart0_rxd_o) of the processor’s top entity via a serial port (-adapter) to your computer (hardware
flow control is not used so the according interface signals can be ignored), configure your terminal
program using the following settings and perform a reset of the processor.

Terminal console settings (19200-8-N-1):

• 19200 Baud

• 8 data bits

• no parity bit

• 1 stop bit

• newline on \r\n (carriage return, newline)

• no transfer protocol / control flow protocol - just raw bytes



Terminal Program

Any terminal program that can connect to a serial port should work. However,
make sure the program can transfer data in raw byte mode without any protocol
overhead (e.g. XMODEM). Some terminal programs struggle with transmitting files
larger than 4kB (see https://github.com/stnolting/neorv32/pull/215). Try a different
terminal program if uploading of a binary does not work.

The bootloader uses the LSB of the top entity’s gpio_o output port as high-active status LED. All
other output pins are set to low level and won’t be altered. After reset, the status LED will start
blinking at 2Hz and the following intro screen shows up:

<< NEORV32 Bootloader >>

BLDV: Mar 7 2023

The NEORV32 RISC-V Processor Visit on GitHub

210 / 243 Version v1.11.0 2025-02-05

https://www.robot-electronics.co.uk/htm/usb_iss_tech.htm
https://github.com/stnolting/neorv32/pull/215
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

HWV: 0x01080107
CLK: 0x05f5e100
MISA: 0x40901106
XISA: 0xc0000fab
SOC: 0xffff402f
IMEM: 0x00008000
DMEM: 0x00002000

Autoboot in 10s. Press any key to abort.

The start-up screen gives some brief information about the bootloader and several system
configuration parameters:

BLDV Bootloader version (built date).

HWV Processor hardware version (the mimpid CSR); in BCD format; example: 0x01040606 =
v1.4.6.6).

CLK Processor clock speed in Hz (via the CLK register from the System Configuration
Information Memory (SYSINFO).

MISA RISC-V CPU extensions (misa CSR).

XISA NEORV32-specific CPU extensions (mxisa CSR).

SOC Processor configuration (via the SOC register from the System Configuration
Information Memory (SYSINFO).

IMEM Internal IMEM size in byte (via the MEM register from the System Configuration
Information Memory (SYSINFO).

DMEM Internal DMEM size in byte (via the MEM register from the System Configuration
Information Memory (SYSINFO).

Now you have 10 seconds to press any key. Otherwise, the bootloader starts the Auto Boot Sequence.
When you press any key within the 10 seconds, the actual bootloader user console starts:

<< NEORV32 Bootloader >>

BLDV: Mar 7 2023
HWV: 0x01080107
CLK: 0x05f5e100
MISA: 0x40901106
XISA: 0xc0000fab
SOC: 0xffff402f
IMEM: 0x00008000
DMEM: 0x00002000

Autoboot in 10s. Press any key to abort. ①
Aborted.

The NEORV32 RISC-V Processor Visit on GitHub

211 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Available CMDs:
 h: Help
 r: Restart
 u: Upload
 s: Store to flash
 l: Load from flash
 t: Load from TWI Device
 x: Boot from flash (XIP)
 e: Execute
CMD:>

① Auto boot sequence aborted due to user console input.

The auto boot countdown is stopped and the bootloader’s user console is ready to receive one of the
following commands:

• h: Show the help text (again)

• r: Restart the bootloader and the auto-boot sequence

• u: Upload new program executable (neorv32_exe.bin) via UART into the instruction memory

• s: Store executable to SPI flash at spi_csn_o(0) (little-endian byte order)

• l: Load executable from SPI flash at spi_csn_o(0) (little-endian byte order)

• t: Load executable from TWI memory at 0x50 (little-endian byte order) (disabled by default)

• x: Boot program directly from flash via XIP (requires a pre-programmed image)

• e: Start the application, which is currently stored in the instruction memory (IMEM)

A new executable can be uploaded via UART by executing the u command. After that, the
executable can be directly executed via the e command. To store the recently uploaded executable
to an attached SPI flash press s. To directly load an executable from the SPI flash press l. The
bootloader and the auto-boot sequence can be manually restarted via the r command.



Executable Upload

Make sure to upload the NEORV32 executable neorv32_exe.bin. Uploading any
other file (like main.bin) will cause an ERR_EXE bootloader error (see Bootloader
Error Codes).



Booting via XIP

The bootloader allows to execute an application right from flash using the Execute
In Place Module (XIP) module. This requires a pre-programmed flash. The
bootloader’s "store" option can not be used to program an XIP image.



SPI Flash Power Down Mode

The bootloader will issue a "wake-up" command prior to using the SPI flash to
ensure it is not in sleep mode / power-down mode (see https://github.com/stnolting/

The NEORV32 RISC-V Processor Visit on GitHub

212 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32/pull/552
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

neorv32/pull/552).



Default Configuration

More information regarding the default SPI, GPIO, XIP, etc. configuration can be
found in the User Guide section https://stnolting.github.io/neorv32/ug/#
_customizing_the_internal_bootloader.


SPI Flash Programming

For detailed information on using an SPI flash for application storage see User
Guide section Programming an External SPI Flash via the Bootloader.

4.9.5. Auto Boot Sequence

When you reset the NEORV32 processor, the bootloader waits 8 seconds for a UART console input
before it starts the automatic boot sequence. This sequence tries to fetch a valid boot image from
the external SPI flash, connected to SPI chip select spi_csn_o(0) or from external TWI memory. If
both are enabled, the bootloader will select SPI. If a valid boot image is found that can be
successfully transferred into the instruction memory, it is automatically started. If no SPI flash is
detected or if there is no valid boot image found, and error code will be shown.

4.9.6. Bootloader Error Codes

If something goes wrong during bootloader operation an error code and a short message is shown.
In this case the processor is halted (entering Sleep Mode), the bootloader status LED is permanently
activated and the processor has to be reset manually.


Debugging Information

If an unexpected exception has been raised, the bootloader prints hexadecimal
debug information showing the mcause, mepc and mtval CSR values.

ERR_EXE If you try to transfer an invalid executable (via UART or from the external SPI
flash), this error message shows up. There might be a transfer protocol
configuration error in the terminal program or maybe just the wrong file was
selected. Also, if no SPI flash was found during an auto-boot attempt, this
message will be displayed.

ERR_SIZE Your program is way too big for the internal processor’s instructions memory.
Increase the memory size or reduce your application code.

ERR_CHKS This indicates a checksum error. Something went wrong during the transfer of
the program image (upload via UART or loading from the external SPI flash). If
the error was caused by a UART upload, just try it again. When the error was
generated during a flash access, the stored image might be corrupted.

The NEORV32 RISC-V Processor Visit on GitHub

213 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32/pull/552
https://stnolting.github.io/neorv32/ug/#_customizing_the_internal_bootloader
https://stnolting.github.io/neorv32/ug/#_customizing_the_internal_bootloader
https://stnolting.github.io/neorv32/ug/#_programming_an_external_spi_flash_via_the_bootloader
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

ERR_FLSH This error occurs if the attached SPI flash cannot be accessed. Make sure you
have the right type of flash and that it is properly connected to the NEORV32
SPI port using chip select #0.

ERR_EXC The bootloader encountered an unexpected exception during operation. This
might be caused when it tries to access peripherals that were not implemented
during synthesis. Example: executing commands l or s (SPI flash operations)
without the SPI module being implemented.

ERR_TWI The TWI received an unexpected NACK while reading the external memory.
Are the address and speed settings correct?

The NEORV32 RISC-V Processor Visit on GitHub

214 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

4.10. NEORV32 Runtime Environment
The NEORV32 software framework provides a minimal runtime environment ("RTE") that takes
care of a stable and safe execution environment by providing a unified interface for handling of all
traps (exceptions and interrupts). Once initialized, the RTE provides Default RTE Trap Handlers that
catch all possible traps. These default handlers just output a message via UART when a certain trap
has been triggered. The default handlers can be overridden by the application code to install
application-specific handler functions for each trap.

Using the RTE is optional but highly recommended for bare-metal / non-OS applications. The RTE
provides a simple and comfortable way of delegating traps to application-specific handlers while
making sure that all traps (even though they are not explicitly used by the application) are handled
correctly. Performance-optimized applications or embedded operating systems may not use the RTE
at all in order to increase response time.

4.10.1. RTE Operation

The RTE manages the trap-related CSRs of the CPU’s privileged architecture (see Machine Trap
Handling CSRs). It initializes the mtvec CSR in DIRECT mode, which provides the base entry point for
all traps. The address stored to this register defines the address of the first-level trap handler,
which is provided by the NEORV32 RTE. Whenever an exception or interrupt is triggered this first-
level trap handler is executed.

The first-level handler performs a complete context save, analyzes the source of the trap and calls
the according second-level trap handler, which takes care of the actual exception/interrupt
handling. The RTE manages an internal look-up table to track the addresses of the according
second-level trap handlers.

After the initial RTE setup, each entry in the RTE’s trap handler look-up table is initialized with a
Default RTE Trap Handlers. These default handler do not execute any trap-related operations - they
just output a debugging message via the primary UART (UART0) (if enabled) to inform the user that
a trap has occurred that is not (yet) handled by a proper application-specific trap handler. After
sending this message, the RTE tries to resume normal execution by moving on to the next linear
instruction.



Dual-Core Configuration

The RTE’s internal trap handler look-up table is used globally for both cores. If a
core-specific handling is required, the according user-defined trap handler need to
retrieve the core’s ID from mhartid and branch accordingly.

4.10.2. Using the RTE

The NEORV32 runtime environment is part of the default NEORV32 software framework. The links
to the according software references are listed below.

The NEORV32 RISC-V Processor Visit on GitHub

215 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

neorv32_
rte.c

Online software reference (Doxygen)

neorv32_
rte.h

Online software reference (Doxygen)

The RTE has to be explicitly enabled by calling the according setup function. It is recommended to
do this right at the beginning of the application’s main function. For the SMP Dual-Core
Configuration the RTE setup functions has to be called on each core that wants to use the RTE.

Listing 18. RTE Setup Right at the Beginning of "main"

int main() {

 neorv32_rte_setup(); // setup NEORV32 runtime environment

 ...

After setup, all traps will trigger execution of the RTE’s Default RTE Trap Handlers at first. In order
to use application-specific trap handlers the default debug handlers can be overridden by installing
user-defined ones:

Listing 19. Installing an Application-Specific Trap Handler (Function Prototype)

int neorv32_rte_handler_install(uint8_t id, void (*handler)(void));

The first argument id defines the "trap ID" (for example a certain interrupt request) that shall be
handled by the user-defined handler. These IDs are defined in sw/lib/include/neorv32_rte.h.
However, more convenient device-specific aliases are also defined in sw/lib/include/neorv32.h. The
second argument handler is the actual function that implements the user-defined trap handler. The
custom handler functions must have a specific type without any arguments and with no return
value:

Listing 20. Custom Trap Handler (Function Prototype)

void custom_trap_handler_xyz(void) {

 // handle trap...
}



Custom Trap Handler Attributes

Do NOT use the interrupt attribute for the application trap handler functions! This
would place an mret instruction at the end of the handler making it impossible to
return to the first-level trap handler of the RTE core.

 mscratch CSR

The NEORV32 RISC-V Processor Visit on GitHub

216 / 243 Version v1.11.0 2025-02-05

https://stnolting.github.io/neorv32/sw/neorv32__rte_8c.html
https://stnolting.github.io/neorv32/sw/neorv32__rte_8h.html
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

The mscratch CSR should not be used inside an application trap handler as this
register is used by the RTE to provide the base address of the application’s stack
frame Application Context Handling (i.e. modifying the registers of application
code that caused a trap).

The following example shows how to install trap handlers for exemplary traps.

Listing 21. Installing Custom Trap Handlers Examples

neorv32_rte_handler_install(RTE_TRAP_MTI, machine_timer_irq_handler); // handler for
machine timer interrupt
neorv32_rte_handler_install(RTE_TRAP_MENV_CALL, environment_call_handler); // handler
for machine environment call exception
neorv32_rte_handler_install(SLINK_RX_RTE_ID, slink_rx_handler); // handler for SLINK
receive interrupt

4.10.3. Default RTE Trap Handlers

The default RTE trap handlers are executed when a certain trap is triggered that is not (yet) handled
by an application-defined trap handler. The default handler will output a message giving additional
debug information via the Primary Universal Asynchronous Receiver and Transmitter (UART0) to
inform the user and it will also try to resume normal program execution (exemplary RTE outputs
are shown below). The specific message right at the beginning of the debug trap handler message
corresponds to the trap code obtained from the mcause CSR (see NEORV32 Trap Listing).

In most cases the RTE can successfully continue operation - for example if it catches an interrupt
request that is not handled by the actual application program. However, if the RTE catches an un-
handled trap like a bus access fault exception, continuing execution will most likely fail making the
CPU crash.

Listing 22. RTE Default Trap Handler UART0 Output Examples

<NEORV32-RTE> [cpu0] [M] Illegal instruction @ PC=0x000002d6, MTINST=0x000000FF,
MTVAL=0x00000000 </NEORV32-RTE> ①
<NEORV32-RTE> [cpu0] [U] Illegal instruction @ PC=0x00000302, MTINST=0x00000000,
MTVAL=0x00000000 </NEORV32-RTE> ②
<NEORV32-RTE> [cpu0] [U] Load address misaligned @ PC=0x00000440, MTINST=0x01052603,
MTVAL=0x80000101 </NEORV32-RTE> ③
<NEORV32-RTE> [cpu1] [M] Fast IRQ 0x3 @ PC=0x00000820, MTINST=0x00000000,
MTVAL=0x00000000 </NEORV32-RTE> ④
<NEORV32-RTE> [cpu1] [M] Instruction access fault @ PC=0x90000000, MTINST=0x42078b63,
MTVAL=0x00000000 !!FATAL EXCEPTION!! Halting CPU. </NEORV32-RTE>\n ⑤

① Illegal 32-bit instruction MTINST=0x000000FF at address PC=0x000002d6 while the CPU 0 was in
machine-mode ([M]).

② Illegal 16-bit instruction MTINST=0x00000000 at address PC=0x00000302 while the CPU 0 was in user-
mode ([U]).

The NEORV32 RISC-V Processor Visit on GitHub

217 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

③ Misaligned load access at address PC=0x00000440 caused by instruction MTINST=0x01052603 (trying
to load a full 32-bit word from address MTVAL=0x80000101) while the CPU 0 was in user-mode ([U]).

④ Fast interrupt request from channel 3 before executing instruction at address PC=0x00000820
while the CPU 1 was in machine-mode ([M]).

⑤ Instruction bus access fault at address PC=0x90000000 while executing instruction
MTINST=0x42078b63 while the CPU 1 was in machine-mode ([M]).

4.10.4. Application Context Handling

Upon trap entry the RTE backups the entire application context (i.e. all x general purpose registers)
to the stack. The context is restored automatically after trap completion. The base address of the
according stack frame is copied to the mscratch CSR. By having this information available, the RTE
provides dedicated functions for accessing and altering the application context:

Listing 23. RTE Context Access Functions

// Prototypes
uint32_t neorv32_rte_context_get(int x); // read register
void neorv32_rte_context_put(int x, uint32_t data); // write data to register

// Examples
uint32_t tmp = neorv32_rte_context_get(9); // read register 'x9'
neorv32_rte_context_put(28, tmp); // write 'tmp' to register 'x28'

The x argument is used to specify one of the RISC-V general purpose register x0 to x31. Note that
registers x16 to x31 are not available if the RISC-V E ISA Extension is enabled. For he SMP Dual-Core
Configuration the provided context functions will access the stack frame of the interrupted
application code that was running on the specific CPU core that caused the trap entry.

The context access functions can be used by application-specific trap handlers to emulate
unsupported CPU / SoC features like unimplemented IO modules, unsupported instructions and
even unaligned memory accesses.



Demo Program: Emulate Unaligned Memory Access

A demo program, which showcases how to emulate unaligned memory accesses
using the NEORV32 runtime environment can be found in
sw/example/demo_emulate_unaligned.

The NEORV32 RISC-V Processor Visit on GitHub

218 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Chapter 5. On-Chip Debugger (OCD)
The NEORV32 Processor features an on-chip debugger (OCD) compatible to the Minimal RISC-V
Debug Specification implementing the execution-based debugging scheme. A copy of the
specification is available in docs/references. The on-chip debugger is implemented if the OCD_EN
processor top generic is set to true.

Key Features

• standard 4-wire JTAG access port

• debugging of up to 4 CPU cores ("harts")

• full control of the CPU: halting, single-stepping and resuming

• indirect access to all core registers and the entire processor address space (via program buffer)

• execution of arbitrary programs via the program buffer

• compatible with upstream OpenOCD and GDB

• optional trigger module for hardware breakpoints

• optional authentication for increased security



Hands-On Tutorial

A simple example on how to use NEORV32 on-chip debugger in combination with
OpenOCD and the GNU debugger is shown in section Debugging using the On-Chip
Debugger of the User Guide.

Overview

Figure 13. NEORV32 on-chip debugger complex

The NEORV32 on-chip debugger is based on five hardware modules:

1. Debug Transport Module (DTM): JTAG access tap to allow an external adapter to interface with
the debug module (DM).

2. Debug Module (DM): The RISC-V debug module is the main bridge between the external

The NEORV32 RISC-V Processor Visit on GitHub

219 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://stnolting.github.io/neorv32/ug/#_debugging_using_the_on_chip_debugger
https://stnolting.github.io/neorv32/ug/#_debugging_using_the_on_chip_debugger
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

debugger and the processor being debugged. It provides a data buffer for data transfer from/to
the DM, a code ROM containing the "park loop" code, a program buffer to allow the debugger to
execute small programs defined by the DM and a status register that is used to communicate
exception, halt, resume and execute requests/acknowledges between the debugger and the CPU.

3. Debug Authentication: Authenticator module to secure on-chip debugger access. By default this
module implements a very simple authentication mechanism as example. Users can
modify/replace this default logic to implement arbitrary authentication mechanism.

4. CPU Debug Mode ISA extension: This ISA extension provides the "debug execution mode" as
another CPU operation mode that is used to execute the park loop code from the DM. This mode
also provides additional CSRs and instructions.

5. CPU Trigger Module: This module provides a single hardware breakpoint.

Theory of Operation

When debugging the system using the OCD, the external debugger (e.g. GDB) issues a halt request to
the CPU to make it enter so-called debug mode. In this mode the application-defined architectural
state of the system/CPU is "frozen" so the debugger can monitor it without interfering with the
actual application. However, the OCD can also modify the entire architectural state at any time.
While in debug mode, the debugger has full control over the entire CPU core.

After halting, the CPU executes the "park loop" code from the code ROM of the debug module (DM).
This park loop implements an endless loop that is used to poll a memory-mapped Status Register of
the DM. The flags in this register are used to communicate requests from the DM and to
acknowledge their processing them by the CPU: trigger execution of the program buffer or resume
the halted application. Furthermore, the CPU uses this register to signal that the CPU has halted
after a halt request or to signal that an exception has been raised while being in debug mode.

The NEORV32 RISC-V Processor Visit on GitHub

220 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

5.1. Debug Transport Module (DTM)
The debug transport module "DTM" (VHDL module: rtl/core/neorv32_debug_dtm.vhd) provides a
bridge between a standard 4-wire JTAG test access port ("tap") and the internal debug module
interface.

Table 95. JTAG Top Level Signals of the DTM

Name Width Direction Description

jtag_tck_i 1 in serial clock

jtag_tdi_i 1 in serial data input

jtag_tdo_o 1 out serial data output

jtag_tms_i 1 in mode select



Maximum JTAG Clock

All JTAG signals are synchronized to the processor’s clock domain. Hence, no
additional clock domain is required for the DTM. However, this constraints the
maximal JTAG clock frequency (jtag_tck_i) to be less than or equal to 1/5 of the
processor clock frequency (clk_i).


JTAG TAP Reset

The NEORV32 JTAG TAP does not provide a dedicated reset signal ("TRST").
However, JTAG-level resets can be triggered using TMS signaling.


Maintaining the JTAG Chain

If the on-chip debugger is disabled the JTAG serial input jtag_tdi_i is directly
connected to the JTAG serial output jtag_tdo_o to maintain the JTAG chain.

The DTM implement a single 5-bit instruction register IR and several data registers DR with different
sizes. The individual data registers are accessed by writing the according address to the instruction
register. The following table shows all available data registers and their addresses:

Table 96. JTAG TAP registers

Address (via
IR)

Name Size (bits) Description

00001 IDCODE 32 identification code (see below)

10000 DTMCS 32 debug transport module control and status register (see
below)

10001 DMI 41 debug module interface (see below)

others BYPASS 1 default JTAG bypass register

Table 97. IDCODE - DTM Identification Code Register

The NEORV32 RISC-V Processor Visit on GitHub

221 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Bit(s) Name R/W Description

31:28 version r/- version ID, hardwired to zero

27:12 partid r/- part ID, hardwired to zero

11:1 manid r/- JEDEDC manufacturer ID, assigned via the JEDEC_ID
generic

0 - r/- hardwired to 1

Table 98. DTMCS - DTM Control and Status Register

Bit(s) Name R/W Description

31:18 - r/- reserved, hardwired to zero

17 dmihardreset r/w setting this bit will reset the debug module interface;
this bit auto-clears

16 dmireset r/w setting this bit will clear the sticky error state; this bit
auto-clears

15 - r/- reserved, hardwired to zero

14:12 idle r/- recommended idle states (= 0, no idle states required)

11:10 dmistat r/- DMI status: 00 = no error, 01 = reserved, 10 = operation
failed, 11 = failed operation during pending DMI
operation

9:4 abits r/- number of address bits in DMI register (= 6)

3:0 version r/- 0001 = DTM is compatible to RISC-V debug spec. versions
v0.13 and v1.0

Table 99. DMI - DTM Debug Module Interface Register

Bit(s) Name R/W Description

40:34 address r/w 7-bit address, see DM Registers

33:2 data r/w 32-bit to write/read to/from the addresses DM register

1:0 command r/w 2-bit operation (00 = NOP; 10 = write; 01 = read)

The NEORV32 RISC-V Processor Visit on GitHub

222 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

5.2. Debug Module (DM)
The debug module "DM" (VHDL module: rtl/core/neorv32_debug_dm.vhd) acts as a translation
interface between abstract operations issued by the debugger application (like GDB) and the
platform-specific debugger hardware. It supports the following features:

• Gives the debugger necessary information about the implementation.

• Allows the hart to be halted/resumed/reset and provides the current status.

• Provides abstract read and write access to the halted hart’s general purpose registers.

• Provides access to a reset signal that allows debugging from the very first instruction after reset.

• Provides a program buffer to force the hart to execute arbitrary instructions.

• Allows memory accesses (to the entire address space) from a hart’s point of view.

• Optionally implements an authentication mechanism to secure on-chip debugger access.

The NEORV32 DM follows the "Minimal RISC-V External Debug Specification" to provide full
debugging capabilities while keeping resource/area requirements at a minimum. It implements the
execution based debugging scheme for up to four individual CPU cores ("harts") and provides the
following architectural core features:

• program buffer with 2 entries and an implicit ebreak instruction at the end

• indirect bus access via the CPU using the program buffer

• abstract commands: "access register" plus auto-execution

• halt-on-reset capability

• optional authentication


DM Spec. Version

The NEORV32 DM complies to the RISC-V DM spec version 1.0.

From the DTM’s point of view, the DM implements a set of DM Registers that are used to control and
monitor the debugging session. From the CPU’s point of view, the DM implements several memory-
mapped registers that are used for communicating data, instructions, debugging control and status
(DM CPU Access).

External Reset Output

The entire processor can be reset at any time by the debugger via the ndmreset bit of the dmcontrol
register. This signal is also available as processor top signal (Processor Top Entity - Signals:
rstn_ocd_o) and can be used to reset processor-external modules via the on-chip debugger. This
signal is low-active and synchronous to the processor clock. It is available if the on-chip debugger is
actually implemented; otherwise it is hardwired to 1. Note that the signal also becomes active (low)
when the processor’s main reset signal is active (even if the on-chip debugger is deactivated or
disabled for synthesis).

The NEORV32 RISC-V Processor Visit on GitHub

223 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

5.2.1. DM Registers

The DM is controlled via a set of registers that are accessed via the DTM. The following registers are
implemented:



Unimplemented Registers

Write accesses to registers that are not implemented are simply ignored and read
accesses to these registers will always return zero. In both cases no error condition
is signaled to the DTM.

Table 100. Available DM registers

Address Name Description

0x04 data0 Abstract data register 0

0x10 dmcontrol Debug module control

0x11 dmstatus Debug module status

0x12 hartinfo Hart information

0x16 abstracts Abstract control and status

0x17 command Abstract command

0x18 abstractauto Abstract command auto-execution

0x1d nextdm Base address of next DM; reads as zero to indicate there
is only one DM

0x20 progbuf0 Program buffer 0

0x21 progbuf1 Program buffer 1

0x30 authdata Data to/from the authentication module

0x38 sbcs System bus access control and status; reads as zero to
indicate there is no system bus access

0x40 haltsum0 Hart halt summary

data0

0x04 Abstract data 0 data0

Reset value: 0x00000000

Basic read/write data exchange register to be used with abstract commands (for example to
read/write data from/to CPU GPRs).

dmcontrol

0x10 Debug module control register dmcontrol

Reset value: 0x00000000

The NEORV32 RISC-V Processor Visit on GitHub

224 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Control of the overall debug module and the hart. The following table shows all implemented bits.
All remaining bits/bit-fields are configured as "zero" and are read-only. Writing '1' to these
bits/fields will be ignored.

Table 101. dmcontrol Register Bits

Bit Name [RISC-V] R/W Description

31 haltreq -/w set/clear hart halt request

30 resumereq -/w request hart to resume

28 ackhavereset -/w write 1 to clear *havereset flags

27 - r/- reserved, hardwired to zero

26 hasel r/- 0: only a single hart can be selected at once

25:16 hartsello r/w hart select; only the lowest 3 bits are implemented

15:6 hartselhi r/- hardwired to zero

5:4 - r/- reserved, hardwired to zero

3 setresethaltre
q

r/- 0: halt-on-reset not implemented

2 clrresethaltre
q

r/- 0: halt-on-reset not implemented

1 ndmreset r/w put whole system (except OCD) into reset state when 1

0 dmactive r/w DM enable; writing 0-1 will reset the DM

dmstatus

0x11 Debug module status register dmstatus

Reset value: 0x00400083

Current status of the overall debug module and the hart. The entire register is read-only.

Table 102. dmstatus Register Bits

Bit Name [RISC-
V]

Description

31:23 reserved reserved; zero

22 impebreak 1: indicates an implicit ebreak instruction after the last program buffer
entry

21:20 reserved reserved; zero

19 allhavereset 1 when the selected hart is in reset state

18 anyhavereset

17 allresumeack 1 when the selected hart has acknowledged a resume request

16 anyresumeack

The NEORV32 RISC-V Processor Visit on GitHub

225 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Bit Name [RISC-
V]

Description

15 allnonexisten
t

1 when the selected hart is not available

14 anynonexisten
t

13 allunavail 1 when the DM is disabled to indicate the selected hart is unavailable

12 anyunavail

11 allrunning 1 when the selected hart is running

10 anyrunning

9 allhalted 1 when the selected hart is halted

8 anyhalted

7 authenticated set if authentication passed; see Debug Authentication

6 authbusy set if authentication is busy, see Debug Authentication

5 hasresethaltr
eq

0: halt-on-reset is not supported (directly)

4 confstrptrval
id

0: no configuration string available

3:0 version 0011: DM compatible to debug spec. version v1.0

hartinfo

0x12 Hart information hartinfo

Reset value: see below

This register gives information about the hart. The entire register is read-only.

Table 103. hartinfo Register Bits

Bit Name [RISC-V] Description

31:24 reserved reserved; zero

23:20 nscratch 0001: number of dscratch* CPU registers = 1

19:17 reserved reserved; zero

16 dataccess 0: the data registers are shadowed in the hart’s address space

15:12 datasize 0001: number of 32-bit words in the address space dedicated to
shadowing the data registers (1 register)

11:0 dataaddr = dm_data_base_c(11:0), signed base address of data words (see address
map in DM CPU Access)

The NEORV32 RISC-V Processor Visit on GitHub

226 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

abstracts

0x16 Abstract control and status abstracts

Reset value: 0x02000801

Command execution info and status.

Table 104. abstracts Register Bits

Bit Name [RISC-V] R/W Description

31:29 reserved r/- reserved; zero

28:24 progbufsize r/- 0010: size of the program buffer (progbuf) = 2 entries

23:11 reserved r/- reserved; zero

12 busy r/- set when a command is being executed

11 relaxedpriv r/- 1: PMP rules are ignored when in debug mode

10:8 cmderr r/w error during command execution (see below); has to be cleared
by writing 111

7:4 reserved r/- reserved; zero

3:0 datacount r/- 0001: number of implemented data registers for abstract
commands = 1

Error codes in cmderr (highest priority first):

• 000 - no error

• 100 - command cannot be executed since hart is not in expected state

• 011 - exception during command execution

• 010 - unsupported command

• 001 - invalid DM register read/write while command is/was executing

command

0x17 Abstract command command

Reset value: 0x00000000

Writing this register will trigger the execution of an abstract command. New command can only
be executed if cmderr is zero. The entire register in write-only (reads will return zero).


The NEORV32 DM only supports Access Register abstract commands. These
commands can only access the hart’s GPRs x0 - x15/31 (abstract command register
index 0x1000 - 0x101f).

Table 105. command Register Bits

The NEORV32 RISC-V Processor Visit on GitHub

227 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Bit Name [RISC-V] R/W Description / required value

31:24 cmdtype -/w 00000000: indicates "access register" command

23 reserved -/w reserved, has to be 0 when writing

22:20 aarsize -/w 010: indicates 32-bit accesses

21 aarpostincreme
nt

-/w 0: post-increment is not supported

18 postexec -/w set if the program buffer is executed after the command

17 transfer -/w set if the operation in write is conducted

16 write -/w 1: copy data0 to [regno], 0: copy [regno] to data0

15:0 regno -/w GPR-access only; has to be 0x1000 - 0x101f

abstractauto

0x18 Abstract command auto-execution abstractauto

Reset value: 0x00000000

Register to configure if a read/write access to a DM register re-triggers execution of the last
abstract command.

Table 106. abstractauto Register Bits

Bit Name [RISC-V] R/W Description

17 autoexecprogbu
f[1]

r/w when set reading/writing from/to progbuf1 will execute command
again

16 autoexecprogbu
f[0]

r/w when set reading/writing from/to progbuf0 will execute command
again

0 autoexecdata[0
]

r/w when set reading/writing from/to data0 will execute command
again

progbuf

0x20 Program buffer 0 progbuf0

0x21 Program buffer 1 progbuf1

Reset value: 0x00000013 ("NOP")

Program buffer (two entries) for the DM.

authdata

0x30 Authentication data authdata

Reset value: user-defined

The NEORV32 RISC-V Processor Visit on GitHub

228 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

This register serves as a 32-bit serial port to/from the authentication module. See Debug
Authentication.

haltsum0

0x30 Halt summary 0 haltsum0

Reset value: 0x00000000

Each bit corresponds to a hart being halted. Only the lowest four bits are implemented.

5.2.2. DM CPU Access

From the CPU’s perspective the DM acts like another memory-mapped peripheral. It occupies 512
bytes of the CPU’s address space starting at address base_io_dm_c (0xffff0000). This address space is
divided into four sections 128 64 bytes each to provide access to the park loop code ROM, the
program buffer, the data buffer and the status register. The program buffer, the data buffer and the
status register do not fully occupy the 128-byte-wide sections and are mirrored several times across
the entire section.

Table 107. DM CPU Access - Address Map

Base address Physical size Description

0xfffffe00 128 bytes ROM for the "park loop" code (Code ROM)

0xfffffe80 16 bytes Program buffer (progbuf)

0xffffff00 4 bytes Data buffer (data0)

0xffffff80 16 bytes Control and Status Register



DM Register Access

All memory-mapped registers of the DM can only be accessed by the CPU when in
debug mode. Hence, the DM registers are not accessible for normal CPU
operations. Any CPU access outside of debug mode will raise a bus access fault
exception.

Code ROM

The code ROM contain the minimal OCD firmware that implements the debuggers part loop.


Park Loop Code Sources ("OCD Firmware")

The assembly sources of the park loop code are available in sw/ocd-
firmware/park_loop.S.

The park loop code provides two entry points where code execution can start. These are used to
enter the park loop either when an explicit debug-entry/halt request has been issued (for example a
halt request) or when an exception has occurred while executing code in debug mode (from the
profram buffer).

The NEORV32 RISC-V Processor Visit on GitHub

229 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Table 108. Park Loop Entry Points

Address Description

dm_exc_entry_c (base_io_dm_c + 0) Exception entry address

dm_park_entry_c (base_io_dm_c + 16) Normal entry address (halt request)

When the CPU enters (via an explicit halt request from the debugger) or re-enters debug mode (for
example via an ebreak in the DM’s program buffer), it jumps to the normal entry point that is
configured via the CPU_DEBUG_PARK_ADDR CPU generic. By default, this address is set to
dm_park_entry_c, which is defined in the main package file. If an exception is encountered during
debug mode, the CPU jumps to the address of the exception entry point configured via the
CPU_DEBUG_EXC_ADDR CPU generic. By default, this address is set to dm_exc_entry_c, which is also
defined in the main package file.

Status Register

The status register provides a direct communication channel between the CPU’s debug-mode
executing the park loop and the debugger-controlled DM. This register is used to communicate
requests, which are issued by the DM, and the according acknowledges, which are generated by the
CPU. The status register is sub-divided into four consecutive memory-mapped registers.

Starting at 0xffffff80 the status register provides a set of memory-mapped interface register whose
functionality depends on whether the CPU accesses the register in read or write mode. Read
accesses return the requests for each individual hart generated by the DM. Write accesses are used
to acknowledge these requests by the individual harts back to the DM.

For read accesses, the hart ID is used as byte offset to read the hart-specific request flags. The flags
for hart 0 are located at 0xffffff80 + 0, the flags for hart 1 are located at 0xffffff80 + 1 and so on.
Hence, each hart can use load-unsigned-byte instructions to isolate the hart specific flags.

Table 109. DM Status Register - Read Access (byte-wise access)

Address Hart R/W Bits Description

0xffffff80 0 r/- 0 Resume request

1 Execute request

0xffffff81 1 r/- 0 Resume request

1 Execute request

0xffffff82 2 r/- 0 Resume request

1 Execute request

0xffffff83 3 r/- 0 Resume request

1 Execute request

For write accesses, four consecutive memory-mapped registers are implemented. Each individual
register is used to acknowledge a specific condition: halt, resume, execute and exception. Each hart

The NEORV32 RISC-V Processor Visit on GitHub

230 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

can acknowledge the according condition by writing its hart ID to the according register.

Table 110. DM Status Register - Write Access (word-wise access)

Address R/W Bits Description

0xffffff80 r/w 1:0 write hart ID to send hart’s HALT acknowledge

0xffffff84 r/w 1:0 write hart ID to send hart’s RESUME acknowledge

0xffffff88 r/w 1:0 write hart ID to send hart’s EXECUTE acknowledge

0xffffff8c r/w 1:0 write any value to send hart’s EXCEPTION acknowledge

The NEORV32 RISC-V Processor Visit on GitHub

231 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

5.3. Debug Authentication
Optionally, the on-chip debugger’s DM can be equipped with an authenticator module to secure
debugger access. This authentication is enabled by the OCD_AUTHENTICATION top generic. When
disabled, the debugger is always authorized and has unlimited access. When enabled, the debugger
is required to authenticate in order to gain access.

The authenticator module is implemented as individual RTL module
(rtl/core/neorv32_debug_auth.vhd). By default, it implements a very simple authentication
mechanism. Note that this default mechanism is not secure in any way - it is intended as example
logic to illustrate the interface and authentication process. Users can modify the default logic or
replace the entire module to implement a more sophisticated custom authentication mechanism.

The authentication interface is compliant to the RISC-V debug spec and is based on a single CSR and
two additional status bits:

• authdata CSR: this 32-bit register is used to read/write data from/to the authentication module. It
is hardwired to all-zero if authentication is not implemented.

• dmstatus CSR:

◦ The authenticated bit (read-only) is set if authentication was successful. The debugger can
access the processor only if this bit is set. It is automatically hardwired to 1 (always
authenticated) if the authentication module is not implemented.

◦ The authbusy bit (read-only) indicates if the authentication module is busy. When set, no data
should be written/read to/from authdata. This bit is automatically hardwired to 0 (never
busy) if the authentication module is not implemented.

openOCD provides dedicated commands to exchange data with the authenticator module:

Listing 24. openOCD RISC-V Authentication Commands

riscv authdata_read // read 32-bit from authdata CSR
riscv authdata_write value // write 32-bit value to authdata CSR

Based on these two primitives arbitrary complex authentication mechanism can be implemented.

5.3.1. Default Authentication Mechanism


The default authentication mechanism is not secure at all. Replace it by a custom
design.

The default authenticator hardware implements a very simple authentication mechanism: a single
read/write bit is implemented that directly corresponds to the authenticated bit in dmstatus. This bit
can be read/written as bit zero (LSB) of the authdata CSR. Writing 1 to this register will result in a
successful authentication. The default openOCD configuration script for the NEORV32 implements
this basic authentication mechanism:

The NEORV32 RISC-V Processor Visit on GitHub

232 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Listing 25. Default authentication process (sw/openocd/openocd_neorv32.cfg)

set challenge [riscv authdata_read] # read authdata; not required, just an
example
riscv authdata_write [expr {$challenge | 1}] # set LSB to authenticate

The NEORV32 RISC-V Processor Visit on GitHub

233 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

5.4. CPU Debug Mode
The NEORV32 CPU Debug Mode is compatible to the Minimal RISC-V Debug Specification 1.0 Sdext
(external debug) ISA extension. When enabled via the CPU’s Sdext ISA Extension generic and/or the
processor’s OCD_EN it adds a new CPU operation mode ("debug mode"), three additional CPU Debug
Mode CSRs and one additional instruction (dret) to the core.

Debug-mode is entered on any of the following events:

1. The CPU executes an ebreak instruction (when in machine-mode and ebreakm in dcsr is set OR
when in user-mode and ebreaku in dcsr is set).

2. A debug halt request is issued by the DM (via CPU db_halt_req_i signal, high-active).

3. The CPU completes executing of a single instruction while being in single-step debugging mode
(step in dcsr is set).

4. A hardware trigger from the Trigger Module fires (exe and action in tdata1 / mcontrol are set).


From a hardware point of view these debug-mode-entry conditions are special
traps (synchronous exceptions or asynchronous interrupts) that are handled
transparently by the control logic.

Whenever the CPU enters debug-mode it performs the following operations:

• wake-up CPU if it was send to sleep mode by the wfi instruction

• switch to debug-mode privilege level

• move the current program counter to dpc

• copy the hart’s current privilege level to the prv flags in dcsr

• set cause in dcsr according to the cause why debug mode is entered

• no update of mtval, mcause, mtval and mstatus CSRs

• load the address configured via the CPU’s (CPU_DEBUG_PARK_ADDR) generic to the program counter
jumping to the "debugger park loop" code stored in the debug module (DM)

When the CPU is in debug-mode:

• while in debug mode, the CPU executes the parking loop and - if requested by the DM - the
program buffer

• effective CPU privilege level is machine mode; any active physical memory protection (PMP)
configuration is bypassed

• the wfi instruction acts as a nop (also during single-stepping)

• if an exception occurs while being in debug mode:

◦ if the exception was caused by any debug-mode entry action the CPU jumps to the normal
entry point (defined by the CPU_DEBUG_PARK_ADDR generic) of the park loop again (for example
when executing ebreak while in debug-mode)

The NEORV32 RISC-V Processor Visit on GitHub

234 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

◦ for all other exception sources the CPU jumps to the exception entry point (defined by the
CPU_DEBUG_EXC_ADDR generic) to signal an exception to the DM; the CPU restarts the park loop
again afterwards

• interrupts are disabled; however, they will remain pending and will get executed after the CPU
has left debug mode and is not being single-stepped

• if the DM makes a resume request, the park loop exits and the CPU leaves debug mode
(executing dret)

• the standard counters (Machine) Counter and Timer CSRs [m]cycle[h] and [m]instret[h] are
stopped

• all Hardware Performance Monitors (HPM) CSRs are stopped

Debug mode is left either by executing the dret instruction or by performing a hardware reset of
the CPU. Executing dret outside of debug mode will raise an illegal instruction exception.

Whenever the CPU leaves debug mode it performs the following operations:

• set the hart’s current privilege level according to the prv flags of dcsr

• restore the original program counter from dpc resuming normal operation

5.4.1. CPU Debug Mode CSRs

Two additional CSRs are required by the "Minimal RISC-V Debug Specification": the debug mode
control and status register dcsr and the debug program counter dpc. An additional general purpose
scratch register for debug-mode-only (dscratch0) allows faster execution by having a fast-accessible
backup register. These CSRs are only accessible if the CPU is in debug mode. If these CSRs are
accessed outside of debug mode an illegal instruction exception is raised.

dcsr

Name Debug control and status register

Address 0x7b0

Reset
value

0x40000410

ISA Zicsr & Sdext

Descripti
on

This register is used to configure the debug mode environment and provides additional
status information.

Table 111. Debug control and status register dcsr bits

Bit Name [RISC-V] R/W Description

31:28 xdebugver r/- 0100: CPU debug mode is compatible to spec. version 1.0

27:16 - r/- 000000000000: reserved

The NEORV32 RISC-V Processor Visit on GitHub

235 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Bit Name [RISC-V] R/W Description

15 ebereakm r/w ebreak instructions in machine mode will enter debug mode when
set

14 ebereakh r/- 0: hypervisor mode not supported

13 ebereaks r/- 0: supervisor mode not supported

12 ebereaku r/w ebreak instructions in user mode will enter debug mode when set

11 stepie r/- 0: IRQs are disabled during single-stepping

10 stopcount r/- 1: standard counters and HPMs are stopped when in debug mode

9 stoptime r/- 0: timers increment as usual

8:6 cause r/- cause identifier: why debug mode was entered (see below)

5 - r/- 0: reserved

4 mprven r/- 1: mprv in mstatus is also evaluated when in debug mode

3 nmip r/- 0: non-maskable interrupt is pending

2 step r/w enable single-stepping when set

1:0 prv r/w CPU privilege level before/after debug mode

Cause codes in dcsr.cause (highest priority first):

• 010 - triggered by hardware Trigger Module

• 001 - executed EBREAK instruction

• 011 - external halt request (from DM)

• 100 - return from single-stepping

dpc

Name Debug program counter

Address 0x7b1

Reset
value

0x00000000

ISA Zicsr & Sdext

Descripti
on

The register is used to store the current program counter when debug mode is entered.
The dret instruction will return to the address stored in dpc by automatically moving
dpc to the program counter.


dpc[0] is hardwired to zero. If IALIGN = 32 (i.e. C ISA Extension is disabled) then
dpc[1] is also hardwired to zero.

The NEORV32 RISC-V Processor Visit on GitHub

236 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

dscratch0

Name Debug scratch register 0

Address 0x7b2

Reset
value

0x00000000

ISA Zicsr & Sdext

Descripti
on

The register provides a general purpose debug mode-only scratch register.

The NEORV32 RISC-V Processor Visit on GitHub

237 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

5.5. Trigger Module
"Normal" software breakpoints (using GDB’s b/break command) are implemented by temporarily
replacing the according instruction word by an [c.]ebreak instruction. However, this is not possible
when debugging code that is executed from read-only memory (for example when debugging
programs that are executed via the Execute In Place Module (XIP)). To circumvent this limitation a
hardware trigger logic allows to (re-)enter debug-mode when instruction execution reaches a
programmable address. These "hardware-assisted breakpoints" are used by GDB’s hb/hbreak
commands.

The RISC-V Sdtrig ISA extension adds a programmable trigger module to the CPU core that is
enabled via the Sdtrig ISA Extension generic. The trigger module implements a subset of the
features described in the "RISC-V Debug Specification / Trigger Module" and complies to version
v1.0 of the Sdtrig spec.

The NEORV32 trigger module features only a single trigger implementing a "type 6 - instruction
address match" trigger. This limitation is granted by the RISC-V debug spec and is sufficient to
debug code executed from read-only memory (ROM). The trigger module can also be used
independently of the CPU debug-mode / Sdext ISA extension. Machine-mode software can use the
trigger module to raise a breakpoint exception when instruction execution reaches a programmed
address.


Trigger Timing

When enabled the address match trigger will fire BEFORE the instruction at the
programmed address gets executed.



MEPC & DPC CSRs

The breakpoint exception when raised by the trigger module behaves different
then the "normal" trapping (see NEORV32 Trap Listing): mepc / dpc is set to the
address of the next instruction that needs to be executed to preserve the program
flow. A "normal" breakpoint exception would set mepc / dpc to the address of the
actual ebreak instruction itself.

5.5.1. Trigger Module CSRs

The Sdtrig ISA extension adds 4 additional CSRs that are accessible from debug-mode and also from
machine-mode. Machine-mode write accesses can be ignored by setting ´dmode´ in tdata1. This is
automatically done by the debugger if it uses the trigger module for implementing a "hardware
breakpoint"

tselect

Name Trigger select register

Address 0x7a0

The NEORV32 RISC-V Processor Visit on GitHub

238 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Reset
value

0x00000000

ISA Zicsr & Sdtrig

Descripti
on

This CSR is hardwired to zero indicating there is only one trigger available. Any write
access is ignored.

tdata1

Name Trigger data register 1, visible as trigger "type 6 match control" (mcontrol6)

Address 0x7a1

Reset
value

0x60000048

ISA Zicsr & Sdtrig

Descripti
on

This CSR is used to configure the address match trigger using "type 6" format.

Table 112. Match Control CSR (tdata1) Bits

Bit Name [RISC-V] R/W Description

31:28 type r/- 0100: address match trigger type 6

27 dmode r/w set to ignore write accesses to tdata1 and tdata2 from machine-
mode; writable from debug-mode only

26 uncertain r/- 0: trigger satisfies the configured conditions

25 hit1 r/- 0: hardwired to zero, only hit0 is used

24 vs r/- 0: VS-mode not supported

23 vu r/- 0: VU-mode not supported

22 hit0 r/c set when trigger has fired (BEFORE executing the triggering
address); must be explicitly cleared by writing zero; writing 1 has
no effect

21 select r/- 0: only address matching is supported

20:19 reserved r/- 00: hardwired to zero

18:16 size r/- 000: match accesses of any size

15:12 action r/w 0000 = breakpoint exception on trigger match, 0001 = enter debug-
mode on trigger match

11 chain r/- 0: chaining is not supported as there is only one trigger

10:6 match r/- 0000: equal-match only

6 m r/- 1: trigger enabled when in machine-mode

5 uncertainen r/- 0: feature not supported, hardwired to zero

The NEORV32 RISC-V Processor Visit on GitHub

239 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Bit Name [RISC-V] R/W Description

4 s r/- 0: supervisor-mode not supported

3 u r/- 0/1: trigger enabled when in user-mode, set if U ISA extension is
enabled

2 execute r/w set to enable trigger matching on instruction address

1 store r/- 0: store address/data matching not supported

0 load r/- 0: load address/data matching not supported

tdata2

Name Trigger data register 2

Address 0x7a2

Reset
value

0x00000000

ISA Zicsr & Sdtrig

Descripti
on

Since only the "address match trigger" type is supported, this r/w CSR is used to
configure the address of the triggering instruction. Note that the trigger module will
fire before the instruction at the programmed address gets executed.

tinfo

Name Trigger information register

Address 0x7a4

Reset
value

0x01000006

ISA Zicsr & Sdtrig

Descripti
on

The CSR shows global trigger information (see below). Any write access is ignored.

Table 113. Trigger Info CSR (tinfo) Bits

Bit Name [RISC-V] R/W Description

31:24 version r/- 0x01: compatible to spec. version v1.0

23:15 reserved r/- 0x00: hardwired to zero

15:0 info r/- 0x0006: only "type 6 trigger" is supported

The NEORV32 RISC-V Processor Visit on GitHub

240 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Chapter 6. Legal

About

The NEORV32 RISC-V Processor
https://github.com/stnolting/neorv32
Stephan Nolting, M.Sc.
἞�἟� European Union
stnolting@gmail.com

License
BSD 3-Clause License

Copyright (c) NEORV32 contributors. Copyright (c) 2020 - 2025, Stephan Nolting. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


SPDX Identifier

SPDX-License-Identifier: BSD-3-Clause

The NEORV32 RISC-V Processor Visit on GitHub

241 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32
mailto:stnolting@gmail.com
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

Proprietary Notice
• "GitHub" is a subsidiary of Microsoft Corporation.

• "Vivado" and "Artix" are trademarks of AMD Inc.

• "AXI", "AXI", "AXI4-Lite", "AXI4-Stream", "AHB", "AHB3" and "AHB3-Lite" are trademarks of Arm
Holdings plc.

• "ModelSim" is a trademark of Mentor Graphics – A Siemens Business.

• "Quartus [Prime]" and "Cyclone" are trademarks of Intel Corporation.

• "iCE40", "UltraPlus" and "Radiant" are trademarks of Lattice Semiconductor Corporation.

• "GateMate" is a trademark of Cologne Chip AG.

• "Windows" is a trademark of Microsoft Corporation.

• "Tera Term" copyright by T. Teranishi.

• "NeoPixel" is a trademark of Adafruit Industries.

• "Segger Embedded Studio" and "J-Link" are trademarks of Segger Microcontroller Systems
GmbH.

• Images/figures made with Microsoft Power Point.

• Timing diagrams made with WaveDrom Editor.

• Documentation made with asciidoctor.

All further/unreferenced projects/products/brands belong to their according copyright holders. No
copyright infringement intended.

Disclaimer
This project is released under the BSD 3-Clause license. NO COPYRIGHT INFRINGEMENT
INTENDED. Other implied or used projects/sources might have different licensing – see their
according documentation for more information.

Limitation of Liability for External Links
This document contains links to the websites of third parties ("external links"). As the content of
these websites is not under our control, we cannot assume any liability for such external content.
In all cases, the provider of information of the linked websites is liable for the content and accuracy
of the information provided. At the point in time when the links were placed, no infringements of
the law were recognizable to us. As soon as an infringement of the law becomes known to us, we
will immediately remove the link in question.

Citing

 This is an open-source project that is free of charge. Use this project in any way

The NEORV32 RISC-V Processor Visit on GitHub

242 / 243 Version v1.11.0 2025-02-05

https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

you like (as long as it complies to the permissive license). Please cite it
appropriately. ὄ�


Contributors & Community ᾑ�

Please add as many contributors as possible to the author field.
This project would not be where it is without them.


DOI

This project provides a digital object identifier provided by zenodo:
DOIDOI 10.5281/zenodo.501888810.5281/zenodo.5018888

Acknowledgments
A big shout-out to the community and all the contributors, who helped improving this
project! This project would not be where it is without them. ❤️

RISC-V - instruction sets want to be free!

Continuous integration provided by GitHub Actions and powered by GHDL.

The NEORV32 RISC-V Processor Visit on GitHub

243 / 243 Copyright by Stephan Nolting. All rights reserved. 2025-02-05

https://github.com/stnolting/neorv32/graphs/contributors
https://zenodo.org
https://doi.org/10.5281/zenodo.5018888
https://github.com/stnolting/neorv32/graphs/contributors
https://riscv.org
https://github.com/features/actions
https://github.com/ghdl/ghdl
https://github.com/stnolting/neorv32
https://github.com/stnolting/neorv32

	The NEORV32 RISC-V Processor - Datasheet
	Table of Contents
	Chapter 1. Overview
	1.1. Rationale
	1.2. Project Key Features
	1.3. Project Folder Structure
	1.4. VHDL File Hierarchy
	1.4.1. File-List Files

	1.5. VHDL Coding Style
	1.6. FPGA Implementation Results
	1.7. CPU Performance

	Chapter 2. NEORV32 Processor (SoC)
	2.1. Processor Top Entity - Signals
	2.2. Processor Top Entity - Generics
	2.3. Processor Clocking
	2.3.1. Peripheral Clocks

	2.4. Processor Reset
	2.5. Processor Interrupts
	2.5.1. RISC-V Standard Interrupts
	2.5.2. NEORV32-Specific Fast Interrupt Requests

	2.6. Address Space
	2.6.1. Bus System
	2.6.2. Bus Gateway
	2.6.3. IO Switch
	2.6.4. Atomic Memory Operations Controller
	2.6.5. Cache Coherency

	2.7. Boot Configuration
	2.7.1. Booting via Bootloader
	2.7.2. Boot from Custom Address
	2.7.3. Boot IMEM Image

	2.8. Processor-Internal Modules
	2.8.1. Instruction Memory (IMEM)
	2.8.2. Data Memory (DMEM)
	2.8.3. Bootloader ROM (BOOTROM)
	2.8.4. Processor-Internal Instruction Cache (iCACHE)
	2.8.5. Processor-Internal Data Cache (dCACHE)
	2.8.6. Direct Memory Access Controller (DMA)
	2.8.7. Processor-External Bus Interface (XBUS)
	2.8.8. Stream Link Interface (SLINK)
	2.8.9. General Purpose Input and Output Port (GPIO)
	2.8.10. Cyclic Redundancy Check (CRC)
	2.8.11. Watchdog Timer (WDT)
	2.8.12. Core Local Interruptor (CLINT)
	2.8.13. Primary Universal Asynchronous Receiver and Transmitter (UART0)
	2.8.14. Secondary Universal Asynchronous Receiver and Transmitter (UART1)
	2.8.15. Serial Peripheral Interface Controller (SPI)
	2.8.16. Serial Data Interface Controller (SDI)
	2.8.17. Two-Wire Serial Interface Controller (TWI)
	2.8.18. Two-Wire Serial Device Controller (TWD)
	2.8.19. One-Wire Serial Interface Controller (ONEWIRE)
	2.8.20. Pulse-Width Modulation Controller (PWM)
	2.8.21. True Random-Number Generator (TRNG)
	2.8.22. Custom Functions Subsystem (CFS)
	2.8.23. Smart LED Interface (NEOLED)
	2.8.24. General Purpose Timer (GPTMR)
	2.8.25. Execute In Place Module (XIP)
	2.8.26. System Configuration Information Memory (SYSINFO)

	Chapter 3. NEORV32 Central Processing Unit (CPU)
	3.1. RISC-V Compatibility
	3.2. CPU Top Entity - Signals
	3.3. CPU Top Entity - Generics
	3.4. Architecture
	3.4.1. CPU Register File
	3.4.2. CPU Arithmetic Logic Unit
	3.4.3. CPU Bus Unit
	3.4.4. CPU Control Unit
	3.4.5. CPU Tuning Options
	3.4.6. Sleep Mode
	3.4.7. CPU Clock Gating
	3.4.8. Full Virtualization

	3.5. Bus Interface
	3.5.1. Bus Interface Protocol
	3.5.2. Atomic Memory Access

	3.6. Instruction Sets and Extensions
	3.6.1. B ISA Extension
	3.6.2. C ISA Extension
	3.6.3. E ISA Extension
	3.6.4. I ISA Extension
	3.6.5. M ISA Extension
	3.6.6. U ISA Extension
	3.6.7. X ISA Extension
	3.6.8. Zaamo ISA Extension
	3.6.9. Zifencei ISA Extension
	3.6.10. Zfinx ISA Extension
	3.6.11. Zicntr ISA Extension
	3.6.12. Zicond ISA Extension
	3.6.13. Zicsr ISA Extension
	3.6.14. Zihpm ISA Extension
	3.6.15. Zba ISA Extension
	3.6.16. Zbb ISA Extension
	3.6.17. Zbs ISA Extension
	3.6.18. Zbkb ISA Extension
	3.6.19. Zbkc ISA Extension
	3.6.20. Zbkx ISA Extension
	3.6.21. Zkn ISA Extension
	3.6.22. Zknd ISA Extension
	3.6.23. Zkne ISA Extension
	3.6.24. Zknh ISA Extension
	3.6.25. Zks ISA Extension
	3.6.26. Zksed ISA Extension
	3.6.27. Zksh ISA Extension
	3.6.28. Zkt ISA Extension
	3.6.29. Zmmul - ISA Extension
	3.6.30. Zxcfu ISA Extension
	3.6.31. Smpmp ISA Extension
	3.6.32. Sdext ISA Extension
	3.6.33. Sdtrig ISA Extension

	3.7. Custom Functions Unit (CFU)
	3.7.1. CFU Instruction Formats
	3.7.2. Using Custom Instructions in Software
	3.7.3. CFU Control and Status Registers (CFU-CSRs)
	3.7.4. Custom Instructions Hardware

	3.8. Control and Status Registers (CSRs)
	3.8.1. Floating-Point CSRs
	3.8.2. Machine Trap Setup CSRs
	3.8.3. Machine Trap Handling CSRs
	3.8.4. Machine Configuration CSRs
	3.8.5. Machine Physical Memory Protection CSRs
	3.8.6. (Machine) Counter and Timer CSRs
	3.8.7. Hardware Performance Monitors (HPM) CSRs
	3.8.8. Machine Counter Setup CSRs
	3.8.9. Machine Information CSRs
	3.8.10. NEORV32-Specific CSRs

	3.9. Traps, Exceptions and Interrupts
	3.9.1. Memory Access Exceptions
	3.9.2. Custom Fast Interrupt Request Lines
	3.9.3. NEORV32 Trap Listing

	3.10. Dual-Core Configuration
	3.10.1. SMP Software Library
	3.10.2. Inter-Core Communication (ICC)
	3.10.3. Dual-Core Boot

	Chapter 4. Software Framework
	4.1. Compiler Toolchain
	4.2. Core Libraries
	4.3. System View Description File (SVD)
	4.4. Application Makefile
	4.4.1. Makefile Targets
	4.4.2. Default Compiler Flags

	4.5. Linker Script
	4.5.1. RAM Layout

	4.6. C Standard Library
	4.7. Start-Up Code (crt0)
	4.7.1. Early Trap Handler

	4.8. Executable Image Formats
	4.9. Bootloader
	4.9.1. Bootloader SoC/CPU Requirements
	4.9.2. Bootloader Flash Requirements
	4.9.3. Bootloader TWI memory Requirements
	4.9.4. Bootloader Console
	4.9.5. Auto Boot Sequence
	4.9.6. Bootloader Error Codes

	4.10. NEORV32 Runtime Environment
	4.10.1. RTE Operation
	4.10.2. Using the RTE
	4.10.3. Default RTE Trap Handlers
	4.10.4. Application Context Handling

	Chapter 5. On-Chip Debugger (OCD)
	5.1. Debug Transport Module (DTM)
	5.2. Debug Module (DM)
	5.2.1. DM Registers
	5.2.2. DM CPU Access

	5.3. Debug Authentication
	5.3.1. Default Authentication Mechanism

	5.4. CPU Debug Mode
	5.4.1. CPU Debug Mode CSRs

	5.5. Trigger Module
	5.5.1. Trigger Module CSRs

	Chapter 6. Legal
	About
	License
	Proprietary Notice
	Disclaimer
	Limitation of Liability for External Links
	Citing
	Acknowledgments

