
Συστήματα Διαχείρισης Βάσεων Δεδομένων
Εργαστηριακή Διάλεξη

PostgreSQL – part I

Τμήμα Πληροφορικής, Πανεπιστήμιο Πειραιώς,
Data Science Lab. (datastories.org)

Ανδρέας Τριτσαρώλης
andrewt@unipi.gr

http://www.datastories.org/
mailto:andrewt@unipi.gr

DBMS – Lab 1

Outline

● PostgreSQL (basic features)

● *Hands on (Queries)

● Indexing

● Planner

2

DBMS – Lab 1

Outline

● PostgreSQL (basic features)

● *Hands on (Queries)

● Indexing

● Planner

3

DBMS – Lab 1

● Features

๏ complex queries

๏ foreign keys

๏ triggers

๏ views

๏ transactional integrity

๏ full-text searching

๏ limited data replication

PostgreSQL ~ Features & Extensions

4

● Extensions

๏ new data types

๏ functions (aggregate)

๏ operators

๏ index methods

DBMS – Lab 1

PostgreSQL ~ Basics

5

create database | schema | table (as) | type | view

drop table | view | type | index

alter add | drop | add constraint | rename to | alter column | modify

insert into

copy from | to

rename table | column | etc.

set operations union | intersect | except

string operations (pattern matching) like

aggregate functions avg | min | max | sum | count

order by asc | desc

grouping having

nested queries set membership | set comparison | etc.

joins cross join | qualified joins (inner / outer)

DBMS – Lab 1

Outline

● PostgreSQL (basic features)

● *Hands on (Queries)

● Indexing

● Planner

6

DBMS – Lab 1

DB Schema “Cities | Countries | Languages”

7

DBMS – Lab 1

Hands on ~ Examples

8

1. Derived Relations — Sum countries’ population, where the first letter is ‘A’

2. Derived Relations — Sum countries’ population and percentage (An/A), where the first letter is ‘A’ or ‘An’

3. Join — Cities & countries (name), belonging to ‘Asia’ & city’s population is higher that 4000000 people

4. Join — Cities & countries (name), belonging to ‘Asia’ & (optionally) city’s population is higher that

4000000 people

DBMS – Lab 1

Hands on ~ Examples

9

6. Join — Country (name) and language (percentage, official) having the maximum percentage and the

language is official

5. Join — Country (code), city (name) & language, having percentage greater than 50% & population is

higher than 4000000 people

7. Join — Country & city (names) as well as language, sorted by country’s code

DBMS – Lab 1

Hands on ~ Answers

10

DBMS – Lab 1

Hands on ~ Answers

11

select total_a

from

 (select sum(population) as total_a

 from Country

 where name like 'A%') as t1;

1. Derived Relations - - Sum population (countries), where the first letter is ‘A’

DBMS – Lab 1

Hands on ~ Answers

12

select total_an, total_a, (cast (total_an as real) / cast (total_a as real)) as percentage

from

(select sum(population) as total_a

from Country

where name like 'A%') as t1,

(select sum(population) as total_an

from Country

where name like 'An%') as t2

2. Derived Relations - - Sum population (countries), percentage (An/A), where the first letter is ‘A’ or ‘An’

DBMS – Lab 1

Hands on ~ Answers

13

select City.name, Country.name

from City inner join Country on City.CountryCode = Country.Code

where Country.Continent ='Asia' and City.Population > 4000000;

3. Join - - Cities & Countries (name), belonging to ‘Asia’ & city’s population is higher that 4000000 people

DBMS – Lab 1

Hands on ~ Answers

14

select t1.name, t2.name

from

(select name, code

from country

where continent = 'Asia') as t1 left outer join

(select name, countrycode

from city

where population > 4000000) as t2 on t2.countrycode = t1.code;

4. Join - - Country & City (name), belonging to ‘Asia’ & (optionally) city’s population is higher that

4000000 people

DBMS – Lab 1

Hands on ~ Answers

15

select *

from

(select language, countrycode

from countrylanguage

where percentage > 50) as t1 natural join

(select name, countrycode

from city

where population > 4000000) as t2

5. Join - - Country (code), city (name) & language, having percentage greater than 50% & population is

higher than 4000000 people

DBMS – Lab 1

Hands on ~ Answers

16

select *

from (

select countrycode, max(percentage) as max_pct

from countrylanguage

where isofficial=true

group by countrycode

) as cl_pct_max

 inner join countrylanguage on cl_pct_max.countrycode = countrylanguage.countrycode

where countrylanguage.percentage = cl_pct_max.max_pct;

6. Join - - Country (name), countrylanguage (percentage, official) having the maximum percentage and

the language is official

DBMS – Lab 1

Hands on ~ Answers

17

select country.name, city.name, countrylanguage.language

from city inner join countrylanguage on city.countrycode = countrylanguage.countrycode

inner join country on city.countrycode = country.code

order by city.countrycode;

7. Join - - Join - - Country & city (names) as well as language, sorted by country’s code

DBMS – Lab 1

Outline

● PostgreSQL (basic features)

● *Hands on (Queries)

● Indexing

● Planner

18

DBMS – Lab 1

● Indices

๏ An index allows the database server to find and retrieve specific rows much faster than it

could do without an index.

๏ A PostgreSQL index is a data structure that provides a dynamic mapping from search

predicates to sequences of tuple IDs from a particular table.

๏ The returned tuples are intended to match the search predicate, although in some cases the

predicate must be rechecked on the actual tuples, since the index may return a superset of

matching tuples.

๏ PostgreSQL supports several types of indices that target different categories of workloads

(i.e., B-tree, Hash, GiST, GIN).

⚙ Enhance DB performance… but add overhead to the DB system (they should be used sensibly)

Indexing ~ Introduction

19

DBMS – Lab 1

● With no advance preparation, the system would have to scan

the entire T2 table to find all matching entries…

Indexing ~ Introduction (cont.)

20

SELECT value

FROM t2

WHERE num = 1;

● Index on the num column: it can use a more efficient method

for locating matching rows (a few levels deep into a search tree)

CREATE INDEX T2_id_index ON T2 (num);

● Once an index is created, no further intervention is required (the system will update the index
when the table is modified)

● Indices can be added to & removed from tables at any time

● Removing an index: DROP INDEX

DBMS – Lab 1

Indexing ~ Introduction (cont.)

21

● Join searches: An index defined on a column that is part of a join condition can significantly

speed up queries with joins!

● After an index is created, the system has to keep it synchronized with the table

๏ Adds overhead to data manipulation operations

๏ Indices that are seldom or never used in queries

 should be removed

● Creating an index on a large table can take a long time …

DBMS – Lab 1

Indexing ~ Index Types

22

⚙ B-tree (default - fit the most common situations)

⚙ Hash

⚙ Generalized Search Tree (GiST) (R-tree like)

⚙ Generalized Inverted Index (GIN)
bucket 0

bucket 1

bucket 2

bucket 3

bucket 4

bucket 5

bucket 6

76766

45565
76543

10101

15151
33456

58583

83821

22222

98345

bucket 7
12121
32343

76766 Crick

76543 Singh
32343 El Said
58583 Califieri
15151 Mozart
22222 Einstein
33465 Gold

10101 Srinivasan
45565 Katz
83821 Brandt
98345 Kim
12121 Wu

Biology

Physics

Finance
History
History
Music

Physics

Comp. Sci.
Comp. Sci.
Comp. Sci.
Elec. Eng.
Finance

72000

80000
60000
62000
40000
95000
87000

65000
75000
92000
80000
90000

⚙ Each index type uses a different algorithm that is

best suited to different types of queries

DBMS – Lab 1

Indexing ~ B-Trees

23

● The B-tree is the default index type.

● B-trees can efficiently support equality and range queries on sortable data, as also certain

pattern-matching operations such as some cases of like expressions.

● PostgreSQL query planner: will consider using a B-tree index whenever an

indexed column is involved in a comparison using one of these operators

< <= = >= >

DBMS – Lab 1

Indexing ~ B-Trees (cont.)

24

● BETWEEN & IN can also be implemented with a B-tree index search

● IS NULL or IS NOT NULL condition on an index column can be used with a B-tree index

● LIKE: The optimizer can also use a B-tree index for queries involving the pattern matching operator

● B-tree indices can also be used to retrieve data in sorted order

● This is not always faster than a simple scan and sort, but it is often helpful!

DBMS – Lab 1

Indexing ~ Hash

25

● PostgreSQL’s hash indices are an implementation of linear hashing.

● Useful only for simple equality operations

● PostgreSQL query planner: will consider using a hash index whenever

an indexed column is involved in a comparison using the ‘=’ operator

CREATE INDEX name ON table USING HASH (column);

● The hash indices used by PostgreSQL had been shown to have lookup performance no better than

that of B-trees while having considerably larger size and maintenance costs.

✓ In PostgreSQL 10 & 11, the hash index implementation has been significantly improved: hash

indices now support write-ahead logging, can be replicated, and performance has improved as well.

DBMS – Lab 1

Indexing ~ Generalized Search Tree (GiST)

26

● Extensible indexing structure supported by PostgreSQL.

● An infrastructure within which many different indexing strategies can be implemented (not a

single kind of index).

● The GiST index is based on a balanced tree-structure similar to a B-tree.

● The standard distribution of PostgreSQL includes GiST operator classes for several two-

dimensional geometric data types, which support indexed queries using these operators

<< &< &> >> <<| &<| |&>

|>> @> <@~= &&

DBMS – Lab 1

Indexing ~ Generalized Search Tree (GiST) (cont.)

27

● GiST indices are also capable of optimizing nearest-neighbor searches

Example

✓ Find the ten places closest to a given target point

SELECT *

FROM places

ORDER BY location <-> point ‘(101,456)’ LIMIT 10;

DBMS – Lab 1

Indexing ~ Generalized Inverted Index (GIN)

28

● The GIN index is designed for speeding up queries on multi-valued elements, such as text

documents, JSON structures and arrays.

● Provides extensibility by allowing an index implementor to specify custom “strategies” for

specific data types.

● The standard distribution of PostgreSQL includes GIN operator classes for one-dimensional

arrays, which support indexed queries using these operators

<@ @> = &&

DBMS – Lab 1

Indexing ~ Multicolumn Indices

29

CREATE TABLE test1

(major int,

minor int,

name varchar

);

SELECT name

FROM test1

WHERE major = constant AND minor = constant;

CREATE INDEX test1_mm_idx ON test1 (major, minor);

DBMS – Lab 1

Indexing ~ Multicolumn Indices (cont.)

30

● An index can be defined on more than one column of a table

● B-tree, GiST, GIN index types support multicolumn indices (up to 32 columns can be

specified!)

● Multicolumn indices should be used sparingly. In most situations, an index on a single column

is sufficient & saves space and time

DBMS – Lab 1

Indexing ~ Order by & planner

31

● An index may be able to deliver the rows to be returned by a query in a specific sorted order

(B-tree)

● The planner will consider satisfying an ORDER BY specification

๏ by scanning an available index that matches the specification

๏ by scanning the table in physical order & doing an explicit sort

● For a query that requires scanning a large fraction of the table, an explicit sort is likely to be

faster than using an index because it requires less disk I/O due to following a sequential

access pattern!

DBMS – Lab 1

Indexing ~ Order by & planner (cont.)

32

● Indices are more useful when only a few rows need be fetched

● You can adjust the ordering of a B-tree index by including the options ASC, DESC

CREATE INDEX ON T1 (num DESC);

DBMS – Lab 1

Indexing ~ Indices on Expressions

33

● An index column need not be just a column of the underlying table, but can be a function or

scalar expression computed from one or more columns of the table

● This feature is useful to obtain fast access to tables based on the results of computations

● The index expressions are not recomputed during an indexed search, since they are already

stored in the index

DBMS – Lab 1

Indexing ~ Indices on Expressions (cont.)

34

✓ We can also combine columns

SELECT *

FROM T1

WHERE lower(name) = 'value';

CREATE INDEX t1_lower_col1_idx ON T1 (lower(name));

CREATE INDEX people_names ON people ((first_name || ' ' || last_name));

DBMS – Lab 1

Indexing ~ Partial Indices

35

• Partial index: an index built over a subset of a table

๏ One major reason for using a partial index is to avoid indexing common values

๏ Since a query searching for a common value (one that accounts for more than a few

percent of all the table rows) will not use the index anyway, there is no point in keeping

those rows in the index at all

✓ This reduces the size of the index

✓ It will speed up those queries that do use the index

✓ It will also speed up many table update operations because the index does not need to

be updated in all cases

DBMS – Lab 1

Indexing ~ Partial Indices (cont.)

36

Example

• Suppose you are storing web server access logs in a database …

๏ Most accesses originate from the IP address range of your organization but some are

from elsewhere (e.g., employees on dial-up connections)

๏ If your searches by IP are primarily for outside accesses, you probably do not need to

index the IP range that corresponds to your organization's subnet

DBMS – Lab 1

Indexing ~ Partial Indices (cont.)

37

CREATE TABLE access_log (

url varchar,

client_ip inet,

…

);

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)

WHERE NOT (client_ip > inet '192.168.100.0' AND

client_ip < inet '192.168.100.255');

DBMS – Lab 1

Indexing ~ Partial Indices (cont.)

38

SELECT *

FROM access_log

WHERE url = '/index.html' AND client_ip = inet ‘212.78.10.32';

• A typical query that can use this index is

SELECT *

FROM access_log

WHERE client_ip = inet '192.168.100.23';

• A query that cannot use this index is:

DBMS – Lab 1

Outline

● PostgreSQL (basic features)

● *Hands on (Queries)

● Indexing

● Planner

39

DBMS – Lab 1

Planner ~ Introduction

40

• The task of the planner/optimizer is to create an optimal execution plan.

• A given SQL query (and hence, a query tree) can be actually executed in a wide variety of

different ways, each of which will produce the same set of results.

• If it is computationally feasible, the query optimizer will examine each of these possible

execution plans, ultimately selecting the execution plan that is expected to run the fastest.

• Selects and (especially) Joins can often be time consuming, hence the planner will always

review many query plans and pick the one that it finds to be the most efficient.

DBMS – Lab 1

Planner ~ Example

41

• Let’s run a simple SELECT query on our IMDb Database1 and analyze the query plan that the

planner picked.

explain analyze select * from name_basics where deathyear = '2016';

• Our objective is to view all the information available for every person that died during 2016.

• By using “explain analyze”, instead of the standard output (the table containing the actual

information), Postgres will return the detailed Query plan for the aforementioned query, including

an estimation of the cost (in an arbitrary form) and the Execution and Planning times.

1 https://www.imdb.com/interfaces/

https://www.imdb.com/interfaces/

DBMS – Lab 1

Planner ~ Example

42

• Let’s take a look at the Query plan

• The selected plan scans the table sequentially and filters for ‘deathYear’ = 2016. The complete

arbitrary cost value for the Sequential Scans is aprox. 150K and the Execution time is 1467 ms.

DBMS – Lab 1

Planner ~ Example

43

• Let’s create a B-Tree index on the column ‘deathYear’ and reevaluate the query plan for the same

query.

create index idx_name_basics_deathyear on name_basics using btree(“deathyear”);

select pg_size_pretty(pg_relation_size('idx_name_basics_deathyear'));

• The index that we named ‘idx_name_basics_deathyear’ took more than 15 seconds to complete

and needs 195 MB of disk space.

DBMS – Lab 1

Planner ~ Example

44

• Now let’s evaluate the query plan for the same query as before.

• The time gained is obvious just by looking at the Execution time. This query plan consist of two steps,

the Bitmap Index Scan that locates all the Heap Blocks that satisfy the condition ‘deathYear’ = 2016

using the index and the Bitmap Heap Scan that fetches and outputs the specified Blocks.

DBMS – Lab 1

Planner ~ Example

45

• This time let’s evaluate a query that consists of two conditions separated with OR.

explain analyze select * from name_basics where deathyear < '2016' or deathyear > '1955';

DBMS – Lab 1

Planner ~ Example

46

• Let’s run a new query.

explain analyze select * from name_basics where "deathyear" - "birthyear" > 100;

• The query plan reminds us that the database was scanned Sequentially, something that we

should -by now- know is not efficient.

DBMS – Lab 1

Planner ~ Example

47

• Let’s create a useful index. Many people may search our database using the age of a person. This is not

a column that we have available. We can -of course- create it, but do we need it in order to efficiently

return the needed information? I.e. can we create an index on a column that does not exist?

create index idx_name_basics_age on name_basics using btree (("deathyear" - "birthyear"));

DBMS – Lab 1

Planner ~ Example

48

• Always remember:

๏ Indexes are good when they are used a lot and put food on the table.

๏ Indexes are not good when they sit around in disk space that we pay for by the hour…

๏ Indexes do not have to be created on a column. They can instead be created on an

expression, like “deathYear” - “birthYear”.

SET enable_seqscan = off;

Should NEVER be used!

DBMS – Lab 1

References

49

● Abraham Silberschatz, Henry F. Korth, S. Sudarshan (2020), DATABASE SYSTEM

CONCEPTS, SEVENTH EDITION. McGraw-Hill Education, 2 Penn Plaza, New York.

● Abraham Silberschatz, Henry F. Korth, S. Sudarshan (2015), Συστήματα Βάσεων

Δεδομένων, Γ’ Έκδοση. Εκδόσεις Μόσχος Γκιούρδας.

● The PostgreSQL Global Development Group, PostgreSQL 9.6rc1 Documentation. 2016.

● PostGIS 2.3.3dev Manual, SVN Revision (15388).

