
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

2008-12-11

Estimating TMR Reliability on FPGAs Using Markov Models Estimating TMR Reliability on FPGAs Using Markov Models

Daniel McMurtrey
dmcmurt@sandia.gov

Keith S. Morgan
keith.morgan@byu.net

Brian Pratt

Michael J. Wirthlin
wirthlin@ee.byu.edu

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Electrical and Computer Engineering Commons

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
McMurtrey, Daniel; Morgan, Keith S.; Pratt, Brian; and Wirthlin, Michael J., "Estimating TMR Reliability on
FPGAs Using Markov Models" (2008). Faculty Publications. 149.
https://scholarsarchive.byu.edu/facpub/149

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/149?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F149&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

1

Estimating TMR Reliability on FPGAs Using
Markov Models

Daniel McMurtrey, Keith Morgan, Brian Pratt, Michael Wirthlin

I. BACKGROUND

A. Markov

A fundamental problem in fault-tolerant computing is pre-
dicting a system’s reliability. Several methods exist to model
system reliability. Markov modeling, named for the Russian
mathematician Andrei Markov, is one such method.

The underlying assumption of Markov models is that the
probability of a state transition depends only on the cur-
rent state. These are called first-order Markov models. Other
higher-order Markov models exist, but these are mathemati-
cally much more difficult to deal with. The systems analyzed in
this paper can all be modeled as a first-order Markov process.

Since the conditional probability of being in any state j at
time t in a first-order Markov process only depends on the
previous state i, the conditional probability of transitioning
from one state to the next can be assembled in a square
matrix called a transition matrix T. Each entry in the transition
matrix at row m and column n represents the probability of
a transition from state m to state n (where m can equal n).
As such, all entries in a transition matrix are non-negative and
the entries in each row must sum to unity. Multiplying the
vector of marginal probabilities of the different states at time
t will give the marginal vector of probabilities for the next
time period [1].

The reliability of a computing system can be modeled as a
very simple Markov process with two states—functional and
failed. A graphical representation of this Markov model is
shown in Figure 1. State 0 represents the functional state and
state 1 represents the failed state. The system transitions from
functional to failed at a rate of λ, as labeled on the arc from
sate 0 to state 1.

Fig. 1. A simple two-state Markov model.

The reliability function of the Markov model depicted in
Figure 1 can be derived by first converting the process to a
continuous-time model and then solving a set of differential
equations for the probability the system is in state 1, the failed
state, at time t.

To convert to a continuous-time Markov model, a transition
matrix T is needed. By inspection, the transition matrix for
Figure 1 is

T =
[

1− λ∆t λ∆t
0 1

]
, (1)

where the entry in row m, column n represents the probability
of transitioning from state m to state n. Notice that entry 1, 1
is one, meaning once the system is in the failed state it will
remain there indefinitely.

From the transition matrix a set of equations can be defined
that represent the probability of being in state 0 or 1 at time
t+∆t. The distribution of probabilities at time t+∆t is equal
to the product of the distribution of the probabilities at time t
multiplied by the transition matrix. Stated mathematically,

[p0(t+∆t), p1(t+∆t)] = [p0(t), p1(t)]
[

1− λ∆t λ∆t
0 1

]
.

(2)
Multiplying out yields the system of equations

p0(t + ∆t) = (1− λ∆t)p0(t) (3)
p1(t + ∆t) = λ∆tp0(t) + p1(t). (4)

Subtracting p0(t) from both sides of Equation 3, p1(t) from
both sides of Equation 4, and dividing both sides of both
equations by ∆t gives

p0(t + ∆t)− p0(t)
∆t

= −λp0(t) (5)

p1(t + ∆t)− p1(t)
∆t

= λp0(t). (6)

Notice that the left hand side of Equations 5 and 6 are the
definition of a derivative when ∆t→ 0. Thus taking lim∆t→0

of Equations 5 and 6 generates

p′0(t) = −λp0(t) (7)
p′1(t) = λp0(t). (8)

Solving this set of equations is more easily accomplished if
they are first converted to the LaPlace domain. Taking the
LaPlace transform of Equations 7 and 8 yields

sP0(s)− p0(0) = −λP0(s) (9)
sP1(s)− p1(0) = λP0(s) (10)

where pi(0) = pi(t) at t = 0. In matrix form, Equations 9
and 10 can be written as

[p0(0), p1(0)] = [P0(s), P1(s)]
[

λ + s −λ
0 s

]
. (11)

2

Solving for [P0(s), P1(s)] gives

[P0(s), P1(s)] = [p0(0), p1(0)]
[

λ + s −λ
0 s

]−1

. (12)

Computing the inverse of the matrix yields

[P0(s), P1(s)] = [p0(0), p1(0)]
[1

λ+s
λ

(λ+s)s

0 1
s

]
. (13)

If the system starts out operational (in state 0), then the initial
probability distribution is

[p0(0), p1(0)] = [1, 0]. (14)

Substituting the values from Equation 14 into Equation 13
gives

[P0(s), P1(s)] = [1, 0]
[1

λ+s
λ

(λ+s)s

0 1
s

]
, (15)

or after multiplying through,

P0(s) =
1

λ + s
(16)

P1(s) =
λ

(λ + s)s
. (17)

Taking the inverse LaPlace transform of Equations 16 and 17
results in

p0(t) = e(−λt) (18)
p1(t) = 1− e(−λt). (19)

In words, Equations 18 and 19 are the probability pi(t) that
the system is in state i at time t. Since the system reliability
R(t) as a function of time is the probability that the system has
survived up to time t, the reliability is simply the probability
the system is in state 0 at time t, or

R(t) = p0(t) (20)
= e(−λt).

In more complex systems it is typically easier to compute the
probability the system is in the failed state and subtract that
from unity (1) to get the reliability function. Computing R(t)
in this manner yields

R(t) = 1− p1(t) (21)
= 1− (1− e(−λt))
= e(−λt),

which is the same result.

B. Triple Modular Redundancy

Triple modular redundancy (TMR) is a reliability technique
in which each module in a circuit is triplicated and a majority
vote (two out of three) is taken on the outputs to determine the
final module output. This technique is represented in Figure 2.
In this figure, the three rows of rectangular blocks represent
three “domains” of identical circuit modules. The three circles
represent the 2-out-of-3 majority voters. The output from each
domain is compared against the others and the final result
determined. The output of the circuit is also triplicated.

Fig. 2. A simplified view of triple modular redundancy (TMR). Rectangles
represent logic blocks, circles represent voters.

TMR is able to mask any single fault (affecting only one
module) in the circuit. In fact, TMR masks any number of
faults that affect only one domain (only the modules in the top
row of Figure 2, for instance). As long as only one domain has
failed, the matching outputs of the other two will determine
the output of the voter.

If, however, two faults occur in separate domains, the output
of the voters may be incorrect. To prevent the system from
failing, then, a failed module must be replaced or repaired
before another fault occurs. In FPGAs, a method called “con-
figuration scrubbing,” or simply “scrubbing,” is used to repair
faulty modules. Scrubbing involves the periodic refresh of the
contents of the FPGA configuration memory. This effectively
replaces the modules that have failed by reinitializing the
contents of the SRAM cells that define their operation. The
scrubbing rate can be adjusted according to the rate at which
faults are expected to occur.

II. TMR WITH REPAIR

Applying the Markov model to a system that has been
implemented with TMR yields the graph shown in Figure 3.
State 0 represents the state where all the TMR modules are
functioning properly. State 1 represents the case where a fault
has occurred in any of the three replicated modules. State 2
represents the state where more than one module has been
affected by a fault. In state 2 the output is no longer dependable
and the system is unreliable at this point. There is no recovery
once multiple modules have failed.

Fig. 3. Markov model representing TMR with repair through scrubbing.

For the system modeled in Figure 3, the failure rate λ is
assumed to be identical for each of the three modules. Also,
it is assumed that scrubbing can repair any module at rate µ.
Since the modules all have an equal failure rate λ, the rate at

3

which the system can transition from state 0 to state 1 is 3λ,
or the sum total of the failure rates of each of the individual
modules. Once a single module has failed, the system is in
state 1. From state 1, the system can transition to state 2 with
rate 2λ since one of the other non-affected modules must have
a fault for the total system to fail. However, if scrubbing occurs
before a second module fails, the system would return to the
fully functioning state 0. Scrubbing occurs at rate µ.

The transition matrix can be represented as

T =

 1− 3λ∆t 3λ∆t 0
µ∆t 1− 2λ∆t− µ∆t 2λ∆t
0 0 1

 . (22)

Using the transition matrix, the transition equation is

[p0(t + ∆t), p1(t + ∆t), p2(t + ∆t)] = [p0(t), p1(t), p2(t)]T.
(23)

Expanding this equation produces

p0(t + ∆t) = (1− 3λ∆t)p0(t) + µ∆tp1(t) (24)
p1(t + ∆t) = 3λ∆tp0(t) + (1− (2λ + µ)∆t)p1(t)(25)
p2(t + ∆t) = 2λ∆tp1(t) + p2(t). (26)

Manipulating these equations produces

p0(t + ∆t)− p0(t)
∆t

= −3λp0(t) + µp1(t) (27)

p1(t + ∆t)− p1(t)
∆t

= 3λp0(t)− (2λ + µ)p1(t) (28)

p2(t + ∆t)− p2(t)
∆t

= 2λp1(t), (29)

with the familiar definition of a derivative on the left hand
side of each equation. Taking the limit as ∆t → 0 yields the
continuous-time domain equations

p′0 = −3λp0(t) + µp1(t) (30)
p′1 = 3λp0(t)− (2λ + µ)p1(t) (31)
p′2 = 2λp1(t). (32)

Applying the LaPlace transform to each equation produces

sP0(s)− p0(0) = −3λP0(s) + µP1(s) (33)
sP1(s)− p1(0) = 3λP0(s)− (2λ + µ)P1(s) (34)
sP2(s)− p2(0) = 2λP1(s). (35)

Combining equations 33, 34, and 35 yields

[p0(0), p1(0), p2(0)] = [P0(s), P1(s), P2(s)]A, (36)

where,

A =

 s + 3λ −µ 0
−3λ µ + s + 2λ 0

0 −2λ s

 . (37)

A =

 s + 3λ −3λ 0
−µ µ + s + 2λ −2λ
0 0 s

 . (38)

Solving for [P0(s), P1(s), P2(s)] by obtaining the inverse
of A gives

[P0(s), P1(s), P2(s)] = [p0(0), p1(0), p2(0)]A−1, (39)

where,

A−1 =

µ+s+2λ

µs+s2+5λs+6λ2
3λ

µs+s2+5λs+6λ2
6λ2

s(µs+s2+5λs+6λ2)
µ

µs+s2+5λs+6λ2
s+3λ

µs+s2+5λs+6λ2
2λ(s+3λ)

s(µs+s2+5λs+6λ2)

0 0 1
s

 .

(40)
Assuming the initial distribution of probabilities is

[p0(0), p1(0), p2(0)] = [1, 0, 0] (meaning the system starts in
the functional state with all modules fault-free), Equation 39
becomes

[P0(s), P1(s), P2(s)] = [1, 0, 0]A−1, (41)

which can also be represented as

P0(s) =
µ + s + 2λ

µs + s2 + 5λs + 6λ2
(42)

P1(s) =
3λ

µs + s2 + 5λs + 6λ2
(43)

P2(s) =
6λ2

s (µs + s2 + 5λs + 6λ2)
. (44)

Solving for the reliability of the system requires determining
the probability of being in states 0 or 1. However, it reduces
the math to subtract the probability of being in state 2 from
unity (1). Solving for the reliability R(t), using the inverse
LaPlace transform gives

R(t) = 1− p2(t) (45)

=
(µ + 5λ)sinh(1

2 t
√

µ2 + 10λµ + λ2)e−
1
2 (µ+5λ)t√

µ2 + 10λµ + λ2

+cosh(
1
2
t
√

µ2 + 10λµ + λ2)e−
1
2 (µ+5λ)t (46)

These results were verified against the results obtained in
[2]. Using the values of λ = 0.001 and µ = 0.1 we were
able to demonstrate the improvement in reliability of a system
implemented with TMR. Figure 4 is a plot of the reliability
of a non-redundant system and a TMR system as a function
of time. The reliability of the non-redundant system drops
immediately and quickly approaches 0. The system with TMR
has a much higher reliability than the non-redundant system.

III. PERSISTENCE

While many FPGA applications cannot tolerate faults nor
the corresponding interruption of service, there are applica-
tions which can tolerate a temporary interruption of service.
By tolerating temporary interruptions of service, an application
can trade availability for improvements in reliability.

In [3], [4], Morgan et al. showed that an FPGA application
that implements scrubbing will experience both permanent and
temporary fault-induced service interruptions. They called the
permanent interruptions persistent errors and the temporary
interruptions non-persistent errors. When a fault induces non-
persistent errors the application becomes temporarily unavail-
able. Once scrubbing repairs the fault, the functional errors
will eventually exit and the system will return to normal op-
eration. When a fault induces persistent errors the application
becomes permanently unavailable.

4

Fig. 4. Comparison of the Reliability of TMR vs. no TMR on a design.
λ = 0.001 and µ = 0.1

Traditionally, FPGA application failure occurs after any
interruption of service. By tolerating temporary service in-
terruptions, an application will only fail after permanent ser-
vice interruptions. To measure the improvement in reliabil-
ity achieved by tolerating temporary service interruptions, a
Markov model of a system that tolerates non-persistent errors
was developed. The model is shown in Figure 5. State 0 is the
functional state. State 1 is the unavailable state. State 2 is the
failed state. In state 1, one or more non-persistent errors have
occurred. In state 3 a persistent error has occurred. All state
transition arcs are governed by the normal failure rate λ, the
fraction p of the FPGA cross section susceptible to persistent
errors and the scrubbing rate µ.

In state 0, the system will transition to state 2 when a
persistent error occurs. On this arc the normal failure rate is
scaled by the persistent cross section fraction p. On the other
hand, the system will transition from state 0 to state 1 when a
non-persistent error occurs. On this arc the normal failure rate
is scaled by the non-persistent cross section fraction. Since
the non-persistent and persistent cross sections are mutually
exclusive, the non-persistent cross section fraction is simply
1− p.

In state 1, the system will transition back to state 0 when
scrubbing repairs the fault that caused a non-persistent error.
The rate on this arc is simply the scrubbing rate µ. On the other
hand, the state can still transition to state 2, the failed state,
if another fault induces a persistent error before scrubbing
returns the system to state 0. Again this arc is governed by
the failure rate, scaled by the persistent fraction of the sensitive
cross section.

The transition matrix T for the Markov model in Figure 5
is

T =

 1− λ∆t λ(1− p)∆t λp∆t
µ∆t 1− (λp + µ)∆t λp∆t
0 0 1

 . (47)

Using the process described in Section I-A, the reliability as

a function of time was found to be

R(t) = e(−λpt). (48)

Notice the similarity to Equation 21, the reliability of a simple
system without repair (repair of failures). Adding the concept
of a persistent cross section to the Markov model simply scales
the failure rate in the reliability equation by the persistent cross
section fraction.

Fig. 5. Markov model of a system that only fails after a persistent error.
State 0 is the functional state. State 1 is the unavailable state. In state 1, one
or more non-persistent errors have occurred. State 2 is the failed state. In state
2 a persistent error has occurred.

Fig. 6. Markov model of a system with TMR that only fails after a persistent
error.

Applying the notion of persistence to TMR, produces the
Markov model shown in Figure 6. As in previous discussions,
λ is the rate at which faults occur in an individual module and
µ is the scrubbing rate that allows the system to recover from
faulty modules.

The states in Figure 6 are:
• State 0 - the system has no errors
• State 1 - one module has failed with a non-persistent error
• State 2 - one module has failed with a persistent error (the

module could also have non-persistent errors as well)

5

• State 3 - two modules have failed with non-persistent
errors

• State 4 - two modules have failed one with persistent error
and at least one other with a non-persistent error (again
the module with a persistent error could have other non-
persistent errors)

• State 5 - two modules have failed with persistent errors,
all the modules could have any number of non-persistent
errors

Note that only in state 5 is the system failed to the point
where scrubbing cannot correct the errors. Thus all states but 5
and 0 will transition back to state 0 if scrubbing occurs. These
transition arcs are marked with the scrubbing rate µ. In state
0, the system will transition to state 1 if a non-persistent error
has occurred in any of the modules. This occurs at a the sum
of the error rates of each module scaled by the non-persistent
fraction (1 − p). The system will transition to state 2 if a
persistent error occurs. The probability of this happening is
the sum of the error rates of the individual modules scaled by
the persistent fraction p. From state 1, the system can move
to state 2 if a persistent error occurs in the already failed
module, or move to state 3 if a non-persistent error occurs in
a functioning module. State 2 will transition to state 4 if a
non-persistent error occurs in a functioning module or state 5
if the error is persistent. State 3 will transition to state 4 if
a persistent error occurs in any of the three modules. State 4
will transition to state 5 if a persistent error occurs in any of
the two modules that do not have persistent errors.

By inspection, the transition matrix for this Markov model
is shown in Equation 49.

Applying the techniques demonstrated in Sections I-A and II
we can solve for the reliability of this model. The technique
used yielded multiple solutions. Figure 7 is a plot of a
particular solution with λ = 0.001, µ = 0.1 and p = 0.1. The
plot shows that TMR does improve an FPGA application’s
reliability, specifically one that tolerates non-persistent errors.
Comparing Figure 7 with Figure 4 shows designs which can
tolerate non-persistent errors increase the reliability benefits
gained by TMR.

IV. TMR WITH PARTITIONS

It is sometimes desirable to improve an FPGA application’s
reliability by partitioning the circuit into smaller sections and
voting on the outputs of each partition. Figure 8 shows how
this is done. In this arrangement, the correct state of the circuit
is restored from partition to partition, rather than allowing an
error propagate through the entire circuit.

Adding partitions to TMR gives the advantage of higher
reliability by masking more faults in the circuit than standard
TMR. For example, if a fault occurred in module 1 of partition
A and another fault occurred in module 2 of partition B, both
faults would be masked and the outputs of both partition A
and partition B would be correct. If a similar set of faults were
to occur in the circuit of Figure 2, TMR would be defeated
and the circuit output would be incorrect.

To estimate the reliability of the partitioned TMR circuit,
we created the model illustrated in Figure 9 which corresponds

Fig. 7. Reliability of a TMR design vs. non-redundant design taking into
account persistence.
λ = 0.001, µ = 0.1, and p = 0.1

Fig. 8. A TMR system with multiple TMR partitions.

to a circuit with two TMR partitions (as in Figure 8). State 0
represents the system when there are no faults present. State 1
represents the system after a fault occurs in a single module.
State 2 represents the system when two modules in separate
TMR partitions contain faults. State 3 is the failure state in
which two faults are present in two different modules in the
same TMR partition. λ represents the failure rate of both
partitions of a single module. Note that states 0, 1, and 2
are all functional states and all faults are successfully masked.

Using the model of Figure 9, we construct the transition
matrix T as

T =

6

T =

1− 3λ∆t 3λ(1− p)∆t 3λp∆t 0 0 0

µ∆t 1− (2λ(1− p) + 3λp + µ)∆t λp∆t 2λ(1− p)∆t 2λp∆t 0
µ∆t 0 1− (2λp + µ + 2λ(1− p))∆t 0 2λ(1− p)∆t 2λp∆t
µ∆t 0 0 1− (3λp + µ)∆t 3λp∆t 0
µ∆t 0 0 0 1− (2λp + µ)∆t 2λp∆t
0 0 0 0 0 1

 (49)

Fig. 9. Markov model representing a TMR system with two TMR partitions.

1− 3λ∆t 3λ∆t 0 0

µ∆t 1− (µ + 5
2λ)∆t 3

2λ∆t λ∆t
µ∆t 0 1− (µ + 2λ)∆t 2λ∆t
0 0 0 1

(50)

which results in the reliability function plotted in Figure 12.
For this example we are assuming the partitions are exactly

equal in size.
The model in Figure 9 can be extended to include any

number of TMR partitions in order to increase reliability
further. Figure 10 shows the model as we have extended it
to three TMR partitions. Figure 11 illustrates how the model
could be extended to N partitions. The difference in reliability
between systems with two and three TMR partitions in shown
in Figure 12.

Fig. 10. Markov model representing a TMR system with three TMR
partitions.

Fig. 11. Markov model representing a TMR system with N TMR partitions.

V. CONCLUSIONS

Although TMR, partitioned TMR, and non-persistent error
tolerance empirically improve a system’s reliability, it is good

Fig. 12. Comparison of the Reliability of two TMR partitions vs. three TMR
partitions on a design.
λ = 0.001 and µ = 0.1

to derive a closed-form estimate of the reliability in order to
accurately assess a particular system. In this paper, solutions
for system reliability were derived for a simple computing
system, a system with TMR and repair, a system which could
tolerate non-persistent errors, a system with TMR and repair
that could tolerate non-persistent errors and a system with par-
titioned TMR and repair. The results for the first four solutions
are plotted together in Figure 13. Again, λ = 0.001, µ = 0.1
and p = 0.1. The results indicate that significant improvements
in reliability can be made with the techniques referenced
throughout this paper.

REFERENCES

[1] J. Lindsey, Statistical Analysis of Stochastic Processes in Time. Cam-
bridge University Press, 2004.

[2] D. P. Siewiorek and R. S. Swarz, ”Reliable Computer Systems”. A K
Peters, 1998.

[3] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M. Wirthlin,
“Seu-induced persistent error propagation in FPGAs,” IEEE Transactions
on Nuclear Science, no. 6, DEC 2005.

[4] K. S. Morgan, “Seu-induced persistent error propagation in FPGAs,”
Master’s thesis, Brigham Young University, August 2006.

[5] D. K. Pradhan, ”Fault-Tolerant Computer System Design”. Prentice
Hall, 1998.

[6] K. S. Trivedi, ”Probability and Statistics with Reliability, Queuing and
Computer Science Applications”. John Wiley & Sons, Inc., 2002.

7

Fig. 13. Comparison of the Reliability of systems with different levels of
mitigation and different levels of non-persistent error tolerance.
λ = 0.001 and µ = 0.1

	Estimating TMR Reliability on FPGAs Using Markov Models
	BYU ScholarsArchive Citation

	tmp.1409849408.pdf.k_mbO

