
Side Channel Attack Countermeasure for Low
Power Devices with AES Encryption
Ruminot-Ahumada, Nicolás; Valencia-Cordero, Claudio; Abarzúa-Ortiz, Rodrigo

Abstract—The advancement of Internet of Things produces
a massive increase in the use of low-power devices, which can
contain sensitive information. Most of these devices do not have
the necessary security to protect their information. Therefore, the
work aims is analyze and compare countermeasures for SCA in
low-power devices with 128-AES encryption. In this scenario, we
analyze existing countermeasures and conclude that algorithm-
based countermeasures are more suitable for low-power devices.
Subsequently, we run a set of tests to understand the scope of
CPA attacks and thus establish a countermeasure that is tailored
to these devices. Finally, we propose a countermeasure based on
byte logic, comparing it with traditional countermeasures of the
same type.

Keywords—Cryptography, Internet of Things, Side-channel
attacks.

I. INTRODUCTION

THE exponential increase in technologies has occurred
steadily in recent decades. Technologies such as the

Internet of Things (IoT) have emerged, one of which is
expected to grow exponentially in the coming years [1], [2].
The use of Smart Cards and other embedded technologies have
also been part of the exponential growth. Most of the devices
found in IoT and embedded systems use microcontrollers.
These devices handle all kinds of information, from irrelevant
information to images, health records, physical access to
places, temperature control, among others.
Due to the aforementioned there is also an increase in security
problems for these devices (microcontrollers), which is why
the need to keep this information safe arises. For many years,
the traditional way to protect information is by encrypting
it. Today, encryption offers a more than sufficient level of
security against analytical attacks. However, a little over
twenty years ago the cryptographic community encountered
a type of attack that under certain conditions is capable of
breaking cryptographic secrets in very short times. These types
of attacks are known as implementation attacks.
Among the implementation attacks we find a type of attack
called Side Channel Analysis (SCA), these attacks make
use of a physical “leak” of information (acoustic changes,
execution time, energy consumption, electromagnetic radiation
[3], among others [4]). This information leak occurs when

Ruminot Nicolas and Valencia Claudio is with the University of Santiago
of Chile (USACH), Electrical Engineering Department, Chile (e-mail: nico-
las.ruminot@usach.cl, claudio.valenciac@usach.cl).

Abarzúa Rodrigo, is with the University of Santiago of Chile (US-
ACH), Mathematics and Computer Science Department, Chile (e-mail: ro-
drigo.abarzua@usach.cl).

encrypting or decrypting and is related to the cryptographic
secret. The first SCA attack was introduced by P. Kocher in
[5] where a technique called as Simple Power Analysis (SPA)
is applied. The SPA takes energy consumption samples of a
device while it performs the encryption process, these energy
samples are then analyzed in order to establish the secret
key. Several useful SPA attack methods have been developed
depending on the device, encryption and the information that
is available as explained in [6]. Two years later, another
SCA technique is developed that uses statistical analysis in
energy consumption measurements, this technique is called
Differential Power Analysis (DPA) [7]. This one manages to
find the secret key in a very short time as shown in [8] where it
is possible to recover the key in 2 hours and 30 minutes (with
the advancement of technology these times have decreased
even more). Finally, one of the most popular and power-
ful SCA techniques are the well-known Correlation Power
Analysis (CPA) [9]. This technique uses Pearson’s correlation
coefficient to obtain the degree to which hypothetical keys
are related to the energy consumption samples, obtaining the
correct secret key in less than one minute.
In this article an analysis of countermeasures for SCA in low-
power devices with AES 128 encryption is performed. In addi-
tion, a countermeasure based in byte logic never used before is
presented in order to homogenize energy consumption, making
it more difficult to recover the secret key.
In section II some concepts for the understanding of the work
are presented. In section III an analysis of countermeasures
is performed on low-power devices limited to 8 and 16-bit
architectures. Also, an analysis on correlation attacks is done.
Later, in section IV the design and implementation of the
proposed countermeasure is explained using a set of test.
Finally, in section V some conclusions are presened based
on the analysis and test results.

II. BACKGROUND

A. Energy Consumption Model

Power consumption in transistor with Complementary
Metal-Oxide-Semiconductor technology (CMOS) has two
main components, a static component and a dynamic com-
ponent [10], [11]. The static component, called static power
or leakage power, is produced by the current flowing through
the transistor while it should not conduct and its formula is
as follows, where Vdc is the continuous voltage of the source
and Ileak is the leakage current:

Pleak = Ileak · Vdc (1)978-1-6654-0127-2/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
io

n/
XX

IV
 C

on
gr

es
s o

f t
he

 C
hi

le
an

 A
ss

oc
ia

tio
n

of
 A

ut
om

at
ic

 C
on

tr
ol

 (I
CA

-A
CC

A)
 |

 9
78

-1
-6

65
4-

01
27

-2
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

AA
CC

A5
15

23
.2

02
1.

94
65

33
7

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 08:22:45 UTC from IEEE Xplore. Restrictions apply.

On the other hand, the dynamic component, known as
dynamic power, is generated by the change of state of the
transistor. Dynamic power has two components, the power
released by capacitance and the short-circuit power. The power
released by the capacitance occurs because each node in a
CMOS circuit is associated with a capacitance C. When the
transistor changes state, an amount of energy is dissipated by
charging the capacitance of the respective node. This power is
represented by the following equation, where α is the activity
factor, f is the switching frequency, C is the load capacitance
and Vdc is the continuous voltage of the source:

Pcap = α · f · C · Vdc2 (2)

Finally, the short-circuit power comes from the change of
state of the transistor. For a short time, current flows directly
from the source to the ground. This power is represented by
the following equation, where Imax is the maximum current
flowing during the “short circuit”¨ and tsc is the time interval
during which the “short circuit” occurs:

Psc = α · f · Vdc · Imax · tsc (3)

The sum of all these powers results in the total power of a
CMOS transistor.

Ptotal = Ileak ·Vdc+α ·f ·C ·Vdc2+α ·f ·Vdc ·Imax · tsc (4)

B. Advanced Encryption Standard

Modern ciphers can be divided into two categories, sym-
metric and asymmetric ciphers. Of the symmetric ciphers,
the most widely used cipher today is Advanced Encryption
Standard (AES). This encryption processes plain texts of 128-
bits and uses secret keys of 128, 192 and 256 bits depending
on the level of security desired. Depending on the number of
bits of the secret key, a part of the encryption is executed
cyclically a certain number of times. For a 128-bit secret
key the encryption will perform 10 iterations. This encryption
works byte by byte, this means that it can modify the bits of
one byte at the time. [12]. Fig. 1 shows the flow diagram for
an AES 128 encryption.

It can be seen that AES 128 encryption has four
sub-functions, AddRoundKey(), SubBytes(), MixColumns() y
ShiftRows(). Next, a brief explanation of each sub-function
is given below:

• AddRoundKey(): Performs an XOR operation between the
bytes of the state matrix and the bytes of the secret key
corresponding to the iteration in which they are.

• SubBytes(): This function adds non-linearity to the en-
cryption and consists of a substitution of each of the 16
bytes of the state matrix through a look-up table. Look-
up tables are fixed data tables, used to replace one value
with another. In the case of AES, a 16x16 table is used
where each box has 1 byte of data in hexadecimal.

• ShiftRows(): This function generates the rotation of the
rows (the bytes pass from left to right) of the state array.
The first row does not rotate, the second rotates one byte,

Fig. 1. Flowchart for AES 128 encryption.

the third rotates two bytes, and the fourth rotates three
bytes.

• MixColumns(): It consists of multiplying each of the
columns of the state matrix by a fixed polynomial.

C. Correlation Power Analysis

Among the implementation attacks we find several types
of SCA, these differ between them by how they use the
information leak to attack a device. To carry out any type of
SCA based on energy consumption, you must have samples
of the energy consumption of the device that is being attacked
while it is encrypting or decrypting. Within the SCA attacks,
there is one of the most powerful attacks against symmetric
ciphers. These attacks are known as correlation attacks or CPA
[9]. This attack makes use of statistical analysis to break a
cryptographic secret and supports two hypotheses, first that
logical changes from 0 to 1 or from 1 to 0 consume energy,
and second that such changes require the same amount of
energy.
To carry out a CPA, you must choose a place in the encryption
to attack and around this generate a model of how energy
consumption should vary with different inputs. Then, it is
observed how closely related the hypothetical consumption
patterns are with the measured consumption traces. This rela-
tionship is quantified through Pearson’s correlation coefficient.
Pearson’s correlation coefficient is particularly useful as it tells
us how closely related two variables x e y are. The function
used is:

ρx,y =
cov(x, y)

σxσy
=

E[(x− µx)(y − µy)]√
E[(x− µx)

2
]E[(y − µy)

2
]

(5)

Where, cov(x, y) is the covariance between x and y, σx and
σy are the standard deviation of x and y respectively, E is the
expected value and µx, µy is the mean of x and y respectively
[9]. Once it has been determined which hypothetical consump-
tion model is more related to consumption traces (the one with
a higher coefficient), the most probable secret key is obtained.

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 08:22:45 UTC from IEEE Xplore. Restrictions apply.

D. Countermeasures

Countermeasures for SCA can be classified into three types,
hardware countermeasures, algorithm countermeasures, and
protocol countermeasures.
Protocol countermeasures are not analyzed in this investiga-
tion. Hardware countermeasures use hardware modifications
to reduce or eliminate information leaks. Algorithm counter-
measures do not require modifications to the hardware, instead
a modification is applied to the encryption algorithm without
altering its output.

III. COUNTERMEASURES ANALYSIS

To understand countermeasures, you must first understand
how information leaks occur. Every time the value of a
memory register is manipulated, its value is handled through
the data buses. These data buses are basically a group of
transistors that are responsible for keeping an output high or
low (logical 1 or 0 respectively). As mentioned above, each
transistor has an associated energy consumption, where the
majority of energy consumption is due to the switching of the
device. Every time the data bus changes its state, the transistors
are changing their state. This is the reason why devices that
use CMOS technology are prone to SCA attacks based on
power consumption, since observing the power consumption
and analyzing it can determine how many transistors have
changed and when.
Next, an analysis and comparison of the most common hard-
ware and algorithm countermeasures was performed. The main
characteristics considered in the countermeasures are that it
does not affect the functionality of the device and that it is
capable of protecting the cryptographic secret in low-power
devices. The functionality of low consumption devices is to
operate correctly under normal conditions, that is, to have low
energy consumption, to execute the processes in the expected
times, to be able to execute the processes and to maintain a
reduced size of the device.

A. Hardware Countermeasures

Among the Hardware countermeasures are very varied
countermeasures, some make use of complemented logics
[13], [14], [15], semi independent circuits to generate noise
[16], partitioned processors and memories, clocks with irregu-
lar frequency [17], [18], reduction in signal power [19] among
many others. All these modifications imply an improvement
in the security of the devices against the majority of SCAs
regardless of their encryption. This is relevant as not all types
of countermeasures protect against more than one type of SCA.
Furthermore, hardware countermeasures include most of the
countermeasures with the best security performance. Despite
this, all of these are characterized by increasing the size
of the device, increasing energy consumption and execution
time. Compared to an unprotected device, all the mentioned
parameters increase at least two or three times as concluded
in chapter eleven of [4].

B. Algorithmic Countermeasures

These countermeasures involve a modification to the en-
cryption algorithm in order to reduce, eliminate or hide the
relationship between the energy consumption samples and the
processed data. These can be classified into three types, inde-
pendent of the algorithm, semi-dependent of the algorithm and
dependent on the algorithm. Algorithm independent counter-
measures usually perform random operations in random places
during the encryption process to make the trace of energy
consumption more difficult to analyze, all these countermea-
sures can be applied on devices regardless of what encryption
they use. Semi-dependent countermeasures are characterized
by modifying parts of the encryption, such as the order in
which some operations are executed or repeating operations
among others [20], [21]. Some of them can be applied in
various types of encryption, always with prior knowledge
of the algorithm. Lastly, countermeasures dependent on the
encryption algorithm require a good understanding and man-
agement of encryption since larger modifications are made
or sometimes focused on a specific part of the encryption,
which if not implemented correctly will harm the result of the
encryption process [15].
The main losses that occur when implementing an algorithmic
countermeasure is an increase in execution time and in the
size of the code. Another drawback that these countermeasures
have is that very few are effective against CPA attacks.

C. Countermeasures for low-power devices

Low-power devices are characterized by low energy con-
sumption, limited execution times, and a small size. This set
of features is the functionality of these devices. Furthermore,
in this research low-power devices are limited to devices
with 8 and 16 bit architectures (so countermeasures like
Double-width Algorithmic Balancing [15] or TBox presented
in chapter eleven of [4] could not be implemented as it requires
a 32 bit data bus).
In summary, considering the main characteristics of hardware
countermeasures, these are considered inappropriate for low
power devices. Determining then that in these devices an
algorithm countermeasure would be more appropriate.

IV. DESIGN AND IMPLEMENTATION OF
COUNTERMEASURES

This section presents the characteristics of the implemen-
tation of the CPA attack, we use as example an attack on
a low-power device without countermeasure. Futhermore, an
analysis of the attack is performed in order to understand
which countermeasures are useful. Later, the design of an
algorithm countermeasure for low power devices is explained.
Finally, the designed countermeasure is submitted to tests,
determining how practical its implementation is with respect
to other algorithm countermeasures.

A. CPA attack on a device protected with AES 128

As mentioned, in CPA attacks models are generated of how,
hypothetically, energy consumption should vary with different

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 08:22:45 UTC from IEEE Xplore. Restrictions apply.

inputs. This hypothetical model is generated with respect to 8
bits, because the AES encryption works byte by byte, a large
part of the energy consumption that occurs due to the changes
in the state of the transistors is directly related to the changes
that are made in the bytes during the encryption process and
therefore to the cryptographic secret.
The implementation of the attack was carried out on a mi-
crocontroller ATXMega128A1U-AU [22] protected with AES
encryption algorithm with 128 bits of security arranged on
one card CW303 [23], and a ChipWhisperer Lite device
[24] for taking energy samples. The programs used for the
capture and subsequent analysis of the samples are CWCapture
and CWAnalyzer respectively. Finally, the parameters for the
sampling were the following: 1, 250 offset points, 4000 points
per trace, 50 traces and the results of the attack are observed
in Fig. 2. In the top row the bytes with the highest correlation
magnitude after analysis are shown. For each byte there is a
column of the succeeding bytes in correlation magnitude. The
bytes of the secret key will always be in red, while the darker
the green of the boxes means that there is more difference in
correlation with the byte that precedes it.

In summary, the results obtained are: The time required to
take samples (T1) was 5 seconds, the time required to analyze
the samples (T2) was 10 seconds, the total attack time (Tt) was
of 15 seconds, the number of secret key bytes found was 16.
In addition, it was observed that the weight of the encryption
code (without decryption) is 2979 bytes and that encrypting
16 bytes of plaintext requires 43120 clock cycles.

B. Analysis of CPA

The CPA attack can be carried out at various points of the
AES encryption, but without a doubt the most vulnerable point
in this encryption is the output of the function SubBytes() that
as explained in the section II corresponds to a substitution
of values through a look-up table. In general, hypothetical
consumption models try to predict the values that energy
consumption can take at a certain point in the encryption
process. In order to check how powerful the attack is, the
following test was carried out: The look-up table was modified,
leaving only the four least significant bits of each byte and
replacing the four most significant bits with 0’s, that is, 4 bits
remain of original information. Subsequently, the replacement
table is modified again, leaving only 3 bits of information, then
2 and finally 1. All these ciphers with modified replacement
tables were attacked by a CPA. The results obtained reveal
that with a correlation analysis it is possible to break a
cryptographic secret even with 1 bit of information per byte.
In the Table I the results obtained are found, where the number
of traces corresponds to the number of traces necessary to find
the 16 bytes of the secret key.

Additionally, another similar experiment was carried out
where two CPAs were executed. This time two bits of original
information per byte were kept in the replacement table, first
two adjacent bits were used and then two interleaved bits. The
results are in Table II and show that two adjacent information
bits produce more information leakage than two interleaved
bits.

TABLE I
CORRELATION TEST RESULTS.

Number of bits Number of Traces
4 120
3 210
2 330
1 4100

TABLE II
RESULTS OF CORRELATION ANALYSIS IN ADJACENT AND INTERLEAVED

BITS.

Two Bits of Information Number of Traces
Adjacent 330

Interspersed 510

C. Countermeasure Design

Taking into consideration the correlation tests carried out
previously, we proceeded to design an algorithm counter-
measure programmed in C language. This countermeasure
separates the information processed by the encryption and
works on it almost independently. In addition, it makes use
of complemented and repeated logic with the intention of
homogenizing energy consumption.
The idea is to separate both the plaintext and the secret
key, leaving the information of each byte of plaintext in two
complemented bytes and the information of each byte of the
secret key in two bytes of repeated logic (this process can
be observed in the Tables III and IV respectively). Once
the information is separated, we proceed to work as long as
possible with the ”left” bytes separated from the ”right” ones.
Also, the replacement table used in the function SubBytes()
is replaced by four equivalent look-up tables in which two of
them have bytes with complemented logic and the other two
with repeated logic (between the two tables of complemented
logic they contain the same information as the original re-
placement table, the same happens with the tables of repeated
logic). In Fig. 3 the flow chart of the designed countermeasure
is shown. In the following subsections, the logics used and
their properties are detailed.

1) Logical Complement: This logic was designed in order
to take advantage of the reduction of information leakage by
having bits interleaved. A byte of complemented logic is a
byte where every two adjacent bits we find a 1 and a 0
logic. Also, only 4 of the 8 bits of each byte contain normal
byte information. Table III shows an example of how each
complemented byte stores half the information of a normal
byte. It can also be inferred that the complemented bytes
always have a Hamming Weight equal to four and that there
are only 16 different complemented byte.

TABLE III
LOGICAL COMPLEMENT EXAMPLE.

Byte Type Bits HW Hex
Normal 1 1 0 1 0 1 1 0 5 D6

Com. Left 1 0 0 1 0 1 1 0 4 96
Com. Right 0 1 0 1 0 1 1 0 4 56

2) Logical Repeated: The Logical Repeated consists in that
every two bits of information will always be found either two

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 08:22:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Result of the attack on a device with AES 128 encryption after analyzing 50 traces. The image was obtained with the CWAnalyzer software.

Fig. 3. Flowchart for an AES 128 encryption with the designed countermea-
sure.

1’s or two 0’s. In the Table IV the operation of this logic is
observed in more detail. It is also observed that the Hamming
Weight of the bytes with this logic will always be 0, 2, 4, 6
or 8 and that there are only 16 bytes with this logic.

TABLE IV
LOGICAL REPEATED EXAMPLE.

Byte Type Bits HW Hex
Normal 1 0 0 0 1 1 1 1 5 D6

Rep. Left 1 1 0 0 1 1 1 1 6 CF
Rep. Right 0 0 0 0 1 1 1 1 4 0F

3) Logical Complemented and Logical Repeated Proper-
ties: By using the exclusive-or operation with the exposed
logics, you find useful results to apply in AES encryption.
Here are some useful properties:

1) When performing an exclusive-or operation between two
bytes of repeated logic, the resulting byte will always
have repeated logic.

2) When performing the exclusive-or addition between two
bytes with complemented logic, the resulting byte will
always have repeated logic.

3) When performing the exclusive-or sum between a byte
of logic complemented with one of repeated logic, the
resulting byte will have complemented logic.

The following is a summary of the modifications made to
the AES sub-functions and the added sub-functions:

• Divide(): This function splits both the plaintext bytes and
the secret key bytes. For this, each byte of plaintext is
separated into two bytes with complement logic as shown
in the table III finally obtaining 32 bytes that contain
the hidden information of the original 16 bytes. These
32 bytes are separated into two groups of 16 bytes (one
group with the left bytes and the other with the right
bytes). The left 16 bytes are called the left state matrix
and the right ones are called the right state matrix. The
same process is performed to the secret key bytes but
transforming them into bytes with repeated logic as seen
in the table IV getting a left and a right secret key.

• Link(): This function takes the information from the bytes
of the left and right state matrix uniting them into a
normal byte.

• AddRoundKey(): Performs XOR operation between the
complemented and repeated logic bytes (left-to-left and
right-to-right bytes).

• SubBytes():In this function instead of having a single
replacement table, now there are two. Each byte of
these tables is generated through the process explained
in the Table III, so one table will contain the information
”left” and the other the ”right”. Then the bytes from the
left state array use the left replacement table and the
bytes from the right state array use the right replacement
table. It should be mentioned that in this function it is
impossible to work completely independently the bytes
of the left state matrix with those of the right.

• ShiftRows(): This function can be applied without major
modifications directly to both the left and right state
matrix.

• MixColumns(): In this function both the left and right
matrix are multiplied by fixed polynomials obtained from
the separation of the original fixed polynomial. In this
separation, fixed polynomials are obtained with repeated
logic. Then the left bytes are worked as independently as
possible from the right ones.

D. Test setup

Once the designed countermeasure has been programmed
and implemented, a CPA attack is performed in order to
verify its effectiveness. The measurement parameters used
were 3500 offset points, 7000 points per trace, and 30000
traces. The results obtained were: Time required for sampling

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 08:22:45 UTC from IEEE Xplore. Restrictions apply.

(T1) 43 minutes 20 seconds, time required for analysis of
samples (T2) 1 hour 26 minutes and 40 seconds, total time
(Tt) equal at 2 hours 8 minutes and 20 seconds, 93768 clock
cycles are required to encrypt 16 bytes of plaintext, the weight
of the code is 5047 bytes and as seen in the Fig. 4, 14
bytes of secret key were retrieved successfully. In the table
V the summary of the results of the attacks on an AES 128
encrypted microcontroller without countermeasure and with
countermeasure is shown.

TABLE V
RESULTS TABLE FOR CPA ATTACK.

Parameters Without Countermeasure With Countermeasure
Offset Points 1.250 3.500

Points per Trace 4.000 7.000
Weight in Bytes 2.979 5.047

Clock Cycles 43.120 93.768
Time 1 00:00:05 00:43:20
Time 2 00:00:10 01:26:40

Total time 00:00:15 02:10:00
Correct Bytes 16 14

Numbers of Traces 50 30.000

The results of the countermeasure show that it adds security,
however, it is still possible to break the cryptographic secret
through a CPA attack (with a higher number of traces). During
the experiment it was noted that the countermeasure uses
1684 bytes of RAM, this is a limitation for devices that have
RAM equal to or less than 2Kb, since stability problems could
occur. Also, like most algorithm countermeasures, the biggest
cost to this countermeasure is increases in memory usage and
execution times.
To compare this countermeasure with other algorithm counter-
measures a few things need to be clarified. There are combined
attacks that use CPA attacks only to find the group of bytes
most likely to be part of the secret key and then perform a
brute force attack with these bytes. Assuming only one CPA
attack is performed on devices with common countermeasures
like Dummy Instructions (when applied as a double run with
a fake secret key) or Shuffling, a CPA attack will never find
all the bytes of the secret key complete or in the correct order.
However, all the bytes of the secret key fall within the most
likely 32 bytes, so a brute force attack with those 32 bytes
would hit the correct secret key fairly quickly (only requires
a CPA with about 250 traces and a brute force attack with the
possible combinations of the 32 bytes). On the other hand, if
you want to find the 16 bytes of secret key to a device with
the designed countermeasure, you need a CPA attack of more
than 30000 traces or a CPA of 30000 traces plus a brute force
attack with combinations of 80 possible bytes (as shown in
Fig. 4 secret key bytes that were not found were five and four
positions away from being the most likely).
It is worth mentioning that the amount of memory of the coun-
termeasure varies slightly depending on the compiler used, for
this investigation the compiler WinAVR 20100110 provided
by the Chipwhisperer Lite device was used. The sampling
and analysis times also depend on the device with which the
analysis is made, but since the same device was used for all
the attacks, these values are comparable. Finally, the increase
in memory required and clock cycles can be optimized by

improving the programming in C language of the encryption,
despite this, the increase in clock cycles will remain close
to twice that of an encryption without countermeasure, since
the countermeasure performs approximately twice as many
operations.

V. CONCLUSION

The research shows how powerful a correlation analysis
is, since even with only 1 bit of information per byte it is
possible to recover the secret key. This shows that no matter
what modification is applied to the encryption algorithm, it
will always have information leaks that can be exploited by
SCA.
Regarding the designed countermeasure, it is concluded that it
adds security in a significant amount and provides a new way
of hiding the relationship between energy consumption and
processed data. However, almost all countermeasures for SCA
are situational. This means that it depends on which device
you want to protect and against, for example, if you want to
protect only a device with 2Kb of RAM against CPA, it is not
recommended to use this countermeasure despite providing
greater security than a common countermeasure.
It is concluded that to find a global countermeasure to the
problem of SCA it must be done through modifications to
the hardware. Unfortunately, the size and requirements of
some technologies do not yet provide the ability to implement
hardware countermeasures on them. It is expected that with the
advancement of technology, we are getting closer and closer
to finding a hardware countermeasure that offers protection
against SCA with 100% effectiveness and is implementable in
low-power devices.

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 08:22:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Result of the attack on a device with AES 128 encryption with countermeasure after analyzing 30,000 traces. The image was obtained with the
CWAnalyzer software.

ACKNOWLEDGMENT

This work was supported by projects DICYT 061913VC
and 62033AO, Vicerrectorı́a de Investigación, Desarrollo e
Innovación. Universidad de Santiago de Chile.

REFERENCES

[1] L. C. Karen Rose, Scott Eldridge, “LA INTERNET DE LAS COSAS
— UNA BREVE RESEÑA,” Internet Society, Tech. Rep., 2015.

[2] Cisco, “Wi-Fi 6 and Private LTE / 5G Technology and Business Models
in Industrial IoT,” Cisco, Tech. Rep., 2019.

[3] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The EM Side
– Channel (s),” pp. 29–45, 2003.

[4] M. Tehranipoor and C. Wang, Introduction to Hardware Security and
Trust, springer ed., M. Tehranipoor and C. Wang, Eds. new york:
Springer, 2012.

[5] P. C. Kocher, “Timing attacks on implementations of,” Diffie-Hellman,
RSA, DSS, and other systems, Proc. of Crypto ’96, LNCS, vol. 1109,
IACR, Springer-Verlag, pp. 104–113, 1996.

[6] V. B. B and E. Oswald, “Constructive Side-Channel Analysis and
Secure Design,” vol. 7864, pp. 29–40, 2013. [Online]. Available:
http://link.springer.com/10.1007/978-3-642-40026-1

[7] P. Kocher, P. Kocher, B. Jun, B. Jun, C. Research, C. Research,
S. Francisco, and S. Francisco, “Differential Power Analysis,” Analysis,
pp. 1–10, 2012.

[8] K. Mpalane, N. Gasela, B. M. Esiefarienrhe, and H. D. Tsague, “Vul-
nerability of Advanced Encryption Standard algorithm to Differential
Power Analysis attacks implemented on ATmega-128 microcontroller,”
2016 3rd International Conference on Artificial Intelligence and Pattern
Recognition, AIPR 2016, pp. 70–74, 2016.

[9] C. N. T. INC., “Breaking AES (Manual CPA At-
tack).” [Online]. Available: https://wiki.newae.com/V4: Tuto-
rial B6 Breaking AES (Manual CPA Attack)

[10] Ø. Ekelund, “Low Energy AES Hardware for Microcontroller,” Ph.D.
dissertation, Norwegian University of Science and Technology, 2009.

[11] B. M. Damian and Z. Hascsi, “Presilicon evaluation on Correlation
Power Analysis attacks and countermeasures,” pp. 0–4, 2017.

[12] F. Information, “Announcing the ADVANCED ENCRYPTION
STANDARD (AES),” National Institute of Standards and Technology,
Tech. Rep., 2001. [Online]. Available: http://csrc.nist.gov/publications/

[13] T. Popp and S. Mangard, “Masked Dual-Rail Pre-charge Logic : DPA-
Resistance Without Routing Constraints,” pp. 172–186, 2005.

[14] K. Tiri and I. Verbauwhede, “Securing Encryption Algorithms against
DPA at the Logic Level : Next Generation Smart Card Technology 3
Sense Amplifier Based Logic : A CMOS Logic Style with Signal,” no. 1,
pp. 125–136, 2003.

[15] A. Arora, J. A. Ambrose, J. Peddersen, and S. Parameswaran, “A
Double-width Algorithmic Balancing to prevent Power Analysis Side
Channel Attacks in AES,” 2013 IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), pp. 76–83, 2013.

[16] J. Daemen and V. Rijmen, “Resistance Against Implementation Attacks
A Comparative Study of the AES Proposal,” 1999.

[17] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor,
“Improving Smart Card Security using Self-timed Circuits,” 2002.

[18] J. J. A. Fournier, S. Moore, H. Li, R. Mullins, and G. Taylor, “Security
Evaluation of Asynchronous Circuits,” pp. 137–151, 2003.

[19] J. Rabaey, Low Power Design Essentials, Series on Integrated Circuits
and Systems, springer science+business media ed., 2009, no. 0.

[20] J. Lagasse, C. Bartoli, and W. Burleson, “Combining Clock and Voltage
Noise Countermeasures against Power Side-Channel Analysis,” 2019
IEEE 30th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), vol. 2160-052X, pp. 214–217,
2019.

[21] J. Lee and D.-g. Han, “Security analysis on dummy based side-channel
countermeasures — Case study : AES with dummy and shuffling,”
Applied Soft Computing Journal, vol. 93, p. 106352, 2020. [Online].
Available: https://doi.org/10.1016/j.asoc.2020.106352

[22] A. Xmega, “ATxmega128A1U / ATxmega64A1U,” p. 216, 2014.
[23] C. N. T. INC., “CW303.” [Online]. Available:

https://rtfm.newae.com/Targets/CW303 XMEGA/
[24] ——, “ChipWhisperer-Lite (CW1173) Two-Part Version.” [Online].

Available: http://store.newae.com/chipwhisperer-lite-cw1173-two-part-
version/

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 08:22:45 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T21:57:24-0400
	Preflight Ticket Signature

