
Software Security Course
Extra Workshop: Black Box Vulnerability Research

Dimitrios A. Glynos
{ daglyn at unipi.gr }

Department of Informatics
University of Piraeus

June 29th, 2024

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 1 / 24

Part I

Exploring the binary

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 2 / 24

File format

The ’file’ utility

$ file foo
foo: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), for GNU/Linux 2.6.24,
BuildID[sha1]=0x628d57caa90b9cb4d373105a9b17da72aa4bb0d7,
not stripped
$

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 3 / 24

Mapping the application functionality

Execute the application in order to identify

core functionalities

application states

user interaction points

input / outputs

assets that would be vulnerable if a bug in the application was exploited

high level security controls

file permissions

required / obtained privileges

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 4 / 24

Dependencies to dynamic libraries

Use ’ldd’ to spot dependencies to dynamic libraries

$ ldd foo
linux-gate.so.1 => (0x00602000)
libc.so.6 => /lib/i386-linux-gnu/libc.so.6 (0x00110000)
/lib/ld-linux.so.2 (0x005c8000)

$

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 5 / 24

Incorporated static libraries

Look for interesting symbols with ’nm’ or ’objdump’

$ objdump -d foo
...
804c315: e8 b6 00 00 00 call 804c3d0 <SSL_library_init>
...
$

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 6 / 24

Execution tracing

Use ’strace’ to trace system calls

$ strace -fF ./foo
...
[pid 16155] execve("/bin/mount", ...) = 0
...
$

Use ’ltrace’ to trace library calls

$ ltrace ./foo
...
strcpy(0xbfc0343d, 0xbfc0451a) = 0xbfc0343d
...
$

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 7 / 24

Part II

Searching for vulnerabilities

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 8 / 24

Identify parameters that can be controlled

Inputs from user

(Modifiable) files

Environment variables

See related material from previous lectures!

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 9 / 24

Fuzz testing

Test wild input values on user‐controlled parameters
Use automated fuzzers

Protocol fuzzing with ’peach’
File fuzzing with ’honggfuzz’

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 10 / 24

Checking whether a crash due to memory corruption is
interesting / exploitable

Use a debugger (like ’gdb’) to check if:

EIP was set to a user controllable value

the input overwrote control data on the stack (e.g. saved stack frame /
EIP)

the input overwrote control data on the heap (e.g. free list pointers)

the input overwrote sensitive data on stack / heap (e.g. function
pointers)

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 11 / 24

Identify and exploit functions with known weaknesses

a strcpy buffer overflow

amemcpy buffer overflow

a printf with a format string bug

...

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 12 / 24

Study interesting paths using reverse engineering

Use a disassembler (like ’objdump’) to see how interesting code is
invoked

Use a debugger (like ’gdb’) to follow interesting code paths

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 13 / 24

Investigate the type of vulnerability

See /proc/{PID}/maps to figure out if an oveflown buffer belongs to
the heap or stack

...
09133000-09431000 rw-p 00000000 00:00 0 [heap]
...
bfc44000-bfc65000 rw-p 00000000 00:00 0 [stack]
...

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 14 / 24

Recording a vulnerability

Record the vulnerable code

Record the vulnerability type

Record the trigger

Keep in mind that multiple weaknesses may come in handy during the
exploitation phase (e.g. address leak and memory corruption in pages
close to the leaked address)

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 15 / 24

Part III

Exploiting a vulnerability

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 16 / 24

Identify the security controls protecting the vulnerability

Does the OS + binary employ ASLR?

Is the vulnerable buffer protected by a canary?

Is the vulnerable code accessible with the privileges available?

Do we need to exploit another vulnerability to reach the vulnerable
code?

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 17 / 24

ASLR

Use ’paxtest’ to check for OS ASLR capabilities

Use ’readelf’ to check if there are sections that will be loaded at fixed
memory addresses

Use /proc/{PID}/maps to check if there are memory pages with
interesting attributes (e.g. writable + executable)

Abuse the allocator to jump to a memory address that is likely to have
controllable data

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 18 / 24

Canary checks

Use a disassembler to look for stack canary checks

8048571: 8b 45 f4 mov -0xc(%ebp),%eax
8048574: 65 33 05 14 00 00 00 xor %gs:0x14,%eax
804857b: 74 05 je 8048582 <myfunc+0x2e>
804857d: e8 fe fe ff ff call 8048480 <__stack_chk_fail@plt>

If a known allocator is used for the heap, check for signs of canaries or
guard pages

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 19 / 24

Code requiring special privileges

-rwsr-x--- 1 root audit 7335 Apr 26 15:11 foo

Only users of group ’audit’ can execute the vulnerable binary

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 20 / 24

Stack buffer overflow exploitation

Fill stack with pattern

strcpy(buf, .. ABCDEFGHIJKLMNOPQRSTUVWXYZ ..)

high address ^ [Function Parameters] UVWX
| [Return Address] QRST
| [Saved Frame Pointer] MNOP
| [Local Variables] IJKL
| [Local Variables] EFGH

low address | [Local Variables] ABCD

Use a debugger (e.g. ’gdb’) to identify the portion of the pattern that
overwrote the return address

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 21 / 24

Stack buffer overflow exploitation

Program received signal SIGSEGV, Segmentation fault.
0x08048677 in main ()
(gdb) x/i 0x08048677
=> 0x8048677 <main+198>: ret
(gdb) x/a $esp
0xbf9c496c: 0x54535251

0x54535251 stands for ’QRST’ on x86 CPUs

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 22 / 24

Stack buffer overflow exploitation

Replace ’QRST’ with address of code to jump to
For example if 0x08031234 always contains code that spawns a shell:

strcpy(buf, .. ABCDEFGHIJKLMNOP \x34\x12\x03\x08 UVWXYZ
..)

Avoid memory addresses containing NULL bytes if the vulnerability is
caused by a string processing function (strcpy etc.)

If no useful code is readily available to jump to, implement exploit via
ROP chain

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 23 / 24

Post exploitation

Is the vulnerable code protected by a sandbox?

Does the exploited process have enough privileges to gain access to the
target asset?

...

Dimitrios A. Glynos (Univ. of Piraeus) Black Box Vulnerability Research June 29th, 2024 24 / 24

	Exploring the binary
	Searching for vulnerabilities
	Exploiting a vulnerability

