Real-time changepoint detection in the steel industry using Python

Case Study

Αλέξανδρος Μπουσδέκης

albous@mail.ntua.gr

Background

Predictive maintenance

 Predictive maintenance uses condition monitoring equipment (e.g. sensors) in order to track the performance of equipment, to detect abnormal behaviour, to predict future failures and to support decision making about proactive actions.

Real-time anomaly detection

Time-domain features (1/2)

	Description		
Feature Name	Brief Definition	Formula	0 20 40 60 80 100 120 140
RMS	The RMS value increase gradually as fault developed. However, RMS is unable to provide the information of incipient fault stage while it increases with the fault development [11].	$\text{RMS} = \sqrt{\frac{1}{N}\sum_{i=1}^{N}x_i^2}$	200 200 200
Variance	Variance measures the dispersion of a signal around their reference mean value.	$Var = \frac{\sum_{i=1}^{N} (x_i - m)^2}{(N-1)\sigma^2}$	Shape
Skewness	Skewness quantifies the asymmetry behavior of vibration signal through its probability density function (PDF).	$Sk = \frac{\sum_{i=1}^{N} (x_i - m)^3}{(N-1)\sigma^3}$	0 20 40 60 80 100 120 140
Kurtosis	Kurtosis quantifies the peak value of the PDF. The kurtosis value for normal rolling element bearing is well-recognized as 3.	$Ku = \frac{\sum_{i=1}^{N} (x_i - m)^4}{(N-1)\sigma^4}$	2 ^{x 10}
Shape factor	Shape factor is a value that is affected by an object's shape but is independent of its dimensions [12].	$SF = \frac{\sqrt{\frac{1}{N}\sum_{i=1}^{N}x_i^2}}{\frac{1}{N}\sum_{i=1}^{N} x_i }$	Be on the second second
Crest factor	Crest factor (CF) calculates how much impact occur during the rolling element and raceway contact. CF is appropriate for "spiky signals" [12].	$CF = \frac{\max x_i }{\sqrt{\frac{1}{N}\sum_{l=1}^{N} x_l^2}}$	-2 20 40 60 80 100 120 140
Entropy	Entropy, $e(p)$, is a calculation of the uncertainty and randomness of a sampled vibration data. Given a set of probabilities, $(p_1, p_2,, p_n)$, the entropy can be calculated using the formulas as shown in the right column.	$e(p) = -\sum_{i=1}^{n} p(z_i) \log_2 p(z_i)$	
			ura 200

-400

20 40 60 80 100 120 140

t, days

20 40 60 80 100 120

t, days

0

140

Time-domain features (2/2)

- A rolling feature extraction algorithm on the sensor data set creates another time-series data set including the feature values (instead of the raw data).
- Rolling window:

Longer rolling window sizes tend to yield smoother estimates.

Shorter rolling window sizes are more computationally efficient.

Bayesian Online Changepoint Detection (2/2)

http://gregorygundersen.com/blog/2019/08/13/bocd/

https://arxiv.org/abs/0710.3742

https://www.slideshare.net/FrankKelly3/changepoint-detection-withbayesian-inference 7

Case study in the steel industry

Datasets with sensor measurements during the whole lifetime of the equipment, i.e. from installation until a failure mode or time-based replacement.

 Bayesian Online Changepoint Detection on raw sensor data

 Bayesian Online Changepoint Detection on features

Steel industry

Raw material

Cold rolling mill

Infrastructure Setup for Sensor Data Collection

Front view of rollers

Rear view of rollers

Sensor infrastructure

	Sensor ID	Measurement point	Sensor direction	Sensor Type
	1	Upper backup roll – DE side	Vertical	Accelerometer
	2	Upper backup roll – DE side	Axial	Accelerometer
¢	3	Upper backup roll – NDE side	Vertical	Accelerometer
	4	Upper working roll – DE side	Reverse horizontal	Accelerometer
	5	Upper working roll – NDE side	Horizontal	Accelerometer
	6	Down working roll – DE side	Reverse horizontal	Accelerometer
	7	Down working roll – NDE side	Horizontal	Accelerometer
	8	Down backup roll – DE side	Vertical	Accelerometer
	9	Down backup roll – DE side	Axial	Accelerometer
	10	Down backup roll – NDE side	Vertical	Accelerometer

Example

Bayesian Online Changepoint Detection on raw sensor data

Log likelihood of changepoint in raw sensor data -872 -874 -876 -878 -880 -882 -882 -884 -882 -882 -882

Changepoint

detection

Bayesian Online Changepoint Detection on the Kurtosis feature

Thank you