Multi-objective optimization
Most real-world optimization problems involve multiple conflicting objectives (Konak,
Coit ¢ Smith, 2006). Hence, multi-objective optimization problems have various practical

applications. The use of evolutionary algorithms has been motivating for solving such
problems. Because of the population-based nature of these algorithms, we obtain a set of
solutions on every run. In a multi-objective optimization problem, the definition of
optimality is not as simple as in single-objective optimization. When the optimal solution
of an objective function conflicts with an optimal solution of another objective function,

the problem becomes challenoino. Therefore. to solve such problems. it is necessary to
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find a trade-off between objective functions. The obtained solutions of multi-objective
algorithms are called nondominated solutions or Pareto-optimal solutions. Theoretically,
if a multi-objective optimization problem is a minimization problem, it is formulated as
follows (Mirjalili et al., 2016).

Min F(x) = [fi(x),fa(x), ..., fu(x)] @)
st. Li<x<U, i=12,....d

Subject to the following equality and inequality constraints:

h(x) =0 k=1,2,.. K

where M is the number of objectives, and d is the number of decision variables (dimension)
of solution x, so that x; should be in interval [L,U;] (i.e., box-constraint). Finally, f; is the
objective function that should be minimized. To compare two candidate solutions in
multi-objective problems, we can use the concept of Pareto dominance. Mathematically,
the Pareto dominance is defined as follows. If x = (xy, x3,..., xg) and X = (X}, %2.. .., X4) are
two vectors in the search space, x dominates x(x > x) if and only if

Vie {1,2,...,M}.fi(x) < fi(#)A @
Je{1.2,....M}: fi(x) <f(#)

This means that solution x dominates solution x (is better) if and only if the objective
values of x are better than or equal to all objective values of x (is not worse than x in any of
the values of the objective functions) and it has a better value than x in at least one of
the objective functions. If the solution x is better than x in all objectives, we call strong
dominance but in the case that they have at least one equal objective, the weak dominance
happens. All nondominated solutions construct a Pareto front.



Non-dominated Sorting Genetic Algorithm Il (NSGAII)

NSGA-IT

Step 1 Combine parent and offspring populations and create R, =P, U Q,
Perform a non-dominated sorting to R, and identify different
fronts: Fr.i=1.2.. ..

Step 2 Set new population P,.; = null. Set a counteri = 1.

Until |P,|+|F;|< N .perform P, =P, UF; and i=i+1.

Step 3 Perform the Crowding-sort(F..<c) procedure given below and
include the most widely spread ( N —|P,,,|) solutions by using the
crowding distance values in the sorted F; to P.;.

Step 4 Create offspring population Qr; from Pr:; by using the crowded

tournament selection, crossover and mutation operators.
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Flowchart NSGAII
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Pseudocode NSGAII

Initialize Population
Generate N random solutions and insert into Population
for(i = 1 to MaxGenerations) do
Generate ChildPopulation of size N
Select Parents from Populafion
Create Children from Parents
Mutate Children
Combine Population and ChildPopulations into CurrentPopulation with size
2N
foreach individual in CurrentPopulation do
Assign rank based on Pareto — Fast non-dominated sort
end for
Generale sels of non-dominated veciors along PF imown
Loop (inside) by adding solutions to next generation of Population starting
from the best front
until N solutions found and determine crowding distance between
points on each front
end for
Present results
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Crowding-sort(F;<c)

Step 1 Call the number of solutions in F as 7=|F|. For each i in the set,
first assign crowding distance, d. =0.

Step 2 For each objective function m=12,...,M , sort the set in worse order
of f,, or. find the sorted indices vector:
I =sort(f,,.>)

Step 3 For m=12,...,M . assign a large distance to the boundary solutions,

or d,, =d, = and for all other solutions j =2 to (/ - 1). assign:
1 I
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Simulated Binary Crossover (SBX)

Simulated Binary Crossover

Step 1 Choose a random number# € [0,1).

Step 2 Calculate

{ (ua)#, if HS%,‘ 9)

1

Bo=9 1 Y
M , otherwise,

2—ua
where
o= Z_B_(qr+l) )

2

mr’n[()'l -V ), (J‘” -2 )] :

B=1+ —

Y2—N
yrand y,: lower and upper limits of y

n, : distribution index for crossover

Step 3 Compute children solutions:

€= 0'5[(3‘1 TV )_Bq

€2 = 0-5[(.1‘1 t)2 )+Bq

Y2 —J’1|l (10)
Y2—0 |]




Polynomial Mutation (PLM) operator

Step 1 Choose a random number # €[0.1).
Step 2 Calculate
5 _ [2u+(1—2u](1—5)”m+1]ﬁ -L ifu<05,
1- [2(1 —1)+2(u—0.5)1-3)™"! ]“mﬁ otherwise
where
& =min|(y=y;), (v, =)/ (v, —31)
n,, : distribution index for mutation

Step 3 Calculate the mutated child:

¢ = J'!_I_Sq(yu — Vi ) -



Strength Pareto Evolutionary Algorithm 2 (SPEA2)
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SPEA2 Algorithm

Input: N (population size)

N

A

Output:

Step 1

Step 2

and ﬁr .

Step 3

Step 4

Step 5

Step 6

(archive size)
(maximum number of generations)

A (nondominated set)
Initialization: Generate an initial population £, and create the
empty archive (external set) P, =¢ . Set 7 =0.

Fitness assignment: Calculate fitness values of individuals in P,

Environmental selection: Copy all nondominated individuals in P,

and P:; to P.. If size of P, exceeds N then reduce P by
means of the truncation operator, otherwise if size of P 15 less
than N then fill P:.; with dominated individuals in P, and P;.

Termination: If 7>7 or another stopping criterion is satisfied

then set A to the set of decision vectors represented by the

nondominated individuals in Pr.1. Stop.

Mating selection: Perform binary tournament selection with

replacement on P 1n order to fill the mating pool.

Variation: Apply recombination and mutation operators to the

mating pool and set P, to the resulting population. Increment

generation counter (/ =7+1) and go to Step 2.




Multi-Objective Evolutionary Algorithms based on Decomposition
(MOEA/D)

Algorithm 1. The MOEAD zeneral famework

Input:
= MOP
*  the nomber of the sub-problems considerad m MOEAD, V'
¢ a3 uniform spread of N weight vectors: A2, ..., A"
*  the number of the weizht vectors in the naighborhood of 2sach
weight vector, T
*  the mauimum mumber of generations, gen__,
Qutput:
» FEP
Step 0 - Setup:
+ SetEP=0
= gen =0

Step 1 — Imitialization

¢  Umformly randomly ganerate an mitial mtamnal population,
IP, = {x',....,x" } and =et FV* = F(x').
Inttialize 5 = (F4 ses3, ) by 2 problem-specific method.
Computa the Euchidean distancas bebwaen any fwvo waizht vectors
and then work out the T closest weizht vectors to each weizht
vector. ¥i = 1,.., N, set B(i) = {i;,...i;}, where 1%, ..., 07 ame
the T closest weight vectors to A'.

Step 2 — Update: Fori=1,.., &

¢  (Genctic oparatorz: KEandomly saleet two mdexes E, [ from B(i),
and then generats 2 new solution ¥ from x* and x° by u=ing
genafic operators.

* Updateofs .¥i=L.,ndg <f (¥),thensetg =
£ )

*+  Update of Neighboring Solutions: For each index j £ B(;), if
g=(¥I¥.2 )< g/ |¥,z"), hensst =/ = yand FI¥ =
F(3).

¢  Updste of EP: Eemove from EP all the vectors dommated by
F(y).
A%F&}tuﬁ?ifmmminEPdnmimteF{}r).

Step 3 — Stopping criteria
# Ifgen = gen__, , then stop and cutput EP,
othermize gen = gen + 1. goto Step 2.
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DECOMPOSITION OF
MULTIOBJECTIVE OPTIMIZATION

» A.Weighted Sum Approach

A=Ay 2y) :be a weight vector
an A =1
i=1 !
F(x)=(fi(x) f, (x0T : Object solution

e
Maximize g™ (x|A)= Z AL E)
=1




MOEA/D algorithm

Inputs:
e  Multi-Objective Optimization (MOO) problem.
e N : The number of sub problems (the population size).
e W: A setof N evenly sampled weight vectors {44, ..., Ay}.
e T :The neighborhood size

e A stopping criterion
Steps:

1. Imitialization:

*  Generate the initial population x* = xV at random such
that, N is the population size where, x' is the current
solution to the ith sub problem.

= [nitialize the reference point z as mentioned in Eq.(2).

= Calculate the Euclidean distances for each couple of
weight vectors to determine the neighbors for each
vector (the set of its T closest weight vectors). For each
i=1-N, set B(i) = {iy, -, iz}, such that A1, .-, AT
are the T closest weight vector to A',

* Foreachi =1 — N :Evaluate the fitness value F (x).

2. Update:
Fori=1- N,do

=  Reproduction: Select at random two indexes k, ! from
B(i) then, by using the genetic operators (i.e crossover
and mutation) generate a new solution from x*¥ and x!.
= Repair: Apply a problem specific improvement heuristic
on y to generate y".
* Update z: For eachj= 1 - m, If z; < fj(y') then
set z; = fj(y‘)
=  Neighboring solutions update: For each index j € B(i),
if g (y'|A,2) < g*®(x/|A/,2), thenset x/ = y'and FV/ =
F(y').

3. If stopping criteria is met, then stop. Else go back to step 2.




NSGAIII

Algorithm 1 Generation ¢ of NSGA-ITT procedure

Input: H structured reference points Z* or supplied aspiration

points Z°, parent population P,

Output: Py,
I S=i=1
2 (), = Recombination+Mutation( P;)
¥ Ry= P U Qy
4: (Fy, Fs, ... )= Non-dominated-sort( R;)

5. repeat

6 S=5UFandi=i+l

7: until |5, = N

%: Last front to be included: Fp= F;

9: if |5 =N then

1: Py =5, break

11: else

12 Py= U:,_a: F;

13:  Points to be chosen from Fi: K = N — | Pyl

14:  Normalize objeclives and creale reference set 2"
Normalize ([", S, Z", Z*, 7°%)

15:  Associale cach member s of §; with a reference point:
|m(s), d(s)] =Associate (S, Z7) % m(s): closest
reference point, d: distance between s and 7(s)

16:  Compute niche count of reference point j € 27 p; =
Es;s,mﬂﬂ{s]' - _” 71 : ”:l

17: Choose K members one al a time from F; to construct

Fi: Niching (K, pj, m, d, 2, Fj, Pray)

1%: end if




4 Scalarization techniques

Classically, multiobjective optimization problems are often
solved using scalarization techniques (see, for instance,
Miettinen 2012). Also in the theory and practice of evo-
lutionary multiobjective optimization scalarization plays an
i le, especially in the so-c: iti
based approaches.

In brief, scalarization means that the objective functions
are aggregated (or reformulated as constraints), and then a
constrained single-objective problem is solved. By using
different parameters of the constraints and aggregation
function, it 1s possible to obtain different points on the
Pareto front. However, when using such techniques, certain
caveats have to be considered. In fact, one should always

ask the following two questions:

. Does the optimization of scalarized problems result in
efficient points?

2. Can we obtain all efficient points or vectors on the
Pareto front by changing the parameters of the
scalarization function or constraints?



4.1 Linear weighting

A simple means to scalarize a problem is to attach non-
negative weights (at least one of them positive) to each
objective function and then to minimize the weighted sum
of objective functions. Hence, the multiobjective opti-
mization problem is reformulated to:

Definition 14 Linear Scalarization Problem. The linear
scalarization problem (LSP) of an MOP using a weight
vector w € R, is given by

minimize Z wifi(x),x € A.

=1



4.1.2 e-constraint method

A rather straightforward approach to turn a multiobjective
optimization problem into a constraint single-objective
optimization problem is the e-constraint method.

Definition 18 e—constraint Scalarization. Given a MOP,
the e—constraint scalanzation 1s defined as follows. Given
m— 1 constants €¢; € B, ....¢,_1 € R,

minimize fi(x), subject to g;(X) <e€p,..., 2m-1(X) < €p-1.

where fi,g1,...,8m—1 constitute the m components of
vector function I of the multiobjective optimization prob-
lem (see Definition 1).

The method is illustrated in Fig. 4 (left) for ¢ = 2.5 for
a biobjective problem. Again, by varying the constants
et €R,...,eqp—1 € R, one can obtain different points on
the Pareto front. And again, among the solutions weakly
dominated solutions may occur. It can, moreover, be

difficult to choose an appropriate range for the € values, if
there is no prior knowledge of the location of the Pareto
front in R™.
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Tchebycheff method

As stated before, multi-objective optimization problems can be solved by different
methods. Traditional multi-objective optimization methods seek a way to convert the
multi-objective problem into a single-objective problem. One of these methods is the
Tchebycheff method (Jaszkiewicz, 2002), which was used in this study to solve multi-
objective subproblems. The Tchebycheff method looks for the optimal solutions that have
the minimum distance from a reference point. The single-objective optimization problem
is defined as Eq. (8).

Minimize g'(x|A\o,2") = max{Ai|/fi(x) — z/|}

subject to x € S, (8)

where z* = (z;+,...,2,+)" is a reference point used to evaluate the quality of the obtained
solutions, m is the number of objective functions, and § is the search space. According to
this equation, the distances between the objective function values of each solution x

and reference point z* are calculated. The single-objective optimization problem is
regarded as minimizing the maximum of these distances. A uniform weight vector

A= (A Aps.. A, is defined for each solution such that " A; = 1. Therefore, weight A; is
assigned to the objective function f;. To obtain each optimal solution of the minimization
problem defined in Lq. (8), we need to find an appropriate weight vector. The obtained
optimal solution would be one of the Pareto optimal solutions. As a result, the traditional
methods are time-consuming because of continuous changes in the weights required

to obtain the best solutions. Therefore, we consider a set of distributed weight vectors in
the decomposition-based evolutionary methods for all the subproblems. Reference point
selection is another issue that should be considered in the Tchebycheff method. For a
minimization problem, the minimum value obtained for each objective function can be a
reference point.

z; = minf;(x)|x € § (9)

Therefore, the value of the reference point is also updated after each iteration. Figure 1
shows the Tchebycheff method for obtaining an optimal solution on the Pareto front. As
an example, we show that the reference point has been placed at the center of the
coordinates, where the values of both objective functions are minimal. We show a sample



f2(x) \ (41,42)

Optimal Point -+ )"1 {X}

Figure 1 Illustration of Tchebycheff method.

weight vector (A, A>), and the solutions from each iteration are shown in blue. The
solutions converge toward the reference point in the direction of the weight vector until the
optimal point on the Pareto front (in red) is obtained. At each iteration, the previous
solution is replaced with a new solution if the new one outperforms the previous one.



Assessment metrics

The hypervolume indicator (Auger et al., 2009) is one of the well-known criteria for
evaluating multi-objective optimization methods. This indicator evaluates multi-objective
optimization algorithms according to both diversity and convergence to the optimal
Pareto front. This indicator determines the volume of the n-dimensional space that is
surrounded by a set of points. The number of dimensions would be equal to the number of
objectives. Therefore, the volume of the two-dimensional space that is surrounded by the
Pareto solutions is calculated for the feature selection problem. The larger this space,
the wider the points (surrounding a larger space) and the closer the Pareto front to the
optimal Pareto. A reference point is needed to acquire the intended volume. The selection
of a reference point is one of the challenges for the calculation of the hypervolume
indicator. For example, a point with the worst obtained values among the objective
functions is an option for this purpose. As shown in Fig. 6, the volume of the gray regions
between the solutions on the Pareto front and the reference point would be considered as

the hypervolume indicator. The measure is defined in Eq. (14) (Auger et al, 2009):

HV(A) =vol (Um(a;.,n] x [f(a),r2) x ... x [fM(a).rM]), (14)

acA

where a € A is a point at which all candidate solutions are weakly dominated by it.
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Figure 6 Hypervolume
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Maximizing the values of x° for integers in the range [0, 31]

For the representation we use a simple five-bit binary encoding mapping integers (phenotypes) to bit-strings
(genotypes).

For parent selection we use a fitness proportional mechanism, where the probability p; that an individual i in
population P is chosen to be a parent is p; = f(i)/ 27—, f ()

Mutation is executed by generating a random number (from a uniform distribution over the range [0, 1]) in each bit
position, and comparing it to a fixed threshold, usually called the mutation rate. If the random number is below that
rate, the value of the gene in the corresponding position is flipped.

Recombination is implemented by the classic one-point crossover. This operator is applied to two parents and

produces two children by choosing a random crossover-point along the strings and swapping the bits of the parents
after this point.

Table 1. The x* example, 1: initialisation, evaluation, and parent selection

String Initial |z Value| Fitness |Prob;|Expected|Actual
no. population f(z) = z* count | count
1 1 1 T 13 169 0.14 0.58 1
2 11900 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Sum 1170 1.00 4.00 4
Average 293 0.25 1.00 1
Max 576 0.49 1.97 ,

Table 1 shows a random initial population of four genotypes, the corresponding phenotypes, and
their fitness values. The cycle then starts with selecting the parents to seed the next generation. The
fourth column of Table shows the expected number of copies of each individual after parent
f@

selectlon, belng W

As can be seen, these numbers are not integers; rather they represent a probability distribution, and
the mating pool is created by making random choices to sample from this distribution.

The column “Actual count” stands for the number of copies in the mating pool.

Next the selected individuals are paired at random, and for each pair a random point along the
string is chosen.



Table 2 shows the results of crossover on the given mating pool for crossover points after the
fourth and second genes, respectively, together with the corresponding fitness values.

Table 2

String Mating |Crossover| Offspring |z Value| Fitness
no. pool point |after xover flz) = x°
1 R ldet | 4 01140 12 144

2 1100]0 4 11001 25 625
2 11000 2 11011 27 729

1 11011 2 10000 16 256
Sum 1754
Average 439
Max 729

Table 3

String | Offspring Offspring |z Value| Fitness
no. after xover |after mutation f(z) = z*
1 01100 11100 26 676
2 i 203 14 001, 25 625
2 11811 LI N V48 729
4 LO0OO0OO 10100 18 324
Sum 2354
Average 588.5
Max 729

This example shows a progress: the average fitness grows from 293 to 588.5, and the
best fitness in the population from 576 to 729 after crossover and mutation.
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