
Διαχείριση Μεγάλων Δεδομένων

Big Data Management

Lecture 4 - NoSQL DBs

George Papastefanatos (gpapas@athenarc.gr)

Principal Researcher @ ATHENA Research Center

ver. 11/2023

mailto:gpapas@athenarc.gr

Lecture Outline

▪ Motivation

▪ RDBMS characteristics

▪ Current trends & RDBMS limitations

▪ Cap Theorem

▪ NoSQL databases

▪ Key-value stores

▪ Document stores

▪ Column stores

▪ Graph stores

▪ NewSQL DBs

▪ Overview of NoSQL Features

2

Relational databases

3

DW

HR

Sales

Inventory

Suppliers

Marketing

Accounting

Support & Call Center

External Sources

Relational databases

4

DW

HR

Sales

Inventory

Suppliers

Marketing

Accounting

Support & Call Center

External Sources

SQL DBs= RDBMs

>40y old

Majority of operating DBs

Relational Databases

▪ Data model

▪ Instance → database → table → row

▪ Data access

▪ Selection based on complex conditions, projection, joins, aggregation, derivation of new values,
recursive queries,

▪ SQL (Structured QueryLanguage)

SELECT emp.name, dept.name

FROM emp INNER JOIN dept ON dept.id=emp.dept_id

WHERE dept.location = ‘Athens’

▪ Formal: Relational algebra, relational calculi (domain, tuple)

emp.name,dept.name(dept.location = “Athens” (emp⋈ dept))

5

Relational Databases - Representatives

… and many more

6

RDBMs Features – Normal Forms

Model Constraints

• Functional dependencies, 1NF, 2NF, 3NF, BCNF
(Boyce-Codd normal form)

Objective

• Normalization of database schema to BCNF or 3NF,
via decomposition or synthesis

Motivation

• Diminish data redundancy, prevent update
anomalies

• However:

• Data is scattered into small pieces (high
granularity), and so

• these pieces have to be joined back together
when querying!

7

RDBMs Features – Transactions

Model

• Transaction = flat sequence of database operations (READ,
WRITE, COMMIT, ABORT)

Objectives

• Enforcement of ACID properties

• Efficient parallel / concurrent execution (slow hard drives, …)

ACID properties

• Atomicity – partial execution is not allowed (all or nothing)

• Consistency – transactions turn one valid database state into
another

• Isolation – uncommitted effects are concealed among
transactions

• Durability – effects of committed transactions are permanent

8

Where is Big Data?

▪ Social media and networks

▪ …all of us are generating data

▪ Scientific instruments and e-Infrastructures

▪ …producing all sorts of data, astronomical, biological, etc

▪ Mobile devices

▪ …tracking social activity, mobility

▪ Internet of Things, sensors and networks

▪ …machine-generated, measurements

9

Big Data Characteristics – The basic Vs

Volume (Scale)

• Data volume is increasing
exponentially, not linearly

• Even large amounts of small
data can result into Big Data

Volume (Scale)

• Data volume is increasing
exponentially, not linearly

• Even large amounts of small
data can result into Big Data

Variety (Complexity)

• Various formats, types, and
structures

• (from semi-structured to
unstructured multimedia)

Variety (Complexity)

• Various formats, types, and
structures

• (from semi-structured to
unstructured multimedia)

Velocity (Speed)

• Data is being generated fast
and needs to be processed
fast

Velocity (Speed)

• Data is being generated fast
and needs to be processed
fast

Veracity (Uncertainty)

• Uncertainty due to
inconsistency,
incompleteness, latency,
ambiguities, or
approximations

Veracity (Uncertainty)

• Uncertainty due to
inconsistency,
incompleteness, latency,
ambiguities, or
approximations

10

New Trends after 2000’s

• Heterogeneous Data Models

• Streaming Data, fast OLTP

• Distributed Share-nothing systems

• API data access, MapReduce, SPARK and
other programming models

• From Data warehouses to Data Lakes

• Cloud computing & Edge processing

• Large scale machine learning

New trendsNew trends

• Moto: One Size Does not Fit all

Why not using RDBMs?Why not using RDBMs?

@ICDE2005

11

RDBMs Limits

▪ Need for well-defined schemas

▪ Need for skilled DBA

▪ SQL and complex tuning

▪ Hard to make transactions scalable

12

Big Data on Clouds

▪ Everything is on the cloud

▪ SaaS: Software as a Service

▪ PaaS: Platform as a Service

▪ IaaS: Infrastructure as a Service

▪ Processing paradigms

▪ OLTP: Online Transaction Processing

▪ OLAP: Online Analytical Processing

▪ …but also…

▪ RTAP: Real-Time Analytic Processing – time to analysis is minimal

13

New Data assumptions

▪ Data format is becoming unknown or inconsistent (csv, json, text, compressed, …)

▪ Data updates are no longer frequent, mostly additions in streams

▪ Data is expected to be replaced

▪ Linear growth → unpredictable exponential growth

▪ Strong consistency is no longer mission-critical

▪ Read requests prevail write requests

CAP Theorem

14

CAP Theorem

▪ Any distributed data store can only
provide TWO of the THREE properties

▪ History

▪ At the PODC 2000 conference, Brewer (UC
Berkeley) conjectures that one can have only
two properties at the same time

▪ In 2002, Gilbert and Lynch (MIT) proved the
conjecture, which becomes a theorem

CAP Theorem: https://people.eecs.berkeley.edu/~brewer/cs262b-

2004/PODC-keynote.pdf

15

Two types of transactions

▪ Polemical topic

▪ The CAP theorem states that it is impossible to achieve both consistency and availability in a
partition tolerant distributed system (i.e., a system which continues to work in cases of temporary
network loss).

▪ Argument used by NoSQL to justify their lack of ACID properties

▪ But has nothing to do with scalability

▪ Two different points of view

▪ Relational databases – ACID Transactions

▪ Consistency is essential

▪ Distributed systems – BASE Transactions

▪ High availability is essential

16

Strong vs Eventual Consistency

▪ Strong consistency (ACID)

▪ All nodes see the same data values at the same time

▪ Eventual consistency (BASE)

▪ Basic Availability: The database appears to work most of the time.

▪ Soft-state: Stores don’t have to be write-consistent, nor do different replicas have to be mutually
consistent all the time. Some nodes may see different data values at the same time

▪ Eventual consistency: Stores exhibit consistency at some later point (e.g., lazily at read time). If we stop
injecting updates, the system reaches strong consistency.

17

Symmetric, Asynchronous Replication

▪ How do achieve eventual consistency

▪ After reconnection (and resolution of update conflicts), consistency can be obtained

Client Client

DB

Node2
DB

Node1

AP ok

C non ok

18

BASE properties

▪ BASE properties are much looser than ACID guarantees

▪ A BASE data store

▪ values availability

▪ doesn’t offer guaranteed consistency of replicated data at write time.

▪ Overall, the BASE consistency model provides a less strict assurance than ACID: data will be
consistent in the future, at read time

19

Lecture Outline

▪ Motivation

▪ Big Data Characteristics

▪ Current trends & RDBMS limitations

▪ NoSQL databases

▪ Key-value stores

▪ Document stores

▪ Column stores

▪ Graph stores

▪ NewSQL DBs

20

NoSQL Databases

▪ What does NoSQL actually mean?

▪ A bit of history …

▪ 1998

▪ First used for a relational database that omitted usage of SQL for data access.

▪ 2009

▪ First used during a conference to advocate non-relational databases

▪ So?

▪ Not: no to SQL

▪ Not: not only SQL

▪ NoSQL is an accidental term with no precise definition

21

What does NoSQL actually mean?

▪ NoSQL movement = The whole point of seeking alternatives is that you need to solve
a problem that relational databases are a bad fit for.

▪ NoSQL DEFINITION: Next Generation Database Management Systems mostly
addressing some of the points: being non-relational, distributed, open-source and
horizontally scalable.

▪ The original intention has been modern web-scale database management systems.
The movement began early 2009 and is growing rapidly. Often more characteristics
apply such as: schema-free, easy replication support, simple API, eventually
consistent / BASE (not ACID), a huge amount of data and more.

▪ The misleading term "nosql" (the community now translates it mostly with "not only
sql") should be seen as an alias to something like the definition above.

Source: https://hostingdata.co.uk/nosql-database/

22

NoSQL (Not Only SQL)

▪ Specialized data model

▪ Key-value, column-based, document, graph

▪ Query-based and API-based data access & manipulation

▪ Trade relational DBMS properties

▪ Full SQL, ACID transactions, data independence

▪ For

▪ Simplicity (schema-free, few or no constraints, basic API)

▪ Scalability and performance – deployed over distributed environment

▪ Flexibility for the programmer (integration with programming language)

NB: SQL is just a language and has nothing to do with the story

23

RDBMS vs NoSQL Overview

SQL NoSQL

Data storage

Stored in a relational model, with rows and columns.
Rows contain all of the information about one specific
entry/entity, and columns are all the separate data
points.

The term “NoSQL” encompasses a host of databases,
each with different data storage models. The main
ones are: document, graph, key-value and
columnar.

Schemas and
Flexibility

Each record conforms to a fixed schema and
integrity constraints, meaning the columns must be
decided and locked before data entry and each row must
contain data for each column. This can be amended, but
it involves altering the whole database and going offline.

Schemas can be dynamic. Information can be added
on the fly, and each ‘row’ (or equivalent) doesn’t have
to contain data for each ‘column’.

Scalability

Scaling is vertical. In essence, more data means a
bigger server, which can get very expensive. It is possible
to scale an RDBMS across multiple servers, but this is a
difficult and time-consuming process.

Scaling is horizontal, meaning across servers.
They can be cheap commodity hardware or cloud
instances, making it a lot more cost-effective than
vertical scaling. Many NoSQL technologies also
distribute data across servers automatically.

ACID Compliancy
The vast majority of relational databases are ACID
compliant.

Varies between technologies, but many NoSQL
solutions sacrifice ACID compliancy for
performance and scalability

Source: https://dataconomy.com/2014/07/sql-vs-nosql-need-know/24

NoSQL Approaches

▪ Core types

▪ Key-value stores

▪ Document stores

▪ Wide column (column family, column oriented, …) stores

▪ Graph databases

▪ Multimodel

▪ Non-core types

▪ Object databases

▪ Native XML databases

▪ RDF stores

▪ …

Were there much before NoSQL

Sometimes presented as NoSQL

But not really scalable

25

KEY-VALUE STORES

26

Key-Value Stores

▪ Data model

▪ The most simple NoSQL database type

▪ Works as a simple hash table (mapping)

▪ Key-value pairs

▪ Key (id, identifier, primary key)
▪ Value: binary object, black box for the database system

▪ Query patterns

▪ Create, update or remove value for a given key

• Get value for a given key Characteristics

▪ Simple model ⇒ great performance, easily scaled, …

▪ Simple model ⇒ not for complex queries nor complex data

27

Key-Value Stores

▪ Suitable use cases

▪ Session data, user profiles, user preferences, shopping carts, …

▪ i.e. when values are only accessed via keys

▪ When not to use

▪ Relationships among entities

▪ Queries requiring access to the content of the value part

▪ Set operations involving multiple key-value pairs

28

Key-Value Stores

29

Redis

30

▪ Key : Redis keys are binary safe, this means that you can use any binary
sequence as a key, from a string like "foo" to the content of a JPEG file

▪ Very long keys are not a good idea. A key of 1024 bytes is a bad idea not only
memory-wise, but also because the lookup of the key in the dataset may require
several costly key-comparisons. Even when the task at hand is to match the existence
of a large value, hashing it (for example with SHA1) is a better idea, especially from
the perspective of memory and bandwidth.

▪ Very short keys are often not a good idea. There is little point in writing "u1000flw"
as a key if you can instead write "user:1000:followers".

▪ Try to stick with a schema. For instance "object-type:id" is a good idea, as in
"user:1000". Dots or dashes are often used for multi-word fields, as in
"comment:1234:reply.to" or "comment:1234:reply-to".

Redis is not a plain key-value store, supports different kinds of values.

Redis Basic Commands

31

GET retrieves the values of the key. If key is nonexisting nil is returned.
redis> GET nonexisting →(nil)

redis> SET mykey "Hello" → "OK"

redis> GET mykey → "Hello"

SET key to hold the string value. If key already holds a value, it is overwritten, regardless of its type
redis> SET mykey "Hello" → "OK"

GETDEL gets the value of key and deletes the key.
redis> SET mykey "Hello" → "OK"

redis> GETDEL mykey → "Hello“

redis> GET mykey → (nil)

MSET sets multiple key values.
redis> MSET key1 "Hello" key2 "World“→"OK“

redis> GET key1→"Hello"

redis> GET key2→"World"

Redis Partitioning

Range partitioning vs Hash partitioning

▪ Redis instances R0, R1, R2, R3, and keys representing users like user:1, user:2, ...

▪ RP: Map ranges of objects into specific Redis instances. Users from ID 0 to ID 10000 will go into
instance R0, while users form ID 10001 to ID 20000 will go into instance R1 and so forth.

▪ It has the disadvantage of requiring a table that maps ranges to instances. This table needs to be managed
and a table is needed for every kind of object, so therefore range partitioning in Redis is often undesirable
because it is much more inefficient than other alternative partitioning approaches.

▪ HP: An alternative to range partitioning is hash partitioning. This scheme works with any key,
without requiring a key in the form object_name:<id>

▪ Take the key name and use a hash function (e.g., the crc32 hash function) to turn it into a number. For
example, if the key is foobar, crc32(foobar) will output something like 93024922.

▪ Use a modulo operation with this number in order to turn it into a number between 0 and 3, so that this
number can be mapped to one of my four Redis instances. 93024922 modulo 4 equals 2, so I know my key
foobar should be stored into the R2 instance.

32

Amazon DynamoDB

▪ Major service of AWS for data storage

▪ E.g. product lists, shopping carts, user preferences

▪ Data model (key, structured value)

▪ Partitioning on the key and secondary indices on
attributes

▪ Simple queries on key and attributes

▪ Flexible: no schema to be defined (but
automatically inferred)

▪ Consistency

▪ Eventual consistent reads (default)

▪ Atomic updates with atomic counters

▪ High availability and fault-tolerance

▪ Synchronous replication between data centers

▪ Integration with other AWS services

▪ Identity control and access

▪ MapReduce

▪ Redshift data warehouse

33

DynamoDB – data model

▪ Table (items)

▪ Item (key, attributes)

▪ 2 types of primary (unique) keys

▪ Hash (1 attribute)

▪ Hash & range (2 attributes)

▪ Attributes of the form "name":"value"

▪ Type of value: scalar, set, or JSON

▪ API with methods

▪ Add, update, delete item

▪ GetItem: returns an item by primary key in a table

▪ BatchGetItem: returns the items of same primary key in multiple tables

▪ Scan : returns all items

▪ Query

▪ Range on hash & range key

▪ Access on indexed attribute

GetItem (Forum="EC2", Subject="xyz")

Query (Forum="S3", Subject > "ac")

34

DynamoDB - data partitioning

▪ Consistent hashing: the interval of hash
values is treated as a ring

▪ Advantage: if a node fails, its successor
takes over its data

▪ No impact on other nodes

▪ Data is replicated on next nodes

Node B is responsible for the hash value interval

(A,B]. Thus, item (c,v) is assigned to node B

35

DOCUMENT STORES

36

Data Model

▪ Documents

▪ Hierarchical structure, with nesting of elements

▪ Weak structuring, with "similar" elements

▪ Scalar types (text, integer, real, date) but also maps, lists, sets, nested documents, …

▪ Identified by a unique identifier (key, …)

▪ Documents are organized into collections

▪ Two main data models

▪ XML (eXtensible Markup Language): W3C standard (1998) for exchanging data on the Web

▪ Complex and heavy

▪ JSON (JavaScript Object Notation) by Douglas Crockford (2005) for exchanging data JavaScript

▪ Simple and light

37

Queries in Document Stores

▪ Query patterns

▪ Create, update or remove a document

▪ Retrieve documents according to complex query conditions

▪ Consider as…

▪ Extended key-value store where the value part is a document that you can query.

38

Document Stores

▪ Suitable use cases

▪ Event logging, content management systems, blogs, web analytics, e-commerce
applications, Analysis of messages (tweets, etc.) in real time

▪ I.e. for structured documents with similarschema

▪ When not to use

▪ Set operations involving multiple documents

▪ Design of document structure is constantly changing

▪ I.e. when the required level of granularity would outbalance the advantages of
aggregates

39

Document Stores

40

MongoDB

▪ Objective: performance and scalability

▪ A document is a collection of (key, typed value) with a unique key (generated by MongoDB)

▪ Data model and query language based on JSON

▪ Binary JSON (BSON): more compact

▪ No schema, no join, no complex transaction

▪ Shared-nothing cluster architecture

▪ Secondary indices

▪ Integration with MapReduce & Spark

41

A MongoDB Collection (posts)

42

MongoDB – query language

▪ Expression of the form

▪ db.documentType.function (JSON expression)

▪ Update examples

▪ db.posts.insert({author:’alex’, title:’No Free Lunch’})

▪ db.posts.update({author:’alex’, {$set:{age:30}})

▪ db.posts.update({author:’alex’, {$push:{tags:’music’}})

▪ Select examples

▪ db.posts.find({author:"alex"})

▪ All posts from Alex

▪ db.posts.find({comments.who:"jane"})

▪ All posts commented by Jane

43

COLUMN STORES

44

Wide Column Stores

▪ Data model

Column family (table)

▪ Table is a collection of similar rows (not necessarily identical)

Row
▪ Row is a collection of columns
▪ – Should encompass a group of data that is accessed together

▪ Associated with a unique row key

Column

▪ Column consists of a column name and column value
▪ (and possibly other metadata records)

▪ Scalar values, but also flat sets, lists or maps may be allowed

45

Wide Column Stores

▪ Query patterns

Create, update or remove a row within a given column family

• Select rows according to a row key or simple conditions

• Reconstruct a record from columns

46

Wide Column Stores

▪ Suitable use cases

▪ Event logging, content management systems, blogs, …

▪ I.e. for structured flat data with similar schema

▪ Queries that involve only a few columns

▪ Analytical queries: aggregation (SUM, AVG, …), it allows for fast retrieval of columns of data.

▪ Column-wise compression

▪ No suitable for

▪ OLTP applications that insert records of data

▪ Need to split records in columns

▪ Queries against only a few rows – e.g. point queries

47

Row-Oriented vs Column Oriented

Rows stored sequentially

Column Values Stored sequentially, mapped to a RowID

48

Row1:India,Chocolate,1000;

Row2:India,Ice-cream,2000;

Row3:Germany,Chocolate,4000;

Row4:US,Noodle,500;

India:Row1,Row2; Germany: Row3; US: Row4;

Chocolate:Row1, Row3; Ice-Cream:Row2; Noodle: Row4;

1000:Row1; 2000:Row2; 4000:Row3; 500: Row4;

Column Families

▪ A column family contains columns of related data.

▪ a key–value pair, where the key is mapped to a value that is a set of columns.

▪ In analogy with relational databases, a standard column family is as a "table", each key–value pair
being a "row".

▪ A Super Column Family Contains Column Families

49

Wide Column Stores

50

GRAPH STORES

51

Graphs

▪ Data graphs

▪ Very big: billions of nodes and links

▪ Many: millions of graphs

▪ Main applications

▪ Social networks

▪ Recommendation, sharing, sentiment analysis

▪ Knowledge Graphs

▪ Wikipedia, Google Knowledge Graph

▪ Scientific networks

▪ Biological networks

▪ Web of Data

▪ Linked Data

52

Graph Databases

▪ Data model

Property graphs
▪ Directed / undirected graphs, i.e. collections

of…
nodes (vertices) for real-world entities, and

relationships (edges) between these nodes

▪ Both the nodes and relationships can be
associated with additional properties

▪ Types of databases

• Non-transactional = small number of very large
graphs

• Transactional = large number of small graphs

53

Graph Databases

▪ Query patterns
▪ Create, update or remove a node / relationship in a graph

▪ Add Mary as Friend to Peter, Get the address of Mary

▪ General graph traversals
▪ Get the Friend of Mary who is married to Anna

▪ Sub-graph queries
▪ Get All Friends of Mary who work in the same company with her

▪ Similarity based queries (approximate matching)

▪ Get the Friends of Mary whose names start from ‘P’

▪ Graph algorithms (shortest paths, spanning trees, …)

54

Graph Databases

▪ Suitable use cases

▪ Social networks, routing, dispatch, and location-based services, recommendation
engines, biological pathways, linguistic trees, …

▪ I.e. simply for graph structures

▪ When not to use

▪ Extensive batch operations are required

▪ Multiple nodes / relationships are to be affected

▪ Only too large graphs to be stored

▪ Graph distribution is difficult or impossible at all

55

Graph Databases

56

Neo4J

▪ Direct support of graphs

▪ Data model, API, query language

▪ Implemented by linked lists on disk

▪ Optimized for graph processing

▪ Transactions

▪ Implemented on SN cluster

▪ Asymmetric replication

▪ Graph partitioning

▪ Data “Fabrics”

57

Neo4J – data model

A Neo4j transaction

NeoService neo = … // factory

Transaction tx = neo.beginTx();

Node n1 = neo.CreateNode();

n1.setProperty("name", "Bob");

n1.setProperty("age", 35);

Node n2 = neo.createNode();

n2.setProperty("name", "Mary");

n2.setProperty("age", 29);

n2.setProperty("job", "engineer");

n1.createRelationshipTo(n2, RelTypes.friend);

tx.Commit();

Node n3 = ...

◼ Nodes

◼ Links between nodes

◼ Properties on nodes and links

58

Neo4J - Cypher Query Language

▪ Java API (navigational)

▪ Cypher query language. It is a declarative, SQL-inspired language for describing visual
patterns in graphs

▪ Queries and updates with graph traversals

▪ Example Cypher query that returns the (indirect) friends of Bob whose name starts with "M"

 MATCH (bob:Person {name = ‘Bob’})-[:friend]-> follower:Person

 WHERE follower.name =~ ‘M*’ (or follower.name STARTS WITH ‘M')

 RETURN follower.name

▪ Support of SPARQL for RDF data

59

Graph Partitioning

▪ Objective: get balanced partitions

▪ NP-hard problem: no optimal algorithm

▪ Solutions: approximate, heuristics, based on the graph topology

60

▪ Allows users to break a larger graph down into individual, smaller graphs and store
them in separate databases.

▪ For graphs that are highly-connected, this means some level of data redundancy to
maintain the relationships between entities.

Graph Sharding

61

▪ A virtual database that does not store data, but acts as the entry point into the rest of
the graphs

▪ Queries coming from users or applications will hit the fabric database first, then get
routed to the instance or instances required to answer the query.

Fabric Database

62

Neo4J – Alternative architectures

63

A single DBMS for everything Fabric database in separate DBMS Scale out in multiple DBMS

ARE THERE MORE?

64

Native XML Databases

▪ Data model

• XML documents

▪ Tree structure with nested elements, attributes, and text values (beside other
less important constructs)

▪ Documents are organized into collections

▪ Query languages

• XPath: XML Path Language (navigation)

• XQuery: XML Query Language (querying)

65

Native XML Databases

66

RDF Stores

▪ Data model

▪ Resource Description Framework (RDF) triples

▪ Components: subject, predicate, andobject
▪ Each triple represents a statement about a real-world entity

▪ Triples can be viewed as graphs

▪ Vertices for subjects and objects
▪ Edges directly correspond to individual statements

▪ Query language

▪ SPARQL: SPARQL Protocol and RDF Query Language

67

RDF Stores

More details in Coming Lecture

68

Multi – model or Polystores

▪ Support multiple data models against a single, integrated backend.

▪ E.g., Document + relational

▪ Document + graph + key–value

▪ Document + relational + key–value

▪ …

▪ Multi-model support is either within the DB engine (native) or via different
layers on top of the engine (layered architecture).

▪ E.g., user relational table to store graphs

69

What about NewSQL DBs?

▪ NewSQL is a class of relational database
management systems for online
transaction processing (OLTP) workloads.

▪ online scalability of NoSQL databases

▪ Support of SQL

▪ Maintaining the ACID guarantees

▪ Distributed architectures & distributed
query processing.

▪ Optimized SQL engines with advanced
statistics

▪ Transparent sharding

70

NewSQL

▪ Pros NoSQL

▪ Scalability

▪ Often by relaxing strong consistency

▪ Performance

▪ Practical APIs for programming

▪ Pros Relational

▪ Strong consistency

▪ Transactions

▪ Standard SQL

▪ Makes it easy for tool vendors (BI, analytics, …)

▪ NewSQL = NoSQL/relational hybrid

71

SUMMARY OF FEATURES OF NOSQL
DATABASES

72

Features of NoSQL Databases

▪ Data model

▪ Traditional approach: relationalmodel

▪ (New) possibilities:

▪ Key-value, document, wide column, graph
▪ Object, XML, RDF, …

▪ Goal

▪ Respect the real-world nature of data
▪ (i.e. data structure and mutual relationships)

73

Features of NoSQL Databases

▪ Aggregate structure

▪ Aggregate definition

▪ Data unit with a complex structure
▪ Collection of related data pieces we wish to treat as a unit
▪ (with respect to data manipulation and data consistency)

▪ Examples

▪ Value part of key-value pairs in key-value stores
▪ Document in document stores
▪ Row of a column family in wide column stores

74

Features of NoSQL Databases

▪Aggregate structure

▪ Types of systems
▪Aggregate-ignorant: relational, graph
▪ It is not a bad thing, it is a feature

▪Aggregate-oriented: key-value, document, wide column

▪ Design notes

▪No universal strategy how to draw aggregate boundaries
Atomicity of database operations:
▪ just a single aggregate at a time

75

Features of NoSQL Databases

▪ Elastic scaling

▪ Traditional approach: scaling-up

▪ Buying bigger servers as database load increases

▪ New approach: scaling-out
▪ Distributing database data across multiple hosts
▪ – Graph databases (unfortunately): difficult or impossible at all

▪ Data distribution

▪ Sharding

▪ Particular ways how database data is split into separate groups

▪ Replication

▪ Maintaining several data copies (performance, recovery)

76

Features of NoSQL Databases

▪ Automated processes

▪ Traditional approach

▪ Expensive and highly trained database administrators

▪ New approach: automatic recovery, distribution, tuning, … Relaxed consistency

▪ Traditional approach

▪ Strong consistency (ACID properties and transactions)

▪ New approach

▪ Eventual consistency only (BASE properties)
▪ I.e. we have to make trade-offs because of the data distribution

77

Features of NoSQL Databases

▪ Schemaless-ness

▪ Relational databases

▪ Database schema present and strictly enforced

▪ NoSQL databases
▪ Heterogeneous, Relaxed schema or completely missing

▪ Consequences: higherflexibility
▪ Dealing with non-uniform data

▪ Structural changes cause no overhead

▪ However: there is (usually) an implicitschema
▪ We must know the data structure at the application level anyway

78

Features of NoSQL Databases

▪ Open source

▪ Community and enterprise versions (with extended features or extent of support)

▪ Simple APIs

▪ State-less application interfaces (HTTP)

79

Which Data Store for What?

Category Requirements
Key-value • Access by key

• Flexibility (no schema)

• Very high scalability and performance

Document • Web content management

• Flexibility (no schema)

• Limited transactions

Column • Very big collections

• Analytical tasks

• Scalability and high availability

Graph • Efficient storage and management of large graphs

Multimodel • Integrated key-value, document and graph management

NewSQL • ACID transactions , flexibility and scalability

• SQL and key-value access

82

WHAT IS NEXT?

83

For a ranked list of DB engines: https://db-engines.com/en/ranking/

84

https://db-engines.com/en/ranking/

https://mattturck.com/data2021/

85

https://mattturck.com/data2021/

Things to study

▪ CAP Theorem: https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-
keynote.pdf

▪ M. Stonebraker and U. Cetintemel, ""One size fits all": an idea whose time has come
and gone," 21st International Conference on Data Engineering (ICDE'05), 2005, pp. 2-
11, doi: 10.1109/ICDE.2005.1.

▪ New SQL: An Alternative to NoSQL and Old SQL For New OLTP Apps By Michael
Stonebraker (June 16, 2011) https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-
an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext

▪ For a ranked list of all DB engines: https://db-engines.com/en/ranking/

▪ Principles of Distributed Database Systems. M. Tamer Özsu, Patrick Valduriez,
https://cs.uwaterloo.ca/~ddbook/

▪ Chapter11: NoSQL, NewSQL and Polystores
86

https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
https://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
https://db-engines.com/en/ranking/
https://cs.uwaterloo.ca/~ddbook/

Thank you

87

	Slide 1: Διαχείριση Μεγάλων Δεδομένων Big Data Management
	Slide 2: Lecture Outline
	Slide 3: Relational databases
	Slide 4: Relational databases
	Slide 5: Relational Databases
	Slide 6: Relational Databases - Representatives
	Slide 7: RDBMs Features – Normal Forms
	Slide 8: RDBMs Features – Transactions
	Slide 9: Where is Big Data?
	Slide 10: Big Data Characteristics – The basic Vs
	Slide 11: New Trends after 2000’s
	Slide 12: RDBMs Limits
	Slide 13: Big Data on Clouds
	Slide 14: New Data assumptions
	Slide 15: CAP Theorem
	Slide 16: Two types of transactions
	Slide 17: Strong vs Eventual Consistency
	Slide 18: Symmetric, Asynchronous Replication
	Slide 19: BASE properties
	Slide 20: Lecture Outline
	Slide 21: NoSQL Databases
	Slide 22: What does NoSQL actually mean?
	Slide 23: NoSQL (Not Only SQL)
	Slide 24: RDBMS vs NoSQL Overview
	Slide 25: NoSQL Approaches
	Slide 26: Key-Value Stores
	Slide 27: Key-Value Stores
	Slide 28: Key-Value Stores
	Slide 29: Key-Value Stores
	Slide 30: Redis
	Slide 31: Redis Basic Commands
	Slide 32: Redis Partitioning
	Slide 33: Amazon DynamoDB
	Slide 34: DynamoDB – data model
	Slide 35: DynamoDB - data partitioning
	Slide 36: Document stores
	Slide 37: Data Model
	Slide 38: Queries in Document Stores
	Slide 39: Document Stores
	Slide 40: Document Stores
	Slide 41: MongoDB
	Slide 42: A MongoDB Collection (posts)
	Slide 43: MongoDB – query language
	Slide 44: Column stores
	Slide 45: Wide Column Stores
	Slide 46: Wide Column Stores
	Slide 47: Wide Column Stores
	Slide 48: Row-Oriented vs Column Oriented
	Slide 49: Column Families
	Slide 50: Wide Column Stores
	Slide 51: Graph stores
	Slide 52: Graphs
	Slide 53: Graph Databases
	Slide 54: Graph Databases
	Slide 55: Graph Databases
	Slide 56: Graph Databases
	Slide 57: Neo4J
	Slide 58: Neo4J – data model
	Slide 59: Neo4J - Cypher Query Language
	Slide 60: Graph Partitioning
	Slide 61: Graph Sharding
	Slide 62: Fabric Database
	Slide 63: Neo4J – Alternative architectures
	Slide 64: Are there More?
	Slide 65: Native XML Databases
	Slide 66: Native XML Databases
	Slide 67: RDF Stores
	Slide 68: RDF Stores
	Slide 69: Multi – model or Polystores
	Slide 70: What about NewSQL DBs?
	Slide 71: NewSQL
	Slide 72: Summary of Features of NoSQL Databases
	Slide 73: Features of NoSQL Databases
	Slide 74: Features of NoSQL Databases
	Slide 75: Features of NoSQL Databases
	Slide 76: Features of NoSQL Databases
	Slide 77: Features of NoSQL Databases
	Slide 78: Features of NoSQL Databases
	Slide 79: Features of NoSQL Databases
	Slide 82: Which Data Store for What?
	Slide 83: What is next?
	Slide 84
	Slide 85
	Slide 86: Things to study
	Slide 87: Thank you

