
CDS206 Embedded Systems Reliability - MSc 6th cycle (v1.0)

Final Project: Enhancing the Reliability of an

FPGA-based RISC-V Embedded Processor

Problem Statement

Space-G is developing a telecommunications payload for the International Space
Station (ISS). The payload is based on a Zynq-7000 SoC, integrating a NE-
ORV32 (RISC-V) soft-core processor for executing matrix multiplication tasks
used in telecommunications (e.g., FFT). In LEO, soft errors due to radiation-
induced bit flips are a significant concern. Therefore, to improve the depend-
ability of the NEORV32, two soft-error mitigation techniques—Triple Modular
Redundancy (TMR) and Error Correction Codes (ECC)—must be applied se-
lectively. You are tasked with implementing these SEE mitigation schemes in
the neorv32 cpu alu.vhd file and evaluating the system’s post-routing metrics
and reliability for a 15-year LEO mission.



CDS206 Embedded Systems Reliability - MSc 6th cycle (v1.0)

Milestone 1: SEE Mitigation

Task 1: Baseline (unhardened) NEORV32 Design Met-
rics

Objective: Gather the baseline design metrics of the unmodified NEORV32.

Metrics to Obtain:

1. Worst Negative Slack (WNS) and Maximum Frequency

2. Resource Utilisation:

• Total LUTs, Logic LUTs, LUTRAMs, SRLs, FFs, RAMB36, RAMB18,
DSP48 Blocks for both:

– The entire NEORV32 design (top module)

– The neorv32 cpu alu module

3. Power Consumption:

• Total, Dynamic, and Static Power of the whole design

Hints:

Open Vivado GUI. Run Implementation → Open Implemented Design.

• To get utilization: Tools → Report → Report Utilization

• To get WNS: Tools → Timing → Report Timing Summary

• To get power metrics: Tools → Report → Power Report

Task 2: Selective TMR of NEORV32 ALU

Objective: Apply Triple Modular Redundancy (TMR) selectively to enhance
the reliability of specific NEORV32 ALU components.

Steps: Modify the neorv32 cpu alu.vhd file to apply TMR to:

1. Line 104: Apply TMR to the comparator unit (responsible for conditional
branches).

2. Line 134: Apply TMR to the adder core.

3. Lines 197-225: Apply TMR to the Co-processor 1 (integer multiplica-
tion/division unit - ’M’ Extension).

Task 3: Implement Hamming ECC on Execute Engine FSM

Objective: Improve the reliability of the NEORV32 execution unit by adding
a Hamming Error Correction Code (ECC) in the Finite State Machine (FSM)
of the Execute Engine.



CDS206 Embedded Systems Reliability - MSc 6th cycle (v1.0)

The Execute Engine FSM is implemented by two processes:

• (a) execute engine fsm sync

• (b) execute engine fsm comb

In process (a), the signal execute engine.state (current FSM state) is as-
signed the signal execute engine.state nxt (next FSM state), while in pro-
cess (b), the signal execute engine.state nxt is calculated according to the
current FSM state and the current instruction. The type of both signals is
execute engine state t; the type has 12 values (states), and thus the signals
are 4-bit vectors. The Hamming ECC will be a (7,4) Hamming Single Error
Correction Single Error Detection (SECSED) code, i.e., 4 bits for the FSM
state code and 3 bits for the parities. See the presentations: (a) Lecture: Error
Detection Codes and (b) Lab Exercise: Safe FSM Encoding.

Hints:

• The parity bits will be assigned values along with the execute engine.state

in the process execute engine fsm sync (line 697) and will be calculated
based on the execute engine.state nxt.

• For calculating the parity bits and the syndromes, use the equations from
the (7,4) Hamming SECSED code presented in the lectures.

• Calculate the state corrected signal from the execute engine.state

and the syndromes.

• Decide whether the parity bits, the syndrome, and the state corrected

signal will be defined as part of the execute engine t record, or they will
be standalone signals.

• Replace the execute engine.state signal with the state corrected sig-
nal (i.e., the original current FSM state with the corrected FSM state) in
all the points of the VHDL code where the execute engine.state signal
is read (checked).

Task 4: unhardened and hardened

Maximum frequency and initialisation Metrics:

Compare the following design metrics between the unhardened and hardened
versions of NEORV32:

1. Maximum Frequency

2. Resource Utilisation:

• Whole design

• Only the ALU module (use report utilization -hierarchical)

3. Power Consumption: Total, Dynamic, and Static Power



CDS206 Embedded Systems Reliability - MSc 6th cycle (v1.0)

Milestone 2: Reliablity Analysis

Task 1: Fault Injection Experiments

Use FREtZ to conduct fault injection experiments on the Co-Processor 1 -

Integer Multiplication/Division Unit when running a matrix multiplica-
tion application.

After power on, the FPGA should start the application which enters in an
infinite loop, waiting for input from the UART interface. When the character
’X’ is received, it starts the matrix multiplication process between two 28x28
matrices. The matrices mat1 and mat2 are initialized such that each row is
filled with the row index + 1. After initialisation, the programme multiplies
the two matrices and outputs the result via UART, printing each element of the
result matrix using neorv32 uart0 printf().

Use the software code from the CDS206 Final Project.zip file from Eclass(https:
//thales.cs.unipi.gr/modules/document/file.php/CDS126/Project/CDS206_

Final_Project_Files.zip).

Report

1. # of Silent Data Corruptions (SDCs), i.e., if the result of mult is not
correct.

2. # of Processor Crashes, i.e., the processor becomes unresponsive (crashes).

3. Architectural Vulnerability Factor (AVF):

AV F =
SDC + Crashes

Total Faults Injected

Task 2: Calculate Reliability for a One-Year LEO Mis-
sion

Objective: Estimate the reliability of the NEORV32 ALU for a 15-year mis-
sion.

R(t = 15 year) = e−λt,

where λ = AVF × CRAM-upsetrate. Assume an CRAM-upsetrate = 4.48 ×
10−6 per device per day.

Requirements

• Vivado version: 2016.4

• Target board: Zybo Z7-10 or Zybo.

https://thales.cs.unipi.gr/modules/document/file.php/CDS126/Project/CDS206_Final_Project_Files.zip
https://thales.cs.unipi.gr/modules/document/file.php/CDS126/Project/CDS206_Final_Project_Files.zip
https://thales.cs.unipi.gr/modules/document/file.php/CDS126/Project/CDS206_Final_Project_Files.zip


CDS206 Embedded Systems Reliability - MSc 6th cycle (v1.0)

• Vivado board support files can be installed using https://digilent.com/
reference/software/vivado/board-files?redirect=1.

Source code

• Download the CDS206 Final Project.zip from Eclass https://thales.
cs.unipi.gr/modules/document/file.php/CDS126/Project/CDS206_Final_

Project_Files.zip.

• Inside the zip file you will find:

– A UserApplication.py file for the FREtZ framework. This UserApplication.py
can be used to inject faults into the mul/div component of NE-
ORV32. Copy this file into your FREtZ project’s UI folder (exam-
ple:/home/fretz/wsp/sysyfos-fretz-host-sw/src/UI)

– Software code for a matrix multiplication application (NEORV32 SW/main.c).
Ideally, you should configure RISC-V to execute this software after
the SoC-FPGA is configured (i.e. do not use the UART bootloader).

– AVivado placement constraints file (NEORV32 SW/Zybo-Z7-Master.xdc)
in order to implement the mul/div into a specific area of the SoC-
FPGA (i.e. into a Pblock)

– The frames app.txt contains the configuration frame addresses of
the mul/div Pblock. Move this file into the FREtZ project folder.

• General Hints:

– To perform fault injections you need to copy the .bit, .ll, .ebd,

.ebc, .msk, frames app.txt files into you FREtZ folder.

– After executing the fault injection, you can find the results in file
called results.txt into you FREtZ folder. Each mmult result from
each fault injection iteration (inject a fault, run mmult, save the re-
sult in results.txt file) should be compared with a golden reference
results (i.e. a results that you captured by running mmult but with-
out inserting a fault). Each mismatch between the golden result and
the captured result

Deliverables

1. Final Report:

• Unhardened and hardened design metrics.

• Fault injection results and calculated AVF.

• Reliability analysis of the 15-year LEO mission.

https://digilent.com/reference/software/vivado/board-files?redirect=1
https://digilent.com/reference/software/vivado/board-files?redirect=1
https://thales.cs.unipi.gr/modules/document/file.php/CDS126/Project/CDS206_Final_Project_Files.zip
https://thales.cs.unipi.gr/modules/document/file.php/CDS126/Project/CDS206_Final_Project_Files.zip
https://thales.cs.unipi.gr/modules/document/file.php/CDS126/Project/CDS206_Final_Project_Files.zip


CDS206 Embedded Systems Reliability - MSc 6th cycle (v1.0)

2. Project Files:

• Vivado: Unhardened and hardened NEORV32 designs.

• The results.txt file.

Deadline and Progress Meetings

You should deliver this project on 03/11/2024.

Progress Meetings

We will have progress meetings on the following dates:

• 14/10/2024

• 21/10/2024

• 28/10/2024

All meetings will take place from 18:30 - 19:30 via Google Meet: https:

//meet.google.com/run-jxfs-bna

During our meetings, we will solve any problems that you may encounter and
answer any questions you have about this project.

Final Examination

On 04/11/2024, you will be examined face-to-face atThemistokleio, Nikaia.

https://meet.google.com/run-jxfs-bna
https://meet.google.com/run-jxfs-bna

