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TYPES OF 

REDUNDANCY

 In our previous lecture we covered

 HARDWARE Redundancy

 In this lecture we will cover the following

 INFORMATION Redundancy → Example:  Extra (redundant) bits are added to 

the original data bits of a RAM so that an error in the data bits can be 

detected and corrected. These are usually called Error Correction Codes 

(ECC).

 SOFTWARE → Example:  Mitigate software faults (bugs) by independently 

producing (from disjoint teams of programmers) two versions of a software 

in the hope that the different versions will not fail on the same input.

 In our next lecture we will cover

 TIME Redundancy → Example: Re-execute the  same program on the same 

CPU to detect transient faults.



SECTION 1

INFORMATION 

REDUNDANCY 

Errors in data may occur when 

data are stored in memory units or 

being transferred from one 

system/unit to another. To detect 

or correct such errors we introduce 

information redundancy. In other 

words, we introduce check bits to 

the data to be able to detect or 

detect/correct errors in the data. 

Source: https://sservi.nasa.gov/articles/nasa-beams-mona-lisa-at-the-moon/

NASA Beams Mona Lisa at the Moon. Turbulence in Earth’s 

atmosphere introduced transmission errors even when the sky was 

clear. To overcome these effects, NASA Goddard scientists employed 

Reed-Solomon coding, which is the same type of error-correction code 

commonly used in CDs and DVDs. 



CODING

Encoding

 A d-bit word is encoded into a larger c-bit codeword 

of the original data, where c > d

 We use (c – d) more bits than we need to represent 

the data

 This mean that not all 2𝑐 binary combinations are 

valid codewords during data encoding

Decoding

 When attempting to decode the c-bit codeword to 

the original d-bit word, we may encounter an invalid 

codeword, which will indicate that an error has 

occurred.

 In a nutshell, the (c – d) bits are used in the 

decoder for error detection and/or correction in the 

d-bit word

Coding 

encoder

d-bit word c-bit codeword
Coding 

decoder

c-bit codeword d-bit word



ERROR DETECTION CODES

 During data transmission some bits may get 

corrupted due to noise interference 

 To detect such errors, some additional bits are sent 

along with the data bits

 These additional bits are used to detect errors in 

the received data bits

Transmitter Receiver

Noise

10111010

1 0 1 1 0 0 1 X X X

Data Bits Additional bits

Error

What are the overheads 

imposed by coding? 



ERROR DETECTING CODES

Odd Parity

 During encoding we should add 1/0 in the parity bit 

position so that the total number of 1’s in the 

codeword is an odd number (1, 3, 5, 7, 9 …) 

1 0 1 1 0 0 1 X

Data Bits Parity Bit

we set 

parity to 1
# of 1’s = 4

1 1 0 1 0 1 1 X

Data Bits Parity Bit

?# of 1’s = 5

What should we set the 

parity bit for even parity 

check?



ERROR DETECTING CODES

Even Parity

 During encoding we should add 1/0 in the parity bit 

position so that the total number of 1’s in the 

codeword is an even number (2, 4, 6, 8 …) 

1 0 1 1 0 1 1 X

Data Bits Parity Bit

we set 

parity to 0
# of 1’s = 4

1 1 1 0 0 0 1 0

Data Bits Parity Bit

Even Parity

1 1 1 0 0 0 1 1

Data Bits Parity Bit

Odd Parity



EVEN PARITY CHECK → ERROR DETECTION

Transmitter
1110001011100010

1 1 1 0 0 0 1 0

Data Bits Parity Bit

Even (2, 4, 6 …) Parity: Error
Receiver

Even Parity

Check 

(11100000)

ERROR

 With the parity bit we can understand that there is an error in the received codeword

 However, we cannot localise the error

What happens if there are more than 

one-bit errors in the received codeword 

for even parity check?

11100100

2 errors

Even Parity

error detection
NO ERROR (but it is an 

error!)  

11101010

3 errors

ERROR (it is an error)  

 Multi-bit errors:

 Even number of errors are not detected

 Odd number of errors are detected

 Is this valid for odd parity checks?

Even Parity

error detection

Parity

1 1 1 0 0 0 0 0

11100010

11100100



CODEWORD RE-TRANSMISSION

Transmitter
1110000011100010

Error
Receiver

Even Parity

Check 

(11100000)

ERROR

Error detected in codeword; transmit the codeword again

 Can all applications afford re-transmitting the corrupted data?

 Can you think any other applications except of communications that we use parity check 

for error detection?



ERROR CORRECTING CODES (ECC)

 The additional bits in the codeword, are not only 

used to detect errors but also to correct them.

 ECC is used in applications where re-transmission 

is costly or not possible.

 These additional bits are used to detect errors in 

the received data bits

Transmitter Receiver
111011

Error

Receiver(a) One-way links

(b) Computer memory

(c) Satellite communication 



ECC BASICS

(3,1) Repetition code:

 Sent the same bit three times

1 1 1 1

0 0 0 0

11 1 0

Error

00 0 1

Transmitter Receiver (1 error)

Error

corrected 

00 0 1

Errors

11 1 0

Receiver (2 errors)

Error not 

detected or 

corrected 

Single-bit Error 

Correction

(SEC)

(3,1) Repetition code:

 Sent the same bit four times

1 1 1 1 1

0 0 0 0 0

11 1 1 0

Error

00 0 0 1

Transmitter Receiver (1 error)

Error

corrected 

Error1 1 0 0

Errors

Error0 0 1 1

Receiver (2 errors)

Single-bit Error 

Correction 

Double-bit Error 

Detection 

(SECDED)

Error detected 

but not 

corrected 



CODE EFFICIENCY

1 1 1 1

0 0 0 0

 The efficiency of the code is measured with the 

rate=d/n metric

 In the triple repletion code, we send 2 extra bits to 

correct 1-bit error in 1-bit of data

 This means that for d=1 useful bits, the encoder 

generates n=3 bits

The triple repletion code has 

rate=1/3.

Is it efficient or can we do better?

Hamming code adds parity bits 

instead of repetition bits to improve 

the rate or otherwise efficiency

d=1 n=3



STRING ENCODING IN HAMMING CODES

 In a Hamming code, every possible message string is encoded as a certain binary number, with the set of numbers 

specifically chosen so that they are all significantly different in some sense; in other 

words, every pair of encoded messages are substantially different by some measure.

HAMMING DISTANCE

HAMMING DISTANCE = 2
1101010
1111000

EXAMPLE



HAMMING CODES KEY CONCEPT

 The key here is that if any pair of encodings are 

sufficiently far apart in terms of Hamming 

distance, errors can be detected and corrected by 

seeing which of the codewords is closest to the 

transmitted message. 

Letter Encoding

A 000

B 011

C 101

D 110

EXAMPLE 
HAMMING DISTANCE = 2

 Single-bit errors can be detected

 It cannot, however, be determined what the 

original message was;

 for example, a transmitted message of 

"010" could have been a single-bit error 

resulting from sending an "A", "B", or "D".



EXAMPLE → GENERALIZATION

Letter Encoding

A 000

B 111

 Hamming distance = 3

 2-bit detection

 1-bit correction

Example: (3,1) Repetition Code

An encoding can 

 detect up to k bit errors when the Minimum Hamming distance is at 

least HDmin = k + 1

 correct up to k bit errors when the Minimum Hamming distance is at 

least HDmin = 2k + 1

So, the (3,1) Repetition code

 Detects k=2 bits | Minimum Hamming Distance HDmin = 2+1 = 3

 Correct k=1 bits | Minimum Hamming Distance HDmin = 2*1+1 = 3



QUIZ

What value should Alice encode D as to 

achieve single-bit correction?

Letter Encoding

A 00000

B 00111

C 11001

D ?????



THE (7,4) HAMMING CODE
 Consider a 4-bit message which is to be transmitted as a 7-bit codeword by including three 

parity bits. In general, this would be called a (7,4) code.

 Three even parity bits (P) are computed on different subsets of the four message bits (D) 

as shown below.
Venn diagram

 It can be observed that changing any one bit numbered 1..7 uniquely affects the three parity 

bits. Changing bit 7 affects all three parity bits, while an error in bit 6 affects only parity bits 2 

and 4, and an error in a parity bit affects only that bit. The location of any single bit error can 

be established by rechecking the three parity circles.



EXAMPLE: SENT MESSAGE 1101

(7,4) Hamming Encoding
Venn diagram

 When these seven bits are entered into the parity circles, it can be confirmed that the choice of these three 

parity bits ensures that the parity within each circle is even, as shown here.

 It may now be observed that if an error occurs in any of the seven bits, that error will affect different 

combinations of the three parity bits depending on the bit position.



EXAMPLE

 Suppose the above message 1100110 is sent and a single bit error occurs such that the codeword 1110110 

is received:

 In fact, the bad parity bits labelled 101 point directly to the bad bit since 101 binary equals 5. Examination of the 
'parity circles' confirms that any single bit error could be corrected in this way.



COMPLETE SET OF 

(7,4) CODEWORDS

 The complete set of codewords 

for the (7,4) Hamming Code 

code is shown below. A (7,4) 

code essentially defines 16 

valid codewords from among 

128 possible codewords. These 

sixteen codewords are special 

in that the distance between 

any two codewords is at least 

d=3.

Hamming Code Generator - This 

circuit generates the (7,4) 

codewords at left from the four 

inpu

ts bits (7,6,5,3) at the top. The 

XOR gates accomplish modulus 2 

addition to determine the parity 

bits (4,2,1).



HARDWARE ERROR CORRECTION

 The circuit below checks and corrects a (7,4) Hamming codeword as shown above. The three bits (P4,P2,P1) 

represent the parity of the three circles in the Venn diagram; these will all be 0 (even parity) if no errors are detected. 

These same bits connect to a 3-of-8 decoder where a single output is active high depending on the state of the parity 

check (P4,P2,P1) inputs. If a bad input bit is detected, one non-zero decoder output will be high and the 

corresponding XOR gate will invert the bit that is in error. Any of the seven input bits could be corrected in this way; in 

practice, the circuit only needs to output the four data bits (7,6,5,3).

This circuit does automatic checking and correction of single bit errors in the (7,4) Hamming code.



SECTION 2
SOFTWARE REDUNDANCY 

June 4, 1996 – Ariane 5 Flight 501. Working 
code for the Ariane 4 rocket is reused in the 
Ariane 5, but the Ariane 5's faster engines 
trigger a bug in an arithmetic routine inside the 
rocket's flight computer. The error is in the code 
that converts a 64-bit floating-point number to a 
16-bit signed integer. The faster engines cause 
the 64-bit numbers to be larger in the Ariane 5 
than in the Ariane 4, triggering an overflow 
condition that results in the flight computer 
crashing.

First Flight 501's backup computer crashes, 
followed 0.05 seconds later by a crash of the 
primary computer. As a result of these crashed 
computers, the rocket's primary processor 
overpowers the rocket's engines and causes the 
rocket to disintegrate 40 seconds after launch.

Source: https://www.wired.com/2005/11/historys-worst-software-bugs/

370 million dollars worth of 
fireworks because of a software 
bug. 

(Source: ESA)

http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://en.wikipedia.org/wiki/Ariane_5_Flight_501
http://www.dcs.ed.ac.uk/home/pxs/Book/ariane5rep.html


EVERY LARGE PIECE 
OF SOFTWARE 
CONTAINS DEFECTS 
(BUGS)

 It is a reasonable 

assumption that any large 

piece of software that is 

currently in use contains 

defects.

 Consequently, after doing 

everything possible to 

reduce the error rate of 

individual programs, we 

have to turn to fault-

tolerance techniques to 

mitigate the impact of 

software defects (bugs).



DETECTION OF SOFTWARE DEFECTS

 Acceptance (Reasonableness) tests → For example, if 

your thermometer were to read −40oC on a sweltering 

midsummer day, you would suspect it was malfunctioning. 

 Acceptance categories:

 Timing checks: Add a watchdog timer to detect software hangs / 

timeouts

 Range checks: We use our knowledge of the application to set 

acceptable bounds for the output: if it falls outside these bounds, 

it is declared to be erroneous

 Verification of output: Although, the problem itself is difficult to 

solve, it is much easier to check that the answer is correct, e.g., a 

puzzle is difficult to put together and easy to check its correctness

Factorszation(15) → Answer = 3 x 5

Verification = 3 x 5 = 15

If Answer != Verification → Error detected 

Acceptance tests should balance between 

sensitivity and false alarm rate

acceptance 

range bound

More correct 

outputs are 

declared 

erroneous 

More erroneous 

outputs are 

declared correct 

Probability  that 

the test catches 

the error

Probability  that the test 

has declared the output 

erroneous but it is not



SINGLE-VERSION FAULT-TOLERANCE

Wrapped (COTS)

Software

Wrapper Software

Critical Software

Wrappers

 The wrapper software decides which inputs from 

the critical software to be passed to the 

wrapped software

 Similarly, the wrapper software decides which 

outputs from the wrapped software to pass to 

the critical software

 Non-accepted I/Os are flagged with exception 

signals to the system/critical software

BUFFER OVERFLOW PROTECTION

Example: A wrapper should be used in the C 

strcpy function to assert error signals on 

overflows

//dest is buffer of size 5
//src is buffer of size 25

/* This would overwrite a memory 
region  outside the dest buffer*/
strcpy(dest, src)  

Exception

Filtered 

output



SINGLE-VERSION FAULT-TOLERANCE

More examples of software wrappers

 Protect the critical system against known bugs:

Example: Through intensive testing, a COTS 

software is found to hung for a set of certain inputs

 Acceptance test on the COTS software output:

Example: A COTS software calculates the Markov 

chain of a 5-state model. The total probability 

distribution of all states sums up to 1.7 instead of 

1.0. The wrapper signals an exception.

 Mitigate transient faults in critical variables:

Example: An extensive fault-injection campaign 

showed that 3% of the total static variables in the 

COTS software are 80% more vulnerable to soft-

errors. The wrapped can keep three copies (triple 

redundancy) of these 3% vulnerable variables.



SOFTWARE REJUVENATION (REFRESH)

 Many software problems do no cause errors immediately.

As a process executes it may:

 get allocating memory without releasing it;

 keep building up numerical errors in each 
iteration;

 corrupt data due to accumulated soft-errors

 If this goes on indefinitely, the process can become faulty 

and stop executing.

 Two principal questions arise in connection 

with rejuvenation. 

 At what level should rejuvenation occur?

 How do we determine when to rejuvenate?

When your personal computer hangs, the obvious 

reaction is to reboot it. Rebooting is an example of 

software rejuvenation.

To head this off, we can proactively halt 

execution, clean up its internal state, and then 

restart it. 



REJUVENATION LEVEL

 Process level: Terminate process → clean it up by garbage 

collector → re-initilise it’s data structures → restart it.

 Subtask level: For example, restart the database of a 

webpage

 Physical node: Restart the operating system, which will affect 

all subtasks

 Virtual Machines (VMs):

 Hypervisor level: Save the state of all virtual 
machines → Restart the hypervisor → Restore the 
VM

 Virtual machine level → Restart the VM

 Process level: Restart specific processes in a one or 
more VMs

VM 

level

Hypervisor  

level

Application 

level

For low downtime, at which level should we 

apply software rejuvenation?



TIMING OF REJUVENATION

Time-based 

rejuvenation

Model 

Rate of errors 

(without rejuvenation )

Cost of each error

Cost of each rejuvenation 

Rejuvenation

Period

Prediction-

based 

rejuvenation

(software task)

Online statistics, 

e,g., iostat

Rejuvenate

Online statistics, 

e.g., vmstat, netstat 

For example, if a processes is 
consuming memory at a certain 
rate, the system can estimate 
when it will run out of memory 
and rejuvenate the process

If we know the cost and rate of 
each error and the cost of each 
rejuvenation, we can find the optimal 

period for rejuvenation



N-VERSION PROGRAMMING

 N independent teams of programmers 
develop software to the same specifications

 These N versions of software are then run in 
parallel, and their output is voted on.

 The hope is that if the programs are 
developed independently, it is very unlikely 
that they will fail on the same inputs

 N-version programming is trivial to implement 
because it is difficult to arrive at a consensus 
among correctly functioning versions

 There is no way to guarantee a general 
solution to the consistent comparison 
problem

V1 V2 V3

1.0000

0.9999 0.9998 1.0001

V3 takes action A2V1,V2 take action A1

N-version programming is far from trivial to 

implement. 

Even that V1,V2, and V3 function 
correctly, V3 will order version A2



REDUCING COMMON-MODE ERROR IN SOFTWARE DEVELOPMENT

 Use diverse specifications: If programmers work off the same 

specification, errors in this specification will propagate to the SW 

 Use diverse programming languages:

Diverse programming languages may have diverse libraries, which 

the user hopes will have uncorrelated bugs.

 Use diverse development tools and compilers:

Since tools and compilers can themselves be faulty, using diverse 

tools for different versions may allow for greater reliability.

 Using diverse hardware and operating systems: 

Complement software design diversity with hardware and operating 

system diversity, by running each version on a different processor 

type and operating system.

Compiler diversity (different 

compiler or different optimisation 

level) can provide some protection 

against hardware faults

Two different compilations, C1 and 

C2, of the same source code may 

exercise slightly different 

elements of the hardware. Thus, 

there might be some hardware 

faults that are exercised by C1, 

but not exercised also by C2, or 

vice versa



FLIGHT CONTROL SYSTEM OF BOEING 777

(Source: Y. C. Yeh, "Triple-triple redundant 777 primary flight computer," 1996 IEEE Aerospace Applications Conference. Proceedings, 1996, pp. 293-307 vol.1, doi: 10.1109/AERO.1996.495891.)



FLIGHT CONTROL SYSTEM OF BOEING 777

 Boeing’s first commercial jet with FBW was the 777 

(1995)

 In planes with no FBW, the actuators moving the surfaces 

of the plane are controller with mechanical interfaces

 Planes with FBW use a flight computer that reads the input 

from pilots and sensors (e.g., speed, angle of attack etc.) 

and controller the actuators in a closed feedback loop.

 In simple words, the pilots gives simple instructions to the 

computer and the computer in turn controls the plane. 

Needless to say, this computer should be very reliable!

 The A(T=1h) of 777’s computer is 0.999999999, i.e., 

the probability of a fault impacting the integrity and 

availability of the computer should be less than 10-10 / 1h



BLOCK DIAGRAM OF 

THE PRIMARY 

FLIGHT COMPUTER 

(PFC) SYSTEM 

 The PFC is a TMR system consisting of three computing channels (left, center, 

right).  

 Each computing channel consists of three computing lanes.

 Each lane has its own power supply.

 Each channel is physically and electrically isolated via ARINC 629 data bus

digital autonomous terminal access communication (DATAC), also called ARINC 629 data bus



BLOCK DIAGRAM OF 

THE PRIMARY 

FLIGHT COMPUTER 

(PFC) SYSTEM 

 All communications over the ARINC 629 data bus are CRC checked

 Each computing lane uses a different processor (Intel, AMD and Motorola)

 Each processor runs control software that is compiled by a different compiler

 Each computing lane does not operate in TMR. Instead one of the three lanes 
serves as the command processor and the other two monitor the outputs 
generated by the designated command processor. 

 Only the command processor is communicating through the data buses with the 
remaining two channels; it transmits its proposed flight surface command to the 
other two channels

 Each command lane receives three values of the proposed commands, and 
performs a median value select to determine what is called the “selected” surface 
command.

1 of the 3 

computing channels

Initially, Boeing management decided to use also 3-version programming for 
developing the control software.

But each team of programmers asked to many questions to clarify software 
requirements and the management cancelled the 3-version programming 
approach
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BACKUP SLIDES



HAMMING DISTANCES

 The Hamming distance between two codewords is the number of 

bit positions, in which the two words differ.

 The figure on the right of this slide shows the eight 3-bit binary 

words. Two words in this figure are connected by an edge if their 

Hamming distance is 1. 

 The words 101 and 011 differ in two-bit positions and therefore 

have a Hamming distance of 2. 

 One has to traverse two edges in figure to get from node 101 to 

node 011.



EXAMPLE → HAMMING DISTANCES

Undetected errors

 Suppose two valid codewords differ in only the least 

significant bit (LSB) position, e.g., 101 and 100.

 In this case, a single error in the LSB in either one of these 

two codewords will go undetected, since the erroneous word is 

also an existing codeword. 



EXAMPLE → HAMMING DISTANCES

Detection of bit errors

 The code distance is the minimum Hamming 

distance between any two valid codewords.

 The code that consists of the four codewords {001, 

010, 100, 111}, marked by circles in the figure has 

a code distance of 2 and is therefore capable of 

detecting any single-bit error

 The code that consists only of the codewords {000, 

111} has a distance of 3 and is therefore capable 

of detecting any single- or double-bit error. I

A Hamming distance of two (or more) between two 

codewords guarantees that a single-bit error in any of 

the two words will not change it into the other.



HAMMING DISTANCE

Who was Richard Hamming ?

 American mathematician (February 11, 1915 –

January 7, 1998) 

 He received the Turing Award in 1968

 He worked at Los Alamos Laboratories and Bell Labs

 Read → “You and your research by Richard 

Hamming”, link 

https://www.cs.virginia.edu/~robins/YouAndYourRes

earch.html

1  0  1  1

1  1  0  1
Hamming distance = 2 

Hamming distance = 3 
0  0  0  1

1  1  1  1

“What you learn from others you 

can use to follow. What you learn 

for yourself you can use to lead.”

Richard Wesley Hamming
 An important metric of the space of codewords is the 

Hamming Distance

 The Hamming distance is the number of bit positions 

in which two codewords differ.

https://www.cs.virginia.edu/~robins/YouAndYourResearch.htmlYourResearch.html
https://www.cs.virginia.edu/~robins/YouAndYourResearch.htmlYourResearch.html


HAMMING DISTANCE

Who was Richard Hamming ?

 American mathematician (February 11, 1915 –

January 7, 1998) 

 He received the Turing Award in 1968

 He worked at Los Alamos Laboratories and Bell Labs

 Read → “You and your research by Richard 

Hamming”, link 

https://www.cs.virginia.edu/~robins/YouAndYourRes

earch.html

“What you learn from others you 

can use to follow. What you learn 

for yourself you can use to lead.”

Richard Wesley Hamming
 An important metric of the space of codewords is the 

Hamming Distance

 To detect up to k bit errors you need at least Minimum 
Hamming distance kmin = k + 1

 Whereas to correct up to k bit errors you need at least 
Minimum Hamming distance kmin = 2k + 1

 The Hamming distance is the number of bit positions in 
which two codewords differ.

111

011
010

110

001

101100

000

https://www.cs.virginia.edu/~robins/YouAndYourResearch.htmlYourResearch.html
https://www.cs.virginia.edu/~robins/YouAndYourResearch.htmlYourResearch.html


EXAMPLE → THE MINIMUM HAMMING DISTANCE BETWEEN ALL 

POSSIBLE CODEWORDS IN THE BCD ENCODING SCHEME

 The minimum hamming distance among all these 

codewords in the BCD is 1

 This means that even 1 bitflip can lead to the next 

valid codeword 

Binary-Coded Decimal 

(BCD)

8421 

0 → 000

1 → 001

2 → 010

3 → 011

4 → 100

5 → 101

6 → 110

7 → 111

1

2

1

What if we use only two {000, 111 } valid 

codewords (triple repetition code scheme)?

Binary-Coded Decimal 

(BCD)

8421 

0 → 000

1 → 001

2 → 010

3 → 011

4 → 100

5 → 101

6 → 110

7 → 111

3

Valid

codeword

Valid

codeword

111

011
010

110

001

101100

000
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