
Διαχείριση Μεγάλων Δεδομένων

Big Data Management

Εργαστηριακή Διάλεξη MongoDB

Σταύρος Μαρούλης
stavmars@athenarc.gr

mailto:stavmars@athenarc.gr

Outline

● Overview

● Installation

● MongoDB vs. PostgreSQL

● Data Modeling

● Data Types

● Database, Collection & Document Operations

● Relationships

● Indexing

● Database Replication

2

● Cross-platform, document-oriented database providing:
○ High performance
○ High availability
○ Easy scalability

● (Basic) Terminology:
○ Database: Group of MongoDB Collections.
○ Collection: Group of MongoDB Documents.

■ Equivalent of an RDBMS table.
■ Does not enforce a certain schema → Documents within a Collection can have different

fields.
○ Document: A set of key-value pairs.

■ Dynamic schema → documents in the same collection do not need to have the same set of
fields/structure

■ Common fields in a collection's documents may hold different types of data

Overview

3

Installation

● To install MongoDB Community Edition (CE) please follow the instructions (for the OS of
your choice) at https://docs.mongodb.com/manual/installation/

● To run the latest version of MongoDB as a Docker Container:

docker run -d -p 27017:27017 --name MONGO_CONTAINER mongo:latest

4

https://docs.mongodb.com/manual/installation/

MongoDB vs. PostgreSQL

● Why use MongoDB:
○ Document-Oriented Storage
○ Data model and query language based on JSON (BSON)
○ No complex joins
○ Schema-less
○ Full Index Support
○ Replication and high availability
○ Auto-sharding
○ Ease of scale-out
○ Rich queries
○ Fast in-place updates

5

MongoDB vs. PostgreSQL (cont.)

PostgreSQL MongoDB

Database Database

Table Collection

Tuple/Row Document

Column Field

Table Join Embedded Documents

Primary Key Primary Key (Default key _id provided by
mongodb itself)

6

Data Modeling

Suppose we need a non-relational database design for a blog in order to chat with the readers in
real-time. The database of that blog has the following requirements.

● Every post has a unique title, description, url, the name of its publisher and total number
of likes.

● Every post can have one or more tags.
● Every post has comments given by users along with their name, message, data-time and

likes.
○ On each post, there can be zero or more comments.

● In RDBMS schema, we would use three tables (posts, tags and comments).

7

● When designing a database in NoSQL the key challenge in data modeling is balancing:
○ The needs of the application

○ The performance characteristics of the database engine

○ The data retrieval patterns

● Always consider the application usage of the data (i.e. queries, updates, and processing of
the data) as well as the inherent structure of the data itself.

● Back to our example:
○ Suppose we create an RDMS-like schema

■ To fetch the comments of of a post in the blog, we would need to do a join, which is not -

natively- supported in MongoDB (spoilers!) → Not good as far as efficiency is concerned.

○ If we opt for a better, more unified schema, there would be no need for join queries

■ The blog would run smoothly and we would get a paycheck instead of the boot.

Data Modeling (cont.)

8

DBMS - Lab 3

{

_id: 001

title: “Lab III - MongoDB”,

description: ”Introduction to MongoDB”,

post_by: “DataStories”,

url: “datastories.org”,

tags: [“MongoDB”, “Datatories”, “DBMS”, “NoSQL”],

likes: 128,

comments: [

{

by_user:'User1',

message: 'Message1',

data_time: '24/10/2019, 15:37',

likes: 64

},

{

by_user:'User2',

message: 'Message2',

data_time: '24/10/2019, 15:40',

likes: 32

}

]

}

9

Image Taken from TutorialsPoint.com

https://www.tutorialspoint.com/mongodb/mongodb_data_modeling.htm

Data Types

● String
○ String in MongoDB must be UTF-8 valid.

● Integer
○ 32 bit or 64 bit depending upon your server.

● Boolean
● Double
● Arrays

○ This type is used to store arrays or list or multiple values into one key.
● Date

○ This datatype is used to store the current date or time in UNIX time format
● ObjectId

○ 4 bytes timestamp, 3 bytes machine id, 2 bytes process id (pid), 3 bytes incrementer

MongoDB documentation [3], covers all the data types that can be used.

10

Database Operations

To access MongoDB, type “mongosh” in a Terminal

● Check your currently selected database:
○ db

● Check your databases list:
○ show dbs
○ show databases

● Create Database:
○ use <DATABASE_NAME>

● Drop Database:
○ db.dropDatabase()

11

Collection Operations

● Create a Collection:
○ db.createCollection(name, options)

● Drop a Collection:
○ db.<COLLECTION_NAME>.drop()

● View Collections (Within a Database):
○ show collections

12

Document Operations

● Insert Document
○ db.<COLLECTION_NAME>.insertOne(document)
○ db.<COLLECTION_NAME>.insertMany(documents)
○ db.<COLLECTION_NAME>.save(document)

● Example:
db.<COLLECTION_NAME>.insertOne([{

_id: ObjectId(7df78ad8902c),

title: 'MongoDB 101,

description: 'Introduction to MongoDB',

by: 'datastories',

url: 'http://www.datastories.org',

tags: ['mongodb', 'database', 'NoSQL', ‘Introduction’],

likes: 10

}])

13

Document Operations (cont.)

● Query Document
○ db.<COLLECTION_NAME>.find({<key>:<value>})

● Using the above commands without any clause

→ SELECT * FROM COLLECTION_NAME;

● To return only one document → find().limit(1)

→ SELECT * FROM COLLECTION_NAME LIMIT 1;

● <value> can vary from a certain key value to a key clause in the format
{<condition>:<value>}, where <condition> can be: $lt(e), $gt(e), $ne

14

Document Operations (cont.)

○ To return the (famous) people that died during 2016, the SQL Query is:

SELECT * FROM name_basics WHERE “deathYear” = 2016;

○ In MongoDB, the very same query can be written in the following ways:

■ db.name_basics.findOne({“deathYear”: 2016}) # For getting only the first occurence

■ db.name_basics.find({“deathYear”: 2016}) # For getting all occurences

15

Document Operations (cont.)

● To query documents based on the AND condition:
○ Use separate {<key>:<value>} pairs separated by comma (,) in find();

○ Use the $and clause within find():
$and: [{key1: value1}, {key2:value2}, …, {keyn:valuen}]

● To query documents based on the OR condition:
○ Use the $or clause within find():

$or: [{key1: value1}, {key2:value2}, …, {keyn:valuen}]

16

Document Operations (cont.)

○ The SQL Query:

SELECT * FROM name_basics WHERE “deathYear”>2016 OR “deathYear”<1955

○ In MongoDB can be written as:

db.name_basics.find({'$or':[{'deathYear':{'$gt': 2016}},

{'deathYear':{'$lt': 1955}}]})

○ Likewise, the SQL Query:
SELECT * FROM name_basics WHERE “deathYear”<2016 AND “deathYear”>1955

○ In MongoDB can be written as:

db.name_basics.find({'deathYear':{'$lt':2016, '$gt':1955}})

17

Document Operations (cont.)

● Update Document:
○ db.<COLLECTION_NAME>.updateOne(CRITERIA, UPDATED_DATA, OPTIONS)
○ db.<COLLECTION_NAME>.updateMany(CRITERIA, UPDATED_DATA, OPTIONS)
○ Example: To find the titles where the value of the field “titleType” is equal to ‘short’ and

set it to ‘shortMovie’:

db.title_basics. updateMany({titleType: ‘short'}, {"$set":{titleType : ‘shortMovie’}})

● Another way to update a document → save() method:
○ db.<COLLECTION_NAME>.save({_id: ObjectId(...), NEW_DATA})
○ Example: To replace the document with _id: “7df78ad8902c”:

db.mycol.save({"_id" : ObjectId(7df78ad8902c), "title": "Mongo 102", "by": "DataStories.org"})

MongoDB documentation [4], covers all the operators that can be used within an update query.

18

Document Operations (cont.)

● Delete Document:
○ SQL Equivalent:

DELETE * FROM table WHERE condition(s);

○ To remove one occurrence:

○ db.<COLLECTION_NAME>.deleteOne(DELETION_CRITERIA)

○ To remove all occurrences:

○ db.<COLLECTION_NAME>.deleteMany(DELETION_CRITERIA)

○ <DELETION_CRITERIA>: Can be any {<key>:<value>} clause as written in the previous
slides

● Example: To remove the (famous) people that their (primary) profession is “director” or
“assistant director”:

○ db.name_basics.deleteMany({ 'primaryProfession': {$in: ['director’,

'assistantdirector’]} })

○ db.name_basics.deleteOne({'primaryName': 'Lauren Bacall'})
19

Projection

● SQL Equivalent:
SELECT key1, key2, …, keyn FROM COLLECTION_NAME WHERE condition(s);

● Within find() method:
○ db.COLLECTION_NAME.find({<KEY-VALUE-CLAUSES>},{<KEY1>:1/0, …, <KEYn>:1/0})

● To get the names of the (famous) people who are born on 1946:

○ SQL Query:

○ SELECT “primaryName” FROM name_basics WHERE “birthYear” = 1946;

○ MongoDB

○ db.name_basics.find({'birthYear':1946}, {'_id':0, 'primaryName':1})

20

Aggregating Documents

● Aggregation is a “pipeline” and is just exactly that, being “piped” processes that feed input
into the each stage as it goes along.

● When calling aggregate on a collection, we pass a list of operators.
○ Stages
○ Expressions
○ Accumulators

● Documents are processed through the stages in sequence, with each stage applying to
each document individually.

21
Aggregation Pipeline. Image by Rohan Paul (medium.com)

https://medium.com/@paulrohan/aggregation-in-mongodb-8195c8624337

Aggregating Documents (cont.)

● Basic Command:
○ db.COLLECTION_NAME.aggregate(AGGREGATE_OPERATION)

● Example (Get the actors that are over 100 years old):
○ db.name_basics.aggregate([

{"$addFields":{'age': {'$subtract':['$deathYear', '$birthYear']}}},

{'$match':{'age':{'$gt':100}}},

{'$project':{'_id':0, 'age':0}},

{'$limit':5}])

○ SQL Equivalent:
SELECT * FROM name_basics WHERE (“deathYear”-”birthYear”) > 100 LIMIT 5;

22

Aggregating Documents (cont.)

● Adding new Fields:
○ {$addFields: {'field1':<value1>, …, 'fieldn':<valuen>}}

○ Adds new fields to documents and outputs documents that contain all existing fields from
the input documents and newly added fields.

● Matching Documents
○ {$match: {'field1':<value1>, …, 'fieldn':<valuen>}}

○ Filters the documents to pass only the ones that match the specified condition(s).

● Projecting Fields
○ {$project: {'_id:0/1', 'field1':1, …, 'fieldn':1}}

○ Passes along the documents with the requested fields to the next stage in the pipeline.

● Deconstructuring Array Fields
○ {$unwind: <field path>}

○ Deconstructs an array field from each document and outputs a document for each element
with the value of the array field replaced by the element.

23

Aggregating Documents (cont.)

● Grouping Documents
○ {$group:{

_id: <expression>, # Group By Expression

<field1>: { <accumulator1> : <expression1> }, …,

<fieldn>: { <accumulatorn> : <expressionn> }

}}

○ Groups input documents by the specified _id expression
○ The _id field of each output document contains the unique group by value.
○ The output documents can also contain computed fields that hold the values of some

accumulator expression.

● The <accumulatori> operator can be one of the following accumulator operators:
○ $sum, $avg, $min, $max, $push, $addToSet, $first, $last

24

Aggregating Documents (cont.)

● Sorting Documents:
○ {$sort: {KEY:1/-1, ...}}

■ 1 (resp. -1) → ascending (resp. descending) order
■ Default behaviour (if no preference is stated) → Ascending order
■ SQL Equivalent: SELECT * FROM COLLECTION_NAME ORDER BY KEY [ASC/DESC];

● Limiting Documents:
○ {$limit: {NUMBER}}

○ SQL Equivalent: SELECT * FROM COLLECTION_NAME LIMIT NUMBER;

● Skipping Documents:
○ {$skip: {NUMBER}}

○ SQL Equivalent: SELECT * FROM COLLECTION_NAME OFFSET NUMBER;

MongoDB documentation [5], covers everything you need to know about the stages, expressions and
accumulators that can be used in an aggregation pipeline, while [6, 7] covers a more hands-on example
regarding some of the most used operators.

25

● By default, MongoDB does not have a join operator/command

● However, in order to reduce redundancy and read/write overheads we can use:
○ Embedded Relationships
○ Referenced Relationships
○ Database References

● Relationships represent how various documents are logically related to each other.
○ Can be modeled via Embedded and Referenced approaches.
○ Such relationships can be either 1:1, 1:N, N:1 or N:N.

Relationships

26

Relationships (cont.)

● In the embedded approach, we will embed the address document inside the user
document.

● Pros:
○ All related data are embedded in a single document
○ Easy to retrieve and maintain.

● Cons:
○ Introduces redundancy
○ Document size growth rate increases.
○ May impact read/write performance.

● To get the address of “Tom Hanks”:
○ db.users.findOne({"name":"Tom Hanks"}, {"address":1})

27

Relationships (cont.)

● In the referenced approach, both the user and address documents will be maintained
separately but the user document will contain a field that will reference the address
document's id field.

● Pros:
○ Normalized Structure

● Cons:
○ May increase query complexity.
○ Slower performance if we need to retrieve

both the user and their addresses

● Example: To get the address of “Tom Hanks”:
○ var result = db.users.findOne({"name":"Tom Hanks"}, {"address_ids":1})
○ var addresses = db.address.find({ "_id": {"$in":result["address_ids"]} })

28

Database References

● Referenced Relationships (a.k.a. Manual References) are often a quick and easy solution

● However, when a document contains references from different collections → MongoDB
DBRefs can be of great value when it comes to usability

● Using DBRefs (the field order is essential):
○ $ref − This field specifies the collection of the referenced document
○ $id − This field specifies the _id field of the referenced document
○ $db − This is an optional field and contains the name of the database in which the

referenced document lies

30

● Like traditional RDBMSs, MongoDB supports Indexes for faster queries
○ By default MongoDB indexes use a B-tree data structure
○ Hash Index is also supported, but only for equality queries
○ Index can be created on either one or multiple fields (compound index)

■ A compound index cannot include a hashed index component.

● SQL Equivalent:
CREATE INDEX IF NOT EXISTS “tconst_0” ON title_basics USING btree (“tconst” ASC|DESC);

MongoDB documentation [8], covers everything you need to know regarding indexing
documents, while [9, 10] cover a more hands-on example regarding some of the most used
index types and their performance gains.

Indexing Documents

32

Indexing Documents (cont.)

● Basic Syntax:
○ B-Tree (default): db.COLLECTION_NAME.createIndex({<KEY>: 1})

■ 1/-1 → Ascending/Descending Index
○ Hash Index: db.COLLECTION_NAME.createIndex({<KEY>: ”hashed”})

● Index Operations:
○ View Indexes: db.COLLECTION_NAME.getIndexes()

○ Delete Indexes: db.COLLECTION_NAME.dropIndex("<INDEX-NAME>")

○ View Statistics: db.COLLECTION_NAME.stats()
■ Use .indexSizes to get only the size of index

● Further parameters can be specified, with few of them are:
○ name (string), unique (boolean), partialFilterExpression (document), expireAfterSeconds

(integer)

33

Analyzing Query Performance

● The explain operator provides information regarding:
○ The query
○ The indexes used in a query
○ Several query-oriented statistics

● The hint operator instructs the query optimizer to use the specified index to run a query.

● Very useful utilities for:
○ Analyzing how well your indexes are optimized.
○ Testing performance of a query with different indexes.

● Basic syntax:
○ db.users.find({<CLAUSES>}, {<PROJECTION_OPTIONS>}) .explain(“<MODE>”)

● Modes:
○ queryPlanner, executionStats, allPlansExecution

35

● Operational Considerations
○ Each index requires at least 8kB of data space.

○ When active, each index will consume some disk space and memory.
■ This is significant when tracked in capacity planning.

○ For a high read-to-write ratio collection, additional indexes improve performance and do
not affect un-indexed read operations.

● Limitations
○ Adding an index has some negative performance impact for write operations especially for

collections with the high write-to-read ratio.
■ Indexes will be expensive in that each insert must also update any index.

○ Indexes are most effective at retrieving small subsets of data and become less and less
efficient as you need to get larger percentages of a collection

Overall...

36

Database Replication

● Replication is the process of synchronizing data across multiple servers.

● Provides redundancy and increases data availability (24/7)…
○ ...with multiple copies of data on different database servers.

● Protects a database from the loss of a single server

● Allows you to recover from hardware failure and service
interruptions

37

Image Taken from TutorialsPoint.com

https://www.tutorialspoint.com/mongodb/mongodb_data_modeling.htm

Database Replication

● MongoDB achieves replication by the use of replica set.

● A replica set is a group of two or more nodes

● In a replica set:
○ One node is primary node; and
○ All remaining nodes are secondary.

● All data replicates from primary to secondary node.

● At the time of automatic failover or maintenance:
○ Election establishes for primary; and
○ A new primary node is elected.

● After the recovery of failed node:
○ Again joins the replica set; and
○ Works as a secondary node.

38

Image Taken from TutorialsPoint.com

https://www.tutorialspoint.com/mongodb/mongodb_data_modeling.htm

Database Replication

● Set up a Replica Set
○ Shutdown already running MongoDB server.
○ Start the MongoDB server by specifying -- replSet option.

● Basic “--replSet” Syntax:
○ mongod --port "PORT" --dbpath "YOUR_DB_DATA_PATH" --replSet

"REPLICA_SET_INSTANCE_NAME"

● Add Members to Replica Set:
○ rs.add(HOST_NAME:PORT)
○ NOTE:You can add mongod instance to replica set only when you are connected to primary node.

■ Check if you’re connected to master node → db.isMaster()

39

… is this the end?

● … Only the beginning. We’ve only scratched the surface.
● MongoDB is capable of more advanced concepts [15, 16] such as:

○ Build Clusters for Database Sharding (distributing data across multiple machines)
○ … and lots more...

41

Thank you for your Attention!!

42

References

1. A (friendly) Introduction to MongoDB, https://www.tutorialspoint.com/mongodb/index.htm
2. MongoDB Documentation, https://docs.mongodb.com/
3. MongoDB Data Types, https://docs.mongodb.com/manual/reference/bson-types/
4. MongoDB Update Operators, https://docs.mongodb.com/manual/reference/operator/update/
5. MongoDB Aggregation Pipeline, https://docs.mongodb.com/manual/core/aggregation-pipeline/
6. Aggregation in MongoDB, https://medium.com/@paulrohan/aggregation-in-mongodb-8195c8624337
7. Aggregation in MongoDB II, https://www.codeproject.com/Articles/1149682/Aggregation-in-MongoDB
8. MongoDB Indexes, https://docs.mongodb.com/manual/indexes/
9. Understanding MongoDB Indexes, https://severalnines.com/database-blog/understanding-mongodb-indexes
10. MongoDB Indexes and Performance, https://hackernoon.com/mongodb-indexes-and-performance-2e8f94b23c0a
11. MongoDB Text Indexes, https://docs.mongodb.com/manual/core/index-text/
12. Full-Text Search in MongoDB, https://code.tutsplus.com/tutorials/full-text-search-in-mongodb--cms-24835
13. How to Speed-Up MongoDB Regex Queries by a Factor of up-to 10, https://medium.com/statuscode/how-to-speed-up-

mongodb-regex-queries-by-a-factor-of-up-to-10-73995435c606
14. Analyze Query Performance in MongoDB, https://docs.mongodb.com/manual/tutorial/analyze-query-plan/
15. MongoDB Advanced Concepts - Replication and Sharding, https://www.slideshare.net/knoldus/mongodb-advance-

concepts-replication-and-sharding
16. MongoDB Advanced Concepts - MapReduce, https://docs.mongodb.com/manual/core/map-reduce/

43

https://www.tutorialspoint.com/mongodb/index.htm
https://docs.mongodb.com/
https://docs.mongodb.com/manual/reference/bson-types/
https://docs.mongodb.com/manual/reference/operator/update/
https://docs.mongodb.com/manual/core/aggregation-pipeline/
https://medium.com/@paulrohan/aggregation-in-mongodb-8195c8624337
https://www.codeproject.com/Articles/1149682/Aggregation-in-MongoDB
https://docs.mongodb.com/manual/indexes/
https://severalnines.com/database-blog/understanding-mongodb-indexes
https://hackernoon.com/mongodb-indexes-and-performance-2e8f94b23c0a
https://docs.mongodb.com/manual/core/index-text/
https://code.tutsplus.com/tutorials/full-text-search-in-mongodb--cms-24835
https://medium.com/statuscode/how-to-speed-up-mongodb-regex-queries-by-a-factor-of-up-to-10-73995435c606
https://docs.mongodb.com/manual/tutorial/analyze-query-plan/
https://www.slideshare.net/knoldus/mongodb-advance-concepts-replication-and-sharding
https://docs.mongodb.com/manual/core/map-reduce/

