
Prerequisites: You need to have Docker preinstalled. You can install it from here.

To set up a MongoDB Docker container, we’ll use a Docker run command to deploy a MongoDB instance and
also give it a container name:

 docker run -d -p 27017:27017 --name MONGO_CONTAINER mongo:latest

The connect to our container named MONGO_CONTAINER using the bash terminal run:

 docker exec -it MONGO_CONTAINER bash

To launch the MongoDB shell and connect to the MongoDB instance running on localhost with the default port
27017:

 mongosh

To list the databases, execute the following command:

show dbs

Create a new database and switch to it:

use lab

Create a new collection named Items:

MongoDB Lab - Hands-on

Run MongoDB as a Docker Container

Start the MongoDB shell

Interact with the MongoDB shell

https://docs.docker.com/get-docker/

 db.createCollection('items')

Add a document in the colection:

 db.items.insertOne({name: "item1", qty: 10})

Add multiple documents in the colection:

 db.items.insertMany([{name: "item2", qty: 12}, {name: "item3", qty: 3}])

Show all documents in the collection:

 db.items.find()

Find a single document by name:

 db.items.findOne({ name: "item1" })

Find multiple documents:

 db.items.find({ qty: { $gt: 4 } })

Update single document:

 db.items.updateOne({ name: "item1" }, { $set: { qty: 2 } })

Update all matching documents:

 db.items.updateMany({ qty: { $lt: 4 } }, { $inc: { qty: 5 } })

Remove all matching documents:

 db.items.remove({ qty: { $lte: 10 } })

Load the sample Books dataset

First, exit the mongo shell:

exit

Then, in the bash shell run the following to update the container libraries and install wget. This is needed in
order to later fetch the sample json file from the web.

apt-get update && apt-get install wget

Fetch the sample json and import it into a collection "books" of database "lab" using mongoimport:

wget -qO- https://raw.githubusercontent.com/stavmars/MongoDB_Lab/main/books.json | mongoimport -d lab

Launch the MongoDB shell again:

 mongosh

Switch to the new database and view the available collections

use lab

show collections

Show a single document and examine its structure

db.books.find().limit(1)

To find the books with a number of pages that is greater or equal than 400 but less than 500, sort them by
their publication date descending and print their titles, page counts and date they were published

db.books.find({pageCount: {$lt: 500, $gte: 400}}, {
 _id: 0,
 title: 1,
 pageCount: 1,
 publishedDate: 1
}).sort({publishedDate: -1})

Explore the Books Dataset

To find all Python books and print their titles and categories we run the following query.

db.books.find({categories: "Python"}, {title: 1, categories: 1})

Compare the results of the query above with the following one:

db.books.find({categories: ["Python"]}, {title: 1, categories: 1})

To find all books that are either about Python or PHP run:

db.books.find({categories: {$in: ["Python", "PHP"]}}, {
 title: 1,
 categories: 1,
})

Find the top 5 Python books with the most pages and print their titles, categories and page counts.

db.books.find({categories: "Python"}, {
 title: 1, categories: 1, pageCount: 1
}).sort({pageCount: -1}).limit(5)

Find the books that have as author either "Marc Harter" or "Alex Holmes" and print their titles, authors and
categories

db.books.find({authors: {$in: ["Marc Harter", "Alex Holmes"]}}, {
 title: 1, categories: 1, authors: 1
})

To see the indexes available for a collection run:

db.books.getIndexes()

To see how indexing helps query performance run the following query and examine its query plans and
execution statistics using explain:

Indexing Documents

db.books.find({categories: "Python"}).explain("executionStats")

Now add an index on the field categories:

db.books.createIndex({categories: 1})

Now run the same query again and compare the execution stats and query plans followed.

To drop the index we just created we can run:

db.books.dropIndex({categories: 1})

This example computes the average number of pages grouped by the "status" field:

db.books.aggregate([
 {
 $group: {
 _id: "$status",
 avgPageCount: { $avg: "$pageCount" }
 }
 }
])

Expand the example above in order to also compute the minimum and maximum number of pages

db.books.aggregate([{
 $group: {
 _id: "$status",
 avgPageCount: {$avg: "$pageCount"},
 minPageCount: {$min: "$pageCount"},
 maxPageCount: {$max: "$pageCount"}
 }
}])

Now we compute the number of books in the database per year. For this we can use the $year operator and
add to each document a year field before the $group stage:

db.books.aggregate([
 {$addFields: {year: {$year: "$publishedDate"}}},

Aggregations

 {
 $group: {
 _id: "$year",
 count: {$sum: 1}
 }
 },
 {$sort: {count: -1}}
])

To exclude books with no publication data available, we add a $match aggregation stage:

db.books.aggregate([
 {$match: {publishedDate: {$ne: null}}},
 {$addFields: {year: {$year: "$publishedDate"}}}, {
 $group: {
 _id: "$year",
 count: {$sum: 1}
 }
 }, {$sort: {count: -1}}])

Now expand the query above to find the number of books per year and status.
 Hint: Use as the _id field in the $group stage an object with keys both the year and status: _id:
{year:"$year", status:"$status"}

db.books.aggregate([{$addFields: {year: {$year: "$publishedDate"}}}, {
 $group: {
 _id: {year: "$year", status: "$status"}, count: {$sum: 1}
 }
}, {$sort: {count: -1}}])

In the following example, we want to find the average number of pages per book category for all books with
status="PUBLISH", and sort the results by the average page count. Remember that categories is an array field
with possibly more than one values for every book.

db.books.aggregate([
 { $match : {status: "PUBLISH" } },
 { $unwind: "$categories" },
 { $group: { _id: "$categories", avgPageCount: { $avg: "$pageCount" } } },
 { $sort: {avgPageCount: -1} }
])

Similarly, find the average number of pages, as well as the number of books per author. Then, find the 5
authors with the most books. Remember that as with the categories field, the authors field is also an array, so
use the $unwind aggregation stage.

db.books.aggregate([{$unwind: "$authors"}, {$match: {authors: {$ne: ""}}}, {
 $group: {
 _id: "$authors", count: {$sum: 1}, avgPageCount: {$avg: "$pageCount"}
 }
}, {$sort: {count: -1}}, {$limit: 5}])

Next, we need to find the average number of authors for all books. We use the $size operator which counts
and returns the total number of items in an array.

db.books.aggregate([{$project: {authorsCount: {$size: '$authors'}}}, {
 $group: {
 _id: null,
 avgAuthorsCount: {$avg: '$authorsCount'}
 }
}])

In the same fashion, find the average number of categories for every book.

db.books.aggregate([{$project: {categoriesCount: {$size: '$categories'}}}, {
 $group: {
 _id: null, avgCategoriesCount: {$avg: '$categoriesCount'}
 }
}])

If we wish to find for every author the years that they published a book, we can run the following:

db.books.aggregate([
 {$addFields: {year: {$year: "$publishedDate"}}},
 { $unwind: "$authors" },
 { $group: { _id: "$authors", years: { $addToSet: "$year" } } }
])

Now, find for every category of book, the years that there were publications belonging to that category:

db.books.aggregate([{$addFields: {year: {$year: "$publishedDate"}}}, {$unwind: "$categories"}, {
 $group: {
 _id: "$categories", years: {$addToSet: "$year"}
 }
}])

Now modify your previous query to print 'N/A' instead of null in the lists of years.(Hint: Use the ifNull operator
when you add the year field). Also, sort the array of years in the final results (Hint: Use the sortArray operator).

db.books.aggregate([{$addFields: {year: {$ifNull: [{$year: "$publishedDate"}, "N/A"]}}}, {$unwind: "$c
 $group: {
 _id: "$categories", years: {$addToSet: "$year"}
 }
}, {$project: {years: {$sortArray: {input: "$years", sortBy: 1}}}}])

Find the authors who have written books in the most categories. Provide a list of these authors along with the
number of categories they've written books in.

db.books.aggregate([
 {
 $unwind: "$authors"
 },
 {
 $unwind: "$categories"
 },
 {
 $group: {
 _id: {
 author: "$authors",
 category: "$categories"
 }
 }
 },
 {
 $group: {
 _id: "$_id.author",
 categoriesCount: { $sum: 1 }
 }
 },
 {
 $sort: {
 categoriesCount: -1
 }
 },
 {
 $limit: 5
 },
 {
 $project: {
 author: "$_id",
 categoriesCount: 1,
 _id: 0
 }
 }

])

