
DEPENDABLE SYSTEMS AND CRITICAL

INFRASTRUCTURES DESIGN
RELIABILITY ENGINEERING AND HARDWARE FAULT-TOLERANCE

DIMITRIS AGIAKATSIKAS, MIHALIS PSARAKIS

TYPES OF

REDUNDANCY

 In our previous lecture we covered

 HARDWARE Redundancy

 In this lecture we will cover the following

 INFORMATION Redundancy → Example: Extra (redundant) bits are added to

the original data bits of a RAM so that an error in the data bits can be

detected and corrected. These are usually called Error Correction Codes

(ECC).

 SOFTWARE → Example: Mitigate software faults (bugs) by independently

producing (from disjoint teams of programmers) two versions of a software

in the hope that the different versions will not fail on the same input.

 In our next lecture we will cover

 TIME Redundancy → Example: Re-execute the same program on the same

CPU to detect transient faults.

SECTION 1

INFORMATION

REDUNDANCY

Errors in data may occur when

data are stored in memory units or

being transferred from one

system/unit to another. To detect

or correct such errors we introduce

information redundancy. In other

words, we introduce check bits to

the data to be able to detect or

detect/correct errors in the data.

Source: https://sservi.nasa.gov/articles/nasa-beams-mona-lisa-at-the-moon/

NASA Beams Mona Lisa at the Moon. Turbulence in Earth’s

atmosphere introduced transmission errors even when the sky was

clear. To overcome these effects, NASA Goddard scientists employed

Reed-Solomon coding, which is the same type of error-correction code

commonly used in CDs and DVDs.

CODING

Encoding

 A d-bit word is encoded into a larger c-bit codeword

of the original data, where c > d

 We use (c – d) more bits than we need to represent

the data

 This mean that not all 2𝑐 binary combinations are

valid codewords during data encoding

Decoding

 When attempting to decode the c-bit codeword to

the original d-bit word, we may encounter an invalid

codeword, which will indicate that an error has

occurred.

 In a nutshell, the (c – d) bits are used in the

decoder for error detection and/or correction in the

d-bit word

Coding

encoder

d-bit word c-bit codeword
Coding

decoder

c-bit codeword d-bit word

ERROR DETECTION CODES

 During data transmission some bits may get

corrupted due to noise interference

 To detect such errors, some additional bits are sent

along with the data bits

 These additional bits are used to detect errors in

the received data bits

Transmitter Receiver

Noise

10111010

1 0 1 1 0 0 1 X X X

Data Bits Additional bits

Error

What are the overheads

imposed by coding?

ERROR DETECTING CODES

Odd Parity

 During encoding we should add 1/0 in the parity bit

position so that the total number of 1’s in the

codeword is an odd number (1, 3, 5, 7, 9 …)

1 0 1 1 0 0 1 X

Data Bits Parity Bit

we set

parity to 1
of 1’s = 4

1 1 0 1 0 1 1 X

Data Bits Parity Bit

?# of 1’s = 5

What should we set the

parity bit for even parity

check?

ERROR DETECTING CODES

Even Parity

 During encoding we should add 1/0 in the parity bit

position so that the total number of 1’s in the

codeword is an even number (2, 4, 6, 8 …)

1 0 1 1 0 1 1 X

Data Bits Parity Bit

we set

parity to 0
of 1’s = 4

1 1 1 0 0 0 1 0

Data Bits Parity Bit

Even Parity

1 1 1 0 0 0 1 1

Data Bits Parity Bit

Odd Parity

EVEN PARITY CHECK → ERROR DETECTION

Transmitter
1110001011100010

1 1 1 0 0 0 1 0

Data Bits Parity Bit

Even (2, 4, 6 …) Parity: Error
Receiver

Even Parity

Check

(11100000)

ERROR

 With the parity bit we can understand that there is an error in the received codeword

 However, we cannot localise the error

What happens if there are more than

one-bit errors in the received codeword

for even parity check?

11100100

2 errors

Even Parity

error detection
NO ERROR (but it is an

error!)

11101010

3 errors

ERROR (it is an error)

 Multi-bit errors:

 Even number of errors are not detected

 Odd number of errors are detected

 Is this valid for odd parity checks?

Even Parity

error detection

Parity

1 1 1 0 0 0 0 0

11100010

11100100

CODEWORD RE-TRANSMISSION

Transmitter
1110000011100010

Error
Receiver

Even Parity

Check

(11100000)

ERROR

Error detected in codeword; transmit the codeword again

 Can all applications afford re-transmitting the corrupted data?

 Can you think any other applications except of communications that we use parity check

for error detection?

ERROR CORRECTING CODES (ECC)

 The additional bits in the codeword, are not only

used to detect errors but also to correct them.

 ECC is used in applications where re-transmission

is costly or not possible.

 These additional bits are used to detect errors in

the received data bits

Transmitter Receiver
111011

Error

Receiver(a) One-way links

(b) Computer memory

(c) Satellite communication

ECC BASICS

(3,1) Repetition code:

 Sent the same bit three times

1 1 1 1

0 0 0 0

11 1 0

Error

00 0 1

Transmitter Receiver (1 error)

Error

corrected

00 0 1

Errors

11 1 0

Receiver (2 errors)

Error not

detected or

corrected

Single-bit Error

Correction

(SEC)

(3,1) Repetition code:

 Sent the same bit four times

1 1 1 1 1

0 0 0 0 0

11 1 1 0

Error

00 0 0 1

Transmitter Receiver (1 error)

Error

corrected

Error1 1 0 0

Errors

Error0 0 1 1

Receiver (2 errors)

Single-bit Error

Correction

Double-bit Error

Detection

(SECDED)

Error detected

but not

corrected

CODE EFFICIENCY

1 1 1 1

0 0 0 0

 The efficiency of the code is measured with the

rate=d/n metric

 In the triple repletion code, we send 2 extra bits to

correct 1-bit error in 1-bit of data

 This means that for d=1 useful bits, the encoder

generates n=3 bits

The triple repletion code has

rate=1/3.

Is it efficient or can we do better?

Hamming code adds parity bits

instead of repetition bits to improve

the rate or otherwise efficiency

d=1 n=3

STRING ENCODING IN HAMMING CODES

 In a Hamming code, every possible message string is encoded as a certain binary number, with the set of numbers

specifically chosen so that they are all significantly different in some sense; in other

words, every pair of encoded messages are substantially different by some measure.

HAMMING DISTANCE

HAMMING DISTANCE = 2
1101010
1111000

EXAMPLE

HAMMING CODES KEY CONCEPT

 The key here is that if any pair of encodings are

sufficiently far apart in terms of Hamming

distance, errors can be detected and corrected by

seeing which of the codewords is closest to the

transmitted message.

Letter Encoding

A 000

B 011

C 101

D 110

EXAMPLE
HAMMING DISTANCE = 2

 Single-bit errors can be detected

 It cannot, however, be determined what the

original message was;

 for example, a transmitted message of

"010" could have been a single-bit error

resulting from sending an "A", "B", or "D".

EXAMPLE → GENERALIZATION

Letter Encoding

A 000

B 111

 Hamming distance = 3

 2-bit detection

 1-bit correction

Example: (3,1) Repetition Code

An encoding can

 detect up to k bit errors when the Minimum Hamming distance is at

least HDmin = k + 1

 correct up to k bit errors when the Minimum Hamming distance is at

least HDmin = 2k + 1

So, the (3,1) Repetition code

 Detects k=2 bits | Minimum Hamming Distance HDmin = 2+1 = 3

 Correct k=1 bits | Minimum Hamming Distance HDmin = 2*1+1 = 3

QUIZ

What value should Alice encode D as to

achieve single-bit correction?

Letter Encoding

A 00000

B 00111

C 11001

D ?????

THE (7,4) HAMMING CODE
 Consider a 4-bit message which is to be transmitted as a 7-bit codeword by including three

parity bits. In general, this would be called a (7,4) code.

 Three even parity bits (P) are computed on different subsets of the four message bits (D)

as shown below.
Venn diagram

 It can be observed that changing any one bit numbered 1..7 uniquely affects the three parity

bits. Changing bit 7 affects all three parity bits, while an error in bit 6 affects only parity bits 2

and 4, and an error in a parity bit affects only that bit. The location of any single bit error can

be established by rechecking the three parity circles.

EXAMPLE: SENT MESSAGE 1101

(7,4) Hamming Encoding
Venn diagram

 When these seven bits are entered into the parity circles, it can be confirmed that the choice of these three

parity bits ensures that the parity within each circle is even, as shown here.

 It may now be observed that if an error occurs in any of the seven bits, that error will affect different

combinations of the three parity bits depending on the bit position.

EXAMPLE

 Suppose the above message 1100110 is sent and a single bit error occurs such that the codeword 1110110

is received:

 In fact, the bad parity bits labelled 101 point directly to the bad bit since 101 binary equals 5. Examination of the
'parity circles' confirms that any single bit error could be corrected in this way.

COMPLETE SET OF

(7,4) CODEWORDS

 The complete set of codewords

for the (7,4) Hamming Code

code is shown below. A (7,4)

code essentially defines 16

valid codewords from among

128 possible codewords. These

sixteen codewords are special

in that the distance between

any two codewords is at least

d=3.

Hamming Code Generator - This

circuit generates the (7,4)

codewords at left from the four

inpu

ts bits (7,6,5,3) at the top. The

XOR gates accomplish modulus 2

addition to determine the parity

bits (4,2,1).

HARDWARE ERROR CORRECTION

 The circuit below checks and corrects a (7,4) Hamming codeword as shown above. The three bits (P4,P2,P1)

represent the parity of the three circles in the Venn diagram; these will all be 0 (even parity) if no errors are detected.

These same bits connect to a 3-of-8 decoder where a single output is active high depending on the state of the parity

check (P4,P2,P1) inputs. If a bad input bit is detected, one non-zero decoder output will be high and the

corresponding XOR gate will invert the bit that is in error. Any of the seven input bits could be corrected in this way; in

practice, the circuit only needs to output the four data bits (7,6,5,3).

This circuit does automatic checking and correction of single bit errors in the (7,4) Hamming code.

SECTION 2
SOFTWARE REDUNDANCY

June 4, 1996 – Ariane 5 Flight 501. Working
code for the Ariane 4 rocket is reused in the
Ariane 5, but the Ariane 5's faster engines
trigger a bug in an arithmetic routine inside the
rocket's flight computer. The error is in the code
that converts a 64-bit floating-point number to a
16-bit signed integer. The faster engines cause
the 64-bit numbers to be larger in the Ariane 5
than in the Ariane 4, triggering an overflow
condition that results in the flight computer
crashing.

First Flight 501's backup computer crashes,
followed 0.05 seconds later by a crash of the
primary computer. As a result of these crashed
computers, the rocket's primary processor
overpowers the rocket's engines and causes the
rocket to disintegrate 40 seconds after launch.

Source: https://www.wired.com/2005/11/historys-worst-software-bugs/

370 million dollars worth of
fireworks because of a software
bug.

(Source: ESA)

http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://www.dcs.ed.ac.uk/home/pxs/Book/ariane5rep.html

EVERY LARGE PIECE
OF SOFTWARE
CONTAINS DEFECTS
(BUGS)

 It is a reasonable

assumption that any large

piece of software that is

currently in use contains

defects.

 Consequently, after doing

everything possible to

reduce the error rate of

individual programs, we

have to turn to fault-

tolerance techniques to

mitigate the impact of

software defects (bugs).

DETECTION OF SOFTWARE DEFECTS

 Acceptance (Reasonableness) tests → For example, if

your thermometer were to read −40oC on a sweltering

midsummer day, you would suspect it was malfunctioning.

 Acceptance categories:

 Timing checks: Add a watchdog timer to detect software hangs /

timeouts

 Range checks: We use our knowledge of the application to set

acceptable bounds for the output: if it falls outside these bounds,

it is declared to be erroneous

 Verification of output: Although, the problem itself is difficult to

solve, it is much easier to check that the answer is correct, e.g., a

puzzle is difficult to put together and easy to check its correctness

Factorszation(15) → Answer = 3 x 5

Verification = 3 x 5 = 15

If Answer != Verification → Error detected

Acceptance tests should balance between

sensitivity and false alarm rate

acceptance

range bound

More correct

outputs are

declared

erroneous

More erroneous

outputs are

declared correct

Probability that

the test catches

the error

Probability that the test

has declared the output

erroneous but it is not

SINGLE-VERSION FAULT-TOLERANCE

Wrapped (COTS)

Software

Wrapper Software

Critical Software

Wrappers

 The wrapper software decides which inputs from

the critical software to be passed to the

wrapped software

 Similarly, the wrapper software decides which

outputs from the wrapped software to pass to

the critical software

 Non-accepted I/Os are flagged with exception

signals to the system/critical software

BUFFER OVERFLOW PROTECTION

Example: A wrapper should be used in the C

strcpy function to assert error signals on

overflows

//dest is buffer of size 5
//src is buffer of size 25

/* This would overwrite a memory
region outside the dest buffer*/
strcpy(dest, src)

Exception

Filtered

output

SINGLE-VERSION FAULT-TOLERANCE

More examples of software wrappers

 Protect the critical system against known bugs:

Example: Through intensive testing, a COTS

software is found to hung for a set of certain inputs

 Acceptance test on the COTS software output:

Example: A COTS software calculates the Markov

chain of a 5-state model. The total probability

distribution of all states sums up to 1.7 instead of

1.0. The wrapper signals an exception.

 Mitigate transient faults in critical variables:

Example: An extensive fault-injection campaign

showed that 3% of the total static variables in the

COTS software are 80% more vulnerable to soft-

errors. The wrapped can keep three copies (triple

redundancy) of these 3% vulnerable variables.

SOFTWARE REJUVENATION (REFRESH)

 Many software problems do no cause errors immediately.

As a process executes it may:

 get allocating memory without releasing it;

 keep building up numerical errors in each
iteration;

 corrupt data due to accumulated soft-errors

 If this goes on indefinitely, the process can become faulty

and stop executing.

 Two principal questions arise in connection

with rejuvenation.

 At what level should rejuvenation occur?

 How do we determine when to rejuvenate?

When your personal computer hangs, the obvious

reaction is to reboot it. Rebooting is an example of

software rejuvenation.

To head this off, we can proactively halt

execution, clean up its internal state, and then

restart it.

REJUVENATION LEVEL

 Process level: Terminate process → clean it up by garbage

collector → re-initilise it’s data structures → restart it.

 Subtask level: For example, restart the database of a

webpage

 Physical node: Restart the operating system, which will affect

all subtasks

 Virtual Machines (VMs):

 Hypervisor level: Save the state of all virtual
machines → Restart the hypervisor → Restore the
VM

 Virtual machine level → Restart the VM

 Process level: Restart specific processes in a one or
more VMs

VM

level

Hypervisor

level

Application

level

For low downtime, at which level should we

apply software rejuvenation?

TIMING OF REJUVENATION

Time-based

rejuvenation

Model

Rate of errors

(without rejuvenation)

Cost of each error

Cost of each rejuvenation

Rejuvenation

Period

Prediction-

based

rejuvenation

(software task)

Online statistics,

e,g., iostat

Rejuvenate

Online statistics,

e.g., vmstat, netstat

For example, if a processes is
consuming memory at a certain
rate, the system can estimate
when it will run out of memory
and rejuvenate the process

If we know the cost and rate of
each error and the cost of each
rejuvenation, we can find the optimal

period for rejuvenation

N-VERSION PROGRAMMING

 N independent teams of programmers
develop software to the same specifications

 These N versions of software are then run in
parallel, and their output is voted on.

 The hope is that if the programs are
developed independently, it is very unlikely
that they will fail on the same inputs

 N-version programming is trivial to implement
because it is difficult to arrive at a consensus
among correctly functioning versions

 There is no way to guarantee a general
solution to the consistent comparison
problem

V1 V2 V3

1.0000

0.9999 0.9998 1.0001

V3 takes action A2V1,V2 take action A1

N-version programming is far from trivial to

implement.

Even that V1,V2, and V3 function
correctly, V3 will order version A2

REDUCING COMMON-MODE ERROR IN SOFTWARE DEVELOPMENT

 Use diverse specifications: If programmers work off the same

specification, errors in this specification will propagate to the SW

 Use diverse programming languages:

Diverse programming languages may have diverse libraries, which

the user hopes will have uncorrelated bugs.

 Use diverse development tools and compilers:

Since tools and compilers can themselves be faulty, using diverse

tools for different versions may allow for greater reliability.

 Using diverse hardware and operating systems:

Complement software design diversity with hardware and operating

system diversity, by running each version on a different processor

type and operating system.

Compiler diversity (different

compiler or different optimisation

level) can provide some protection

against hardware faults

Two different compilations, C1 and

C2, of the same source code may

exercise slightly different

elements of the hardware. Thus,

there might be some hardware

faults that are exercised by C1,

but not exercised also by C2, or

vice versa

FLIGHT CONTROL SYSTEM OF BOEING 777

(Source: Y. C. Yeh, "Triple-triple redundant 777 primary flight computer," 1996 IEEE Aerospace Applications Conference. Proceedings, 1996, pp. 293-307 vol.1, doi: 10.1109/AERO.1996.495891.)

FLIGHT CONTROL SYSTEM OF BOEING 777

 Boeing’s first commercial jet with FBW was the 777

(1995)

 In planes with no FBW, the actuators moving the surfaces

of the plane are controller with mechanical interfaces

 Planes with FBW use a flight computer that reads the input

from pilots and sensors (e.g., speed, angle of attack etc.)

and controller the actuators in a closed feedback loop.

 In simple words, the pilots gives simple instructions to the

computer and the computer in turn controls the plane.

Needless to say, this computer should be very reliable!

 The A(T=1h) of 777’s computer is 0.999999999, i.e.,

the probability of a fault impacting the integrity and

availability of the computer should be less than 10-10 / 1h

BLOCK DIAGRAM OF

THE PRIMARY

FLIGHT COMPUTER

(PFC) SYSTEM

 The PFC is a TMR system consisting of three computing channels (left, center,

right).

 Each computing channel consists of three computing lanes.

 Each lane has its own power supply.

 Each channel is physically and electrically isolated via ARINC 629 data bus

digital autonomous terminal access communication (DATAC), also called ARINC 629 data bus

BLOCK DIAGRAM OF

THE PRIMARY

FLIGHT COMPUTER

(PFC) SYSTEM

 All communications over the ARINC 629 data bus are CRC checked

 Each computing lane uses a different processor (Intel, AMD and Motorola)

 Each processor runs control software that is compiled by a different compiler

 Each computing lane does not operate in TMR. Instead one of the three lanes
serves as the command processor and the other two monitor the outputs
generated by the designated command processor.

 Only the command processor is communicating through the data buses with the
remaining two channels; it transmits its proposed flight surface command to the
other two channels

 Each command lane receives three values of the proposed commands, and
performs a median value select to determine what is called the “selected” surface
command.

1 of the 3

computing channels

Initially, Boeing management decided to use also 3-version programming for
developing the control software.

But each team of programmers asked to many questions to clarify software
requirements and the management cancelled the 3-version programming
approach

BIBLIOGRAPHY

 Koren, Israel, and C. Mani Krishna. Fault-tolerant systems.

Morgan Kaufmann, 2020.

 Chapter 3: Information redundancy

 Chapter 5: Software fault-tolerance

 Section 8.1.2: Flight control system of Boeing 777

 ECE4253 Digital Communications. Department of Electrical and

Computer, “Introduction to Digital Communications”,

https://www.ece.unb.ca/tervo/ece4253/hamming.shtml

 Aplin, J. D. "Primary flight computers for the Boeing

777." Microprocessors and Microsystems 20.8 (1997): 473-478.

BACKUP SLIDES

HAMMING DISTANCES

 The Hamming distance between two codewords is the number of

bit positions, in which the two words differ.

 The figure on the right of this slide shows the eight 3-bit binary

words. Two words in this figure are connected by an edge if their

Hamming distance is 1.

 The words 101 and 011 differ in two-bit positions and therefore

have a Hamming distance of 2.

 One has to traverse two edges in figure to get from node 101 to

node 011.

EXAMPLE → HAMMING DISTANCES

Undetected errors

 Suppose two valid codewords differ in only the least

significant bit (LSB) position, e.g., 101 and 100.

 In this case, a single error in the LSB in either one of these

two codewords will go undetected, since the erroneous word is

also an existing codeword.

EXAMPLE → HAMMING DISTANCES

Detection of bit errors

 The code distance is the minimum Hamming

distance between any two valid codewords.

 The code that consists of the four codewords {001,

010, 100, 111}, marked by circles in the figure has

a code distance of 2 and is therefore capable of

detecting any single-bit error

 The code that consists only of the codewords {000,

111} has a distance of 3 and is therefore capable

of detecting any single- or double-bit error. I

A Hamming distance of two (or more) between two

codewords guarantees that a single-bit error in any of

the two words will not change it into the other.

HAMMING DISTANCE

Who was Richard Hamming ?

 American mathematician (February 11, 1915 –

January 7, 1998)

 He received the Turing Award in 1968

 He worked at Los Alamos Laboratories and Bell Labs

 Read → “You and your research by Richard

Hamming”, link

https://www.cs.virginia.edu/~robins/YouAndYourRes

earch.html

1 0 1 1

1 1 0 1
Hamming distance = 2

Hamming distance = 3
0 0 0 1

1 1 1 1

“What you learn from others you

can use to follow. What you learn

for yourself you can use to lead.”

Richard Wesley Hamming
 An important metric of the space of codewords is the

Hamming Distance

 The Hamming distance is the number of bit positions

in which two codewords differ.

https://www.cs.virginia.edu/~robins/YouAndYourResearch.htmlYourResearch.html
https://www.cs.virginia.edu/~robins/YouAndYourResearch.htmlYourResearch.html

HAMMING DISTANCE

Who was Richard Hamming ?

 American mathematician (February 11, 1915 –

January 7, 1998)

 He received the Turing Award in 1968

 He worked at Los Alamos Laboratories and Bell Labs

 Read → “You and your research by Richard

Hamming”, link

https://www.cs.virginia.edu/~robins/YouAndYourRes

earch.html

“What you learn from others you

can use to follow. What you learn

for yourself you can use to lead.”

Richard Wesley Hamming
 An important metric of the space of codewords is the

Hamming Distance

 To detect up to k bit errors you need at least Minimum
Hamming distance kmin = k + 1

 Whereas to correct up to k bit errors you need at least
Minimum Hamming distance kmin = 2k + 1

 The Hamming distance is the number of bit positions in
which two codewords differ.

111

011
010

110

001

101100

000

https://www.cs.virginia.edu/~robins/YouAndYourResearch.htmlYourResearch.html
https://www.cs.virginia.edu/~robins/YouAndYourResearch.htmlYourResearch.html

EXAMPLE → THE MINIMUM HAMMING DISTANCE BETWEEN ALL

POSSIBLE CODEWORDS IN THE BCD ENCODING SCHEME

 The minimum hamming distance among all these

codewords in the BCD is 1

 This means that even 1 bitflip can lead to the next

valid codeword

Binary-Coded Decimal

(BCD)

8421

0 → 000

1 → 001

2 → 010

3 → 011

4 → 100

5 → 101

6 → 110

7 → 111

1

2

1

What if we use only two {000, 111 } valid

codewords (triple repetition code scheme)?

Binary-Coded Decimal

(BCD)

8421

0 → 000

1 → 001

2 → 010

3 → 011

4 → 100

5 → 101

6 → 110

7 → 111

3

Valid

codeword

Valid

codeword

111

011
010

110

001

101100

000

	Default Section
	Slide 1: Dependable Systems and Critical Infrastructures Design
	Slide 2: Types of redundancy
	Slide 3: Section 1 INFORMATION Redundancy
	Slide 4: Coding
	Slide 5: Error detection codes
	Slide 6: Error detecting codes
	Slide 7: Error detecting codes
	Slide 8: Even parity check  error detection
	Slide 9: Codeword re-transmission
	Slide 10: Error Correcting codes (ECC)
	Slide 11: ECC Basics
	Slide 12: code efficiency
	Slide 13: String encoding in Hamming codes
	Slide 14: Hamming codes key concept
	Slide 15: Example  generalization
	Slide 16: QUIZ
	Slide 17: The (7,4) hamming code
	Slide 18: Example: Sent message 1101
	Slide 19: example
	Slide 20: Complete Set of (7,4) Codewords
	Slide 21: Hardware Error Correction
	Slide 22: Section 2 SOFTWARE REDUNDANCY
	Slide 23: Every large piece of software contains defects (bugs)
	Slide 24: Detection of software defects
	Slide 25: Single-version fault-tolerance
	Slide 26: Single-version fault-tolerance
	Slide 27: Software rejuvenation (refresh)
	Slide 28: rejuvenation Level
	Slide 29: Timing of Rejuvenation
	Slide 30: N-Version Programming
	Slide 31: Reducing common-mode error in Software development
	Slide 32: Flight control system of Boeing 777
	Slide 33: Flight control system of Boeing 777
	Slide 34: Block diagram of the primary flight computer (PFC) system
	Slide 35: Block diagram of the primary flight computer (PFC) system
	Slide 36: Bibliography
	Slide 37: BACKUP SLIDES
	Slide 38: Hamming distances
	Slide 39: EXAMPLE  Hamming distances
	Slide 40: EXAMPLE  Hamming distances
	Slide 41: Hamming Distance
	Slide 42: Hamming Distance
	Slide 43: Example  The minimum Hamming distance between all possible codewords in the BCD encoding scheme

