

An Introduction to Federated Learning

Andreas Tritsarolis, 26/01/2024

Outline

- From Centralized to Decentralized Learning
- Federated Learning (FL)
- Categories of Federated Learning
- Federated vs Distributed Machine Learning
- Privacy Preservation Techniques
- Optimization in Federated Learning (FedAvg)
- Advances and Open Problems
- Programming Frameworks

From Centralized to Decentralized Learning

- Data is Everywhere...
 - Edge devices upload vast amounts of data per minute
- ...and often **decentralized** across many parties
- Training a Machine Learning (ML) model
 - Requires a centralized dataset processed in a tightly integrated system
- Centralizing Process → **Privacy** nightmare
 - High Costs (e.g. storage, bandwidth, etc.)
 - High Sensitivity (e.g. finance, health, etc.)
- Delegating ML Training → **Performance** nightmare
 - Dataset too small → Underfitting/Overfitting
 - Features' distribution \rightarrow Biased target distribution

3

Federated Learning

- Federated Learning (FL)
 - Train a centralized model on decentralized data
- Edge devices collaboratively train an ML model
 - Keep the data decentralized
- Every participant keeps control of its own data
 - Harder to extract sensitive information

H. B. McMahan, E. Moore, D. Ramage, et al., Communication-efficient learning of deep networks from decentralized data, ArXiv Preprint ArXiv:1602.05629, February 2016. <u>https://arxiv.org/abs/1602.05629</u>

J. Konecný, H. B. McMahan, D. Ramage, et al., Federated optimization: Distributed machine learning for on-device intelligence, ArXiv Preprint:1610.02527, October 2016. <u>http://arxiv.org/abs/1610.02527</u>

Federated Learning (cont.)

• Edge devices send model updates...

- Client-Server architecture via Hub and Spokes
- Decentralised Architecture via peer-to-peer
- Hybrid Architecture
- Our scope of interest \rightarrow Client-Server

Rieke, N., Hancox, J., Li, W., Milletari, F., Roth, H., Albarqouni, S., Bakas, S., Galtier, M. N., Landman, B. A., Maier-Hein, K. H., Ourselin, S., Sheller, M. J., Summers, R. M., Trask, A., Xu, D., Baust, M., & Cardoso, M. J. (2020). The Future of Digital Health with Federated Learning. CoRR, abs/2003.08119. <u>https://arxiv.org/abs/2003.08119</u>

Your phone personalizes the model locally, based on your usage (A). Many users' updates are aggregated (B) to form a consensus change (C) to the shared model, after which the procedure is repeated. [source]

Optimization in Federated Learning

- Baseline \rightarrow Federated Average
- Consider
 - A set of *K* parties (clients)
 - Each party **k** holds a dataset D_k of n_k points
 - $D = D_1 \cup \dots \cup D_k \rightarrow \text{the joint users' dataset}$
 - $\boldsymbol{n} = \sum_{k} \boldsymbol{n}_{k} \rightarrow \text{ #points}$
 - Aim \rightarrow Minimize $F(\theta; D)$, w.r.t θ , where

 $F(\theta; \mathcal{D}) = \sum_{k=1}^{K} \frac{n_k}{n} F_k(\theta; \mathcal{D}_k) \text{ and } F_k(\theta; \mathcal{D}_k) = \sum_{d \in \mathcal{D}_k} f(\theta; d)$

McMahan, H. B., Moore, E., Ramage, D., & y Arcas, B. A. (2016). Federated Learning of Deep Networks using Model Averaging. CoRR, abs/1602.05629. <u>http://arxiv.org/abs/1602.05629</u>

Algorithm 1 FederatedAveraging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

initialize w_0 for each round t = 1, 2, ... do $m \leftarrow \max(C \cdot K, 1)$ $S_t \leftarrow (\text{random set of } m \text{ clients})$ for each client $k \in S_t$ in parallel do $w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)$ $w_{t+1} \leftarrow \sum_{k=1}^K \frac{n_k}{n} w_{t+1}^k$

ClientUpdate(k, w): // Run on client k $\mathcal{B} \leftarrow (\text{split } \mathcal{P}_k \text{ into batches of size } B)$ for each local epoch i from 1 to E do for batch $b \in \mathcal{B}$ do $w \leftarrow w - \eta \nabla \ell(w; b)$ return w to server

Optimization in Federated Learning (cont.)

- Reddi et al. generalize the aforementioned scheme
 - Allow usage of adaptive optimization schemes (e.g. Adam)
- Clients use SGD
- Server use AdaGRAD, YOGI, Adam
- Advantages
 - Maintain communications costs (same as FedAvg)
 - Work in cross-device settings

Algorithm 2 FEDADAGRAD , FEDYOGI , and FEDADAM

1: Initialization: $x_0, v_{-1} \ge \tau^2$, decay parameters $\beta_1, \beta_2 \in [0, 1)$ 2: for $t = 0, \dots, T - 1$ do Sample subset S of clients $x_{i\,0}^{t} = x_{t}$ 4: for each client $i \in S$ in parallel do 5: for $k = 0, \dots, K - 1$ do 6: Compute an unbiased estimate $g_{i,k}^t$ of $\nabla F_i(x_{i,k}^t)$ 7: $x_{i,k+1}^{t} = x_{i,k}^{t} - \eta_{l} g_{i,k}^{t}$ 8: $\Delta_i^t = x_{i,K}^t - x_t$ 9: $\Delta_t = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \Delta_i^t$ 10: $m_t = \beta_1 m_{t-1} + (1 - \beta_1) \Delta_t$ 11: $v_t = v_{t-1} + \Delta_t^2$ (FEDADAGRAD) 12: $v_t = v_{t-1} - (1 - \beta_2)\Delta_t^2 \operatorname{sign}(v_{t-1} - \Delta_t^2)$ (FEDYOGI) 13: $v_t = \beta_2 v_{t-1} + (1 - \beta_2) \Delta_t^2$ (FEDADAM) 14: $x_{t+1} = x_t + \eta \frac{m_t}{\sqrt{n_t + \tau}}$ 15:

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K., Konečný, J., Kumar, S., & McMahan, H. B. (2020). Adaptive Federated Optimization. CoRR, abs/2003.00295. <u>https://arxiv.org/abs/2003.00295</u>

Advances and Open Problems

- In non-i.i.d datasets \rightarrow client drift
 - FedAvg fails to converge
- Prevent client drift \rightarrow lowers convergence rate

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich, S. U., & Suresh, A. T. (2019). SCAFFOLD: Stochastic Controlled Averaging for On-Device Federated Learning. CoRR, abs/1910.06378. <u>http://arxiv.org/abs/1910.06378</u>

Advances and Open Problems (cont.)

- (If) data distributions are very different
 - learning a single model \rightarrow requires a (very) large number of parameters
- Lift the "one size fits all" requirement
 - i.e., the learned model should perform well for all parties
- Allow each party k to learn a (simpler) personalized model θ_{μ}
 - design the objective so as to enforce some kind of collaboration

Hanzely, F., Hanzely, S., Horváth, S., & Richtárik, P. (2020). Lower Bounds and Optimal Algorithms for Personalized Federated Learning. CoRR, abs/2010.02372. <u>https://arxiv.org/abs/2010.02372</u>

Fallah, A., Mokhtari, A., & Ozdaglar, A. E. (2020). Personalized Federated Learning: A Meta-Learning Approach. CoRR, abs/2002.07948. <u>https://arxiv.org/abs/2002.07948</u>

Advances and Open Problems (cont.)

- Including (among others)
 - Robustness against adversaries
 - e.g., Gradient leaks
 - Incentive mechanisms
 - e.g. Blockchain
 - Model diversity
 - Ensure fairness without access to sensitive attributes
 - Communication costs
 - Improve efficiency \rightarrow Lower bandwidth costs
 - Accessible to edge devices

J. Konecný, H. B. McMahan, F. X. Yu, et al., Federated learning: Strategies for improving communication efficiency, ArXiv:1610.05492, October 2016. http://arxiv.org/abs/1610.05492

P. Kairouz, H.B. McMahan, B. Avent, et al., Advances and open problems in federated learning, December 2019. <u>https://arxiv.org/abs/1912.04977</u>

Experimental results on the AT&T Dataset with no DP [source]

Programming Frameworks

- PySyft
 - pip install syft
- TensorFlow Federated
 - pip install --upgrade tensorflow-federated
- Flower
 - pip install flwr
- Opacus
 - pip install opacus
- TenSEAL
 - pip install tenseal

Programming Frameworks (cont.)

- Flower: A Friendly Federated Learning Research Framework
 - Originated from the University of Oxford
 - A unified approach to federated learning
 - Supports a wide variety of frameworks
 - TensorFlow, PyTorch, Scikit-Learn
 - Secure Aggregation \rightarrow <u>Salvia</u>

	TFF	Syft	FedScale	LEAF	Flower
Single-node simulation	$$	\checkmark	\checkmark		\checkmark
Multi-node execution	*	\checkmark	$(\sqrt{)^{***}}$		
Scalability	*		**		
Heterogeneous clients		$(\sqrt{)}^{***}$	**		
ML framework-agnostic		****	****		
Communication-agnostic					
Language-agnostic					
Baselines					*

Labels: * Planned / ** Only simulated *** Only Python-based / **** Only PyTorch and/or TF/Keras

Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., & Lane, N. D. (2020). Flower: A Friendly Federated Learning Research Framework. ArXiv Preprint ArXiv:2007.14390.