
DEPENDABLE SYSTEMS AND CRITICAL

INFRASTRUCTURES DESIGN
RELIABILITY ENGINEERING AND HARDWARE FAULT-TOLERANCE

DIMITRIS AGIAKATSIKAS, MIHALIS PSARAKIS

OUTLINE

 In our previous lecture we covered

 HARDWARE Redundancy

 INFORMATION Redundancy → Example: Extra (redundant) bits are added to

the original data bits of a RAM so that an error in the data bits can be

detected and corrected. These are usually called Error Correction Codes

(ECC).

 SOFTWARE → Example: Mitigate software faults (bugs) by independently

producing (from disjoint teams of programmers) two versions of a software

in the hope that the different versions will not fail on the same input.

 In this lecture we will cover the following

 RAID schemes

 Non-stop systems

 In our next lecture we will cover

 Fault tree analysis

 FMEA

SECTION 1

INFORMATION

REDUNDANCY

REDUNDANT ARRAY OF INDEPENDENT

(INEXPENDED) DISKS (RAID)

 Data storage virtualization technology that combines multiple

physical disk drive components into one or more logical units

 RAID improves fault-tolerance and/or read/write throughput

 There are many types of RAID, each one providing different

benefits

 RAID is implemented in hardware (more expensive but better

performance) or software

REDUNDANT ARRAY OF INDEPENDENT (INEXPENDED) DISKS (RAID)

APPLYING REDUNDANCY AT A HIGHER LEVEL THAN INDIVIDUAL WORDS

RAID 0 (also known as striped volume)

 Stripes (“splits”) splits the data evenly across

multiple disks (usually 2)

 It does not add any information redundancy and

does not provide any fault-tolerance

 Used to increase read/write speed

 Not reliable!

The are six RAID structures. RAID Level 0 to 5

credits: https://en.wikipedia.org/wiki/Standard_RAID_levels, en:User:Cburnett

 The following example distributes data between two

disk into 4 stripes:

 A1:A2, A3:A4, A5:A6, A7:A8

What happens if we create RAID0

with two disks of different capacity?

Types of striping

• Bit

• Byte

• Block Can you create the Reliability Markov

Chain model of RAID 0?

RAID 1 (ALSO KNOW AS “MIRROR” MODE)

 Consists of an exact copy of data to multiple disks

(usually 2 disks)

 Pros

 Provides high reliability

 High read performance

 Cos:

 Low write performance

credits: https://en.wikipedia.org/wiki/Standard_RAID_levels, en:User:Cburnett

 The following example makes two copies of data:

 A1=A2, A2=A2, A3=A3, A4=A4

What is the code rate of

RAID1?

2

Disks

Working

1

Disk

Working

0

Disks

Working

2𝜆Δ𝑡 𝜆Δ𝑡
11-2Δ𝜆𝑡

1 − (𝜆 +μ) Δ𝑡
𝜇Δ𝑡

Reliability Markov Chain model of RAID 1

RAID 2

 Level 2 RAID consists of a bank of data disks in

parallel with Hamming-coded disks.

 It is rarely used. It stripes (i.e., distributes) data at

the bit level to d multiple disks and saves their

parity to r disks.

 Pros:

 High transfer rates in long sequential reads

 Random read/write is not ideal

 Cos:

 Striping data at the bit in not very efficient

credits: https://en.wikipedia.org/wiki/Standard_RAID_levels, en:User:Cburnett

 Example:

 Usable data is distributed in disks 0-4

 Disks 5-6 are used for storing parity (Hamming codes)

RAID 3

 It is also rarely used. It stripes (i.e., distributes) data

at the byte or sector level to multiple disks.

 It consists of d data disks + 1 parity disk

 RAID 3 is not commonly used in practice

 Pros

 High transfer rates in long sequential reads

 Cos:

 Cannot service multiple requests simultaneously

credits: https://en.wikipedia.org/wiki/Standard_RAID_levels, en:User:Cburnett

 Example: The data is distributed across Disks 0-2

and Disk 3 is used for parity checks

RAID 4

 It is also rarely used. It stripes (i.e., distributes) data
at the block level (arbitrary size block – also called
stripe) to multiple disks.

 It consists of d data disks + 1 parity disk

 The advantage of RAID4 over RAID3 is that a small
read/write operation may be contained in just a
single data disk, resulting in faster I/O operations

 Pros

 Good random reads

 Read speed: parallel d-1 disks

 Cos:

 Cannot service multiple requests simultaneously

 Bad performance random writes

 Write: Write a data block, calculate its parity, write
its parity

credits: https://en.wikipedia.org/wiki/Standard_RAID_levels, en:User:Cburnett

 Example: a read request for block 0 would be
serviced by disk 0. A simultaneous read request for
block 4 would have to wait, but a read request for
13 could be serviced concurrently by disk 1.

RAID 5 (DISTRIBUTED BLOCK INTERLEAVED PARITY)

 It is the most used. It stripes (i.e., distributes) data at the block level to
multiple disks.

 It consists of d disks containing both data + parity

 The parity bits are distributed across all disks

 Pros

 Has the best balance of performance-reliability among the RAID schemes

 In RAID4, the parity disk is accessed in each write operation, which slows down
write operations. In RAID5, we simply interleave the parity blocks among the disks,
which improves write performance

 Read speed: parallel d disks

 Cos:

 Increased change of data loss during disk rebuild after replacing a failed disk.

 An extension of RAID5 is RAID6, which solves this problem. The aim with RAID6 is
to be able to resist not just one but two disk failures at the same time without
losing any data. Additional code blocks are provided to do so.

credits: https://en.wikipedia.org/wiki/Standard_RAID_levels, en:User:Cburnett

 The parity is distributed between multiple disks

HIERARCHICAL (NESTED) RAID

Example: RAID 50

 Top Array: RAID0

 Nested Array: RAID5

 Given a file consisting of segments 0,

1, 2, 3, …. , we would assign segments

0, 2, 4, …. to be stored in one group of

disks, whereas 1, 3, 5, …. would be

stored in the other. Each of these two

groups is organized as a RAID Level 5

structure

HIERARCHICAL (NESTED) RAID

Example: RAID10 vs RAID01

1) Which hierarchical RAID scheme

is more reliable ?

RAID10

RAID01
RAID01

CHECKPOINTING

When a program takes very long to execute, the

probability of failure during execution, as well

as the cost of such a failure, become

significant.

Therefore, we need to take frequent

checkpoints to mitigate the cost of such errors

Simple example of checkpointing

EXAMPLE: LOOSELY-COUPLED DUAL CORE LOCKSTEP WITH

CHECKPOINTING

RTOS

Checkpoint & restore

Circuit

Drivers

Applications

Core-0

CPU

RTOS Drivers

Applications

Core-1

TIGHTLY-COUPLED (MICRO-SYNCHRONISED) LOCKSTEP EXECUTION

LOOSELY-COUPLED (MACRO-SYNCHRONISED) LOCKSTEP EXECUTION

EXAMPLE: NONSTOP ARCHITECTURE

 Developed by Tandem Computers

(acquired by HP)

 Used for online transaction

processing

NONSTOP ARCHITECTURE – KEY DESIGN PRINCIPLES

 Modularity: The hardware and software are constructed of modules of fine granularity. These modules constitute

units of failure, diagnosis, service, and repair. Modules should be isolated so that a fault in one module does not

affect another one

 Fail-fast operation: A fail-fast module either works properly or stops. Thus each module is self-checking and stops

upon detecting a failure. Hardware checks (through error-detecting codes) and software consistency tests support

fail-fast operation.

 Single-failure tolerance: When a single module (hardware or software) fails, another module immediately takes over.

For processors, this means that a second processor is available. For storage modules, it means that the module

and the path to it are duplicated.

 Online maintenance: Hardware and software modules can be diagnosed, disconnected for repair, and then

reconnected, without disrupting the entire system’s operation.

NONSTOP ARCHITECTURE

 Consists of clusters of computers

 Each cluster includes up to 16 custom-designed

processors

 Each custom processor has a CPU, local memory

(containing its own copy of OS), bus control unit, and

I/O channels

 The CPU incorporates many error detection capabilities

for fail-fast mode of operation

 The CPU datapath is protected with parity checking

 The CPU control-path is protected with parity checking,

BIST and detection of illegal CPU states

NONSTOP ARCHITECTURE

 The working memory protected with a Hamming code with SECDED capability

 The address bus of the working memory is protected with single error detection

parity code

 CPU caches are protected from transient faults invalidating cache entries that

report parity errors so that data is refeched from the main/working memory

 Spare modules of various processor modules exist to recover any permanent

damaged modules

 Parity checking is also used in all memory units (e.g., register file) and processing

elements (ALU, counters etc.) of the CPU, and into buses of the processor.

 There is not shared memory between the processors since it is a single point of

failure. ICP communications occure through messages

 Power supplies and cabling are also fully redundant to eliminate any single point

of failure

 Backup batteries are used to save the state of the system in case of power failure

 All controllers operate in lockstep and support BIST features.

NONSTOP

ARCHITECTURE

 The disks work in RAID1

 The disk data is protected end-to-end with

checksums

 For each data block, the processor calculates

a checksum and appends it to the data written

to the disk. This checksum is verified by the

processor when the data block is read from

the disk.

 The checksum is used for error detection,

whereas the disk mirroring is used for data

recovery.

NONSTOP ARCHITECTURE - MAINTENANCE AND REPAIR AIDS

 Detected errors are automatically analysed and reported to remote support centers which track related repair

actions.

 Includes a maintenance processor and diagnostic units:

 Communicates with all the processors and a remote service center.

 Collects failure-related information

 Inform engineers at the remote center to run diagnostic tests.

 Reconfigured the system in response to detected faults.

 Each processor module has a diagnostic unit

 Monitors the status of the computing processor, working memory, Dynabus interface, and the I/O channel.

 Reports to the central maintenance processor any detected errors

 Upon a request received from the remote service center (through the central maintenance processor) it can
perform diagnostic tests at the module level.

 The central maintenance processor condact automatic fault diagnosis through the use of a knowledge database that

includes a large number of known error values. It also controls and monitors a large number of sensors for power

supply voltages, intake and outlet air temperatures, and fan rotation.

NONSTOP ARCHITECTURE - SOFWARE

 Most of system fault tolerance is done by the OS. The OS detects failures of processors or I/O channels and

performs the necessary recovery.

 The OS manages the process pairs that constitute the primary fault-tolerance scheme used in NonStop.

 A process pair includes a primary process and a passive backup process that is ready to become active when the

primary process fails.

 When a new process starts, the OS generates a clone of this process on another processor. This backup process goes

immediately into passive mode and waits for messages from either its corresponding primary, or the OS.

 At certain points during the execution of the primary process, checkpoints are taken and a checkpointing message

containing the process state is sent by the primary to the backup. The process state of the backup is updated by the

OS, while the backup process itself remains passive. If the primary process fails, the OS orders the backup to start

execution from the last checkpoint.

EXAMPLE: XEON

 The Xeon processor was designed to support

continuous self-monitoring and self-healing.

 The processor actively monitors for errors, all the

interconnects, data buffers, and data paths.

 Memory is protected SECDED Hamming code.

Memory address is protected with parity codes.

 If a memory chip fails completely (or has exceeded

a threshold of bit errors that have been corrected),

it is replaced by a spare memory chip.

 Memory is scrubbed

EXAMPLE: XEON

 At the CPU level, the Xeon processor uses error-correcting codes to protect the registers from transient faults.

The execution units include error-detection circuits using residue and parity codes. If an error is detected, the

instruction is retried. If the retry fails, a fatal error signal is generated.

 At the highest level, the processor interacts with the operating system (OS), virtual machine manager, and

application software to support recovery from errors that the hardware was unable to correct.

BIBLIOGRAPHY Koren, Israel, and C. Mani Krishna. Fault-tolerant systems.

Morgan Kaufmann, 2020.

	Default Section
	Slide 1: Dependable Systems and Critical Infrastructures Design
	Slide 2: Outline
	Slide 3: Section 1 INFORMATION Redundancy
	Slide 4: Redundant Array of Independent (INEXPENDED) Disks (RAID)
	Slide 5: Redundant Array of Independent (INEXPENDED) Disks (RAID) Applying redundancy at a higher level than individual words
	Slide 6: RAID 1 (also know as “mirror” mode)
	Slide 7: RAID 2
	Slide 8: RAID 3
	Slide 9: RAID 4
	Slide 10: RAID 5 (Distributed block interleaved parity)
	Slide 11: Hierarchical (Nested) RAID
	Slide 12: Hierarchical (Nested) RAID
	Slide 13: Checkpointing
	Slide 14: Example: loosely-coupled dual core lockstep with checkpointing
	Slide 15: Tightly-Coupled (micro-synchronised) lockstep execution
	Slide 16: loosely-Coupled (macro-synchronised) lockstep execution
	Slide 17: Example: nonstop architecture
	Slide 18: nonstop architecture – Key design principles
	Slide 19: nonstop architecture
	Slide 20: nonstop architecture
	Slide 21: nonstop architecture
	Slide 22: nonstop architecture - MAINTENANCE AND REPAIR AIDS
	Slide 23: nonstop architecture - SOFWARE
	Slide 24: EXAMPLE: XEON
	Slide 25: EXAMPLE: XEON
	Slide 26: Bibliography

