
CDS206_Lab1: Fault injection in Xilinx FPGAs

Introduction

In this lab, we will explore how to implement a Design Under Test (DUT) on an FPGA and perform fault injection to evaluate its reliability.

Configuration memory fault injection is a technique used to test the fault tolerance of an FPGA design by injecting faults into the configuration 
memory of the FPGA. This can be achieved using specialized tools and techniques, such as laser fault injection or manipulating the bitstream of 
the FPGA.

Section 2: Impementation of the DUT

As a starting point, we will implement a 32-bit comparator and send/receive data via JTAG/BSCAN from

https://github.com/unipieslab/FREtZ, while injecting faults. Each time we inject a fault, and the DUT gives an erroneous result, we increase an 
error_counter. At the end of the experiment, we will count how many injected faults caused an error. This is called The Architectural Vulnerability 
Factor (AVF) of the DUT. AVF takes values in [0, 1]. The higher the AVF, the more vulnerable it is to SEUs.

The following figure shows the block design diagram of the DUT we will implement.
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Bitstream manipulation

In the old days, configuration memory fault injection was performed using a technique called "bitstream manipulation." Bitstream 
manipulation involves modifying the bitstream file that is used to configure the FPGA, to insert faults into the configuration memory. The 
modified bitstream file was then loaded onto the FPGA to simulate the effect of a fault in the configuration memory.

Here are the steps to perform configuration memory fault injection using bitstream manipulation in a Xilinx FPGA design under test:

Generate a golden bitstream file for the design that you want to test.
Modify the golden bitstream file to insert faults into the configuration memory. This can be done by flipping bits.
Load the modified bitstream file onto the FPGA.
Run the test cases and observe the behavior of the design. If the design is fault-tolerant, it should be able to detect and correct the 
injected faults and produce correct results.

It is important to note that configuration memory fault injection should be performed with caution, as it can potentially damage the FPGA 
and may violate the manufacturer's warranty. Experienced professionals should only perform it using specialized tools and equipment in 
a controlled and secure environment.

Dynamic Partial Reconfiguration (DPR)

Start-of-the-art Xilinx FPGAs support Dynamic Partial Reconfiguration (DPR) that allows a portion of the FPGA to be reconfigured at run-
time while the rest of the FPGA remains operational. This feature can be used to perform fault injection of the DUT at runtime.

Fault injection using DPR involves intentionally inserting faults into a module of the FPGA DUT in order to test the system's fault 
tolerance. Here are the steps involved in creating fault injection using DPR:

Establish a JTAG connection to the FPGA to access the configuration memory.
Read the configuration frame corresponding to the module or circuit you want to test.
Modify the configuration frame by flipping a bit.
Write the modified configuration frame back to the configuration memory.
Observe the effect of the introduced faults on the DUT's operation.
If the DUT can tolerate the fault and continue operating correctly, the fault is considered tolerable. Otherwise, it is considered 
critical.

In this lab we insert faults via DPR.

https://github.com/unipieslab/FREtZ


We will provide input data to the DUT and get the result via BSCAN. Xilinx BSCAN is a feature in Xilinx FPGAs that provides boundary scan 
testing capabilities. Boundary Scan or JTAG (Joint Test Action Group) is a standard for testing and debugging digital circuits that enables testing 
of individual pins or nets of a complex circuit board or device.

Let’s start implementing the design.

Open a terminal

BSCAN stands for Boundary Scan Chain, which is a series of boundary scan cells that can be used to test and debug the FPGA. These 
cells allow engineers to perform non-intrusive testing, which means they can test the FPGA without altering its normal operation. BSCAN 
cells can also be used for device programming and for in-system programming of the FPGA.

Xilinx BSCAN provides a standardized interface for accessing the boundary scan cells in the FPGA, which enables compatibility with 
industry-standard boundary scan tools. This feature is particularly useful for testing and debugging complex designs with a large number 
of pins and for verifying connections between the FPGA and other components on the board.

Using boundary scan testing, engineers can apply test patterns to the circuit's inputs and observe the outputs to verify that the circuit is 
functioning correctly. However, this testing typically requires specialized tools and software and is not intended to be used as a general-
purpose input-output interface for the circuit.



source /opt/Xilinx/Vivado/2016.4/settings64.sh
vivado &

Choose -->Create New Project



Give the following project name and location names





Choose the Zybo Z7-10 board.





Add sources the sources of the comparator







Create a block design (choose Create Block Design from the left side window of Vivado)



Press right-click on the empty block design



Choose the Add Module

Add the sources of bscan module



Add the sources of the comparator module



Choose the output wires of the comparator and press right click  Make external.



Make the following connections

Validate the correctness of your block design



If everything went well, you should get the following message

Now let's make a  for the block design. Choose the Sources -> See carefully the mouse cursortop wrapper



Press right-click on the design_1.bd file and press Generate Output Products



Press right-click on the design_1.bd file and press Create HDL Wrapper...



Now let's add the constraints file (the file which specifies which I/O ports of the Z7 board the DUT will use) to the project sources. Click the Add 
 button on Vivado’s left menu.Sources







After clicking the  button, you will see the  added to your source files.Finish constraints.xdc



In order to perform fault injection, we need to make a few changes in the bitstream settings. Click on the bitstream settings (see the cursor in the 
following snapshot)

Tick the  and flags and press applymask file logic_location_file



We are ready to implement the design! Click the  buttonRun implementation



When the design is implemented, open it to see where the DUT is placed in the FPGA



This is achieved via floorplanning. Floorplanning is a stage in the physical design process of an integrated circuit (IC) or Field-Programmable 
Gate Array (FPGA) that involves assigning and positioning the various functional blocks or components of the design on the chip or FPGA die.

See that the COMPARATOR has been implemented in the pink rectangular area shown below. There is also a small ping rectangular area for 
BSCAN module. We do this in order to inject faults only in the DUT, which is the COMPARATOR. The BSCAN is our test vehicle, and we need to 
keep it fault-free during our experiments in order to get proper results.

Now we are ready to generate the bitstream of the design. Click the buttonGenerate Bitstream

Xilinx floorplanning is a feature in the Xilinx ISE or Vivado design tools that allows designers to define the physical layout of the FPGA 
design, including placement of components, routing of signals, and optimization of timing and power.

In Xilinx floorplanning, designers use a graphical interface to specify the location and placement of the various components and sub-
blocks within the FPGA. They can also use floorplanning tools to optimize the physical design for performance, power consumption, and 
area usage.

Floorplanning can significantly impact the overall performance and efficiency of an FPGA design. By carefully arranging the components 
and sub-blocks on the FPGA die, designers can reduce signal delays, minimize power consumption, and improve overall system 
performance.

Xilinx floorplanning also allows designers to perform advanced functions such as pin placement, placement constraints, physical design 
rule checking, and power optimization. These features enable designers to optimize their FPGA designs for specific applications and 
requirements.



Section 3: Developing the algorithm to inject faults into the DUT with FRETZ

We will use  ( ) to inject faults into the FPGA.https://github.com/unipieslab/FREtZ https://osda.gitlab.io/19/3.2.pdf

FREtZ provides a rich set of high-level Python APIs and application examples to readback, verify and manipulate the bitstream and the device 
state of all AMD 7-series and UltraScale/UltraScale+ MPSoC/FPGAs. Specifically, FREtZ increases the productivity of performing fault-injection 

https://github.com/unipieslab/FREtZ
https://osda.gitlab.io/19/3.2.pdf


and radiation experiments by hiding low-level Vivado TCL/JTAG commands that are executed behind the scenes to access the PS and PL 
memories of the target device.

1) Open a terminal

cd wsp/sysyfos-fretz-host-sw/
source env/bin/activate
code .

Click the Open Workspace

FREtZ has many classes and methods, but a user must describe the fault injection procedure in the Python file  . UI/UserApplication.py
Feel free to check the current fault injection scenario described in the UI/UserApplication.py

In the following, we provide basic functions to perform fault injection:

def ConfigureDevice(self, bitstreamFileName : str) -> ExecutionStatus:
        """Sends a command to configure the FPGA

        :param bitstreamFileName: The filename of the bitstream which 
will be used for device configuration
        :type bitstreamFileName: str
        :return: The status of the execution process
        :rtype: ExecutionStatus
        """      

@staticmethod



    def FindNonMaskedSensitiveBits(ebdFrames : List[EbdFrame], 
mskFrames : List[Frame]) -> List[tuple]:
        """Finds all the sensitive bits which are non-masked

        :param ebdFrames: The design EBD frames
        :type ebdFrames: List[EbdFrame]
        :param mskFrames: The design mask frames
        :type mskFrames: List[Frame]
        :return: A list of tuples where each tuple consists of:
        +-------+------------------------
+-----------------------------------------------------------------+
        | Index | Name                   | 
Description                                                     |
        
+=======+========================+======================================
===========================+
        | 0     | frameIndex             | The index in the provided 
list where the item resides           |
        +-------+------------------------
+-----------------------------------------------------------------+
        | 1     | bitIndex               | The bit index (which is 
sensitive and non-masked) in the frame  |
        +-------+------------------------
+-----------------------------------------------------------------+
        | 2     | frame address value    | The frame 
address                                               |
        +-------+------------------------
+-----------------------------------------------------------------+

        .. note:: The method could return an empty list
        :rtype: List[tuple]
        """        

def ReadFrame(self, address : int, framesToRead : int) -> List[Frame]:
        """Reads frames from the remote device

        :param address: The starting address of the frame read process 
        :type address: int
        :param framesToRead: The number of frames to read
        :type framesToRead: int
        :return: The frames read from the remote device. 
        :rtype: List[Frame]
        """   
def BitFlip(self, bitPosition : int, word = None):
        """Flips a bit in the frame content given the bit position and 
the word

        :param bitPosition: The bit position which will be flipped
        :type bitPosition: int
        :param word: The word where the bit resides. If this parameter 



is None then bitPosition is related to the length of the frame, 
defaults to None
        :type word: int, optional

        Example 1: bitflip at bit position 2100  -> frame.BitFlip(2100)
        Example 2: bitflip at word 20 and bit 17 -> frame.BitFlip(17, 
20)
        """        
                     
def WriteFrame(self, frames : List[Frame]) -> ExecutionStatus:
        """Writes a list of frames

        :param frames: The frames to be written
        :type frames: List[Frame]
        :return: The execution status of the command
        :rtype: ExecutionStatus
        """  
def WriteBscanRegister(self, address : int, value : int) -> 
ExecutionStatus:
    """Writes a BSCAN register

    :param address: The address of the BSCAN register
    :type address: int
    :param value: The value to be written
    :type value: int
    :return: The status of the execution process
    :rtyp     
       
def ReadBscanRegister(self, address : int) -> int:
        """Reads a BSCAN register

        :param address: The address of the BSCAN register to read
        :type address: int
        :return: The value of the BSCAN register
        :rtype: int
        """          

To run FREtZ, please select that is located in the root directory of FREtZ, and select .fretz.py Run Without Debubbing



The GUI of FREtZ will pop up. Initially, we need to create and set up a FREtZ project, as shown below:



The project directory name that we specified is .lab_1a.fretz

When you specify the following settings please press the Create button

The following window will pop up.



Xilinx 4—7 Series devices allow users to read the configuration memory. There are two readback modes: Readback Verify (RbV) and Readback 
Capture (RbC). The RbV and RbC procedure outputs a readback configuration bit file of a device (.ebc) file.

The configuration bits of the device (.ebc) can be classified as essential (.ebd) and critical bits, as shown in the following figure.

It instructs you to copy the following files:

BITSTREAM (.bin): <vivado_project_name>.bin
MASK FILE (.msk): <vivado_project_name>.msk
DEVICE READBACK BITS (.ebc): <vivado_project_name>.ebc
ESSENTIAL BITS FILE MASK (.ebd): <vivado_project_name>.ebd
LOGIC ALLOCATION FILE(.ll): <vivado_project_name>.ll



The essential bits can potentially cause an error on the DUT when corrupted. We try to identify which essential bits will cause the error with fault 
injection experiments. These are called critical bits.

As mentioned, the Architectural Vulnerability Factor (AVF) is a popular reliability metric that shows how sensitive a DUT is to soft errors. In other 
words, it shows the portion of faults that lead to an output error.

AVF=output errors/total injected faults.

The AVF of an FPGA circuit depends on many factors, such as the circuit's architecture, how the circuit is placed and routed onto the FPGA, and 
the architecture of the FPGA itself.

In this lab, we inject a fault into the comparator and check if the fault leads to an error, as shown below:

BIT file

A binary file that contains proprietary header information as well as configuration data.

MASK file

A mask of the bit file that indicates which bits are not dynamic, i.e., do not change during circuit operation

EBC file

The EBC file is a reference file containing the FPGA's memory cell content. This is the same content read back by the Vivado hardware 
manager. It is important to note that this file is not the same as the bitstream used to program the part.

EBD file

The EBD file is used to mask the EBC file meaning that a 1 in the EBD file corresponds to an essential bit in the EBC file.  An EBC file bit of 1 or 
0 can be essential or critical depending on if there is a corresponding 1 in the EBD file for this bit.

LL file

With RbC mode, one can check the state of registers in a circuit since RbC mode allows the state of the CLB configuration memory cells to be 
read. This can be done by issuing a GCAPTURE command to the configuration access port of the FPGA so as to sample all CLB register values 
into configuration memory cells. These values can then be read back along with the configuration frame containing the status of user memory 
elements (e.g., registers). However, designers must know the frame address and configuration bit offset of the SRAM cell corresponding to the 
desired register output of the DUT. These parameters are given in the logic allocation (*.ll) file, which is automatically generated by the Xilinx ISE
/Vivado design tools. The logic allocation file includes four fields, namely a bit offset, a frame address, a frame offset, and information for each 
configured resource, as depicted in Fig. 5. In the following, we provide an example where the registers corresponding to the voter status of a 
TMR component are determined from the information fields that then allow the frame addresses and frame offsets to be extracted:



<bit offset> <frame addr> <offset> <Information>
Bit 19488835 0x0042021f 3107 Block=SLICE_X3Y48 Latch=AQ Net=voters[6]
/status_bits[1]

READMORE in https://support.xilinx.com/s/article/14468?language=en_US

OK, now that we know what all these files mean, let's copy them from the Vivado project to the Fretz project folder in order to perform the fault 
injection.

Open terminal

cd ~/wsp/lab_1a/lab_1a.fretz/
cp ../lab_1a.runs/impl_1/*.ll ../lab_1a.runs/impl_1/*.bit  ./
cp ../lab_1a.runs/impl_1/*.ebd ../lab_1a.runs/impl_1/*.ebc ./
cp ../lab_1a.runs/impl_1/*.msk ./
cp ../../src/lab1_a/srcs/fretz_1/frames.txt ./

Then close the pop-up window:

In FREtZ GUI press the  button.Load project

https://support.xilinx.com/s/article/14468?language=en_US


Turn on and connect the Zybo card to the Virtual machine.

Click the  button.Open application



Click the  button.Start

At the bottom of the FREtZ GUI, you will see that we have a connection with the board. Also, in the  you will see that FREtZ Log window
communicates with the Vivado Hardware Manager in order to instruct it to read and write frames during the fault injection procedure.



Now switch to the Microsoft Code editor to observe what is reported in the terminal. At the end of the fault injection experiment, you will see that 
the AVF of the experiment is reported.



Now that you finished this design example, can you develop an experiment that performs fault injection in a 32-bit adder?

TIPS:

Provide via BSCAN the same date to the adder’s input
Get the result of the adder’s output via BSCAN
Compare the result with a golden value
Please uncomment the following lines (78-79) in the  if you want to debugUserApplication.py

#pydevd.connected = True
#pydevd.settrace(suspend=False)
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