CDS206 Lab2: Reducing the architectural vulnerability factor of FPGA circuits with
TMR

Introduction

In our first lab, we developed a 32-bit comparator and a 32-bit adder on the FPGA to perform fault injection and find the circuits' Architectural
Vulnerability (AVF). We found that some bitflips in the FPGA's configuration memory resulted in a circuit error.

We used JTAG/BSCAN to send input to the circuit and get the result. In FREtZ, we compared the result of the circuit with a golden reference to

check if an injected fault resulted in an error.

ZYBO-Z7

compare_0

p
|

bscan_0 A[31:0]

——(rsultw:(]] %- ranclnm_number_l[31:O]H—-E[31:D] E]

compare vl 0

bscan_vl1l 0
Res[2:0]

[=
T Tr=7

D
FMRcl L
In this lab, we will develop a Triple Modular Redundant (TMR) adder Design Under Test (DUT) and perform fault injection to investigate how

TMR improves the circuit's AVF.

#) Hardware TMR (Triple Modular Redundancy) is a technique that uses three identical hardware modules to improve fault tolerance. In
hardware TMR, each module is designed to perform the same function, and each module has its own set of inputs and outputs.

The inputs are usually synchronized so that they are applied to each module at the same time. The outputs of the three modules are then
compared to detect any discrepancies. If the outputs of any two modules match, then the output is considered to be correct, and the

system continues to operate as expected. If the outputs do not match, the system enters a "voting" phase, where a majority vote is taken
to determine which output is correct.

Hardware TMR is commonly used in mission-critical applications where reliability is of utmost importance. Examples of such applications
include avionics, military systems, and medical devices. Hardware TMR provides a higher level of redundancy compared to software
TMR, which relies on redundant software modules running on a single processor. Hardware TMR is often implemented using field-
programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs).

Input i Circuit “j\ Qutput ,

Triplication and
majority voter

insertion
ITMR domain ~ _i
—-K Circuit replica Majority voter
pulpslpslipeipeluelpsliol V=AB + AC+ B-C
[TMR domain
Input ;VF Circuit replica | Output B o Vv Output >
I\ N
________________ — G
[TMR domain T o

—{ Circuit replica

However, we will perform fault injection through the following Duplication With Comparison (DWC) paradigm.

Implement two copies of the DUT DUT and Copy DUT (CpDUT) or otherwise golden DUT.
Connect the same input to the DUT and CpDUT

Connect the output of the DUT and CpDUT in a comparator

Inject a fault ONLY into the DUT

Provide the same input to the DUT and CpDUT

Read the output of the comparator

® |f Equal != 1, then the fault resulted in an error

Fault

e

o DUT |-

—Ed— Equal

—Input— | Comparator —u— smaler
. —GT—* Greater

L 4

CpDUT -

) But how do we inject faults only into the configuration memory of the DUT?

We do this through Vivado's Placement Constraints. Placement constraints are applied to cells to control their locations within the
device --> read pages 139-143 in https://docs.xilinx.com/v/u/2016.1-English/ug903-vivado-using-constraints. In simple words, we instruct
Vivado to implement the DUT in a particular place (commonly called placement block or in short PBLOCK) in the FPGA and then we

inject faults into the configuration frames of the PBLOCK.

Lab exercise
AVF of the simplex adder
Initially, we will implement the simplex adder (not TMR) in a DWC structure and perform fault injection as described in the introduction.

The DUT is adder_0, and the cpDUT is adder_1.

Please use the source code and tutorial from lab_1 to develop the circuit and perform fault injection with FREtZ to evaluate the DUT’s AVF.

adder 0
AR1:0]
RTL Resp1:0]
BRE1:0]
T 0
bscan_0 adder_1
P compare 0
rasullf2:0] RTL random_numbear_i[31:0] ARR1:0]
RTL Resf1:0] AR1:0]
BRE1:0] RTL Resk:0
bscan v1 0 BE1:0]

compare v1 0

) As mentioned, one important step for the DWC structure is to place the DUT (i.e., adder_0) into a PBLOCK (namely pblock_adder_0)
and the cpDUT (i.e., adder_1), compare_0 and bcan_0 into another PBLOCK(namely rest_logic)

This can be done by adding the following constraints in the const r ai nt s. xdc file:

https://docs.xilinx.com/v/u/2016.1-English/ug903-vivado-using-constraints

set _property BlI TSTREAM SEU. ESSENTI ALBI TS yes [current _desi gn]
set _property Bl TSTREAM GENERAL. PERFRAMECRC YES [current _desi gn]
set _property Bl TSTREAM CONFI G | NI TSI GNALSERROR DI SABLE [current _desi gn]

creat e_pbl ock pbl ock_adder 0O
add_cel I s_to_pbl ock [get_pbl ocks pbl ock_adder_0O] [get_cells -quiet
[list design_1 i/adder_0]]

resi ze_pbl ock [get pbl ocks pbl ock _adder 0]

SLI CE_X31Y39}

creat e_pbl ock

add_cells_to_pblock [get pblocks rest logic] [get _cells -quiet

rest _logic

design_1 i/adder _1]]
add_cel Il s_to_pbl ock [get_pblocks rest _logic] [get _cells -quiet [list
design_1 i/bscan_0]]
add_cells to _pblock [get pblocks rest logic] [get _cells -quiet [list
design_1 i/conpare_0]]

resi ze_pbl ock [get_pbl ocks rest | ogic]

AVF of the NEORV32’'s multiplier unit

-add {SLI CE_X26Y27:

In this exercise, we will implement the NEORV32 and then find the AVF of its multiplier unit through fault injection.

Follow the tutorial NEORV- 32- t ut ori al . pdf from CDS105 to implement the NEORV RISC-V.

[1ist

-add {SLI CE_X0Y46: SLI CE_X21Y49}

When you implement the design, please follow the steps below to place the ALU of NEORV32 into a PBLOCK to perform targeted fault injection.

1) Open the implemented design

Flow Navigator ? o«
=1 e
= =

ST g B

4 Simulation
& simulation Settings
(ll, Run Simulation

4 RIL Analysis
@ Elaboration Settings
» [@* Open Elaborated Design

4 Synthesig
@ Synthesis Settings
P Run Synthesis
» @ Open Synthesized Design

4 |mplementation
@ Implementation Settings
[» Run Implementation
4 % openImplemznted Design

&y comstraind wizard
(&, Edit Timing Constraints
@ Report Timing Surmmary
I, Report Clock Networks
&1 Report Clock Interaction
E‘, Report Methedology
Q& Report DRC

4 Program and Debug
@ Bitstream Settings
m Generate Bitstream

» g% Open Hardware Manager

[«]

Analyze and constrain an Implemented Design

neorv32 - [fhome/fretz/wsp/vivado_projects/neorv32/neorv3z.xpr] - Vivado 2016.4

File Edit Flow Tools Window Layout view Help

L BN R LY B e S SNL

Project Manager - neorv32
Sources
= e

=2 e R
Messages: (U 4 warnings
iign Sources (3]
. riscv_wrapper_wrapper - STRUCTUI
neorv32_dmem - neorv32_dmem_rtl (ne
neorv32_imem - neorv32_imem_rtl (n
1straints (1)
constrs_1 (1)
By Zybo-Z7-Master.xdc
ulation Sources (4]

7 0O 18 x

E1] [] 0

Hierarchy IP Sources | Libraries Compile Order

Froperties

=k

4 Zybo-Z7 Master.xde

Hwe: Fra—T

General Properties

7 _ 0O 18 x

o

write_bitstream Complete

? X
L Project Summary x PO ox
ST = o)
Total Numnber of Endpoints: 3755
Implemented Timing Report
Setup Hold Pulse Width
Utilization - Post-Implemnentation Power
Total On-Chip Power: 1.553 W
LT 11 Junction Temperature: 42.9°C
FF 4 Thermal Margin: 421 °C (3.6 W)
BRAM 13 Effective 9l 115 “Chin
om Fower supplied to off-chip devices: 0w
BUFG E Confidence level: Low
0 25 50 75 100 Implemented Power Report
Utilization (%)
Graph Table
Post-Synthesis . Post-Implementation =

Degign Runs = I
a, Name | Constraints | Status | _wns | TnS | WwHS | THE
o @ synth_1 (active) constrs_1 synth_design Complete!
g L impl_1 constrs_1 write_bitstream Complete! 0.366 0,000 0.034 0.0
3 ¢ Out-of-Context Module Runs
riscy_wrapper ubmodule Runs Complete
p| &V Submodule Runs Complet
i
»
4«
=%
[+ o
B Tcl Console > Messages Bl log 2 Reports > Design Runs

2) Find from the netlist the multiplier unit.

Eile Edit
3

Flow Tools

Flow Navigator
gy
AU =

o CeTTTTETe T T

N

Sirnulation
&5 simulation Settings
(M, Run Simulation

N

RTL Analysis
#5 Elaboration Settings
5% Open Elaborated Design

N

Synthesis
& synthesis Settings
P Run synthesis
5% Open Synthesized Design

N

Implementation
&5 Implementation Settings
[Run Implementation
Implemented Design

Constraints Wizard

Edit Timing Constraints
Report Timing Summary
Report Clock Networks
Report Clock Interaction
Report Methodology
Report DRG

Report Noise

Report Utilization
£p Report Power

4 Program and Debug

?

Window Layout View Help

, @[> D> WHACLOS K| L (6Eomutyor]

«

D

3 Properties

|

neorv32 - [fhome/fretz/wsp/vivado_projects/neorv3z/neorv3z2.xpr] - Vivado 2016.4

Implemented Design - xc7z010clg400-1 (active}

Netlist

3] riscy_wrapper_wrapper
Nets (13
Leaf Cells (4

>

1] riscy_wrapper_i

Leaf Eel\s 45

neorv32_boot_rom_inst_true.neorv32_boot_rom_inst
neorvd2_bus, keeper inst
neorv32_busswitch_inst

neorv32_cpu_inst

Nets (8
neorv32_cpu_alu_inst
Nets
Leaf Cells (10

neorv32_cpu_cp_muldiv_inst_true.neorv32_cpu_cp_muldiv_inst (riscv_wrapper_neorv32_test_setup b

i: Nets (5

Leaf Cells (410
neorv32 cpu_cp_shifter mst
neorva2_cpu_bus_inst (risc
neorv3d2_cpu_control_inst
neorv32_cpu_regfile_inst

neorv32_gpio_inst_true. neowaz_gplu inst (r
neorv32_int_dmem_inst_true.neorv32_int_c dmem inst
neorv32_int_imem_inst_true.neonv32_int_imem_inst (ris
a >~{0] neorv32 mtime inst true.neonv32 mtime inst £
L]
& Sources Gl Netlist
B|c (@ |2 |5 (P |9 |& Timing @

3) Right-click on the multiplier and choose Floorplanning New Pblock

Activities A Vivado ~

Eile Edit

3 2

A E|
Flow Navigator

o T
XL =

ST ST ST T T

4 Simulation
45 simulation Settings
@ Run Simulation

4 RTLAnalysis
45 Elaboration Settings

&% Open Elaborated Design

4 Synthesis
45 Synthesis Settings
& Run Synthesis

&% Open Synthesized Design

4 Implementation

5 Implementation Settings

[» Run Implementation

4| Implemented Design

Report DRC
Report Noise
Report Utilization
£l Report Power

4 Program and Debug

Create a new Phlock

Constraints Wizard

Edit Timing Constraints

Report Timing Summary
Report Clack Networks

Report Clack Interaction
Report Methodology

Flow Tools Window Layout

LA

i1}

7«

O

3 Properties

=

view Help

@30 K|E oEsmuimn]

May 3 06:34

neorv32 - [fhome/fretz/wsp/vivado_projects/neorv32/neorv32.xpr] - Vivado 2016.4

Implemented Design xc72010clg400 1 (active)

Netlist
=
=
3 riscv_wrapper_wrapper
Nets (1
Leaf Cells (4
i riscw_wrapper_i 2
o 1
o~ Leaf Cells (1
Leaf Cells (10
neon32_to|
>~i5 Mets (4
o~ Leaf Cells (45
neonva2_boot_rom_inst_true.neorv32_boot_rom_inst (riscy .
neonva2_bus_keeper_inst A
neonva2_busswitch_inst -
neonv32_cpu_inst g 3 Cell Properties...
Mets
neorva2_cpu_alu_inst A Floorplanning
Nets
Leaf Cells (10 Select Leaf Cells
@ neorv32_cpu_cp_muldiv_inst_|
g: Nets (646) # Highlight Leaf Cells
Leaf Cells (41
neorva2_cpu_cp_shifter_| mst
neorv32_cpu_bus_inst (riscy # Highlight
neonv32_cpu_ control _inst
neorv32_cpu_regfile_inst & Mark
neorv32_gpio_inst_true.neorv32 gp
neonva2_int_dmem_inst_true.neorv
neorv32_int_imem_inst_true.neon3.
neorv32 mtime inst true.neorv32
41 - . "] Sehematic
& Sources [l Netlist Show Connectiutty
8o ®|2 R P @G Timing @ & Show Hierarchy
Go to Source

4) Provide the following name to the PBLOCK

ctrtE

ClrbtShift+S

Fa
CHrT
F&
F7

write_bitstream Complete

? X

? 0 %

ct Summary X @ Device X 4 » @

]

& Assign to Pblock..

& Draw Pblock
New Phlock..

New Pblock X

Create a new Phlock,

Mame: |pb|0ck_ri5c_mult |

V] Assign selected cell

0k l | Cancel

Al i i write Bitvtream Compleds

‘ Fiw Hisdgel o

rl 4 Projet Mand
i " e r -
- 13
s kg

o P rtagse
' | A s
] L

» Girvadatio

Gererste Mamony Configuration Pl
Compils Simalstion Libranes

sl 00 S,

antomice Command .

| Surnemary - impl 1 - IO
& Syt T et O Db Tovrng Sarmemary
B Gyri haas Caming ' » Ha-d ey
B Bun Syrtan sy R
-) Timter TGS
pem Syt b Carmign Cwign Taming Summmany L2
2 5 & 14
Bl wues speciied fiming consbralnis are mest
T " =] [¥
imirg Summary « bmpl 1 irm
Tl Coracle o Hawages Hlog Faports B Package Pra [Dwiign Fum | 0 Posst o Thming | B Methodology | ©1DR

L]
Bww

Automat i ally plsce Fhloci for guick sralyiia only

6) Press OK. This will automatically place the pblock_risc_mult in an optimal position in the FPGA.

Place Pblocks X

Select Phlocks, and specify the approximate slice utilization
goal, for placement.

Parent Pblock: |ROOT - |

Phlocks to Place

Flace | Phlock | Utilization % |
v pblock_risc_mult &7

Set Utilization on &ll Phlocks...]

|EJ [0* H Cancel

7) Open the constraints file and adjust the position block as follows:

resi ze_pbl ock [get pbl ocks pblock risc nult] -add {SLICE X18Y50:
SLI CE_X21Y99}

8) Next, we must write software on the RISCV that runs multiplications. After injecting a fault, we will send two numbers to be multiplied through
UART from FREtZ and check if the result is correct. In this way, we will calculate the AVF of RISC-V

The source code of the mmult application can be found in

| ab2_c/srcs/risc_v_mmult_app/ mult

The source code for FREtZ can be found

| ab2 c\srcs\fretz 1

Homework: AVF of the TMR adder

Please find with fault injection the AVF of adder_0 when it is Radiation Hardened By Design (RHBD) with TMR.

) The design is identical with that of the simplex adder (Fig.1). However, the DUT (i.e., adder_0) is TMR. The TMR_Adder_0 should follow
a hierarchical implementation.

TMR_Adder_0

— ARTO —
L -_—
§—= B[31:0]

TMR_Adder vi_0

b=can_0 idcher_1
compara_0

e result{Z:0] BTL mndom_number ([31:0] se—S— 310
RTL Res[31:0] Af3:0]
b B[31:0] I BR10] atL Res[2:0] m—":

adder_v1_0

-

compang_vi 0

) Please complete the code of the voter

-- This a voter that will be used in the TMR Adder_ 0O

-- The voter circuit votes upon the inputs fromthree copies of the
sinmpex circuit

l'ibrary | EEE

use | EEE. STD LOd C 1164. ALL;

use | EEE. NUMERI C_STD. ALL;

entity voter is
Port (Res1: | N UNSI GNED(31 DOWNTO 0);
Res2: | N UNSI GNED(31 DOWNTO 0) ;

Res3: | N UNSI GNED(31 DOANTO 0) ;
Res : OUT UNSI GNED(31 DOANTO 0)

end vot eZZ

architecture Behavioral of voter is
si gnal #### ADD CODE HERE ####;

begi n

Res<= #### ADD CODE HERE ####;

end Behavi oral ;

) Please complete the code of the hierarchical design

l'ibrary | EEE;
use | EEE. STD LOG C 1164. ALL;

-- Uncomrent the following library declaration if using
-- arithnetic functions with Signed or Unsigned val ues
use | EEE. NUMERI C_STD. ALL;

entity TMR Adder is
Port (A: in UNSIGNED(31 DOANTO 0);
B: I N UNSI GNED(31 DOWNTO 0);
Res: OUT UNSI GNED(31 DOANTO 0));
end TMR _Adder;

architecture Behavioral of TMR Adder is
-- W will use three copies of the sinplex adder to inplenment the TWMR
adder
conponent adder is
Port (A: in UNSI GNED(31 DOANTO 0);
B: I N UNSI GNED(31 DOWNTO 0);
Res: QOUT UNSI GNED(31 DOWNTO 0)
);

end conponent;

conponent voter is
Port (Resl: | N UNSI GNED(31 DOWNTO 0);
Res2: | N UNSI GNED(31 DOANTO 0);
Res3: | N UNSI GNED(31 DOANTO 0);
Res : OUT UNSI GNED(31 DOANTO 0)
)

end conponent;

attribute dont_touch : string;

signal A0, Al, A2: UNSIGNED(31 DOWNTO 0);

signal BO, B1l, B2: UNSI GNED(31 DOWNTO 0);

signal RO, R1l, R2:UNSIGNED(31 DOWNTO 0);

-- W use the attribute dont _touch to instruct Vivado to NOT renpve

redundant | ogic

attribute dont_touch of AO: signal is "true";
attribute dont_touch of Al: signal is "true";
attribute dont_touch of A2: signal is "true";
attribute dont_touch of BO: signal is "true";
attribute dont_touch of Bl: signal is "true";
attribute dont _touch of B2: signal is "true";
attribute dont _touch of RO: signal is "true";
attribute dont_touch of Rl: signal is "true";
attribute dont _touch of R2: signal is "true";

begi n

AO<=### ADD CODE HERE ###;
Al<=### ADD CODE HERE ###;
A2<=### ADD CODE HERE ###;

BO<=### ADD CODE HERE ###;
Bl<=### ADD CODE HERE ###;
B2<=### ADD CODE HERE ###;

adder O: adder Port MAP (
ADD CODE HERE

)

adder 1: adder Port MAP (
ADD CODE HERE

)

adder 2: adder Port MAP (
ADD CODE HERE
)
voter_inst:voter Port Map(
ADD CODE HERE
);

end Behavi or al ;

) As mentioned we need to place the TMR adder into a PBLOCK in order to perform targetted fault injection. Otherwise we will inject faults

into the components that are not part of the DUT.

Please use the following constraints for placement.

set _property BlI TSTREAM SEU. ESSENTI ALBI TS yes [current _desi gn]
set _property Bl TSTREAM GENERAL. PERFRAMECRC YES [current _desi gn]

set _property BlI TSTREAM CONFI G. | NI TSI GNALSERROR DI SABLE [current _desi gn]

creat e_pbl ock pbl ock_adder TMR

add_cel Il s_to_pbl ock [get_pbl ocks pbl ock_adder _TMR] [get _cells -quiet
[list design_1 i/TVMR Adder_0]]

resi ze_pbl ock [get_pbl ocks pbl ock_adder _TMR] -add {SLI CE_X26Y27:

SLI CE_X31Y39}

create_pbl ock pblock_1

add_cells_to _pblock [get pblocks pblock 1] [get _cells -quiet [Ilist
design_1 i/adder 1]]

add_cel Il s_to_pbl ock [get_pbl ocks pblock 1] [get_cells -quiet [Ilist
design_1 i/bscan_0]]

add_cel I s_to_pbl ock [get_pbl ocks pblock_1] [get_cells -quiet [Ilist
design_1 i/ conpare_0]]

resi ze_pbl ock [get_pbl ocks pblock 1] -add {SLI CE X0Y33: SLI CE_X21Y49}

You should get the following floorplanning/placement

	CDS206 Lab2: Reducing the architectural vulnerability factor of FPGA circuits with TMR

