MANENIZTHMIO MNEIPAIQZ
TMHMA NAHPO®OPIKHZ

NMMZ KYBEPNOAZ®AAEIA

KAI ENIETHMH AEAOMENON Awayeiplon Meyadwv Asdopevwv
MSc CYBERSECURITY .
AND DATA SCIENCE Blg Data Management

DEPT OF INFORMATICS
UNIVERSITY OF PIRAEUS

Lecture 2 - DBMS Architectures

From Centralized to Cloud Big Data Processing

Nikos Pelekis (npelekis@unipi.gr)

ver. 11.2022

mailto:npelekis@unipi.gr

Outline

= Centralized Database Systems

= Server System Architectures
= Parallel Systems

= Distributed Systems

= Network Types
" Cloud Systems

" Apache Hadoop Ecosystem

Centralized Database Systems

= Database Software Runs on a single computer
system

= Single-user system = pc, mobile
= Embedded databases, e.g., SQL Lite, H2

= Multi-user systems also known as client server
systems.

= Service requests received from client systems

= Processes by a central database server

(lient

Request

<

Response

Server

Thin vs Thick Clients

Thick Client Thin Server

Interaction

P Program
K_/ <

Response
Thin Client Thick Server
Interaction
— —>
< e
Response

image credits: wikimedia.com

DB Server System Architecture

= Server systems can be broadly categorized into two kinds:
= Transaction servers
= Widely used in relational database systems, and

= Data servers

= Parallel data servers used to implement high-performance transaction processing systems

Transaction Servers

= Also called query server systems or SQL server systems

Clients send requests to the server
Transactions are executed at the server

Results are shipped back to the client.

= Requests are specified in SQL, and communicated to the server through a remote
procedure call (RPC) mechanism.

Transactional RPC allows many RPC calls to form a transaction.

= Applications typically use ODBC/JDBC APIs to communicate with transaction servers

Transaction Servers

= A typical transaction server consists of multiple
processes accessing data in shared memory

= Shared memory contains shared data
= Buffer pool
= Lock table
= Log buffer

= Cached query plans (reused if same query submitted
again)

= All database processes can access shared memory

= Server processes

= These receive user queries (transactions), execute them
and send results back

user user user
process process process

ODBC JDBC
server server server
process process process
process
buffer pool monitor
shared process

memory

query plan cache Tock

manager
process

log buffer lock table

database

log writer checkpoint writer
\ process process process /

S &

log disks data disks

Transaction Servers

Database writer process

= Output modified buffer blocks to disks continually [S] [S] @
ODBC IDBC
| Log Writer prOCeSS /{server { server j server \
process process process
= Server processes simply add log records to log N | 7
record buffer
] buffer pool IP;lonitor
= Log writer process outputs log records to stable shared process |
Sto rag e. memen query plan cache Tock
. o o i ock table manager
= Checkpoint process og o | [lock tabl process

= Performs periodic checkpoints EPPE
log writer checkpoint writer
= Process monitor process \[B] L Sy] ot /
= Monitors other processes, and takes recovery
actions if any of the other processes falil

= E.g. aborting any transactions being executed by a log disks data disks

server process and restarting it
8

Transaction Servers

= Lock manager process

= To avoid overhead of interprocess communication [Juser] [Juser] Juser
for lock request/grant, each database process
operates directly on the lock table / OPES o \
= Lock table. A table with locked items (e.g., tables, [Pmcess [Pmcessj [proces]
records) and processes in the queue AN | <
= Lock manager process still used for deadlock - butffer pool mmonitor
detection (e.g., a never-ending process) memory S—
query plan cache Tock
= To ensure that no two processes are accessing log buffer | [lock table e
the same data structure at the same time,
databases systems implement mutual exclusion database

log writer checkpoint writer
process process process /

log disks data disks

Data Servers/Data Storage Systems

= Data items are shipped to clients where processing is performed

* Updated data items written back to server

= Earlier generation of data servers operated in disk pages containing multiple data
items (records)

= Current generation data servers (also called data storage systems) work in units of
data items

* Commonly used data item formats include text, JSON, XML, or binary data

10

Data Servers/Storage Systems (Cont.)

= Prefetching

= Prefetch items that may be used soon

= Adaptive lock granularity
* Lock granularity escalation
= switch from finer granularity (e.g. tuple) lock to coarser

* Lock granularity de-escalation

= Start with coarse granularity to reduce overheads, switch to finer granularity in case of more concurrency conflict at
server

11

Data Servers (Cont.)

= Data Caching

= Data can be cached at client even in between transactions
= But check that data is up-to-date before it is used (cache coherency)

" Check can be done when requesting lock on data item

12

PARALLEL DATABASES

Parallel Systems

= Parallel database systems consist of multiple processors and multiple disks
connected by a fast interconnection network.

" Motivation: handle workloads beyond what a single computer system can handle

E.g., Multi transaction processing, handling user requests at web-scale

Data intensive processing, Online Analytical Processing (Data Warehouse), ML support on very large
amounts of data

14

Parallel Systems (Cont.)

= A coarse-grain parallel machine consists of a small number of powerful processors

E.g., Intel's May 8, 2004 cancellation of its Tejas and Jayhawk processors, which is generally cited as
the end of frequency scaling as the dominant computer architecture paradigm.

= Multi Core CPUs are now everywhere (in desktop PCs, as well)

= A massively parallel or fine grain parallel machine utilizes thousands of smaller
processors.

= What are the benefits?

throughput --- the number of tasks that can be completed in a given time interval increases

response time --- the amount of time it takes to complete a single task from the time it is
submitted decreases

15

How to measure the benefits
Speed-Up vs Scale-Up

= Speedup: a fixed-sized problem executing on a small system is given to a system which is
N-times larger.

" Measured by: speedup = small system elapsed time / large system elapsed time
= Speedup is linear if equation equals N.
= Scaleup: increase the size of both the problem and the system

= N-times larger system used to perform a N-times larger job
" Measured by: scaleup = small system small problem elapsed time / big system big problem elapsed time

= Scale up is linear if equation equals 1.

16

Speedup

A
Linear speed-up (ideal)
2000/Sec e ™ T
1600/See - .
7. -~ Sub-linear speed-up
A L
7z
1000/See-r””
¢’,/
/ /
5 CPUs 10 CPUs 16 CPUs

\%

17

Scaleup

1000/Sec

Linear scale-up (ideal)

—

—

—

—

~

900/Sec

5CP
1 GB

Us

) Database

10
2 (

“—

~
-~

~
~
\ 1

CPUs
3B Database

~ < Sub-linear scale-up

\%

18

Batch and Transaction Scaleup

= Batch scaleup:
= Asingle large job; typical of most decision support queries and scientific simulation.

= Use a N-times larger computer on N-times larger problem.

= Transaction scaleup:

* Numerous small queries submitted by independent users to a shared database; typical transaction
processing and timesharing systems.

= N-times as many users submitting requests (hence, N-times as many requests) to a N-times larger
database, on an N-times larger computer.

* Well-suited to parallel execution.

19

Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:

= Startup/sequential costs: Cost of starting up multiple processes, and sequential computation
before/after parallel computation

May dominate computation time, if the degree of parallelism is high

Suppose p<1 (e.g., 95%) is the parallelizable proportion of computation and n>1 the speedup enhancement
(e.g. 2X faster)

Amdahl’s law: speedup limited to: 1/ [(1-p)+(p/n)]

Gustafson’s law: scaleup limited to: 1 / [n(1-p)+p]

" Interference: Processes accessing shared resources (e.g., system bus, disks, or locks) compete with
each other, thus spending time waiting on other processes, rather than performing useful work.

= Skew: Increasing the degree of parallelism increases the variance in service times of parallelly
executing tasks. Overall execution time determined by slowest of parallelly executing tasks.

20

Interconnection Network Architectures

Bus. System components send data on and receive data from a single communication bus;

= Does not scale well with increasing parallelism.

A ring network is a network topology in which each node connects to exactly two other nodes

Mesh. Components are arranged as nodes in a grid, and each component is connected to all adjacent
components

Hypercube. Components are numbered in binary;, components are connected to one another if their
binary representations differ in exactly one bit.

Tree-like Topology. Widely used in data centers today

21

Interconnection Architectures

(a) bus (b) ring

011 111

101

001

o0~ 110

000 100

(c) mesh (d) hypercube

22

Interconnection Network Architectures

" Tree-like or Fat-Tree Topology:
widely used in data centers today

R core
" Top of rack switch for approx 40 switches
machines in rack ,
[. aggregation
] switches
= Each top of rack switch connected
i i I top-of-rack
to multiple aggregation switches. lop-ov1o

= Aggregation switches connect to A
multiple core switches.

(e) tree-like topology
= Data center fabric

23

Parallel Database Architectures

P v P

P P

T P}——I

P _8 P 48

P 8 P 8
(a) shared memory (b) shared disk
P

- p 7] . . -
P -]]— [P —

- b 7] g 8 O

[P] T 9 oS

é 5 =18 =19 mlo

(c) shared nothing a8 (d) hierarchical

Shared Memory

" Processors (or processor cores) and
disks have access to a common memory

" Via a bus in earlier days, through an
interconnection network today

= Extremely efficient communication
between processors

" Downside: shared-memory architecture
is not scalable beyond 64 to 128
processor cores

= Memory interconnection network
becomes a bottleneck

25

=G| |9 [9] |9 [

(a) shared memory

Shared Disk

= All processors can directly access all disks
via an interconnection network, but the
processors have private memories.

= Architecture provides a degree of fault-
tolerance — if a processor fails, the
other processors can take over its tasks

" the data of the failed processor is
resident on disks that are accessible
from all processors.

= Downside: bottleneck now occurs at
interconnection to the disk subsystem.

26

J EOEEE

=g |™J| |9 |9 |]

(b) shared disk

Shared Nothing

= Node consists of a processor,

. M P
memory, and one or more disks
= All communication via 8 = M
interconnection network M = 8

" Can be scaled up to thousands of 8 P —M

processors without interference. 8

P
= Main drawback: cost of 8
communication and non-local disk

access; sending data involves ,
software interaction at both ends. (c) shared nothing

27

Hierarchical

= Combines characteristics of shared-
memory, shared-disk, and shared-
nothing architectures.

" Top level is a shared-nothing
architecture

= With each node of the system
being a shared-memory system

= Alternatively, top level could be a
shared-disk system

= With each node of the system
being a shared-memory system

28

DO,

RN

Do

TTTT Y
!
TTTT

(d) hierarchical

DISTRIBUTED DATABASES

Distributed Systems

= Data spread over multiple
machines (also referred to as sites site A site C

or nodes).

" Local-area networks (LANSs)

= Wide-area networks (WANSs) communication

via network

= Higher latency

site B

30

Distributed vs Parallel

Distributed Computing

Processor

!

Memory

/

\

Processor

:

Memory

Parallel Computing

Processor

!

Memory

Image: https://www.oreilly.com/library/view/distributed-
computing-in/9781787126992/7478b64c-8de4-4db3-

\

Processor

<

Memory

Processor

I

Processor

I

Memory

Processor

!

b473-66eld1fcba77.xhtml

Parallel Distributed

System components are located at different

Many operations are performed simultaneously locations

Single computer Multiple computers

Multiple processors perform multiple operations Multiple computers perform multiple operations

It may have shared or distributed memory It have only distributed memory
Processors communicate with each other Computer communicate with each other
through bus through message passing.

Improves system scalability, fault tolerance and

ETERTES E11e SIS [FEfiemiEEs resource sharing capabilities

https://www.geeksforgeeks.org/difference-between-parallel-computing-and-distributed-computing/

31

Distributed Databases

* Homogeneous distributed databases
Same software/schema on all sites, data may be partitioned among sites

Goal: provide a view of a single database, hiding details of distribution

= Heterogeneous distributed databases
Different software/schema on different sites

Goal: integrate existing databases to provide useful functionality

= Differentiate between local transactions and global transactions
A local transaction accesses data in the single site at which the transaction was initiated.

A global transaction either accesses data in a site different from the one at which the transaction
was initiated or accesses data in several different sites.

32

Data Integration and Distributed Databases

= Data integration between multiple distributed databases

= Benefits:
= Sharing data — users at one site able to access the data residing at some other sites.

= Autonomy — each site is able to retain a degree of control over data stored locally.

33

Availability

= Network partitioning

= Availability of system

If all nodes are required for system to function, failure of even one node stops
system functioning.

Higher system availability through redundancy

= data can be replicated at remote sites, and system can function even if a site fails.

34

Implementation Issues for Distributed Databases

= Atomicity needed even for transactions that update data at multiple sites

" The two-phase commit protocol (2PC) is used to ensure atomicity

= Basic idea: each site executes transaction until just before commit, and then leaves final decision
to a coordinator

= Each site must follow decision of coordinator, even if there is a failure while waiting for
coordinators decision

= Distributed concurrency control (and deadlock detection) required

= Data items may be replicated to improve data availability

35

COMPONENTS OF A DDBMS

L DDBMS

i \l
= pN
=g DC

LDBMS

Computer

CSC Network

DDBMS %L—ﬂ1

i | | LDBMS = Local DBMS
DC E%%%% DC = Data Communications
" | GSC = Global Systems Catalog
Site 2 DDBMS = Distributed DBMS

36

DISTRIBUTED DATABASES

ISSUES

O

O

O

O

O

Data Partitioning
o How are data partitioned in nodes?

Data Replication

o Where are data located?

Catalog Management
o Where does the DB catalog reside?

Distributed Transactions
o How do transactions commit changes in multiple nodes?

Distributed Queries

o How are Queries executed over multiple nodes?

37

DISTRIBUTED DATABASES

WHY PARTITIONING DATA?

= Reduce the time required to retrieve relations from disk by partitioning the relations
on multiple disks, on multiple nodes (computers)

= Partitioning across nodes
= Same techniques can be used across disks on a node
= Partitioning methods

= Horizontal : different rows of a tables into different nodes .

= Vertical: different columns into different nodes.

38

DISTRIBUTED DATABASES

HORIZONTAL DATA PARTITIONING

ACCOUNT CUSTOMER |BRANCH BALANCE

200 JONES Athens 1000.00
324 GRAY London 200.00
345 SMITH Athens 23.17
350 GREEN London 340.14
400 ONO London 500.00
456 KHAN Athens 333.00

Horizontal Partitioning: Consists of a Restriction on a Relation.

C.g., (G branch = ‘Athens’ Account)

39

DISTRIBUTED DATABASES

HORIZONTAL DATA PARTITIONING

Athens BRANCH

ACCT NO. CUSTOMER BRANCH BALANCE
200 JONES Athens 1000.00
345 SMITH Athens 23.17
456 KHAN Athens 333.00
London BRANCH

ACCT NO. CUSTOMER BRANCH BALANCE
324 GRAY London 200.00
350 GREEN London 340.14
400 ONO London 500.00

40

DISTRIBUTED DATABASES

HOW TO PARTITION?

= Round-robin: = Range Partitioning :

Send the ith tuple inserted in the relation to Choose an attribute as the partitioning key.

node (i mod n). Select a partition by determining if the

= Hash partitioning: partitioning key is within a certain range.

Choose one or more attributes as the = List partitioning:

artitioning key. e : .
P & KEY A partition is assigned a list of values.

Choose hash function h with range 0...n - 1 " E.g. Greece, Italy, Germany

Let i denote result of hash function h applied

to the partitioning key of a tuple. Send tuple to
node i.

If the partitioning key has one of these values,
the partition is chosen.

41

DISTRIBUTED DATABASES

VERTICAL DATA PARTITIONING

S# | NAME | SITE PHONE NO |LOGIN |PASSWORD
200 | JONES | Athens 0208-500-9000 | JON200T | XXYY22

324 | GRAY |London 0208-545-7528 | GRA324S | ZZEES6

456 | KHAN | Athens 0208-500-5821 | KHA456T | KITR78

Vertical Partitioning: Consists of a Projection on a Relation.

c.g., (H S#. NAME, SITE, PHONE NO StU»dent)

Remember how Column Stores store the data!!!

42

DISTRIBUTED DATABASES

VERTICAL DATA PARTITIONING

Customer ADMINISTRATION

S# NAME SITE PHONE NO.
200 JONES Athens 0208-500-9000
324 GRAY London 0208-545-7528
456 KHAN Athens 0208-500-5821
System ADMINISTRATION

S# LOGIN-ID PASSWORD

200 JON200T XXYY22

324 GRA324S Z7ZEE56

456 KHA456T KJTR78

43

Replication

= Goal: availability despite failures

= Data replicated at 2, often 3 nodes

= Unit of replication typically a partition (tablet)

= Requests for data at failed node automatically routed to a replica

= Partition table with each tablet replicated at two nodes

Value Tablet ID Node ID

2012-01-01 TabletO Node0,Nodel
2013-01-01 Tablet1 Node0,Node?2
2014-01-01 Tablet2 Node2,Node0
2015-01-01 Tablet3 Node2,Nodel
2016-01-01 Tablet4 Node0,Nodel
2017-01-01 Tablet5 Nodel,Node0
2018-01-01 Tablet6 Nodel,Node2
MaxDate Tablet7 Nodel,Node2

44

DISTRIBUTED DATABASES

DISTRIBUTED CATALOGUE MANAGEMENT

One site maintains the full global catalogue.
All changes to any local system catalogue are propagated to the site maintaining the global catalogue.
Bad performance, single point of failure, compromises site autonomy.

There 1s no physical global catalogue. Each time a remote data item is required, the catalogues from ALL other
sites are examined for the item.
Severe performance penalties.

Each site maintains its own global catalogue.
Although this greatly speeds up remote data location, it is very inefficient to maintain. A detail of every data
item added, changed or deleted locally has to be propagated to ALL other sites .

Each site maintains both its local system catalogue as well as a catalogue of all of its data items that are
replicated at other sites.
Avoids compromising site autonomy, is fairly efficient, and is not a single point of failure

45

DISTRIBUTED DATABASES

DISTRIBUTED TRANSACTIONS

Athens
Client

Athens

(a) Debit Athens A/C £500
(b) Credit London A/C £350
(c) Credit Rome A/C £150

46

(a)

<

DBE/Iy‘ " Athens DB

London (b)
DBMS London DB

NOILODVSNVIL d4.LNdIdLSIAd DINOLY

TWO-PHASE COMMIT (2PC) - OK

Coordinator

Participants

Wait

Local commit processing

TWO-PHASE COMMIT (2PC) - ABORT

Coordinator Participants

—_—Vote
K Abort Commit Commit
Ei 2PC 1s not always appropriate:
3-phase commits and other transaction models
X based on persistent messaging, and workflows,

are also used

N
‘O/ .
Local abort Oée/
rocessin o
Sl

Local abort processing

’\z

P—4P—4

Termination

Parallel (&Distributed) Query Processing

INTERQUERY PARALLELISM

" |t is a form of parallelism where many different Queries or Transactions are executed
in parallel with one another on many processors (nodes).

INTRAQUERY PARALLELISM

" |t is the form of parallelism where a Single Query is broken in ‘sub-tasks” and executed
in parallel on many processors (nodes).

49

Distributed Query Processing - Plan

Oulery - Result
Query
Parser d
e execution
1 Internal
repr.
Global P Code/
schema »| Query plan
rewriting
l Internal Code
schema Data
. S
localization Query
— execution
1 Fragment plan
Fragment quory ! Local schema
statistics i Global o Local ‘& statistics
optimization optimization
Control site Local site Sattler KU. (2009) Distributed Query Processing. In: LIU L., OZSU M.T. (eds) Encyclopedia of Database
Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-39940-9 704

50

DISTRIBUTED DATABASES

DISADVANTAGES OF DDBMSs

Architectural complexity.

Cost.

Security.

Integrity control more difficult.
Lack of standards.

Lack of experience.

Database design more complex.

51

CLOUD DATABASES

Cloud Service Models

= On-demand provisioning and
elasticity

ability to scale out at short notice
and to release of unused resources
for use by others

53

Cloud Clients

Web browsers, mobile apps, ...

internet

Software -as-a-Service

Enterprise applications,
email, shared documents, ...

Platform-as-a-Service

Data storage, Database,
Application server, ...

Infrastructure-as-a-Service

Virtual Machines, servers,
storage, ...

Cloud Databases

= A cloud database is a database that typically runs on a cloud computing
platform and access to the database is provided as-a-service.

= Two deployment models:

Databases is deployed on a Virtual Machine - DB is maintained by the user
independently

Database-as-a-service (DBaaS) : access to a database service, maintained by a
cloud database provider

54

Scale up, scale out, scale in

= Scale up: Big iron
= Scale out: Commodity hardware

= “Scale in”: Multiple apps / tenants / VMs on single machine

Felix Naumann Slides
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/folien/WS0910/DBS_II/DBS2 12 WDM_ MultiTenancy FelixNaumann.pdf
55

DBaaS - Multi-Tenancy

= Run application for multiple clients (,,tenants”) on a shared database

= Only makes sense if enough tenants can be served from one database
= Resource utilization increased, fewer/smaller hardware required

= Fewer processes/machines to manage

56

Analogies for Multi-Tenancy in Real Life

= Multiple clients hosted by one service provider

= Multiple tenants hosted in one building complex
= Code (to be executed)
= Utilities (gas, water, electricity, waste)

= Data (with services)

= Storage space (furniture, basement, garage)

Felix Naumann Slides

https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/folien/WS0910/DBS_II/DBS2 12 WDM_ MultiTenancy FelixNaumann.pdf
57

Back to SaaS: Implementation Options

= Four analogies...
= Dedicated Virtual Machine (house)
= Shared machine (hotel room)
= Shared Process (apartment)

= Shared Table (youth hostel)

Felix Naumann Slides
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/folien/WS0910/DBS_II/DBS2 12 WDM_ MultiTenancy FelixNaumann.pdf

58

Shared Machine

" One dedicated database process for each tenant
" Does not scale beyond a few tenants per server (overhead!)

= Applications with small number of tenants

59

Shared Process

= Single database process manages several tenants (in separate table spaces)
= Scales to many tenants (regarding overhead)

= Migration of a tenant to a different process is simple (moving all data files)

60

Shared Table

Data from many tenants in the same table
Add tenant_id column, must be set for each access (by application or by dbms)
But: sometimes tenants require additional columns
Extend schema with generic columns; database needs to efficiently support rows with many NULL values
Advantage: everything is pooled
Processes, memory, connections, prepared statements
New tenants can be created by DML (not DDL) operations
Disadvantage: isolation is very weak
Query optimization, statistics, cost estimation more difficult (data from other tenants can influence estimates)

Table scans more expensive, caching etc not as effective

Tenant migration by extracting data from the operational system

61

Schema Flexibility in SaaS

= Each tenant uses common base schema plus optional (private or shared) extensions

= All mapped into one (multi-tenant) physical schema by a dedicated Mapper in the
database

= Schema evolution must be possible during operation, without intervention by DBA

62

Schema Management

Two alternatives:

= Database manages the schema (evolution through DDL operations):

= Private tables
= Extension tables

= Sparse columns

* Application manages the schema (evolution through DIVIL operations)
= XML Columns

= Universal tables Running example:
= Pivot tables simple account table
Account

63

Private Tables

= Each tenant uses private set of tables

Account Name Hospital Beds Account Name Dealers Account Name
1 Acme St Mary | 135 1 Big 65 1 Ball
2 Gump | State | 1042 Automotive Domain

Healthcare Domain

= \Works well for small number of tables and tenants

= Constant overhead per table

= each table is small, storage space not used effectively

64

Private Tables — Query Transformation

" Tenant 1:

SELECT Beds FROM Account
WHERE Hospital=‘'State’

—SELECT Beds FROM Account 1

WHERE Hospital=‘'State’

" Tenant 2:

SELECT Name FROM Account
WHERE Dealers>50

—SELECT Name FROM Account_2
WHERE Dealers>50

65

Account_1
Account

1

Name

Acme

Hospital
St Mary

Beds
135

2

Gump

State

1042

Account 2

Account

1

Name

Big

65

Dealers

Extension Tables

= Keep common data in base table with explicit Tenant-ID and row-ID

= Each tenant’s extension gets its own table, join on tenant-ID and

row-ID at query time

* Number of table still proportional to number of tenants (but

Account Healthcare

additional tables are rather small)

Tenant Row Account Name
1 1 1 Acme
1 2 2 Gump
2 1 1 Big
3 1 1 Ball

66

Tenant Row

1 1

Hospital
St Mary

Beds

135

1 2

State

1042

Account_Automotive

Row

Dealers

Extension Tables - Query Transformation

" Tenant 1: Account

Tenant Row Account Name
SELECT Name, Beds

1 1 1 Acme
FROM Account

. 1 2 2 Gump

WHERE Hospital=‘'State’

2 1 1 Big

3 1 1 Ball

—SELECT A .Name,
H.Beds
FROM Account A,

Account Healthcare H Account_Healthcare

R Hospital Bed

WHERE A.Tenant=1 Tenant Row ospital Beds
AND H.Tenant=1 1 il St Mary | 135
AND A .Row=H.Row 1 2 State 1042

AND H.Hospital=‘'State'

67

Sparse Columns

= Each tuple has only a few out of many possible attributes (e.g.,
catalogues) = many NULL values

= Store only attributes with values to avoid NULLs

= store values with their attribute (identifier)

= not widely supported in systems (Microsoft SQL Server)

= Add extensions as ,sparse column® to tables

Tenant Account Name SPARSE

1 1 Acme | 0:St Mary, 1:135
1 2 Gump | O:State, 1:1042
2 1 Big 2:65

3 1 Ball

68

Sparse Columns - Query Transformation

= CREATE TABLE Account (
Tenant INT, Account INT, Name VARCHAR(100),
Hospital VARCHAR(100) SPARSE,
Beds INT SPARSE, Dealer INT SPARSE
)

System retrieves attribute ID and

" Tenant 1: extracts values from SPARSE column

SELECT Name4B<€ds

FROM Account
WHERE Tenant=1

Tenant Accoun Name SPARSE

AND Hospita]_: ‘State 1 1 Acme | 0:St Mary, 1:135
1 2 Gump | O:State, 1:1042
2 1 Big 2:65
3 1 Ball

69

XML Columns

= Each table contains additional XML column for storing extensions as
XML document

Tenant Account Name XMLData

1 1 Acme <data>
<hospital>St Mary</hospital>
<bed>135</bed>

</data>

1 2 Gump | <data>
<hospital>State</hospital>

<bed>1042</bed>
</data>

2 1 Big <data>
<dealers>65</dealers>
</data>

3 1 Ball NULL

70

XML Columns - Query Transformation

= Tenant 1:

SELECT Name, Beds

FROM Account Tenant Account Name XMLData

: —\ \
WHERE Hospital=‘'State . . Acme | <data>
<hospital>St Mary</hospital>
<bed>135</bed>
</data>
—SELECT NAME, 1 2 Gump | <data>
<hospital>State</hospital>
xml ([data/bed]) <bed>1042</bed>
FROM Account </data>
WHERE Tenant=1 2 1 Big | <data>
. <dealers>65</dealers>
AND xmlexists(</data>
‘Sx[data/hospital='State‘] 3 1 Ball | NULL

PASSING XMLData as $x)

71

Universal Table
= Use wide table with generic VARCHAR columns

= Application-specific mapping
= Requires casting of non-textual values

= Many NULL values, usually no indexes possible

= Used with huge number of extensions and many tenants

Universe

Tenant Table Coll Col2 Col3 Cold Col999
1 1 1 Acme | St Mary 135 NULL
1 1 2 Gump | State 1042 NULL
2 1 1 Big 65 NULL NULL
3 1 1 Ball NULL NULL NULL

72

Universal Table - Query Transformation

" Tenant 1:

SELECT Name, Beds

FROM Account

WHERE Hospital=‘'State’
—SELECT Col2, TO INTEGER (Col4)

FROM Universe
WHERE Tenant=1

AND Table=l1
AND Col3='‘State’

Universe

Tenant Table Coll Col2 Col3 Cold Col999
1 1 1 Acme | St Mary 135 NULL
1 1 2 Gump | State 1042 NULL
2 1 1 Big 65 NULL NULL
3 1 1 Ball NULL NULL NULL

73

Pivot Tables

= Store data in 3-ary tables with column_ids and values

" One tuple for each non-NULL attribute of original table

= One pivot table for each type (int, string, ...)

= Eliminates the problem of many NULL values

Pivot Int

= No casts necessary, indexing possible

Tenant Table Row Col

Pivot String

Tenant Table Row Col String 1 1 1 1 1

1 1 1 2 Acme . ! o 135
1 1 1 3 St Mary 1 1 2 1 2

1 1) 7 Gump 1 1 2 4 1042
1 1 2 3 State 2 L L L L

> n] > Big 2 1 1 3 65

3 1 1 2 Ball 3 ! . . 1

7%

Pivot Tables - Query Transformation

= Tenant 1:
Tenant Table Row Col Int

1

SELECT Name, Beds
FROM Account
WHERE Hospital=‘'State’

135

2

(N N SN
NS R]
N N N

1042

—SELECT S1.String,I.Int
FROM Pivot Int I,
Pivot String S1,
Pivot String S2

WHERE I.Tenant=1

AND S1.Tenant=1l Tenant Table Row Col String
S2.Tenant=1
S1.Table=1 AND S1.Col=2

—_
—
—_

wln]lsdlekrl~,l~] -

1 1 1 1

1 1 1 2 Acme

AND S2.Table=1 AND S2.Col=3 . 1 1 . SRy
AND I .Table=1 AND I.Col=4 1 1 2 2 Gump
AND I. Row=82 .Row 1 1 2 3 State

S1.Row—-S2.Row
AND S2.String='State’

3 1 1 2 Ball

75

Summary: DB in the Cloud

* New paradigm to provide services (S,P,l)

= SaaS important part of cloud computing

= Different forms of scaling: up, out, in

= Re-use processes: multiple tenants on single database instance (but: isolation?)

= Map many logical schemas to a single physical schema, many mapping techniques
(but: query transformation?)

76

APACHE HADOOP ECOSYSTEM

Hadoop Ecosystem

Layer Diagram

79

Hadoop HDFS

= Hadoop distributed File System (based on Google File System (GFS) paper, 2004)

= Serves as the distributed file system for most tools in the Hadoop ecosystem

= Scalability for large data sets

= Reliability to cope with hardware failures

= HDFS good for:
= Large files
= Streaming data
= Not good for:
= Lots of small files
= Random access to files

= Low latency access

80

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google*

ABSTRACT

We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of clients.

While sharing many of the same goals as previous dis-
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect a marked
departure from some carlier file system assumptions. This
has led us to reexamine traditional choices and explore rad-
ically different design points

The file system has successfully met our storage needs.
Tt is widely deployed within Google as the storage platform
for the generation and processing of data used by our ser-
vice as well as research and development efforts that require
large data sets. The largest cluster to date provides hun-
dreds of terabytes of storage across thousands of disks on
over a thousand machines, and it is concurrently accessed
by hundreds of clients.

In this paper, we present file system interface extensions
designed Lo support distributed applications, discuss many
aspects of our design, and report measurements from both

1. INTRODUCTION

We have designed and implemented the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google’s
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design
has been driven by key observations of our application work-
loads and technological environment, both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumptions. We have reexamined tradi-
tional choices and explored radically dilferent points in the
design space.

First, component failures are the norm rather than the
exception. The file system consists of hundreds or even
thousands of storage machines built from inexpensive com-
modity parts and is accessed by a comparable number of
client machines. The quantity and quality of the compo-
nents virtually guarantee that some are not functional at
any given time and some will not recover from their cur-
rent failures. We have seen problems caused by application
bugs, operating system bugs, human errors, and the failures
of disks, memory, connectors, networking, and power sup-
plies. Therefore, constant monitoring, error detection, fault
tolerance, and automatic recovery must be integral to the

Design of Hadoop Distributed File System (HDFS)

= Master-Slave design

= Master Node

= Single NameNode for managing metadata

= Slave Nodes

= Multiple DataNodes for storing data

= Other

= Secondary NameNode as a backup

81

HDFS Architecture

NameNode keeps the metadata, the name, location and directory

DataNode provide storage for blocks of data

Client NameNode
DataNode DataNode DataNode
DataNode DataNode DataNode

Heartbeat, Cmd, Data

82

Secondary
NameNode

DataNode

DataNode

HDFS

What happens; if node(s) fail?
Replication of Blocks for fault tolerance

HDFS

= HDFS files are divided into blocks

It’s the basic unit of read/write
Default size is 64MB, could be larger (128MB)

Hence makes HDFS good for storing larger files

= HDFS blocks are replicated multiple times
One block stored at multiple locations, also at different racks (usually 3 times)

This makes HDFS storage fault tolerant and faster to read

84

Few HDFS Shell commands

Create a directory in HDFS
" hadoop fs -mkdir /user/godil/dirl

List the content of a directory

" hadoop fs -1s /user/gpapas
Upload and download a file in HDFS
* hadoop fs -put /home/godil/file.txt /user/godil/datadir/

" hadoop fs -get /user/godil/datadir/file.txt /home/

Look at the content of a file
" Hadoop fs -cat /user/godil/datadir/book.txt

Many more commands, similar to Unix

85

HBase

* NoSQL data store build on top of HDFS

= Based on the Google BigTable paper (2006)
= Can handle various types of data

= Stores large amount of data (TB,PB)

" Column-Oriented data store

= Big Data with random read and writes

" Horizontally scalable

86

MapReduce: Simple Programming for Big Data

= MapReduce is simple programming paradigm for the Hadoop
ecosystem

= Traditional parallel programming requires expertise of different
computing/systems concepts

= examples: multithreads, synchronization mechanisms (locks,
semaphores, and monitors)

= incorrect use: can crash your program, get incorrect results, or
severely impact performance

= Usually not fault tolerant to hardware failure

= The MapReduce programming model greatly simplifies running
code in parallel

= you don't have to deal with any of above issues

= only need to create, map and reduce functions

87

Based on Google’s MR paper (2004)

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are aut

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new

cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s ion across a set of ines, handling ma-
chine failures, and ing the required int hine

ication. This allows prog; ers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

ion that allows us to express the simple computa-
tions we were (rying (o perform but hides the messy de-
tails of parallelization, [ault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then

Map Reduce Paradigm

= Map and Reduce are based on functional programming

Apply a function to all the elements
of List

listl=[1,2,3,4,5];
square x = X * X
list2=Map square(listl)
print list?2

-> [1,4,9,16,25]

Reduce:

Combine all the elements of list for
a summary

list2 = [1,4,9,16,25];
A = reduce (+) 1listl
Print A

-> 55

Input =——> Map -——> Reduce —> Output

88

MapReduce Word Count Example

I am Sam

Sam [am

m
‘\ b «
-

11
(am,1)
(Sam,1)

(am,1)
(Sam,1)

Shortcoming of MapReduce

" Forces your data processing into Map and Reduce

Other workflows missing include join, filter, flatMap, groupByKey, union, intersection, ...
= Based on “Acyclic Data Flow” from Disk to Disk (HDFS)

= Read and write to Disk before and after Map and Reduce (stateless machine)

Not efficient for iterative tasks, i.e. Machine Learning

= Only Java natively supported

Support for others languages needed

= Only for Batch processing

Interactivity, streaming data

20

One Solution is Apache Spark

" A new general framework, which solves many of the short comings of MapReduce
" |t is capable of leveraging the Hadoop ecosystem, e.g. HDFS, YARN, HBase, S3, ...

= Has many other workflows, i.e. join, filter, flatMapdistinct, groupByKey, reduceByKey,
sortByKey, collect, count, first...

(around 30 efficient distributed operations)

" In-memory caching of data (for iterative, graph, and machine learning algorithms,
etc.)

= Native Scala, Java, Python, and R support
= Supports interactive shells for exploratory data analysis
= Spark APl is extremely simple to use

" Developed at AMPLab UC Berkelgy, now by Databricks.com

Spark Uses Memory instead of Disk

Hadoop: Use Disk for Data Sharing

HDFS HDEFS HDFS

read Write read HDFS

Write

Spark: In-Memory Data Sharing

HDFS read

92

Sort competition

Data Size
Elapsed Time
Nodes
Cores
Cluster disk
throughput

Network

Sort rate
Sort rate/node

102.5TB
/2 mins
2100
50400 physical

3150 GB/s
(est.)

dedicated data
center, 10Gbps

1.42 TB/min
0.67 GB/min

100 TB
23 mins
206
6592 virtualized

618 GB/s

virtualized (EC2) 10Gbps
network

4.27 TB/min
20.7 GB/min

Sort benchmark, Daytona Gray: sort of 100 TB of data (1 trillion records)
http://databricks.com/blog/2014/11435/spark-ofticially-sets-a-new-record-in-large-scale-sorting.html

Spark, 3x
faster

with 1/10
the nodes

Apache Spark

Apache Spark supports data analysis, machine learning, graphs, streaming data, etc. It
can read/write from a range of data types and allows development in multiple
languages.

Scala, Java, Python, R, SQL

DataFrames ML Pipelines

Spark SQL Spark Streaming MLIlib GraphX

Data Sources

Hadoop HDFS, HBase, Hive, Apache S3, Streaming, JSON, MySQL, and HPC-style (GlusterFS, Lustre)

94

Resilient Distributed Datasets (RDDs)

= RDDs (Resilient Distributed Datasets) is Data Containers

= All the different processing components in Spark share the same abstraction called
RDD

= As applications share the RDD abstraction, you can mix different kind of
transformations to create new RDDs

" Created by parallelizing a collection or reading a file

= Fault tolerant

95

DataFrames & SparkSQL

= DataFrames (DFs) is one of the other distributed datasets organized in named
columns

= Similar to a relational database, Python Pandas Dataframe or R’s DataTables

Immutable once constructed
Track lineage

Enable distributed computations

= How to construct Dataframes
Read from file(s)
Transforming an existing DFs(Spark or Pandas)
Parallelizing a python collection list

Apply transformations and actions

96

DataFrame example

// Create a new DataFrame that contains ‘“students”
students = users.filter(users.age < 21)

//Alternatively, using Pandas-like syntax
students = users[users.age < 21]

//Count the number of students users by gender
students.groupBy("gender").count()

// Join young students with another DataFrame called
logs

students.join(logs, logs.userld == users.userld,

“left outer")

97

RDDs vs. DataFrames

= RDDs provide a low level interface into Spark
= DataFrames have a schema
= DataFrames are cached and optimized by Spark

= DataFrames are built on top of the RDDs and the core Spark API

Spark Python DF

Spark Scala DF
RDD Python |
RDD Scala [|

0 2 4 6 8 10

Performance of aggregating 10 million int pairs (secs)

More in the two upcoming LABS

98

ETumAgov VAIKO Yo peAETT

= Main source of slides:
= Silberschatz et al., “Database System Concepts”, 7t edition . Part 7: Parallel and Distributed Databases

= DBMS Architectures - Data Science Lab @ University of Piraeus, Nikos Pelekis

= MultiTenancy & SaaS by Felix Naumann
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/folien/WS0910/DBS _1I/DBS2_12 WDM_MultiTenancy_FelixNaumann.pdf

= Google’s Map Reduce paper (2004):
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf

= The Google File System paper (2003):
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

929

https://static.googleusercontent.com/media/research.google.com/en/archive/mapreduce-osdi04.pdf
https://static.googleusercontent.com/media/research.google.com/en/archive/gfs-sosp2003.pdf

Thank you

GUNET-2

Turdpa NAnpodopikrig

XaproguAdkio xpriotn » CDS110- Big Data Management » Tautétnta Madriparog

Evepya epyaleia
0 Avakolv@oelg
[Aokioeig
@ AtZévta
Eyypaga
MAnpogopieg Mabrparog
@ ZUvoeopol

Avevepya epyaleia
(% AvraArayi Mnvupdrwy
“g] MAwoodplo
88 rpappn paénong
W) Epyacieg
ﬁ EpwtnuaroAdyla
[E HAextpoviké BiBAio
E Opadeg Xpnotwy

(2! neploxég TuZntioewy

CDS110- Big Data Management

GUNET-2

Tuhua Ninaadonixic
GUNet2 eClass - Turjua MAnpodopikiig

CDS110- Big Data Management » ZUvSeopOL

Inparog

Nepiypaepn B Tautétnta MaBrjparog

Introduction - review of relational and object-relational databases. Modern trends in database
design. Non-traditional data types (text, multimedia, spatial information). Non-traditional
database architecture (sensor networks, data streams, distributed, in the cloud). The “big
data” era (MapReduce architecture, etc.). Lab hours with PostgreSQL, MongoDB, Spark (Batch
Processing, Streaming, MLib).

» Kwdikog: CDS110

» Exmaibeutég: Mavvng
Oe0dwpidng, MNwpyog
Manactepavarog.
Epyaoctnpiakoi BonBoi: I'.
AAegiou, . ©e0dwpomouiog,
I. MapoUAng

» IXOAr - Tufpa: Metantuxiako
"KuBepvoaoypaAeia Kat
Emotipn Asdopévwy”

» TUmog: METATTUXIAKO

_ ki

< All teams

% General Posts Files +

CDS110: Big Data Managem...

Zlass Notebook
Assignments
Srades -

nsights

Seneral
VlongoDB channel

g Upload Class Materials
>ostgresQL channel

spark channel

» 10ANNIS THEODORIDIS 1/10 7:44 AM
5 | Scheduled a meeting

agement online lectures

00 PM until 31/1,

& Team 3Guests | [N Meet

Welcome to CDS110: Big Data Management

Choose where you want to start

Set up Class Notebook

MaBnparog

v @

100

CDS110- Big Data Management
Zuvdeopol i

evikoi oUvSeopol

» | |otoosAida Data Science Lab. (DataStories)

Katnyopiomoinuévol ouvaeopol
Books
» | Bailis P, et al. (eds.) (2015) Readings in Database Systems
» Codd EF (1990) The relational model for database management: version 2
» | Liu L, Ozsu MT (eds.) (2009) Encyclopedia of Database Systems
Papers
» | Abadi D, et al. (2013) The Beckman report on database research
» Abadi D, et al. (2018) The Seattle report on database research
» | Abiteboul S, et al. (2003) The Lowell database research self assessment
» | Agrawal R, et al. (2008) The Claremont report on database research
» | Codd EF (1970) Arelational model of data for large shared data banks
B Posts
» | Big Data Architecture: A Complete and Detailed Overview
» | HPI Genealogy of Relational Database Management Systems
Videos, Tutorials etc.
» ' Learn PostgreSQL Tutorial - Full Course for Beginners

» History of Databases

