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Outline

§ Centralized Database Systems

§ Server System Architectures

§ Parallel Systems

§ Distributed Systems
§ Network Types

§ Cloud Systems

§ Apache Hadoop Ecosystem
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Centralized	Database	Systems

§ Database Software Runs on a single computer 
system

§ Single-user system à pc, mobile

§ Embedded databases, e.g., SQL Lite, H2

§ Multi-user systems also known as client server 
systems.

§ Service requests received from client systems

§ Processes by a central database server
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Thin	vs	Thick	Clients	
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DB	Server	System	Architecture

§ Server systems can be broadly categorized into two kinds:

§ Transaction servers 

§ Widely used in relational database systems, and

§ Data servers 

§ Parallel data servers used to implement high-performance transaction processing systems
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Transaction	Servers

§ Also called query server systems or SQL server systems

§ Clients send requests to the server

§ Transactions are executed at the server

§ Results are shipped back to the client.

§ Requests are specified in SQL, and communicated to the server through a remote 
procedure call (RPC) mechanism.

§ Transactional RPC allows many RPC calls to form a transaction.

§ Applications typically use ODBC/JDBC APIs to communicate with transaction servers
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Transaction	Servers

§ A typical transaction server consists of multiple 
processes accessing data in shared memory

§ Shared memory contains shared data 
§ Buffer pool
§ Lock table
§ Log buffer
§ Cached query plans (reused if same query submitted 

again)

§ All database processes can access shared memory
§ Server processes

§ These receive user queries (transactions), execute them 
and send results back
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Transaction	Servers

§ Database writer process
§ Output modified buffer blocks to disks continually

§ Log writer process
§ Server processes simply add log records to log 

record buffer

§ Log writer process outputs log records to stable 
storage. 

§ Checkpoint process
§ Performs periodic checkpoints

§ Process monitor process
§ Monitors other processes, and takes recovery 

actions if any of the other processes fail
§ E.g. aborting any transactions being executed by a 

server process and restarting it
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Transaction	Servers
§ Lock manager process

§ To avoid overhead of interprocess communication 
for lock request/grant, each database process 
operates directly on the lock table 

§ Lock table. A table with locked items (e.g., tables, 
records) and processes in the queue

§ Lock manager process still used for deadlock 
detection (e.g., a never-ending process)

§ To ensure that no two processes are accessing 
the same data structure at the same time, 
databases systems implement mutual exclusion
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Data	Servers/Data	Storage	Systems

§ Data items are shipped to clients where processing is performed

§ Updated data items written back to server

§ Earlier generation of data servers operated in disk pages containing multiple data 
items (records)

§ Current generation data servers (also called data storage systems) work in units of 
data items

§ Commonly used data item formats include text, JSON, XML, or binary data 
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Data	Servers/Storage	Systems	(Cont.)
§ Prefetching

§ Prefetch items that may be used soon

§ Adaptive lock granularity 

§ Lock granularity escalation

§ switch from finer granularity (e.g. tuple) lock to coarser

§ Lock granularity de-escalation

§ Start with coarse granularity to reduce overheads, switch to finer granularity in case of more concurrency conflict at 
server
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Data	Servers	(Cont.)

§ Data Caching

§ Data can be cached at client even in between transactions

§ But check that data is up-to-date before it is used (cache coherency)

§ Check can be done when requesting lock on data item
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PARALLEL	DATABASES

13



Parallel	Systems

§ Parallel database systems consist of multiple processors and multiple disks
connected by a fast interconnection network.

§ Motivation: handle workloads beyond what a single computer system can handle

§ E.g., Multi transaction processing, handling user requests at web-scale

§ Data intensive processing, Online Analytical Processing (Data Warehouse), ML support on very large 
amounts of data
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Parallel	Systems	(Cont.)

§ A coarse-grain parallel machine consists of a small number of powerful processors

§ E.g., Intel's May 8, 2004 cancellation of its Tejas and Jayhawk processors, which is generally cited as 
the end of frequency scaling as the dominant computer architecture paradigm.

§ Multi Core CPUs are now everywhere (in desktop PCs, as well)

§ A massively parallel or fine grain parallel machine utilizes thousands of smaller 
processors.

§ What are the benefits?

§ throughput --- the number of tasks that can be completed in a given time interval increases

§ response time --- the amount of time it takes to complete a single task from the time it is 
submitted decreases
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How	to	measure	the	benefits
Speed-Up	vs	Scale-Up

§ Speedup: a fixed-sized problem executing on a small system is given to a system which is 
N-times larger.
§ Measured by: speedup = small system elapsed time / large system elapsed time

§ Speedup is linear if equation equals N.

§ Scaleup: increase the size of both the problem and the system

§ N-times larger system used to perform a N-times larger job

§ Measured by:     scaleup = small system small problem elapsed time / big system big problem elapsed time

§ Scale up is linear if equation equals 1.
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Speedup
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Scaleup
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Batch	and	Transaction	Scaleup

§ Batch scaleup:

§ A single large job; typical of most decision support queries and scientific simulation.

§ Use a N-times larger computer on N-times larger problem.

§ Transaction scaleup:
§ Numerous small queries submitted by independent users to a shared database; typical transaction 

processing and timesharing systems.

§ N-times as many users submitting requests (hence, N-times as many requests) to a N-times larger 
database, on an N-times larger computer.

§ Well-suited to parallel execution.
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Factors	Limiting	Speedup	and	Scaleup
Speedup and scaleup are often sublinear due to:

§ Startup/sequential costs: Cost of starting up multiple processes, and sequential computation 
before/after parallel computation

§ May dominate computation time, if the degree of parallelism is high

§ Suppose p<1 (e.g., 95%) is the parallelizable proportion of computation and n>1 the speedup enhancement 
(e.g. 2X faster)

§ Amdahl’s law:    speedup limited to: 1 / [(1-p)+(p/n)] 

§ Gustafson’s law: scaleup limited to: 1 / [n(1-p)+p] 

§ Interference:  Processes accessing shared resources (e.g., system bus, disks, or locks) compete with 
each other, thus spending time waiting on other processes, rather than performing useful work.

§ Skew: Increasing the degree of parallelism increases the variance in service times of parallelly 
executing tasks.  Overall execution time determined by slowest of parallelly executing tasks.
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Interconnection	Network	Architectures

§ Bus. System components send data on and receive data from a single communication bus;

§ Does not scale well with increasing parallelism.

§ A ring network is a network topology in which each node connects to exactly two other nodes

§ Mesh. Components are arranged as nodes in a grid, and each component is connected to all adjacent 
components

§ Hypercube.  Components are numbered in binary;  components are connected to one another if their 
binary representations differ in exactly one bit.

§ Tree-like Topology.  Widely used in data centers today
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Interconnection	Architectures
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switches
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Interconnection	Network	Architectures

§ Tree-like or Fat-Tree Topology:  
widely used in data centers today

§ Top of rack switch for approx 40 
machines in rack

§ Each top of rack switch connected 
to multiple aggregation switches.

§ Aggregation switches connect to 
multiple core switches.  

§ Data center fabric
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Parallel	Database	Architectures
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Shared	Memory

§ Processors (or processor cores) and 
disks have access to a common memory

§ Via a bus in earlier days, through an 
interconnection network today

§ Extremely efficient communication 
between processors 

§ Downside: shared-memory architecture 
is not scalable beyond 64 to 128 
processor cores

§ Memory interconnection network 
becomes a bottleneck
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Shared	Disk

§ All processors can directly access all disks 
via an interconnection network, but the 
processors have private memories.

§ Architecture provides a degree of fault-
tolerance — if a processor fails, the 
other processors can take over its tasks

§ the data of the failed processor is 
resident on disks that are accessible 
from all processors.

§ Downside: bottleneck now occurs at 
interconnection to the disk subsystem.
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Shared	Nothing

§Node consists of a processor, 
memory, and one or more disks

§ All communication via 
interconnection network

§ Can be scaled up to thousands of 
processors without interference.

§Main drawback: cost of 
communication and non-local disk 
access; sending data involves 
software interaction at both ends.
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Hierarchical

§ Combines characteristics of shared-
memory, shared-disk, and shared-
nothing architectures.

§ Top level is a shared-nothing 
architecture

§ With each node of the system 
being a shared-memory system

§ Alternatively, top level could be a 
shared-disk system

§ With each node of the system 
being a shared-memory system
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DISTRIBUTED	DATABASES
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Distributed	Systems

§Data spread over multiple 
machines (also referred to as sites 
or nodes).

§ Local-area networks (LANs)

§Wide-area networks (WANs)

§Higher latency

site A site C

site B

communication
via network

network
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Distributed	vs	Parallel

31

Parallel Distributed

Many operations are performed simultaneously System components are located at different 
locations

Single computer Multiple computers

Multiple processors perform multiple operations Multiple computers perform multiple operations

It may have shared or distributed memory It have only distributed memory

Processors communicate with each other 
through bus

Computer communicate with each other 
through message passing.

Improves the system performance Improves system scalability, fault tolerance and 
resource sharing capabilities

Image: https://www.oreilly.com/library/view/distributed-
computing-in/9781787126992/7478b64c-8de4-4db3-
b473-66e1d1fcba77.xhtml

https://www.geeksforgeeks.org/difference-between-parallel-computing-and-distributed-computing/



Distributed	Databases

§ Homogeneous distributed databases

§ Same software/schema on all sites, data may be partitioned among sites

§ Goal: provide a view of a single database, hiding details of distribution

§ Heterogeneous distributed databases
§ Different software/schema on different sites

§ Goal: integrate existing databases to provide useful functionality

§ Differentiate between local transactions and global transactions
§ A local transaction accesses data in the single site at which the transaction was initiated.

§ A global transaction either accesses data in a site different from the one at which the transaction 
was initiated or accesses data in several different sites.
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Data	Integration	and	Distributed	Databases

§ Data integration between multiple distributed databases

§ Benefits:
§ Sharing data – users at one site able to access the data residing at some other sites.

§ Autonomy – each site is able to retain a degree of control over data stored locally.
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Availability

§Network partitioning

§ Availability of system
§ If all nodes are required for system to function, failure of even one node stops 

system functioning.

§ Higher system availability through redundancy
§ data can be replicated at remote sites, and system can function even if a site fails.
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Implementation	Issues	for	Distributed	Databases	

§ Atomicity needed even for transactions that update data at multiple sites

§ The two-phase commit protocol (2PC) is used to ensure atomicity
§ Basic idea:  each site executes transaction until just before commit, and then leaves final decision 

to a coordinator

§ Each site must follow decision of coordinator, even if there is a failure while waiting for 
coordinators decision

§ Distributed concurrency control (and deadlock detection) required

§ Data items may be replicated to improve data availability
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DBComputer
Network

Site 2

Site 1

GSC

DDBMS

DC LDBMS

GSC

DDBMS

DC
LDBMS = Local DBMS 
DC = Data Communications 
GSC = Global Systems Catalog 
DDBMS = Distributed DBMS

COMPONENTS OF A DDBMS
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o Data Partitioning
o How are data partitioned in nodes?

o Data Replication
o Where are data located?

o Catalog Management 
o Where does the DB catalog reside?

o Distributed Transactions 
o How do transactions commit changes in multiple nodes?

o Distributed Queries
o How are Queries executed over multiple nodes?

DISTRIBUTED DATABASES

ISSUES
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DISTRIBUTED DATABASES

WHY PARTITIONING DATA?

§ Reduce the time required to retrieve relations from disk by partitioning the relations 
on multiple disks, on multiple nodes (computers)
§ Partitioning across nodes

§ Same techniques can be used across disks on a node

§ Partitioning methods

§ Horizontal  : different rows of a tables into different nodes . 

§ Vertical: different columns into different nodes.  
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DISTRIBUTED DATABASES

HORIZONTAL DATA PARTITIONING

333.00AthensKHAN456

500.00LondonONO400

340.14LondonGREEN350

23.17AthensSMITH345

200.00LondonGRAY324

1000.00AthensJONES200

BALANCEBRANCHCUSTOMERACCOUNT

Horizontal Partitioning: Consists of a Restriction on a Relation.

e.g.,   (s branch = ‘Athens’Account)

39



DISTRIBUTED DATABASES

HORIZONTAL DATA PARTITIONING

Athens
Athens
Athens

333.00KHAN456
23.17SMITH345

1000.00JONES200

BALANCEBRANCHCUSTOMERACCT NO.

London
London
London

500.00ONO400
340.14GREEN350
200.00GRAY324

BALANCEBRANCHCUSTOMERACCT NO.

Athens BRANCH

London BRANCH
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§ Round-robin:

§ Send the ith tuple inserted in the relation to 
node (i mod n). 

§ Hash partitioning: 
§ Choose one or more attributes as the 

partitioning key.   

§ Choose hash function h with range 0…n - 1

§ Let i denote result of hash function h applied 
to the partitioning key of a tuple. Send tuple to 
node i.

DISTRIBUTED DATABASES

HOW TO PARTITION?
§ Range Partitioning :

§ Choose an attribute as the partitioning key.

§ Select a partition by determining if the 
partitioning key is within a certain range. 

§ List partitioning:
§ A partition is assigned a list of values. 

§ E.g., Greece, Italy, Germany

§ If the partitioning key has one of these values, 
the partition is chosen. 
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DISTRIBUTED DATABASES

VERTICAL DATA PARTITIONING

KJTR78KHA456T0208-500-5821AthensKHAN456

ZZEE56GRA324S0208-545-7528LondonGRAY324

XXYY22JON200T0208-500-9000AthensJONES200

PASSWORDLOGINPHONE NOSITENAMES#

Vertical Partitioning: Consists of a Projection on a Relation.

e.g.,   (Õ S#, NAME, SITE, PHONE NO Student)

Remember how Column Stores store the data!!!
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DISTRIBUTED DATABASES

VERTICAL DATA PARTITIONING

Athens
London
Athens

KHAN456
GRAY324

0208-500-5821

0208-545-7528

0208-500-9000JONES200

PHONE NO.SITENAMES#

KJTR78
ZZEE56
XXYY22

KHA456T456
GRA324S324
JON200T200

PASSWORDLOGIN-IDS#

Customer ADMINISTRATION

System ADMINISTRATION
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Replication

§ Goal: availability despite failures

§ Data replicated at 2, often 3 nodes

§ Unit of replication typically a partition (tablet)

§ Requests for data at failed node automatically routed to a replica

§ Partition table with each tablet replicated at two nodes
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DISTRIBUTED DATABASES

DISTRIBUTED CATALOGUE MANAGEMENT

Centralised Global Catalogue
• One site maintains the full global catalogue. 
• All changes to any local system catalogue are propagated to the site maintaining the global catalogue. 
• Bad performance, single point of failure, compromises site autonomy.
Distributed Catalogue
• There is no physical global catalogue. Each time a remote data item is required, the catalogues from ALL other 

sites are examined for the item. 
• Severe performance penalties.
Replicated Global Catalogue
• Each site maintains its own global catalogue. 
• Although this greatly speeds up remote data location, it is very inefficient to maintain. A detail of every data 

item added, changed or deleted locally has to be propagated to ALL other sites .
Local-Master Catalogue
• Each site maintains both its local system catalogue as well as a catalogue of all of its data items that are 

replicated at other sites. 
• Avoids compromising site autonomy, is fairly efficient, and is not a single point of failure
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DISTRIBUTED DATABASES

DISTRIBUTED TRANSACTIONS

Athens DB

London DB

Rome DB

Athens
DBMS

Athens
Client

Athens
Client

Athens
Client London

DBMS

Rome
DBMS

Global Transaction

(a) Debit Athens A/C £500
(b) Credit London A/C £350
(c) Credit Rome A/C £150

(a)

(b)

(c)
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TWO-PHASE COMMIT (2PC) - OK
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TWO-PHASE COMMIT (2PC) - ABORT

‘Global Abort’

2PC is not always appropriate:  
3-phase commits and other transaction models 
based on persistent messaging, and workflows, 
are also used 
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Parallel	(&Distributed)	Query	Processing

INTERQUERY PARALLELISM 

§ It is a form of parallelism where many different Queries or Transactions are executed
in parallel with one another on many processors (nodes).

INTRAQUERY PARALLELISM

§ It is the form of parallelism where a Single Query is broken in ‘sub-tasks’ and executed 
in parallel on many processors (nodes). 

49



Distributed	Query	Processing	- Plan

50
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L Architectural complexity.

L Cost.

L Security.

L Integrity control more difficult.

L Lack of standards.

L Lack of experience.

L Database design more complex.

DISTRIBUTED DATABASES

DISADVANTAGES OF DDBMSs
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CLOUD	DATABASES
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Cloud	Service	Models

§On-demand provisioning and 
elasticity

§ ability to scale out at short notice 
and to release of unused resources 
for use by others

internet

Cloud Clients

Web browsers, mobile apps, ...

Software -as-a-Service

Enterprise applications, 

email, shared documents, ...

Platform-as-a-Service

Data storage, Database,

Application server, ...

Infrastructure-as-a-Service

Virtual Machines, servers,

storage, ...
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Cloud	Databases

§ A cloud database is a database that typically runs on a cloud computing 
platform and access to the database is provided as-a-service. 

§ Two deployment models: 
§ Databases is deployed on a Virtual Machine  - DB is maintained by the user 

independently

§ Database-as-a-service (DBaaS) : access to a database service, maintained by a 
cloud database provider
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Scale	up,	scale	out,	scale	in

§ Scale up: Big iron

§ Scale out: Commodity hardware

§ “Scale in”: Multiple apps / tenants / VMs on single machine

55
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DBaaS	- Multi-Tenancy

§ Run application for multiple clients („tenants“) on a shared database

§ Only makes sense if enough tenants can be served from one database

§ Resource utilization increased, fewer/smaller hardware required

§ Fewer processes/machines to manage
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Analogies for Multi-Tenancy in	Real	Life

§ Multiple clients hosted by one service provider

§ Multiple tenants hosted in one building complex

§ Code (to be executed)
§ Utilities (gas, water, electricity, waste)

§ Data (with services)
§ Storage space (furniture, basement, garage)

Felix Naumann Slides 
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/folien/WS0910/DBS_II/DBS2_12_WDM_MultiTenancy_FelixNaumann.pdf
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Back	to SaaS:	Implementation	Options

§ Four analogies…   

§ Dedicated Virtual Machine (house)

§ Shared machine (hotel room)

§ Shared Process (apartment)

§ Shared Table (youth hostel)

Felix Naumann Slides 
https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/folien/WS0910/DBS_II/DBS2_12_WDM_MultiTenancy_FelixNaumann.pdf
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Shared	Machine

§ One dedicated database process for each tenant

§ Does not scale beyond a few tenants per server (overhead!)

§ Applications with small number of tenants
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Shared	Process

§ Single database process manages several tenants (in separate table spaces)

§ Scales to many tenants (regarding overhead)

§ Migration of a tenant to a different process is simple (moving all data files)
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Shared	Table
§ Data from many tenants in the same table

§ Add tenant_id column, must be set for each access (by application or by dbms)

§ But: sometimes tenants require additional columns

§ Extend schema with generic columns; database needs to efficiently support rows with many NULL values

§ Advantage: everything is pooled

§ Processes, memory, connections, prepared statements

§ New tenants can be created by DML (not DDL) operations

§ Disadvantage: isolation is very weak

§ Query optimization, statistics, cost estimation more difficult (data from other tenants can influence estimates)

§ Table scans more expensive, caching etc not as effective

§ Tenant migration by extracting data from the operational system
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Schema	Flexibility	in	SaaS

§ Each tenant uses common base schema plus optional (private or shared) extensions

§ All mapped into one (multi-tenant) physical schema by a dedicated Mapper in the
database

§ Schema evolution must be possible during operation, without intervention by DBA
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Schema	Management
Two alternatives:

§ Database manages the schema (evolution through DDL operations):
§ Private tables

§ Extension tables

§ Sparse columns

§ Application manages the schema (evolution through DML operations)
§ XML Columns

§ Universal tables

§ Pivot tables

Account Name

Account

Running example:
simple account table
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Private	Tables
§ Each tenant uses private set of tables

§Works well for small number of tables and tenants
§ Constant overhead per table

§ each table is small, storage space not used effectively

Account Name Hospital Beds

1 Acme St Mary 135

2 Gump State 1042

Account_1

Account Name

1 Ball

Account_3

Account Name Dealers

1 Big 65

Account_2

Healthcare Domain
Automotive Domain
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Private	Tables	– Query	Transformation

§ Tenant 1:
SELECT Beds FROM Account
WHERE Hospital=‘State‘

ÞSELECT Beds FROM Account_1

WHERE Hospital=‘State‘

§ Tenant 2:
SELECT Name FROM Account
WHERE Dealers>50

ÞSELECT Name FROM Account_2
WHERE Dealers>50

Account Name Hospital Beds

1 Acme St Mary 135

2 Gump State 1042

Account_1

Account Name Dealers

1 Big 65

Account_2
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Extension	Tables
§ Keep common data in base table with explicit Tenant-ID and row-ID

§ Each tenant‘s extension gets its own table, join on tenant-ID and 
row-ID at query time

§ Number of table still proportional to number of tenants (but 
additional tables are rather small)

Tenant Row Account Name

1 1 1 Acme

1 2 2 Gump

2 1 1 Big

3 1 1 Ball

Account

Tenant Row Dealers

2 1 65

Account_Automotive

Tenant Row Hospital Beds

1 1 St Mary 135

1 2 State 1042

Account_Healthcare
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Extension	Tables	– Query	Transformation

§ Tenant 1:
SELECT Name,Beds
FROM Account
WHERE Hospital=‘State‘

ÞSELECT A.Name,
H.Beds

FROM Account A,
Account_Healthcare H

WHERE A.Tenant=1
AND H.Tenant=1
AND A.Row=H.Row
AND H.Hospital=‘State‘

Tenant Row Account Name

1 1 1 Acme

1 2 2 Gump

2 1 1 Big

3 1 1 Ball

Account

Tenant Row Hospital Beds

1 1 St Mary 135

1 2 State 1042

Account_Healthcare
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Sparse	Columns
§ Each tuple has only a few out of many possible attributes (e.g., 

catalogues) Þ many NULL values

§ Store only attributes with values to avoid NULLs

§ store values with their attribute (identifier)

§ not widely supported in systems (Microsoft SQL Server)

§ Add extensions as „sparse column“ to tables

Tenant Account Name SPARSE

1 1 Acme 0:St Mary, 1:135

1 2 Gump 0:State, 1:1042 

2 1 Big 2:65

3 1 Ball

Account
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Sparse	Columns	– Query	Transformation

§ CREATE TABLE Account (
Tenant INT, Account INT, Name VARCHAR(100),
Hospital VARCHAR(100) SPARSE,
Beds INT SPARSE, Dealer INT SPARSE
)

§ Tenant 1:
SELECT Name,Beds
FROM Account
WHERE Tenant=1
AND Hospital=‘State‘

Tenant Accoun
t

Name SPARSE

1 1 Acme 0:St Mary, 1:135

1 2 Gump 0:State, 1:1042 

2 1 Big 2:65

3 1 Ball

Account

System retrieves attribute ID and
extracts values from SPARSE column
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XML	Columns
§ Each table contains additional XML column for storing extensions as 

XML document

Tenant Account Name XMLData

1 1 Acme <data>
<hospital>St Mary</hospital>
<bed>135</bed>

</data>

1 2 Gump <data>
<hospital>State</hospital>
<bed>1042</bed>

</data>

2 1 Big <data>
<dealers>65</dealers>

</data>

3 1 Ball NULL

Account
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XML	Columns	– Query	Transformation

§ Tenant 1:
SELECT Name,Beds
FROM Account
WHERE Hospital=‘State‘

ÞSELECT NAME,
xml([data/bed])
FROM Account
WHERE Tenant=1
AND xmlexists(
‘$x[data/hospital=‘State‘]
PASSING XMLData as $x)

Tenant Account Name XMLData

1 1 Acme <data>
<hospital>St Mary</hospital>
<bed>135</bed>

</data>

1 2 Gump <data>
<hospital>State</hospital>
<bed>1042</bed>

</data>

2 1 Big <data>
<dealers>65</dealers>

</data>

3 1 Ball NULL

Account
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Universal	Table
§Use wide table with generic VARCHAR columns

§ Application-specific mapping

§ Requires casting of non-textual values

§ Many NULL values, usually no indexes possible

§Used with huge number of extensions and many tenants

Tenant Table Col1 Col2 Col3 Col4 … Col999

1 1 1 Acme St Mary 135 … NULL

1 1 2 Gump State 1042 … NULL

2 1 1 Big 65 NULL … NULL

3 1 1 Ball NULL NULL … NULL

Universe

72



Universal	Table	– Query	Transformation

§ Tenant 1:
SELECT Name,Beds
FROM Account
WHERE Hospital=‘State‘

ÞSELECT Col2, TO_INTEGER(Col4)
FROM Universe
WHERE Tenant=1

AND Table=1
AND Col3=‘State‘

Tenant Table Col1 Col2 Col3 Col4 … Col999

1 1 1 Acme St Mary 135 … NULL

1 1 2 Gump State 1042 … NULL

2 1 1 Big 65 NULL … NULL

3 1 1 Ball NULL NULL … NULL

Universe
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Pivot	Tables
§ Store data in 3-ary tables with column_ids and values

§ One tuple for each non-NULL attribute of original table

§ One pivot table for each type (int, string, …)

§ Eliminates the problem of many NULL values

§ No casts necessary, indexing possible

Tenant Table Row Col Int

1 1 1 1 1

1 1 1 4 135

1 1 2 1 2

1 1 2 4 1042

2 1 1 1 1

2 1 1 3 65

3 1 1 1 1

Pivot_Int

Tenant Table Row Col String

1 1 1 2 Acme

1 1 1 3 St Mary

1 1 2 2 Gump

1 1 2 3 State

2 1 1 2 Big

3 1 1 2 Ball

Pivot_String
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Pivot	Tables – Query	Transformation
§ Tenant 1:
SELECT Name,Beds
FROM Account
WHERE Hospital=‘State‘

ÞSELECT S1.String,I.Int
FROM Pivot_Int I,

Pivot_String S1,
Pivot_String S2

WHERE I.Tenant=1
AND S1.Tenant=1
AND S2.Tenant=1
AND S1.Table=1 AND S1.Col=2
AND S2.Table=1 AND S2.Col=3
AND I.Table=1 AND I.Col=4
AND I.Row=S2.Row
AND S1.Row=S2.Row
AND S2.String=‘State‘

Tenant Table Row Col Int

1 1 1 1 1

1 1 1 4 135

1 1 2 1 2

1 1 2 4 1042

2 1 1 1 1

2 1 1 3 65

3 1 1 1 1

Pivot_Int

Tenant Table Row Col String

1 1 1 2 Acme

1 1 1 3 St Mary

1 1 2 2 Gump

1 1 2 3 State

2 1 1 2 Big

3 1 1 2 Ball

Pivot_String
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Summary:	DB	in	the	Cloud

§ New paradigm to provide services (S,P,I)

§ SaaS important part of cloud computing

§ Different forms of scaling: up, out, in

§ Re-use processes: multiple tenants on single database instance (but: isolation?)

§ Map many logical schemas to a single physical schema, many mapping techniques
(but: query transformation?)
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APACHE	HADOOP ECOSYSTEM
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Hadoop Ecosystem

A

B C

D

Layer Diagram 
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Hadoop HDFS

§ Hadoop distributed File System (based on Google File System (GFS) paper, 2004)

§ Serves as the distributed file system for most tools in the Hadoop ecosystem

§ Scalability for large data sets 

§ Reliability to cope with hardware failures 

§ HDFS good for:

§ Large files

§ Streaming data

§ Not good for:

§ Lots of small files

§ Random access to files

§ Low latency access

80



Design	of	Hadoop Distributed	File	System	(HDFS)

§ Master-Slave design

§ Master Node
§ Single NameNode for managing metadata

§ Slave Nodes
§ Multiple DataNodes for storing data

§ Other
§ Secondary NameNode as a backup
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HDFS	Architecture

NameNode

DataNode

DataNode DataNode DataNode

DataNode

DataNode

DataNode DataNode

Secondary 
NameNodeClient

Heartbeat, Cmd, Data

NameNode keeps the metadata, the name, location and directory
DataNode provide storage for blocks of data
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HDFS

File B1 B2 B3 B4

Node

B1

Node Node

B2

Node B1Node Node

B2B3

Node Node Node

B4 B3

B1

B4

Node

Node

Node

B3

B4

B2B1

What happens; if node(s) fail?
Replication of Blocks for fault tolerance
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HDFS

§ HDFS files are divided into blocks

§ It’s the basic unit of read/write 

§ Default size is 64MB, could be larger (128MB)

§ Hence makes HDFS good for storing larger files

§ HDFS blocks are replicated multiple times
§ One block stored at multiple locations, also at different racks (usually 3 times)

§ This makes HDFS storage fault tolerant and faster to read
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Few	HDFS	Shell	commands

Create a directory in HDFS
§ hadoop fs -mkdir /user/godil/dir1

List the content of a directory
§ hadoop fs -ls /user/gpapas

Upload and download a file in HDFS
§ hadoop fs -put /home/godil/file.txt    /user/godil/datadir/

§ hadoop fs -get /user/godil/datadir/file.txt   /home/

Look at the content of a file
§ Hadoop fs -cat /user/godil/datadir/book.txt

Many more commands, similar to Unix 
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HBase

§ NoSQL data store build on top of HDFS

§ Based on the Google BigTable paper (2006)

§ Can handle various types of data 

§ Stores large amount of data (TB,PB)

§ Column-Oriented data store

§ Big Data with random read and writes

§ Horizontally scalable
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MapReduce:	Simple	Programming	for	Big	Data

§ MapReduce is simple programming paradigm for the Hadoop
ecosystem

§ Traditional parallel programming requires expertise of different 
computing/systems concepts

§ examples: multithreads, synchronization mechanisms (locks, 
semaphores, and monitors )

§ incorrect use: can crash your program, get incorrect results, or 
severely impact performance

§ Usually not fault tolerant to hardware failure
§ The MapReduce programming model greatly simplifies running 

code in parallel
§ you don't have to deal with any of above issues 
§ only need to create, map and reduce functions

Based on Google’s MR paper (2004)
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Map:
Apply a function to all the elements 
of List 

list1=[1,2,3,4,5];
square x = x * x 
list2=Map square(list1) 
print list2 

-> [1,4,9,16,25]

Reduce:
Combine all the elements of list for 
a summary

list2 = [1,4,9,16,25];
A = reduce (+) list1
Print A

-> 55

Map	Reduce	Paradigm

§ Map and Reduce are based on functional programming

Input OutputMap Reduce
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Node
Map

MapReduce Word	Count	Example

File

A

B

C

D

Node
Map

A

Node
Map

Node
Map

B

C

D

Node
Reduce

Node
Reduce

F

Node
Reduce

Node
Reduce

E

G

H

Shuffle
&

Sort

I am Sam

Sam I am

(I,1)
(am,1)
(Sam,1)

(I,1)
(am,1)
(Sam,1)

(I,2)
(am,2)
(Sam,2)
(…,..)
(..,..)

………

………
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Shortcoming	of	MapReduce

§ Forces your data processing into Map and Reduce

§ Other workflows missing include join, filter, flatMap, groupByKey, union, intersection, …

§ Based on “Acyclic Data Flow” from Disk to Disk (HDFS)

§ Read and write to Disk before and after Map and Reduce (stateless machine)
§ Not efficient for iterative tasks, i.e. Machine Learning

§ Only Java natively supported 
§ Support for others languages needed

§ Only for Batch processing
§ Interactivity, streaming data

90



One	Solution	is	Apache	Spark

§ A new general framework, which solves many of the short comings of MapReduce

§ It is capable of leveraging the Hadoop ecosystem, e.g. HDFS, YARN, HBase, S3, …

§ Has many other workflows, i.e. join, filter, flatMapdistinct, groupByKey, reduceByKey, 
sortByKey, collect, count, first…
§ (around 30 efficient distributed operations)

§ In-memory caching of data (for iterative, graph, and machine learning algorithms, 
etc.)

§ Native Scala, Java, Python, and R support

§ Supports interactive shells for exploratory data analysis

§ Spark API is extremely simple to use 

§ Developed at AMPLab UC Berkeley, now by Databricks.com
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Spark	Uses	Memory	instead	of	Disk

Iteration1 Iteration2

HDFS read

Iteration1 Iteration2

HDFS 
read

HDFS 
Write

HDFS 
read HDFS 

Write

Spark: In-Memory Data Sharing

Hadoop: Use Disk for Data Sharing
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Sort	competition

Hadoop MR
Record (2013)

Spark
Record (2014)

Data Size 102.5 TB 100 TB
Elapsed Time 72 mins 23 mins

# Nodes 2100 206
# Cores 50400 physical 6592 virtualized

Cluster disk 
throughput

3150 GB/s
(est.) 618 GB/s

Network dedicated data 
center, 10Gbps

virtualized (EC2) 10Gbps 
network

Sort rate 1.42 TB/min 4.27 TB/min
Sort rate/node 0.67 GB/min 20.7 GB/min

Sort benchmark, Daytona Gray: sort of 100 TB of data (1 trillion records)
http://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html

Spark, 3x 
faster 
with 1/10 
the nodes

93



Apache	Spark

Apache Spark supports data analysis, machine learning, graphs, streaming data, etc. It 
can read/write from a range of data types and allows development in multiple 
languages.

Spark Core

Spark Streaming MLlib GraphX

ML Pipelines

Spark SQL

DataFrames

Data Sources

Scala, Java, Python, R, SQL

Hadoop HDFS, HBase, Hive, Apache S3, Streaming,  JSON, MySQL, and HPC-style (GlusterFS, Lustre)
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Resilient	Distributed	Datasets	(RDDs)

§ RDDs (Resilient Distributed Datasets) is Data Containers

§ All the different processing components in Spark share the same abstraction called 
RDD

§ As applications share the RDD abstraction, you can mix different kind of 
transformations to create new RDDs 

§ Created by parallelizing a collection or reading a file

§ Fault tolerant
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DataFrames &	SparkSQL

§ DataFrames (DFs) is one of the other distributed datasets organized in named 
columns

§ Similar to a relational database, Python Pandas Dataframe or R’s DataTables

§ Immutable once constructed

§ Track lineage

§ Enable distributed computations

§ How to construct Dataframes
§ Read from file(s)

§ Transforming an existing DFs(Spark or Pandas)

§ Parallelizing a python collection list

§ Apply transformations and actions
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DataFrame	example

// Create a new DataFrame that contains “students” 
students = users.filter(users.age < 21)

//Alternatively, using Pandas-like syntax
students = users[users.age < 21]

//Count the number of students users by gender
students.groupBy("gender").count()

// Join young students with another DataFrame called 
logs
students.join(logs, logs.userId == users.userId,
“left_outer")
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RDDs	vs.	DataFrames

§ RDDs provide a low level interface into Spark

§ DataFrames have a schema

§ DataFrames are cached and optimized by Spark

§ DataFrames are built on top of the RDDs and the core Spark API

More in the two upcoming LABS
98



Επιπλέον	υλικό	για	μελέτη

§ Main source of slides: 
§ Silberschatz et al., “Database System Concepts”, 7th edition . Part 7: Parallel and Distributed Databases 
§ DBMS Architectures - Data Science Lab @ University of Piraeus , Nikos Pelekis
§ MultiTenancy & SaaS by Felix Naumann 

https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/folien/WS0910/DBS_II/DBS2_12_WDM_MultiTenancy_FelixNaumann.pdf

§ Google’s Map Reduce paper (2004): 
https://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf

§ The Google File System paper (2003): 
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
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Thank	you
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