
On a Side Channel and Fault Attack Concurrent
Countermeasure Methodology for MCU-based

Byte-sliced Cipher Implementations
Ehsan Aerabi

Univ. Grenoble Alpes, Grenoble INP
LCIS

Valence, France
ehsan.aerabi@lcis.grenoble-inp.fr

Athanasios Papadimitriou
Univ. Grenoble Alpes, Grenoble INP ESISAR

ESYNOV
Valence, France

athanasios.papadimitriou@esisar.grenoble-inp.fr

David Hely
Univ. Grenoble Alpes, Grenoble INP

LCIS
Valence, France

david.hely@lcis.grenoble-inp.fr

Abstract. As IoT applications are increasingly being
deployed, there comes along an ever increasing need for the
security and privacy of the involved data. Since cryptographic
implementations are used to achieve these goals, it is important
for embedded software developers to take into consideration
hardware attacks. Side Channel Analysis (SCA) and Fault
Attacks (FA) are the main classes of such attacks, which can
either reduce or even eliminate the security levels of an
embedded design. Therefore, cryptographic implementations
must address both of them at the same time. To this end,
multiple solutions have been proposed to address both attacks
in one solution, such as Dual Pre-charge Logic (DPL) and
Encoding countermeasures. In this work, we discuss the
advantages and disadvantages of the state of the art, concurrent
SCA and FA countermeasures. Additionally, we propose a
software countermeasure in order to provide protection against
both types of attacks. The proposed countermeasure is a general
approach, applicable to any byte-sliced cipher and any modern
(32/64-bit) Micro-Controller Units (MCU). The proposed
countermeasure is applied to an AES S-BOX implementation,
for a 32-bit MCU (ARM Cortex-M3). The countermeasure has
been experimentally evaluated against Correlation Power
Analysis (CPA) attacks for both platforms while its fault
detection capabilities are theoretically described.

Keywords: Hardware security; Side channel attacks;
Fault attacks; Countermeasure; AES, byte-sliced ciphers;

I. INTRODUCTION
Cipher implementations, regardless of their mathematical

security against cryptanalysis, may be weak against hardware
attacks, mainly Side Channel Attacks (SCA) and Fault
Injection (FI). For the last two decades, these attacks
succeeded to reveal secret information from cryptographic
devices in considerably small time [1, 2, 3, 4].

Side channel attacks exploit the device's power
consumption or electromagnetic emanations to deduce
information which is being processed by the device. An
attacker can then apply elaborated statistical methods, such
as Differential or Correlation Power Analysis (DPA & CPA)
in order to find the secret key [5,6]. Fault Injection can also
lead to the exposure of the secret key by injecting faults in the
device during the operation of the cipher and by applying
differential fault analysis to the erroneous outputs [7].
Initially the majority of the proposed countermeasures were
addressing the one or the other classes of attacks. A large
number of protection methods have been proposed during the
last two decades, but defending against these attacks does not
provide a complete solution and each protection method has
some disadvantages including, lack of generality,
vulnerability to more complex attacks and its overhead on
performance, area and memory.

Countermeasures against DPA or CPA generally try to de-
correlate the value of the secret data being processed within
the device from its power consumption or any other side
channel emanations. Masking and Hiding are two main
categories of these protection methods. Masking
countermeasures try to combine the secret information with a
masking value before the protected computation starts. After
the computation, the output will be unmasked to obtain the
correct result [8, 9, 10]. Even though masking methods
provide high levels of security against first order SCA
attacks, they are prone to higher order attacks which target
the masking and unmasking operations [11]. Additionally,
the existence of glitches can also diminish the strength of
such countermeasures [12]. Hiding countermeasures add
random or data-dependent noise to the computation to protect
the secret key of the encryption. Examples of hiding
countermeasures include: computation scrambling [28],
runtime code polymorphism [13].

Concerning the protection against fault attacks there exist
multiple countermeasures. Most countermeasures involve
some kind of redundancy or code to detect faults. In the case
where only fault detection is necessary, a classic approach is
to duplicate the design and check the outputs of the two
instances [24]. Temporal redundancy countermeasures
perform the same calculation more than once in order to
detect a fault detected in one of the computations but not the
other [21, 22]. This way the area penalty is minimized but it
leads to 100% performance overhead. Modern laser fault
injection setups can effectively target both countermeasures
by either using two laser spots or by means of the high
repetitiveness capabilities respectively. Another way is to
use a code and limit the redundancy to predicting the value of
the selected code, e.g. parity codes [23].

Using two different countermeasures to separately thwart
each attack will impose large overheads and complexities.
Such overheads may be forbidden especially for IoT
applications, in terms of power consumption, performance
and cost. Despite large overheads, imposed by two separate
SCA and FI countermeasures, there is the need to take into
account the effect of a FI countermeasure on the side channel
information leakage. For example in [14] and [15] the authors
present results on the negative effects of FI countermeasures
on SCA leakage. For instance, an FI countermeasure can
duplicate a part of the encryption computation in order to
detect the fault by comparing the outputs of the duplicate and
original computation instances. This will double the power
consumption correlated with that part of the computation and
it will be easier for the SCA attacker to collect the necessary
information leakage to reveal the secret key.

103978-1-7281-2490-2/19/$31.00 c©2019 IEEE

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 09:08:22 UTC from IEEE Xplore. Restrictions apply.

Our proposed method attempts to address both FI and
SCA hardware attacks at the same time. It provides two on-
the-fly switchable modes: high-performance and high-
security. Therefore, depending on the real-time requirements,
the device can change its mode of operation leading to either
increased performance, or high security.

The proposed method in this paper is applicable to MCUs
with wider data-paths like 32-bit and 64-bit processors as the
global trend towards the IoT also leads to using larger MCUs.
The IoT with performant devices will benefit from modern
operating systems, network connectivity and smart artificial
intelligence operations. Therefore, modern MCUs are needed
to have all these capabilities in place.

Solutions proposed so far which can counteract both SCA
and FI include Dual-rail with Pre-charge Logic (DPL
methodology) as well as a group of methods which use
encoding schemes. We will cover these methods in more
details in the related work section.

The proposed method in this paper uses byte-slicing [27]
to provide a flexible and secure countermeasure against both
SCA and FI. Byte-slicing provides multiple parallel instances
of the encryption algorithm which can be used for protection
or performance enhancement. A very recent similar published
work employs the same idea using Single-Instruction-
Multiple-Data (SIMD) feature in MCUs to defend only FA.
This method does not provide any protection against SCA
[24].

 In this work we propose using a software version of the
correlated noise generation countermeasure against SCA
attacks described in [25] which has been originally
introduced to be used on FPGAs. In this approach, two (or
more) instances of an algorithm run in parallel on different
keys but use the same data. The generated noise can lead to
hiding of the leakage of the correct key. In this work, we use
this method to propose a similar scheme for MCUs.
Furthermore, the parallel computation instances also allow to
have constant Hamming weight memory writes, which in turn
emulates the DPL methodology and minimizes the SCA
leakage. Finally, the parallel computation provides identical
computation instances to detect injected faults.

We chose an AES case study and implemented the
proposed method on an ARM Cortex-M3 system. The paper
includes the overhead of the proposed method and a report on
its SCA and FI resistance. The overhead in comparison to the
original design and the similar software countermeasures is
significantly lower. The paper presents a secure AES
implementation that can thwart SCA and FI at the same time
with significantly low overhead.

This paper continues with the Related Work by the details
and overheads of the related DPL and Encoding methods.
Then the proposed method is covered in Section-3, the AES
case study and its overheads in Section-4 and the attack
results in section-5. Finally this paper concludes in Section-
6.

II. RELATED WORK
This chapter provides an overview on the related state of

the art work which defend against both FI and SCA by their
proposed countermeasures.

To the best of our knowledge, previous solutions against
FI and SCA could be categorized into two groups. The first

group employs the software equivalent of Dual-rail with Pre-
charge Logic (DPL) and the second group uses an encoding
scheme which we will call DPL-based and encoding-based
counter measures, respectively.

Dual-rail with Pre-charge Logic originally is a hardware-
specific approach to always have a constant switching
activity regardless of the data being computed. In DPL, a dual
bit with the opposite Boolean value is always stored and
processed to neutralize the effect of the original bit on the
power consumption. In this manner, the side channel leakage
ideally is expected to be independent from the sensitive data
being processed and hence provides no information to the
attacker. To implement this approach, each bit of information
�a� ��� ���	
������ ��� ���� ����� �	
��
��� ����� � �� ���
processing and storage. DPL duplicates each signal and
memory element with the dual complement value. Each bit
change takes place in two phases which guarantees constant
switching activity. First, in the pre-charge phase, couple
(a�� ����	���	������ ��������������������	����������	������
�����!���������evaluation phase, the couple (0,0) transitions
to the new value of (a�� ������������������������������	��
��������	������ �����!�	��������������	����	���
���	�����
this method will be independent from the data being
processed because the hamming distance and weight of the
data being written are always constant.

Recently, several works have tried to bring the DPL idea
from the hardware into the software realm. They have
emulated DPL using some low-level bit-operations to read
the data from the memory, bit by bit, each bit is accompanied
by the dual complementary bit and then they perform the
intended logical operation using a look-up table. The
software implementation was first proposed in [16] and
followed by [17].

As the DPL concept is inherently bit-wise, all bytes, words
or double-words of the data being encrypted should be split
into single bits which makes the proposed methods extremely
expensive both on performance and code size. The penalty
depends strongly on the cipher structure and it varies among
different ciphers. The wider the cipher state variables are, the
more the overhead which will result by applying DPL. For
example AES state variables are originally 8-bit. Therefore,
for example, each xor operation in the reference
implementation is a byte-wise operation. Therefore, DPL
implementations of an 8-bit AES will need 8 iterations to
compute a whole byte in the DPL mode. This makes the DPL
version 8 times slower, aside from the long overhead to
actually implement the DPL version of an xor instruction for
just 1-bit of information.

 Furthermore, ciphers such as RC5, Simon and Speck have
even wider (32-bit and 64-bit) implementations. This makes
the DPL implementation, 32 and 64 times slower with the
same reasoning. Some previous works have chosen the
PRESENT cipher to apply software based DPL, which has not
been designed for software implementation, and hence most
of the operations are intrinsically bit-wise. Therefore, such a
cipher is more compatible with applying DPL and entails less
overhead. In [17], a bit-sliced version of PRESENT is used
as a starting point to apply the DPL countermeasure. It is
important to note that DPL cannot take advantage of bit-
slicing in an efficient way (due to the exponential LUT
growth) and this usually leads to using only one bit of the bit-
sliced implementation (the remaining 7 bits staying inactive).
For example, in [17] by replacing only xor instruction with

104 25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019)

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 09:08:22 UTC from IEEE Xplore. Restrictions apply.

its DPL equivalent in a PRESENT implementation their
performance was 3 times slower with respect to the bit-sliced
reference (which performs 8 bits computation in parallel).
Additionally, we must emphasize that the DPL
implementation is not bit-sliced anymore, but instead it
computes only one single bit at a time. Thus, if we take into
account the overhead for losing the bit-slicing, then applying
DPL is 3×8=24 times slower than an 8-bit-sliced version and
3×32=96 times slower than a 32-bitsliced version.

Two encoding schemes [18,19] targeted Prince, another
hardware-oriented cipher and proposed specific encodings to
provide constant hamming weights and hamming distances.
Each variable in the cipher computation is combined with its
complement. For instance, an 8-bit variable X becomes a 16-
bit variable comprised of and . They propose a balanced
version of two building blocks of Prince with this scheme: the
8-bit xor operation and 4-bit table lookup. The xor instruction
is comprised of 14 instructions in order to apply the encoding,
perform xor and revert back the encoding. Therefore, this
determines the performance and increase in code size. For the
4-bit table lookup, the penalty is the exponential growth of
the table size. Before encoding, the table requires a 4x4 byte
array and with encoding it fills a 16x16 byte array. This
overhead, for 8-bit tables (like that of AES) will be
256x256=16K which is relatively significant. Reference [19]
enhances the encoding used in [18], in order to also protect
against fault attacks. In conclusion, if we want to carry the
encoding methods to common software oriented cipher (e.g
AES), there will be huge memory overhead for the lookup
tables and performance penalties for logical operations.

Concerning the encoding protection against SCA and FI,
Breier et. al in [26], presented an encoding scheme for data
storage and retrieval. Since they have only evaluated a
protected table look-up, we cannot directly compare its
overhead in performance and memory with our
countermeasure.

III. PROPOSED COUNTERMEASURE
This section presents the proposed protection method

which can thwart SCA and FI attacks using a single approach.
The method is generally applicable to any MCU with a wide
data-path like 32-bit and 64-bit processors.

For a 32-bit MCU, each data word has 4 bytes and each
single machine instruction operates on the 4-byte (32 bits)
word at the same time. Byte-oriented ciphers (e.g AES) are
comprised of many 8-bit operations. In absence of manual
optimization, when these instruction runs on 32-bit MCUs,
the three most significant bytes are useless and empty. For
example, AddRoundKey operation in AES reference
implementation comprised of sixteen 8-bit xor operations
between 128-bit round key and data block. Each 8-bit xor
operation is presented in figure-1. In this figure � represents
xor operation but in general it could be any arithmetic or logic
operations [27].

We can employ the three unused bytes to boost the
performance or provide protection against SCA and FI. The
main idea relies on a byte-sliced implementation of the
vulnerable crypto algorithm which is aimed to use the secret
information (e.g key). The other three unused bytes can
operate on three different instances of the crypto algorithm,
at the same time. Therefore we will have a 4-engine crypto
core. If all four engines operate on different data, there will
be a four times performance boost; and if they operate on the

same data to produce correlated noise, there will be a
protection against SCA and FI.

The combination of the above mentioned methods provide
a combined solution to address SCA and FI protection. The
solution has two modes: 1-High-Performance (No
protection) and 2-High-Protection (Low performance). The
proposed method is purely a software technique on wide data-
path MCUs (32-bit or 64-bit) which makes it appropriate for
the global trend towards modern MCUs. The overhead
generally relies on the cipher structure, but for byte-oriented
ciphers (e.g AES) the overhead is significantly lower than
other approaches, detailed in the previous sections, when we
consider SCA and FI protection concurrently.

Based on the above mentioned structure, we propose two
modes of operation which can be easily switched to one
another.

A. Mode #1: High performance – no protection
This is the simple byte-sliced implementation of the crypto

algorithm. Figure-2 illustrates an abstract picture of this
configuration. Four different useful 8-bit data are being
computed in four different instances of the algorithm. This
could be denoted by A(K1,D1)|| A(K2,D2)|| A(K3,D3)||
A(K4,D4) in which four instances of a byte-sliced version of
algorithm A ��	�������""������	��#	�����##���������Di using
different keys Ki. Usually in a same embedded device, only
one crypto key is used for communication at the same time,
therefore Ki’s can be all the same. For this reason, we use the
same key for all four instances in this paper.

Fig.1- 32-bit xor on 8-bit values

Fig.2- Operation configuration in Mode #1: High-performance

Fig.3 - Operation configuration in Mode #2: High-protection

B. Mode #2: High-protection – low performance
This mode exploits all the four bytes of the byte-sliced

implementation to deliver SCA resistance along with FI
detection. This mode uses the configuration depicted in Fig.3.
There are in fact clones of encryption on D1 running in
parallel with X = A(KT,D1)|| A(KT,D1)|| A(KF,D2)|| A(KF,D2)
�	�#�������	��� !�	� ��	��� �	��� 	#� #	���� ��� �� *True+� /��
which is intended for data encryption and the other two clones
��� �� *#�/+� /�� ������ is intended as a hiding
countermeasure against SCA attacks. The rest of the chapter
explains how the proposed method achieves SCA protection
and FI detection.

�������	
	

��������
��� � � � � � � � � � � �

��������

��������
����

��������	�
�
�������������
���
�

��������

�
�
����
����

��������	�
�
����������	�
�
��

25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019) 105

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 09:08:22 UTC from IEEE Xplore. Restrictions apply.

- Side Channel Protection.
Byte-slicing enables us to apply two techniques in order to

������� ���� ������� �����/<� *Correlated Noise Generation+�
����*Complementary Memory Writes+<

*Correlated Noise Generation+<� >#� �� ����
� ����� ���
secret information is the crypto key, the clone computation
would operate with a fake key but on the same data as that of
the original computation. In other words, both computations
operate in parallel on the same data, but using two different
/��<� *!��+� ���� *?�/+� /���� !�� ������� �	���
consumption of the fake instances is correlated with the true
ones. This will add algorithmic noise to protect against SCA
JQZ\��^�����������
��	��*_	�������`	���{�����	�+ in
this paper.

*Complementary Memory Writes: Another protection
capability of this method is associated with its memory
writes. Memory access consumes more power and leads to
more leakage in comparison to register access. Our scheme
gives us the opportunity to cancel the leakage of True key
while sustaining the leakage generated by the Fake key which
will amplify the hiding effect of the Fake key. To this aim,
these True clones can carry complement values of the data
when they are stored in their place in the memory. The
original value and its complement always have a constant
��
���	#� �������������������� ����������	�������}�

����
weight. The power consumption of this method is
theoretically constant and uncorrelated from the data being
processed. But in practice, there is always a small leakage due
the fact that parallelization cannot be implemented ideally.
This is an ultimately low-cost emulation of DPL
methodology for memory writes in comparison to the
software-implemented methods discussed in the related work
����	��� ^� ����� ����� ����	���� *_	mplementary Memory
^����+��

We call a byte-sliced operation A, a register operation,
when it is a part of the crypto algorithm and all its instructions
run in CPU registers. In other words, it has no memory writes
during its computation other than on its start and stop. It reads
its byte-sliced operands, performs the desired operation using
registers and then writes the results in their memory place. If
A happens to have several memory writes in it, we can break
A into several register operations. To achieve constant
Hamming weight memory write, the clone results are
complemented, then are written at the same time (byte-sliced)
in memory.

The constant Hamming weight memory write is possible
using following simple C programming tip:

[Mem] = X ^ 0x0000FF00;

X is a register which has the output of the operation A. The
bytes which are xored to hex value 0xFF are complemented
and the three other duplicates remain unchanged. In fact, we
kept the Hamming weight of the two least significant bytes
(True key) memory writes constant while the two most sig-
nificant bytes (Fake key) leak twice as two copies of its value
are written in the memory. This mode of operation still leaks
information, as the register operations still consume power;
but their power consumption is of orders of magnitude
smaller than memory write and correlation noise generation
will hide it effectively as we will see in the results section.

- Fault Injection Detection.
An advantage of the proposed method is the possibility to

devote byte-sliced computation instances to perform fault
detection. We can detect fault injection by comparing the
duplicated results for both fake and true keys computations.
As a programming hint, this could be done by copying the
results, shift it one byte to the left and xoring it with the
original result. If the output is zero, there is no fault injected.
We can express it in a C ternary operation on the byte-sliced
results X like this:

FAULT = X ^ (X >> 8 & 0x00FF00FF)? 1 : 0;
First, the byte-sliced variable X is shifted 8 bits to the right,

then masked and finally xored with its original value. A non-
zero result indicates a detected fault.

IV. CASE STUDY: AES ON ARM CORTEX-M
As a case study, we chose an AES implementation which

utilized a Canright S-box implementation [20]. This
implementation is one of the fastest and most compact to the
best of our knowledge. It receives a byte of data, performs S-
Box on-the-fly calculation and returns the S-box output. We
expanded all uint_8 variables to uint_32 and developed
the byte-sliced version. The byte-sliced code was %5 slower
than its 8-bit version. The penalty mainly comes from
packing and unpacking of four 8-bit data into 32-bit registers.
The code was implemented on an ARM Cortex-M3 MCU.
Even though we chose the AES S-box as an example, the
method is general and can be applied to any other crypto
structure which can be byte-sliced.

In Table.1, we present the overheads (performance, RAM
and code sizes) of the papers mentioned in the related work
section along with the proposed method of this paper. The
table also indicates if the authors traded bit-slicing in order to
implement their protection method. In this case, two papers
([16, 17]) have utilized a bit-sliced version of a cipher to
provide SCA protection. But their protected implementation
is not bit-sliced anymore. The performance penalty for losing
bit-slicing is significant as we discussed earlier. Bit-slicing
�	�������	���������*!������ bit-slicing for security+��	��
��
of the table. The performance overhead column does not in-
clude this loss of bit-slicing. Therefore, in order to fairly com-
pare, a bit-sliced implementation with a non-bit-sliced, one
should multiply the performance overheads of Table 1 by a
factor of 8. It is worth to note that our protection scheme does
not include the MixColumn function of AES and securing this
part will be a prospective extension of this work.

TABLE I. THE OVERHEADS OF THE RELATED & PROPOSED WORK
Method

Ref. Cipher
Trading

Bit-slicing
for security

Overheads
Performance Memory Code

[16] PRESENT yes %800 %200
[17] PRESENT yes %200 %20 %188
[18] Prince no %767 %1966 %235

Proposed
Method AES no %5 %2

Our byte-sliced version has %5 performance and %2
code/memory size penalty in comparison with the original
Canright source code. Therefore, if we assume Canright����
�
plementation as our reference, the high-performance mode
(#1) is roughly four times faster as it performs four parallel
computations; and the high-protection mode (#2) is obviously
%5 slower than the original Canright source code.

106 25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019)

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 09:08:22 UTC from IEEE Xplore. Restrictions apply.

V. COUNTERMEASURE EVALUATION

C. Fault Detection Capabilities
 To theoretically evaluate the fault detection capabilities,

we make the assumption that faults are injected in the data-
path and will end up registered in the true or the fake state
register. Moreover we assume that any fault combination for
each 32-bit word, has the same probability. Faults in the
program control flow (e.g instruction-skip) are undetected
because they affect all four bytes at the same time.

Under the assumptions above, the only way to inject an
undetected multiple faults is to inject the exact same fault in
the two duplicates of the fake or the true computation. The
total amount of possible faults is . On the other hand
the undetectable fault scenarios are faults for the fake
key (the same in each redundant computation for the fake
key) and for each one of them there are possible
combinations for the true key which do not lead to fault
detection. Therefore, the probability to inject an undetected
fault is:

D. Power Analysis Experimental Evaluations
DPA and CPA methods rely on gathering side channel

power or EM traces of the device for large numbers of encryp-
tion. This helps DPA or CPA to overshadow the noise and re-
veal the actual value of the secret key. Therefore, a device
resistance against SCA is usually measured by the number of
traces required to find the secret information

We conducted Correlational Power Analysis experiment
on the two modes of operation. Their resistance is determined
by the number of traces required to find the crypto key. In fact
the results show an attack to find the first byte of the AES key
on the first round.

The experimental setup included an oscilloscope set to
perform 1 GSa/s power trace acquisition and we used a shunt
resistor on GND pin to connect the oscilloscope probes and
capture the power consumption of the device. While perform-
ing the power trace acquisition we kept the target MCU at
90�C in order to increase the leakage and accelerate the exper-
iment.

For the sake of completeness, here we present how attack-
ing to the different protection scenarios guided us to the pro-
posed method in this paper. Firstly, we show the attack to a
simple 8-bit AES implementation. Then we explain the attack
to Mode #1, the byte-sliced, high-performance and unpro-
tected implementation. Finally, we will report the results of
the combined protection which provides the highest security
between the evaluated scenarios.

- Attack to 8-bit AES
First we chose the simple 8-bit AES (Fig.1) to attack as the

reference which forms the basis for our later comparisons.
Fig.4 illustrates the attack result. Our reference design can re-
sists only until about 700 traces at 90� C.

- Attack to 32-bit Byte-Sliced AES (Mode #1)
We implemented a byte-sliced version of the AES de-

scribed previously in this paper (Fig.2). There are four parallel
encryptions on four different data processed with the same key
byte (Ki’s are all the same). The most powerful attack in this
case is when the attacker provides the same data for all four
instances, in order to quadruplicate the information leakage.
Fig.5 illustrates the CPA attack results. As it is expected, extra

leakage reveals the secret easily. The key is visible after 100
traces at 90� C.

- Attack to the High Security Mode (Mode#2)
We conducted a CPA against the High Security Mode

(Mode#2 described in Fig.3) which is combination of the SCA
protection schemes and in presence of fault detection. Fig. 6
shows the attack results. The true key is hidden while the fake
key is obvious from the beginning of the computation. We
continued the attack until approximately 150k traces at 90� C
and the true key was still hidden. It is worth to mention that
the SCA attack to the countermeasure at the ambient temper-
ature will be even more difficult, as the leakage is considera-
bly lower at room temperature.

Fig.4 - CPA attack to the 8-bit AES

Fig.5 - CPA attack to the byte-sliced AES (Mode #1)

Fig.6 � Attacking to the High Protection Mode (Mode #2) at 90� C

- Attack only to the Correlated Noise Generation Scheme
In order to verify only the protection effect of the Corre-

lated Noise Generation scheme, we chose a configuration
with only one true key, intended to compute the encryption
and three fake keys to perform hiding. All four keys were
clearly distinguishable from the remaining key hypothesis
keys only after about 700 traces. This shows that the leakage
generated by writing all four keys in memory is high and the
correlated noise generation cannot hide it effectively in com-
parison to the unused key hypotheses.
- Attack only to the Complementary Memory Writes Scheme

The same attack was conducted only to the Complemen-
tary Memory Writes scheme, where we computed in parallel
two 8-bit encryptions and used the remaining 16-bits for their
complementary computations (without fake computations).
Once again the key was found, only after 400 traces, which

25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019) 107

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 09:08:22 UTC from IEEE Xplore. Restrictions apply.

shows that the complementary memory writes cannot hide the
secret key on their own.

In conclusion to this chapter, the Complementary Memory
Writes and Correlated Noise generation techniques should be
combined together (Mode #2) in order to effectively thwart
SCA. Even though unbalanced behavior of complementary
values in the internal structure of the MCU may cause the se-
cret key to be exposed (among the remaining key hypotheses
after many traces), the achieved protection is noticeable,
given the significantly smaller overhead in comparison to the
previous software DPL and encoding schemes.

VI. ACKNOWLEDGEMENT
This work is carried out under the SERENE-IoT project, a
project labelled within the framework of PENTA, the
EUREKA cluster for Application and Technology Research
in Europe on NanoElectronics.

VII. CONCLUSIONS AND FUTURE WORK
In this paper we presented a concurrent countermeasure

against side channel attacks and fault injection. This counter-
measure utilizes the larger data-path of 32-bit or 64-bit MCUs
in order to perform parallel byte-sliced encryption. We used
parallel computations in order to implement two protection
mechanisms against SCA. The two methods combined to-
gether provide resistance against side channel attacks even at
high temperatures, where the devices consume more power.
The countermeasure resisted against a CPA experiment and
after 150k encryption traces. Using identical parallel compu-
tations, we are also able to perform fault detection in the data-
path of the AES. An analysis for its expected fault detection
strength was also provided. The overhead of the counter-
measure proposed in this paper, in comparison to the original
design, is considerably small. The paper also compares the
overheads of other state of the art concurrent SCA and FI
countermeasures. Furthermore, we show that these counter-
measures lead to large overheads, especially if we take into
account trading bit-slicing for security.

����������.
[1] Spreitzer, R., Moonsamy, V., Korak, T. and Mangard, S., 2018.

Systematic classification of side-channel attacks: a case study for
mobile devices.

[2] Serpanos, D.N. and Voyiatzis, A.G., 2013. Security challenges in
embedded systems. ACM Transactions on embedded computing
systems (TECS), 12(1s), p.66.

[3] Joye, M., & Tunstall, M. (2012). Fault Analysis in Cryptography.
Heidelberg: Springer. ISBN: 978-3642296550.

[4] Giraud, C., & Thiebeauld, H. (2004). A survey on fault attacks.
In Smart Card Research and Advanced Applications VI (pp. 159-176).
Springer US.

[5] Peeters, E., 2013. Advanced DPA theory and practice: towards the
security limits of secure embedded circuits. Springer Science &
Business Media.

[6] Brier, E., Clavier, C. and Olivier, F., 2004, August. Correlation power
analysis with a leakage model. In International workshop on
cryptographic hardware and embedded systems (pp. 16-29). Springer,
Berlin, Heidelberg.

[7] ���{������^	�����������?��^���
��������?�����������*����������
	�������#�����������	��	�������
���	�	���	�����+����?����������	����
and Tolerance in Cryptography (FDTC), 2011 Workshop on, 2011,
pp. 91�99.

[8] Prouff, E. and Rivain, M., 2013, May. Masking against side-channel
attacks: A formal security proof. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques (pp. 142-
159). Springer, Berlin, Heidelberg.

[9] Eldib, H. and Wang, C., 2014, July. Synthesis of masking
countermeasures against side channel attacks. In International
Conference on Computer Aided Verification (pp. 114-130). Springer,
Cham.

[10] Carlet, C., Goubin, L., Prouff, E., Quisquater, M. and Rivain, M., 2012.
Higher-order masking schemes for s-boxes. In Fast Software
Encryption (pp. 366-384). Springer, Berlin, Heidelberg.

[11] Gierlichs, B., Batina, L., Preneel, B. and Verbauwhede, I., 2010, March.
Revisiting higher-	�������������/���>��_����	���������!���/��t the
RSA Conference (pp. 221-234). Springer, Berlin, Heidelberg.

[12] Mangard, S., Popp, T. and Gammel, B.M., 2005, February. Side-
���������/���	#�
��/��_����������>��_����	���������!���/����
the RSA Conference (pp. 351-365). Springer, Berlin, Heidelberg.

[13] Couroussé, D., Barry, T., Robisson, B., Jaillon, P., Potin, O. and Lanet,
J.L., 2016, September. Runtime code polymorphism as a protection
against side channel attacks. In IFIP International Conference on
Information Security Theory and Practice (pp. 136-152). Springer,
Cham.

[14] Pahlevanzadeh, H., Dofe, J. and Yu, Q., 2016, January. Assessing CPA
resistance of AES with different fault tolerance mechanisms. In Design
Automation Conference (ASP-DAC), 2016 21st Asia and South Pacific
(pp. 661-666). IEEE.

[15] Luo, P., Fei, Y., Zhang, L. and Ding, A.A., 2014, December. Side-
channel power analysis of different protection schemes against fault
attacks on AES. In ReConFigurable Computing and FPGAs
(ReConFig), 2014 International Conference on (pp. 1-6). IEEE.

[16] Hoogvorst, P., Duc, G. and Danger, J.L., 2011. Software
implementation of dualrail representation. COSADE, February, pp.24-
25.

[17] Rauzy, P., Guilley, S. and Najm, Z., 2016. Formally proved security of
assembly code against power analysis. Journal of Cryptographic
Engineering, 6(3), pp.201-216.

[18] Chen, C., Eisenbarth, T., Shahverdi, A. and Ye, X., 2014, November.
Balanced encoding to mitigate power analysis: a case study. In
International Conference on Smart Card Research and Advanced
Applications (pp. 49-63). Springer, Cham.

[19] Breier, J., Jap, D. and Bhasin, S., 2016, May. The other side of the coin:
Analyzing software encoding schemes against fault injection attacks. In
Hardware Oriented Security and Trust (HOST), 2016 IEEE
International Symposium on (pp. 209-216). IEEE.

[20] Canright S-box Implementation in C available on:
https://github.com/coruus/canright-aes-sboxes.

[21] Barenghi, A., Breveglieri, L., Koren, I., Pelosi, G. and Regazzoni, F.,
2010, October. Countermeasures against fault attacks on software
implemented AES: effectiveness and cost. In Proceedings of the 5th
Workshop on Embedded Systems Security (p. 7). ACM..

[22] Rajendran, J., Borad, H., Mantravadi, S., & Karri, R. (2010, June).
SLICED: Slide-based concurrent error detection technique for
symmetric block ciphers. In Hardware-Oriented Security and Trust
(HOST), 2010 IEEE International Symposium on (pp. 70-75). IEEE.

[23] Ananiadis, C., Papadimitriou, A., Hély, D., Beroulle, V., Maistri, P., &
Leveugle, R. (2016, March). On the development of a new
countermeasure based on a laser attack RTL fault model. In
Proceedings of the 2016 Conference on Design, Automation & Test in
Europe (pp. 445-450). EDA Consortium.

[24] Lac, B., Canteaut, A., Fournier, J. and Sirdey, R., 2018, May.
Thwarting fault attacks using the internal redundancy countermeasure
(irc). In International Symposium on Circuits and Systems (ISCAS)
2018.

[25] Kamoun, N., Bossuet, L. and Ghazel, A., 2009, November. Correlated
power noise generator as a low cost DPA countermeasures to secure
hardware AES cipher. In Signals, Circuits and Systems (SCS), 2009 3rd
International Conference on (pp. 1-6). IEEE.

[26] Breier, J. and Hou, X., 2017, February. Feeding two cats with one bowl:
On designing a fault and side-channel resistant software encoding
scheme. In _����	���������!���/�����������_	�#��� (pp. 77-94).
Springer, Cham.

[27] Kivilinna, J., 2013. Block Ciphers: Fast Implementations on x86-64
Architecture (Doctoral dissertation, University of Oulu).

[28] Güneysu, T. and Moradi, A., 2011, September. Generic side-channel
countermeasures for reconfigurable devices. In International Workshop
on Cryptographic Hardware and Embedded Systems (pp. 33-48).
Springer, Berlin, Heidelberg.

108 25th International Symposium on On-Line Testing and Robust System Design (IOLTS 2019)

Authorized licensed use limited to: University of Piraeus. Downloaded on April 26,2024 at 09:08:22 UTC from IEEE Xplore. Restrictions apply.

