
Machine Learning Using
SAS® Viya®

Course Notes

Machine Learning Using SAS® Viya® Course Notes was developed by Carlos Pinheiro, Andy
Ravenna, Sharad Saxena, and Jeff Thompson. Additional contributions were made by Marya
Ilgen-Lieth and Cat Truxillo. Instructional design, editing, and production support was provided by
the Learning Design and Development team.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

Machine Learning Using SAS® Viya® Course Notes

Copyright © 2019 SAS Institute Inc. Cary, NC, USA. All rights reserved. Printed in the United

States of America. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise,

without the prior written permission of the publisher, SAS Institute Inc.

Book code E71496, course code LWCPML3V/CPML3V, prepared date 23Apr2019. LWCPML3V_001

ISBN 978-1-64295-361-9

For Your Information iii

Table of Contents

To learn more… ... vii

Chapter 1 Introduction ..1-1

1.1 Machine Learning in Business Decision Making ..1-3

Demonstration: Creating a Project and Loading Data 1-22

1.2 Essentials of Supervised Prediction ... 1-32

Demonstration: Modifying the Data Partition .. 1-44

Demonstration: Building a Pipeline from a Basic Template 1-61

1.3 Introduction to SAS Viya ... 1-67

Chapter 2 Data Preparation ...2-1

2.1 Data Exploration...2-3

Demonstration: Exploring Source Data ..2-8

Demonstration: Modifying and Correcting Source Data Using the Data
Tab ... 2-13

Demonstration: Alternate Method to Modify and Correct Source Data
Using the Manage Variables Node (Self-Study)..................... 2-19

2.2 Feature Extraction .. 2-24

Demonstration: Adding Text Mining Features ... 2-29

2.3 Input Transformations ... 2-41

Demonstration: Transforming Inputs.. 2-45

2.4 Feature Selection ... 2-50

Demonstration: Selecting Features ... 2-57

Demonstration: Saving a Pipeline to the Exchange....................................... 2-61

2.5 Variable Clustering (Self-Study) ... 2-64

Demonstration: Clustering Inputs for Data Reduction (Self-Study) 2-66

2.6 Best Practices .. 2-70

iv For Your Information

Demonstration: Running the Automated Feature Engineering Pipeline
Template (Self-Study) ... 2-74

2.7 Solutions ... 2-78

Solutions to Student Activities (Polls/Quizzes) ... 2-78

Chapter 3 Decision Trees and Ensembles of Trees ..3-1

3.1 Introduction..3-3

Demonstration: Building a Decision Tree Model with Default Settings...............3-5

3.2 Tree-Structure Models .. 3-11

Demonstration: Improving a Decision Tree Model by Changing the Tree
Structure Parameters ... 3-17

3.3 Recursive Partitioning ... 3-19

Demonstration: Improving a Decision Tree Model by Changing the
Recursive Partitioning Parameters 3-40

3.4 Pruning.. 3-41

Demonstration: Improving a Decision Tree Model by Changing the
Pruning Parameters ... 3-50

Exercises ... 3-52

3.5 Ensembles of Trees .. 3-53

Demonstration: Building a Gradient Boosting Model 3-63

Exercises ... 3-65

Demonstration: Modeling a Binary Target with a Forest................................. 3-71

Exercises ... 3-74

3.6 Solutions ... 3-75

Solutions to Exercises ... 3-75

Solutions to Student Activities (Polls/Quizzes) ... 3-80

Summary of Decision Tree, Forest, and Gradient Boosting Models 3-82

Chapter 4 Neural Networks..4-1

4.1 Introduction..4-3

Demonstration: Building a Neural Network Model with Default Settings 4-15

For Your Information v

4.2 Network Architecture... 4-20

Demonstration: Improving a Neural Network Model by Changing the
Network Architecture Parameters .. 4-27

4.3 Learning .. 4-28

Demonstration: Improving a Neural Network Model by Changing the
Network Learning and Optimization Parameters.................... 4-52

Exercises ... 4-54

4.4 Solutions ... 4-55

Solutions to Exercises ... 4-55

Solutions to Student Activities (Polls/Quizzes) ... 4-57

Chapter 5 Support Vector Machines and Additional Topics5-1

5.1 Large-Margin Linear Classifier ...5-3

Demonstration: Building a Support Vector Machine Based on Default
Settings ... 5-10

5.2 Methods of Solution .. 5-14

Demonstration: Changing the Methods of Solution for a Support Vector
Machine .. 5-18

5.3 Nonlinear Classifier: Kernel Trick ... 5-19

Demonstration: Changing the Kernel Function for a Support Vector
Machine and Adding Model Interpretability............................ 5-27

Exercises ... 5-36

5.4 Selecting Your Algorithm ... 5-38

5.5 Additional Tools .. 5-42

5.6 Solutions ... 5-52

Solutions to Exercises ... 5-52

Solutions to Student Activities (Polls/Quizzes) ... 5-55

Chapter 6 Model Assessment and Deployment..6-1

6.1 Model Assessment and Comparison ..6-3

Demonstration: Comparing Multiple Models of a Single Pipeline in Model
Studio ... 6-21

vi For Your Information

Demonstration: Comparing Multiple Models across Pipelines Using the
Pipeline Comparison Tab and Registering the Champion 6-25

6.2 Model Deployment.. 6-28

Demonstration: Model Studio Models in Model Manager 6-30

6.3 Solutions ... 6-34

Solutions to Student Activities (Polls/Quizzes) ... 6-34

Summary of All Models.. 6-35

Appendix A References ... A-1

A.1 References ... A-3

For Your Information vii

To learn more…

For information about other courses in the curriculum, contact the
SAS Education Division at 1-800-333-7660, or send e-mail to
training@sas.com. You can also find this information on the web at
http://support.sas.com/training/ as well as in the Training Course
Catalog.

For a list of SAS books (including e-books) that relate to the topics
covered in this course notes, visit https://www.sas.com/sas/books.html or
call 1-800-727-0025. US customers receive free shipping to US
addresses.

http://support.sas.com/training/
https://www.sas.com/sas/books.html

viii For Your Information

Chapter 1 Introduction

1.1 Machine Learning in Business Decision Making .. 1-3

Demonstration: Creating a Project and Loading Data .. 1-22

1.2 Essentials of Supervised Prediction .. 1-32

Demonstration: Modifying the Data Partition ... 1-44

Demonstration: Building a Pipeline from a Basic Template .. 1-61

1.3 Introduction to SAS Viya.. 1-67

1-2 Chapter 1 Introduction

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Machine Learning in Business Dec ision Making 1-3

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Machine Learning in Business

Decision Making

In today’s marketplace, all you need is to deliver fast results with a lot of data!

The message here is about the importance of speed to deliver the models in production, considering
the entire process of identifying the information needed to proceed the model: preparing the data;

training, validating, and testing the model; and finally deploying it in production.

Organizations in very dynamic and competitive markets require even more velocity in such an
analytical cycle, and machine learning is the center of focus to achieve this.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3

“ In the new world, it is not the big fish
which eats the small fish, it’s the fast fish
which eats the slow fish.

Klaus Schwab
Founder and Executive Chairman
World Economic Forum

“

1-4 Chapter 1 Introduction

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Machine learning is a branch of artificial intelligence that automates the building of systems that
learn iteratively from data, identify patterns, and predict future results – with minimal human
intervention. It shares many approaches with other related fields, but it focuses on predictive
accuracy rather than interpretability of the model.

Building representative machine learning models that generalize well on future data requires careful
consideration of both the data at hand and assumptions about the various available training

algorithms.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4

Machine Learning

Au tomate

Provide automation
to the model building
process by minimizing
human intervention.

Ac c elerate

Fast response time for
sophisticated analytics
applied to data of any
size or complexity.

Cu stomize

Build powerful models
using state-of-the-art
algorithms from SAS in
conjunction with open
source tools.

1.1 Machine Learning in Business Dec ision Making 1-5

Listed here are some use cases in the context of machine learning. Churn, fraud, targeted
marketing, and financial risk are common application areas.

Fraud detection methods attempt to detect or impede illegal activity involving financial transactions.

Fraud is intentionally committing a misleading act for financial gain. Anomaly detection is one of the

ways to detect fraud. You look to predict an event that occurs rarely and identify patterns in the data

that do not conform to expected behavior, such as abnormally high purchase made on a credit card.

This is where machine learning algorithms can be used effectively.

Targeted marketing is one more common application area. Most companies rely on some form of

direct marketing to acquire new customers and generate additional revenue from existing customers.

Predictive modeling generally accomplishes this by helping companies answer crucial questions

such as the following: Who should I contact? What should I offer? When should I make the offer?

How should I make the offer?

Financial risk management models attempt to predict monetary events such as credit default, loan
prepayment, and insurance claim. Banks use multiple models to meet a variety of regulations (such
as CCAR and Basel III). With increased scrutiny on model risk, bankers must establish a model risk
management program for regulatory compliance and business benefits. Models are useful things to
have around and bankers have come to rely on them for certain applications, some of which expose
the bank to significant risks. Predictive models fall into this category. Examples include loan approval
using credit scoring and hedging models using swaps and options to manage the balance sheet
while protecting liquidity and determining capital adequacy.

Churn or attrition is the turnover of customers of a product or users of a service. Churn is the focus
in this course and is discussed soon.

This list is not exhaustive. There are many more applications that machine learning impacts today.
For example, database marketing applications include offer response, up-sell, cross-sell, and
attrition models. Process monitoring applications detect deviations from the norm in manufacturing,
financial, and security processes. Pattern detection models are used in applications ranging from
handwriting analysis to medical diagnostics.

Recommendations, text mining, and predictive asset maintenance are some others, to name a few.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5

Today’s Business Challenges

Fraud
Targeted

Marketing
Financial

Risk
Churn

1-6 Chapter 1 Introduction

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The SAS Platform is a software foundation that is engineered to address today's business
challenges and to generate insights from your data in any computing environment. SAS Viya is the
latest extension of the SAS Platform, which is designed to enable analytics to the enterprise. SAS
Viya seamlessly scales for data of any size, type, speed, and complexity and is interoperable with
SAS®9.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6

Today’s Tools

SAS Viya

SAS®9

The SAS Platform

Fraud
Targeted

Marketing
Financial

Risk
Churn

1.1 Machine Learning in Business Dec ision Making 1-7

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Here are some advantages of the SAS Platform:

Diversity Scale Trust

• Makes analytics accessible
to anyone seeking insights
from data – regardless of skill
or experience – via a rich
interface.

• Easily tackles both modern
and legacy data types so that
you can unify the data that
you need to generate
successful actions from
analytics.

• Handles analytical problems
of any size or complexity with
an extensive suite of proven
methods.

• Executes in a cloud, on-site,
or hybrid environment.
Deploys seamlessly to any
infrastructure or application
ecosystem.

• Adapts to the full spectrum of
analytics and data challenges
that you face, and embraces
open source technology with
interfaces to consistent,
governed code.

• Scales from small to
exceedingly big data, in
motion and at rest, at the
edge and in the cloud.

• Provides processing power
optimized for analytic
workloads that is easily
transferable and right-sized
for both physical and virtual
hardware environments.

• Industrializes analytics for
thousands of concurrent
models and simultaneous
users. Gives you fast,
traceable results with
centralized monitoring and
governance.

• Ensures continual insights
with IT-controlled, enterprise-
class analytics fortified with
failover protection,
infrastructure pooling, and
high availability.

• Delivers answers from
complex analytics fast, taking
advantage of parallel, in-
memory and distributed
computing environments, and
a common, governed code
base.

• Integrates the entire analytics
life cycle – from data, to
discovery, to deployment.
Delivers a traceable results
path from start to finish,

visible to any audit.

• Ensures resilience to
infrastructure changes with
portable code, along with
built-in intelligent defaults
and automated analytics
tasks.

• Builds on the experience and
expertise of more than four
decades of deployments in
virtually every industry,
applying analytics to myriad
business issues.

• Verifies the accuracy and
validity of analytical results

with a rigorous testing
framework and proven
domain practices.

• Includes security features to
help guard against potential
areas of vulnerability with
options for passwords, data,
and users.

You can achieve excellence in machine learning analytics with the SAS Platform that supports
diversity, enables scale, and promotes trust.

https://www.sas.com/en_us/software/platform/open.html
https://www.sas.com/en_us/software/platform/open.html

1-8 Chapter 1 Introduction

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

In this course, you learn to use SAS Viya to create supervised machine-learning models. You need
to go from data to decisions as quickly as possible. Machine learning models are at the heart of
critical business decisions. They can identify new opportunities and enable you to manage
uncertainty and risks. To create these models, you need powerful and easy-to-use software that can
help you wrangle your data into shape and quickly create many accurate predictive models. You
also need an integrated process to manage your analytical models for optimal performance
throughout their lifespan. SAS Viya provides efficient, repeatable processes and a reliable
architecture for managing data, communicating the rationale, and tracing the predictive analytics
models through the deployment phase.

SAS Viya is a cloud-enabled, in-memory analytics engine that delivers everything you need for
quick, accurate, and consistent results. Elastic, scalable, and fault-tolerant processing addresses the
complex analytical challenges of today and effortlessly scales to meet your future needs.

Note: SAS Viya is covered in detail in this chapter.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

7

Today’s Tools

Fraud
Targeted

Marketing
Financial

Risk
Churn

1.1 Machine Learning in Business Dec ision Making 1-9

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The “heart” of the SAS Platform is the analytics life cycle, and the real value from machine learning
is derived with the actionable insights throughout the analytics life cycle. In its simplest form, the
analytics life cycle is a series of activities with the goal to extract value from raw data. The definition
of “value” is specific to your organization’s goals and objectives.

The three phases of the analytics life cycle are data, discovery, and deployment. Data are the
foundation of everything you do, discovery is the act of finding something that you had not known

before, and deployment is where you get the value out of analytics. Recognizing and fully supporting
all three is necessary to generate impactful insights that come from transforming data into value. You
can start in any of them, but it is important to know the next step and how to get there.

SAS delivers the ability to address and connect each phase of this analytics life cycle. SAS is
uniquely positioned to offer the complete picture.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

8
...

The Analytics Life Cycle

1-10 Chapter 1 Introduction

SAS Drive is a hub for the SAS Viya applications, and it enables you to easily view, organize, and
share your content from one place.

SAS Drive uses the standard sign-in window for SAS applications. To display a sign-in window,
enter the URL provided by your administrator (for example, https://prod.host.com/SASDrive).

SAS Drive is always available from the Applications menu in the upper left.

1. Applications menu.

2. New item button.

3. Quick Access area.

4. Folders and Filter.

5. Undo and Redo. Click and hold on either icon to display a list of actions.

6. Recent items, Notifications, Help, Settings, and Sign out.

7. Menu. Create links or shortcuts, manage tabs, upload content.

8. Information pane button.

9. Summary and Comments tabs.

10. Canvas.

The displayed tabs depend on the products that are installed at your site.

My Folder is a shortcut to /SAS Content/Users/[userID]/MyFolder/.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

9

SAS Drive

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Machine Learning in Business Dec ision Making 1-11

SAS Drive is a common interface for the SAS Viya applications that supports all three phases of the
analytics life cycle.

The availability of the features in SAS Drive depends on the applications that have been installed
and the features and permissions that have been specified by your administrator.

Note: This course focuses on the Build Models action that launches Model Studio pipelines. Model
Studio and pipelines are discussed soon.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 0

Common Interface for Entire Analytics Life Cycle

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 1

Business Challenge: Customer Churn

Customer churn, also known as customer attrition, is when an existing
customer, subscriber, user, or any return client stops doing business or ends

the relationship with a company.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-12 Chapter 1 Introduction

This course emphasizes churn. Nevertheless, the approach shown here can be applied to any
business problem regardless of the domain.

Customer churn is one of the main problems in many businesses. Studies have shown that
attracting new customers is much more expensive than retaining existing ones. Consequently,
companies focus on developing accurate and reliable predictive models to identify potential
customers who will churn soon.

Analysis of churn prediction covers several phases:

• understanding the business

• selection, analysis, and data processing

• implementing various algorithms for classification

• evaluating the classifiers and choosing the best one for prediction

The obtained results should be of great value for management.

The communications sector evolves and grows more than virtually any other industry. Mobile devices
and broadband connectivity continue to be more embedded in every aspect of society, driving how
we live and work, including trends in video streaming, Internet of Things, mobile payments,
messaging, geo-localization, and social media. This growth comes with new players, representing
opportunities but also threats. And churn is now beyond the traditional barriers. Companies need to
understand consumers’ behaviors to deploy effective retention and loyalty programs.

The analytics life cycle starts with defining the analysis goal regarding the business problem at hand.
The business case study in this course refers to a fictitious telecommunications company, which is
trying to reduce its churn rate. Churn is an inescapable reality in the telecom world. Customers come
and go, swayed by the latest disappointments or the latest deals. This churn is costly. It is far more
expensive to acquire a customer than to satisfy and retain an existing one.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 2

Customer Churn Scenario: Analysis Goal

A fictitious telecommunications company seeks to determine which
customers might be likely to churn.

@

Demographics,
customer care, and prior

usage of services

Did the customer churn
in the past 10 months?

targetinputs

1.1 Machine Learning in Business Dec ision Making 1-13

Analytics has proven its value in identifying customers at risk for churn and helping marketers
understand how to retain them. Major service providers have adopted churn propensity models that
have succeeded in reducing the churn rate for post-paid subscribers in an effective way. This
fictitious telecommunications company has a reasonable amount of data to describe the customer’s
behavior. The main goal is to use this data and train supervised learning models to predict the churn
event.

Other Machine Learning Applications in Telecommunications

Other machine learning applications in the telecommunication industry include network management
and network optimization. This includes modeling and predicting network traffic fluctuations to
optimize quality of service and routing by being able to reallocate bandwidth as needed, identify and
resolve network bottlenecks, manage capacity to plan for infrastructure investments, maintain quality
of service, and optimize the network for their most valuable customers.

Fraud detection is another example in the telecommunication sector. Predictive models are built to
protect customers and their bottom line by proactively detecting fraudulent activities. You utilize
usage data, location-specific data, and customer account data in real time to model baseline
“normal” behavior and flag when behavior deviates from this “normal.” Atypical phone calls that
might indicate theft or hacking can be flagged.

The commsdata data set contains a reasonable amount of data that describe consumer behavior.
The input variables include demographic type variables, variables that describe product usage and
type, billing data, and customer service/call center information. The main goal is to use this set of
input variables and train supervised learning models to predict the churn event.

ID variable

Name Label Description

Customer_ID Primary Key Unique identification of the customer.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 3

Customer Churn Scenario: Analysis Data

> 56,000 rows

128 columns

Raw Data: commsdata.sas7bdat

inputs targetinputs target

@

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-14 Chapter 1 Introduction

Target variables

Name Label Description

Churn Churn Indicates whether customers churned.

Upsell_xsell Xsell Upsell Flag
Indicates customer’s flag for cross-sell or up-sell.

(You do not use this variable in this course.)

Categorical-valued inputs

Name Label Description

credit_class Credit Class Credit category for an account or customer. It
summarizes the overall credit worthiness of a
customer or account.

sales_channel Acquisition Channel The way consumer was persuaded to purchase
company's services.

region Account Region Customer account region.

state Account State Customer state location.

city Account City City designation for customer address.

zipcode_primary Account Code Primary customer ZIP code.

product_plan_desc Plan Name Customer’s product plan.

handset_age_grp Handset Age Group Customer’s handset age in days.

handset Handset Mfg Handset manufacturer. Values include Apple, HTC,
LG, Motorola, Nokia, Samsung, and Unknown.

lifestage Plan Life Stage Type of contract.

rp_pooled_ind Pooled Rate Plan Indicates whether customer has pooled rate.

call_center Last Call Center Used Location of the last call center used.

issue_level1 Call Center Issue Level 1 Level 1 reason of the call.

issue_level2 Call Center Issue Level 2 Level 2 reason of the call.

call_category_1 Call Center Category 1 Category 1 for the call.

call_category_2 Call Center Category 2 Category 2 for the call.

resolution Final Resolution Resolution action taken by call center.

verbatims Survey Verbatim Feedback from customers via call centers.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Machine Learning in Business Dec ision Making 1-15

Interval-valued inputs

Name Label Description

lifetime_value Lifetime Value Customer’s value.

avg_arpu_3m 3M Avg Revenue per
User

Average revenue for the past three months.

acct_age Account Tenure Number of months that the account has
been active.

billing_cycle Billing Cycle Customer’s billing cycle (period of the
month).

nbr_contract_ltd Total Number Contract
lifetime

Number of contracts during life cycle.

rfm_score Account Ranking (RFM
Score)

Customer’s account score.

Est_HH_Income Estimated HH Income Household income.

region_lat Account Region Latitude Customer region latitude.

region_long Account Region
Longitude

Customer region longitude.

state_lat Account State Latitude State latitude.

state_long Account State Longitude State longitude.

city_lat Account City Latitude Customer city latitude.

city_long Account City Longitude Customer city longitude.

zip_lat Account ZIP Code
Latitude

ZIP code latitude.

zip_long Account ZIP Code
Longitude

ZIP code longitude.

cs_med_home_value Census Area Median
Home Value Index

Median home value in customer’s area.

cs_pct_home_owner Census Area Percent
Home Owner

Percentage home owner in customer’s
area.

cs_ttl_pop Census Area Total
Population

Population in customer’s area.

cs_hispanic Census Area Hispanic Hispanic population in customer’s area.

cs_caucasian Census Area Caucasian Caucasian population in customer’s area.

cs_afr_amer Census Area
African-American

African-American population in customer’s
area.

cs_other Census Area Other Other population in customer’s area.

cs_ttl_urban Census Area Total Urban Urban population in customer’s area.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-16 Chapter 1 Introduction

Name Label Description

cs_ttl_rural Census Area Total Rural Rural population in customer’s area.

cs_ttl_male Census Area Total Males Male population in customer’s area.

cs_ttl_female Census Area Total
Females

Female population in customer’s area.

cs_ttl_hhlds Census Area Total
Households

Households in customer’s area.

cs_ttl_mdage Census Area Median
Age

Median age in customer’s area.

mb_inclplan Plan Data MB MB included in the plan.

ever_days_over_plan Total Days Over Plan Total days over the plan.

ever_times_over_plan Total Times Over Plan Total times over the plan.

data_device_age Avg Age of Devices on
Plan

Average age of devices on the plan.

equip_age Handset Age Age of equipment history, whether mobile
device, smartphone, or another handset
type.

mfg_apple Own Apple Apple manufactured device. 1 is Yes, 0
means No.

mfg_samsung Own Samsung Samsung manufactured device. 1 is Yes, 0
means No.

mfg_htc Own HTC HTC manufactured device. 1 is Yes, 0
means No.

mfg_motorola Own Motorola Motorola manufactured device. 1 is Yes, 0
means No.

mfg_lg Own LG LG manufactured device. 1 is Yes, 0
means No.

mfg_nokia Own Nokia Nokia manufactured device. 1 is Yes, 0
means No.

delinq_indicator Delinquent Indicator Delinquency indicator. Scale varies from -2
to +4, depending on customer history.

times_delinq Consecutive Mths
Delinquent

Consecutive months in default.

count_of_suspensions_6m Times Suspended Last
6M

Times suspended in the past six months.

avg_days_susp Days Suspended Last

6M

Days suspended in the past six months.

calls_total Total Calls Curr Current number of calls.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Machine Learning in Business Dec ision Making 1-17

Name Label Description

calls_in_pk Calls Incoming Peak Number of calls received in peak time.

calls_in_offpk Calls Incoming Off-Peak Number of call received off peak time.

calls_out_offpk Calls Outgoing Off-Peak Number of calls made in peak time.

calls_out_pk Calls Outgoing Peak Number of calls made off peak time.

mou_total_pct_MOM Minutes Total Pct
Change Month over
Month

Percentage of minutes change month over
month.

mou_onnet_pct_MOM Minutes on Network Pct
Change Month over
Month

Percentage of minutes on network change
month over month.

mou_roam_pct_MOM Minutes Roaming Pct
Change Month over
Month

Percentage of minutes on roaming change
month over month.

mou_onnet_6m_normal 6M Avg Minutes on
Network Normally
Distributed

Minutes of use on network over six months
normally distributed.

mou_roam_6m_normal 6M Avg Minutes
Roaming Normally
Distributed

Minutes of use in roaming over six months
normally distributed.

voice_total_bill_mou_curr Total Voice Billed
Minutes of Use

Current minutes of voice billed.

tot_voice_chrgs_curr Total Voice Charges Current minutes of voice charged.

tot_drpd_pr1 Number of Dropped
Calls 1 Mth Prior

Number of dropped calls on the previous
month.

bill_data_usg_m03 3M Avg Billed Data
Usage

Average data billed over the past three
months.

bill_data_usg_m06 6M Avg Billed Data
Usage

Average data billed over the past six
months.

bill_data_usg_m09 9M Avg Billed Data
Usage

Average data billed over the past nine
months.

mb_data_usg_m01 MB Data Usage 1 Mth
Prior

MB data used on the previous month.

mb_data_usg_m02 MB Data Usage 2 Mths
Prior

MB data used prior two months.

mb_data_usg_m03 MB Data Usage 3 Mths

Prior

MB data used prior three months.

mb_data_ndist_mo6m 6M Avg Billed Data
Usage Normally
Distributed

Data used on network over six months
normally distributed.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-18 Chapter 1 Introduction

Name Label Description

mb_data_usg_roamm01 MB Data Usage Roam 1
Mth Prior

Data used in roaming in the previous
month.

mb_data_usg_ roamm02 MB Data Usage Roam 2
Mths Prior

Data used in roaming prior two months.

mb_data_usg_ roamm03 MB Data Usage Roam 3
Mths Prior

Data used in roaming prior three months.

data_usage_amt Data Usage Amount Total data usage amount over last month.

tweedie_adjusted Data Usage Amt Tweedie
Distributed

Data used in Twitter.

tot_mb_data_curr Total MB of Data Usage Current MB data used.

tot_mb_data_roam_curr Total MB of Roam Data
Usage

Current MB data used in roaming.

bill_data_usg_total Total Billed Data usage Total billed data.

tot_overage_chgs Total Overage Charges Total overage charged.

data_prem_chrgs_curr Premium Data Charges Premium data charged.

nbr_data_cdrs Number of Data Records Number of call detail records.

avg_data_chrgs_3m 3M Avg Data Charges Average data charged in the past three
months.

avg_data_prem_chrgs_3m 3M Avg Premium Data
Charges

Average premium data charged in the past
three months.

avg_overage_chrgs_3m 3M Avg Overage
Charges

Average overage data charged in the past
three months.

nbr_contacts Number Times Customer
Contacted

Number of contacts customer made to the
company.

calls_TS_acct Number Calls Tech
Support

Number of tech support calls.

open_tsupcomplnts Open Tech Support
Complaints

Number of tech support complains opened.

num_tsupcomplnts Tech Support Complaints
- LTD

Number of tech support complains.

unsolv_tsupcomplnts Unresolved Tech Support
Complaints - LTD

Number of unsolved tech support
complaints.

wrk_orders Open Work Orders Number of open work.

days_openwrkorders Days of Open Work
Orders

Days of open work.

resolved_complnts Resolved Complaints Number of complaints resolved.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Machine Learning in Business Dec ision Making 1-19

Name Label Description

calls_care_acct Number Calls Care
Center

Call center care account assignment, which
takes values between 0-9.

calls_care_3mavg_acct Number Calls Care
Center 3 Month Avg

Call center care account score over past
three months averaged.

calls_care_6mavg_acct Number Calls Care
Center 6 Month Avg

Call center care account score over past
six months averaged.

res_calls_3mavg_acct Resolved Calls – 3Mo
Average

Average number of resolved customer
service calls over past three months for the
customer account.

res_calls_6mavg_acct Resolved Calls – 6Mo
Average

Average number of resolved customer
service calls over past six months for the
customer account.

last_rep_sat_score Last Call Satisfaction

Rating Given

Latest customer service representative

satisfaction score (given by past
customers).

network_mention Network Issues
Discussed

Number of network issues discussed.

service_mention Service Issues
Discussed

Number of service issues discussed.

price_mention Price Issues Discussed Number of prices issues discussed.

times_susp Number of Times
Suspended

Number of times suspended.

curr_days_susp Number of Days
Suspended

Number of days suspended.

pymts_late_ltd Total Late Payments
Lifetime

Number of late payments.

calls_care_ltd Total Calls to Care
Lifetime

Number of calls to call center.

MB_Data_Usg_M04 MB of Data Usage Month
4

MB data used in past four months.

MB_Data_Usg_M05 MB of Data Usage Month
5

MB data used in past five months.

MB_Data_Usg_M06 MB of Data Usage Month
6

MB data used in past six months.

MB_Data_Usg_M07 MB of Data Usage Month

7

MB data used in past seven months.

MB_Data_Usg_M08 MB of Data Usage Month
8

MB data used in past eight months.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-20 Chapter 1 Introduction

Name Label Description

MB_Data_Usg_M09 MB of Data Usage Month
9

MB data used in past nine months.

seconds_of_data_norm Seconds of Data -
Normalized

Number of seconds of data normalized.

seconds_of_data_log Seconds of Data -
Natural Log

Number of seconds of data transformed by
log.

Model Studio enables you to explore ideas and discover insights. In other words, it is part of
discovery piece of the analytics life cycle. Model Studio is a central, web-based application that

includes a suite of integrated data mining tools. The data mining tools supported in Model Studio are
designed to take advantage of the SAS Viya programming and cloud processing environments to
deliver and distribute analytic model data mining champion models, score code, and results.

Model Studio is a common interface that contains the following SAS solutions:

• SAS Visual Forecasting

• SAS Visual Data Mining and Machine Learning in Model Studio

• SAS Visual Text Analytics

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 4

Model Studio

Model Studio, included in SAS Viya, is an
integrated visual environment that provides

a suite of analytic data mining tools to
facilitate end-to-end data mining analysis.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Machine Learning in Business Dec ision Making 1-21

This course addresses the following SAS platform components:

Component Component Name

Foundation SAS Viya

Software Product SAS Visual Data Mining and Machine Learning

SAS Drive Application Shortcut Build Models

Interface Model Studio / Pipelines

Note: The visual analytic data mining tools that appear in Model Studio are determined by your
site’s licensing agreement. Model Studio operates with one, two, or all three of the web-
based analytic tools as components of the software.

Note: Model Studio comes with SAS Data Preparation Basic. SAS Data Preparation is a software
offering that adds data quality transformations and other advanced features. There are
several options that enable you to perform specific data preparation tasks for applications,

such as SAS Environment Manager, SAS Visual Analytics, Model Studio, and SAS Decision
Manager. You can perform some of the basic data preparation tasks through Model Studio.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://support.sas.com/software/products/sev/index.html
http://support.sas.com/software/products/visual-analytics/index.html
http://support.sas.com/software/products/dcm/index.html
http://support.sas.com/software/products/dcm/index.html

1-22 Chapter 1 Introduction

Creating a Project and Loading Data

In this demonstration, you create a new project in Model Studio based on the commsdata data set.
A project is a top-level container for your analytic work in Model Studio. The table will be imported
from a local drive. The type of project will be defined. This project will be used to predict churn for a
fictitious telecommunications company. A target variable will be selected for this table.

1. From the Windows taskbar, launch Google Chrome. When the browser opens, select
SAS Viya  SAS Drive from the bookmarks bar or from the link on the page.

2. The user ID and password should be pre-filled. If not, use the following:

a. Enter student in the User ID field.

b. Enter Metadata0 in the Password field.

Note: Use caution when you enter the user ID and password because values can be
case sensitive.

3. Click Sign In.

4. Select Yes in the Assumable Groups window. The SAS Drive home page appears.

Note: The SAS Drive page on your classroom computer might not have the same tiles as the
image above.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Machine Learning in Business Dec ision Making 1-23

5. Click the Applications menu () in the upper left corner of the SAS Drive page. Select Build

Models.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-24 Chapter 1 Introduction

Alternatively, click the menu in the upper left corner to create a new item. Select New Model
Studio Project from the menu.

The Model Studio Projects page is now displayed.

Note: The Projects page might differ on your classroom computer from the image above. There
might be pre-existing projects on your classroom computer.

From the Model Studio Projects page, you can view existing projects, create new projects, and
access the Exchange. Model Studio projects can be one of three types (depending on the SAS
licensing for your site): Forecasting projects, Data Mining and Machine Learning projects, and
Text Analytics projects.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Machine Learning in Business Dec ision Making 1-25

Note: The Exchange organizes your favorite settings and enables you to collaborate with
others in one place. Find a recommended node template or create your own template for
a streamlined workflow for your team. The Exchange is accessed later in the course,

6. Select New Project in the upper right corner of the Projects page.

7. Enter Demo as the name in the New Project window. Leave the default Type of Data Mining
and Machine Learning.

Select Browse in the Data Source field.

8. Import a SAS data set into CAS.

a. In the Browse Data window, click Import.

b. Under Import, select Local File.

c. Navigate to D:\Workshop\Winsas\CPML.

d. Select the commsdata.sas7bdat table. Click Open.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-26 Chapter 1 Introduction

e. Select Import Item. Model Studio parses the data set and pre-populates the window with
data set configurations.

Note: When the data is in memory, it is available for other projects through the Available
tab.

f. Click OK after the table is imported.

Note: Tables are imported into the CAS server and are available to use with SAS Visual
Analytics. When the import is complete, you are returned to Model Studio. For more
information about data types supported in CAS and how to load data into CAS, see
the details section at the end of this demo.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Machine Learning in Business Dec ision Making 1-27

9. Click Advanced in the New Project window.

10. The Advanced project settings appear, and Advisor Options is one of the selection. The Advisor
Options section enables you to define the threshold for interval/nominal variables (if a numeric
input has more levels than the interval cutoff, it will be interval; otherwise, it will be nominal), the
threshold to reject categorical variables (if a nominal input has more than the maximum class
level, then it will be rejected) and the threshold to reject missing variables (if a variable has more
missing values than the maximum percent missing, it will be rejected).

The Advanced settings also include Partition Data and Event-based Sampling options, but
these topics are covered in the next section, and they are discussed in the next demonstration.
In addition to accessing Partition Data and Event-based Sampling options here, they can also be
accessed after the project is created.

Click Cancel to return to the New Project window.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-28 Chapter 1 Introduction

11. Click Save.

Note: After you create your new project, Model Studio takes you to the Data tab of your new
project page. Here, you can adjust data source variable names, labels, type, role, and
level assignments. The Data tab enables you to modify variable assignments and
manage global metadata. You can also retrain a model with new data, if the target
variable in the new data set is the same as the original data set.

12. When the project is created, you need to assign a target variable in order to run a pipeline.

You can also have target variable role already defined in your data. Model Studio provides
several options for managing and modifying data. The Data tab enables you to modify variable
assignments and manage global metadata. You can also retrain a model with new data, if the
target variable in the new data set is the same as the original data set.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.1 Machine Learning in Business Dec ision Making 1-29

13. In the variables window, select churn (Step 1). Then in the right pane, select Target under the
Role property (Step 2).

Step 1 Step 2

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-30 Chapter 1 Introduction

Details: CAS-Supported Data Types and Loading Data into CAS

Caslibs

All data is available to the CAS server through caslibs, and all operations in the CAS server that use
data are performed using caslibs. A caslib provides access to files in a data source, such as a
database or a file system directory, and to in-memory tables. Access controls are associated with
caslibs to manage access to data. You can think of a caslib as a container where the container has
two areas where data is referenced: a physical space that includes the source data or files, and an
in-memory space that makes the data available for CAS action processing. Authorized users can
add or manage caslibs with the CASLIB statement. Caslib authorization is set by your administrator.
In some instances, such as when you copy native CAS tables that are not in-memory, a caslib is
required although data is not copied to the caslib.

Load Data to a Caslib

You can load a SAS data set, database tables, and more to a caslib. DATA step, the CASUTIL
procedure, and CAS actions can be used to load data in to CAS. After the data is in a caslib, you can
use a DATA step, procedures, CAS actions, PROC DS2, or PROC FEDSQL operations on the CAS
table. Tables are not automatically saved when they are loaded to a caslib. You can use PROC
CASUTIL to save tables. Native CAS tables have the file extension .sashdat.

Note: For information about file types that are supported in CAS, see “Path-Based Data Source
Types and Options” in SAS® Cloud Analytic Services: User’s Guide and the free video tutorial
“Understanding Caslibs and Loading Data in SAS Viya” available here:
https://video.sas.com/category/videos/an-introduction-to-sas-viya-programming-for-sas-9-
programmers

Data Types

The CAS server supports the VARCHAR, INT32, INT64, and IMAGE data types in addition to the
CHARACTER and NUMERIC data types, which are traditionally supported by SAS.

Variables that are created using the VARCHAR data type are varying width and use character
semantics, rather than being fixed-width and using the byte semantics of the traditional
CHARACTER data type. Using the VARCHAR data type in the DATA step in the CAS server has
some restrictions.

Note: For more information, see “Restrictions for the VARCHAR Data Type in the CAS Engine” in
SAS® Cloud Analytic Services: User’s Guide.

Variables that are created or loaded using the INT32 or INT64 data types support more digits of
precision than the traditional NUMERIC data type. All calculations that occur on the CAS engine

maintain the INT32 or INT64 data type. Calculations in DATA steps or procedures that run on the
SAS®9 engine are converted to NUMERIC values.

The CHARACTER and NUMERIC data types continue to be the supported data types for processing
in the SAS Workspace Server.

The DS2 language supports several additional data types. On the CAS server, DS2 converts non-
native data types to CHARACTER, NUMERIC, or VARCHAR.

Note: For information about data types that are supported for specific data sources, see “Data
Type Reference” in SAS® DS2 Language Reference.

The CAS language (CASL) determines the data type of a variable when the variable is assigned.

In the following table, the letter Y indicates the data types that are supported for programming on the
CAS server. In the last column, Y indicates data types that are supported on the SAS Workspace
Server.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=casref&docsetTarget=n0lgusu0v43zxwn1kc5m6cvtnzey.htm&locale=en#n1ed54an76245rn1xp0i7ms1jk3d
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=casref&docsetTarget=n0lgusu0v43zxwn1kc5m6cvtnzey.htm&locale=en#n1ed54an76245rn1xp0i7ms1jk3d
http://players.brightcove.net/1872491364001/default_default/index.html?videoId=5334369476001
https://video.sas.com/category/videos/an-introduction-to-sas-viya-programming-for-sas-9-programmers
https://video.sas.com/category/videos/an-introduction-to-sas-viya-programming-for-sas-9-programmers
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=casref&docsetTarget=p00irrg1pxzro6n1aadfcb1p3cag.htm&locale=en#p0r5w4ptr4r7rzn1dcd37vofyraq
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=ds2ref&docsetTarget=n1k7ka2deld03vn1dtr7dlszu985.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=ds2ref&docsetTarget=n1k7ka2deld03vn1dtr7dlszu985.htm&locale=en
http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=ds2ref&docsetTarget=n1k7ka2deld03vn1dtr7dlszu985.htm&locale=en

1.1 Machine Learning in Business Dec ision Making 1-31

Data Type
CAS

Action
s

CASL
Data

Connector
s

Procedures
and DATA

Step
DS2 FedSQL

Workspace
Server

Processing

BIGINT Y Y

BLOB Y

BOOLEAN Y Y

CHARACTER
(CHAR)

Y Y Y Y Y Y Y

DATE Y Y Y

DATETIME Y Y

DOUBLE Y Y Y Y Y Y

FLOAT Y Y

IMAGE Y

INTEGER Y Y

INT32 Y Y Y

INT64 Y Y Y

ITEMS Y

LISTS Y

NCHAR Y Y

NUMERIC
(NUM)

Y Y

NVARCHAR Y Y

SMALLINT Y Y

STRING UTF-8 Y

TABLE Y

TIME Y Y Y

TIMESTAMP Y Y

TINYINT Y Y

VARCHAR Y Y Y Y Y Y

Additional data types are supported by the data connectors. These data types are first converted to
data types that can be processed on the CAS server. Check the data connector documentation for
your data source to ensure that a data type is supported.

Note: For more information, see “Data Connectors” in SAS® Cloud Analytic Services: User’s Guide.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

http://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.3&docsetId=casref&docsetTarget=n01iumvu56308zn1bud38udhg8w5.htm&locale=en

1-32 Chapter 1 Introduction

1.2 Essentials of Supervised Prediction

Predictive modeling (also known as supervised prediction or supervised learning) starts with a
training data set. The observations in a training data set are known as training cases (also known as
examples, instances, or records). The variables are called inputs (also known as predictors,
features, explanatory variables, or independent variables) and targets (also known as a response,
outcome, or dependent variable). For a given case, the inputs reflect your state of knowledge before
measuring the target.

The measurement scale of the inputs and the target can be varied. The inputs and the target can be
numeric variables, such as income. They can be nominal variables, such as occupation. They are
often binary variables, such as a positive or negative response concerning home ownership.

The purpose of the training data is to generate a predictive model. The predictive model is a concise
representation of the association between the inputs and the target variables.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 7

Predictive Model

inputs target a concise

representation
of the input and
target

association

Training Data

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.2 Essentials of Supervised Prediction 1-33

The outputs of the predictive model are referred to as predictions. Predictions represent your best
guess for the target given a set of input measurements. The predictions are based on the
associations learned from the training data by the predictive model.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 8

Predictions

output of the
predictive model

given a set of input
measurements

Training Data

predictedinputs target

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 9

Prediction Types

• decisions

• rankings

• estimates

Training Data

predictedinputs target

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-34 Chapter 1 Introduction

The training data is used to construct a model (rule) that relates the inputs to the target. The
predictions can be categorized into three distinct types:

• decisions

• rankings

• estimates.

Decision predictions are the simplest type of prediction. Decisions usually are associated with some
type of action (such as classifying a case as a churn or a no-churn). For this reason, decisions are
also known as classifications. Decision prediction examples include handwriting recognition, fraud
detection, and direct mail solicitation.

Decision predictions usually relate to a categorical target variable. For this reason, they are identified
as primary, secondary, and tertiary in correspondence with the levels of the target.

Note: Model assessment in Model Studio generally assumes decision predictions when the target
variable has a categorical measurement level (binary, nominal, or ordinal).

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 0

Decision Predictions

A predictive model
uses input

measurements
to make the best
decision for each

case.

Ye s

Ye s

No

No

Ye s

Training Data

predictedinputs target

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.2 Essentials of Supervised Prediction 1-35

Ranking predictions order cases based on the input variables' relationships with the target variable.
Using the training data, the prediction model attempts to rank high value cases higher than low
value cases. It is assumed that a similar pattern exists in the scoring data so that high value cases
have high scores. The actual, produced scores are inconsequential; only the relative order is
important. The most common example of a ranking prediction is a credit score.

Note: Ranking predictions can be transformed into decision predictions by taking the primary
decision for cases above a certain threshold while making secondary and tertiary decisions
for cases below the correspondingly lower thresholds. In credit scoring, cases with a credit
score above 700 can be called good risks; those with a score between 600 and 700 can be
intermediate risks; and those below 600 can be considered poor risks.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 1

Ranking Predictions

A predictive model
uses input
measurements

to optimally rank
each case.

7 2 0

5 2 0

5 9 0

4 6 0

6 1 0

Training Data

predictedinputs target

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-36 Chapter 1 Introduction

Estimate predictions approximate the expected value of the target, conditioned on the input values.
For cases with numeric targets, this number can be thought of as the average value of the target for
all cases having the observed input measurements. For cases with categorical targets, this number
might equal the probability of a target outcome.

Prediction estimates are most commonly used when their values are integrated into a mathematical
expression. An example is two-stage modeling, where the probability of an event is combined with

an estimate of profit or loss to form an estimate of unconditional expected profit or loss. Prediction
estimates are also useful when you are not certain of the ultimate application of the model.

Note: Estimate predictions can be transformed into both decision and ranking predictions. When in
doubt, use this option. Most Model Studio modeling tools can be configured to produce
estimate predictions.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 2

Estimate Predictions

A predictive model
uses input

measurements
to optimally
estimate

the target value.

0 . 2 3

0 . 4 9

0 . 8 6

0 . 7 8

0 . 1 9

inputs target

Training Data

predicted

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.2 Essentials of Supervised Prediction 1-37

Effective machine learning models are built on a foundation of well-prepared data. It is commonly
proclaimed that 80% of the time spent in devising a successful machine learning application is spent
in data preparation (Dasu and Johnson 2003). Data preparation is not strictly about correctly
transforming and cleaning existing data. It also includes a good understanding of the features that
need to be considered and ensuring that the data at hand are appropriate in the first place. Shortcuts
in data preparation will shortchange your models. As they say, “garbage in, garbage out.” Take the
time to cultivate your data and be wary of the common challenges described next.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 3

Essential Data Tasks

...

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 4

Essential Data Tasks

...

• Divide the data.

• Address rare events.

• Manage missing values.

• Add unstructured data.

• Extract features.

• Handle extreme or unusual values.

• Select useful inputs.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-38 Chapter 1 Introduction

Although the predictive models would seem to be the final word in scoring a new case, especially
with parametric models like regression and neural network, there are several additional issues that
must be addressed.

• Divide the data: What should be done for honest assessment of model performance in predictive
modeling? How do you tune your model to improve its generalization? You might be tempted to
simply avoid the standard strategy of data splitting in which a portion is used for fitting the model
and the remaining data is separated for empirical validation.

• Address rare events: What should be done if you have proportion of events (desired outcome)
very low? You might be drawn to make some treatment to make the model robust so that enough
events would be used to train the model. Oversampling is one of the treatment to deal rare-event
problem.

• Manage missing values: What should be done when one of the input values used in the prediction
formula is missing? You might be tempted to simply treat the missing value as zero and skip the
term involving the missing value. Although this approach can generate a prediction, this prediction
is usually biased beyond reason.

• Add unstructured data: How should you deal with the overwhelming proliferation of textual data
in business? While the amount of textual data is increasing rapidly, businesses’ ability to
summarize, understand, and make sense of such data for making better business decisions

remain challenging.

• Extract features: How do you transform the existing features into a lower-dimensional space and
generate new features that would be composites of the existing ones? What are techniques that
you would use to reduce dimensionality through such a transformation?

• Handle extreme or unusual values: How do you score cases with unusual values? Many machine
learning algorithms are unaffected by this. However, some are highly sensitive to the problem of
outliers. For example, regression models make their best predictions for cases near the centers of

the input distributions. If an input can have (on rare occasion) extreme or outlying values, the
regression should respond appropriately.

• Select useful inputs: What would be the optimal set of inputs for your predictive model? Should
you simply try every combination of inputs? Unfortunately, the number of models to consider using

this approach increases exponentially in the number of available inputs. Such an exhaustive
search is impractical for realistic prediction problems.

The above issues affect both model construction (the discovery phase) and model scoring (the
deployment phase). The first of these, model complexity and event-based sampling, are dealt with
immediately. The remaining issues are addressed subsequently in this chapter and the next one.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.2 Essentials of Supervised Prediction 1-39

In typical machine learning tasks, data are divided into different sets (partitions): some data for
training the model and some data for evaluating the model.

Fitting a model to data requires searching through the space of possible models. Constructing a
model with good generalization requires choosing the right complexity. Selecting model complexity
involves a trade-off between bias and variance. An insufficiently complex model might not be flexible
enough, which can lead to underfitting—that is, systematically missing the signal (high bias).

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 5

Essential Data Tasks

...

• Divide the data.

• Address rare events.

• Manage missing values.

• Add unstructured data.

• Extract features.

• Handle extreme or unusual values.

• Select useful inputs.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 6

Accuracy versus Generalizability

Too complex

(overfitting)

Not complex
enough

(underfitting)

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-40 Chapter 1 Introduction

A naïve modeler might assume that the most complex model should always outperform the
others, but this is not the case. An overly complex model might be too flexible, which can lead to
overfitting—that is, accommodating nuances of the random noise in the sample (high variance).
A model with the right amount of flexibility gives the best generalization.

The data are split into at least two, but not more than three, non-overlapping groups. The first
partition of the data, the training set, is used to build models.

Usually, for each modeling algorithm, a series of models is constructed, and the models increase in
their complexity. The idea behind constructing a series of models is that some will be too simple
(underfit) and others will be too complex (overfit). Each of the models is assessed for its
performance on the second partition of the data, the validation set. In this way, the validation data is
used to “optimize complexity” of the model and find the sweet spot between being underfit and being
overfit. Validation data is used to fine tune the models built on training data and determines whether
additional training is required.

The test data set is an optional partition for the model building process, but some industries might
require it as a source of unbiased model performance. The test data gives the honest unbiased
estimates of the model. The test data set provides one final measure of how the model performs on
new data, before the model is put into production. It assesses only the final model’s performance on
unused data. However, it might also be used to select the best model by scoring the champion
model based on the training and the validation data. Model Studio by default uses the validation data
for selecting the champion model.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 7

inputs targetinputs targetinputs targetinputs target

Partitioning the Input Data Set

Training Data

P artition available data into
t raining, validation, and test sets.

Test Data (Optional)

Validation Data

...

inputs target

inputs target

1.2 Essentials of Supervised Prediction 1-41

It is critical that all transformations that are used to prepare the training data are applied to any
validation, test, or other holdout data. In other words, it is critical that information from test data or
holdout data does not leak into the training data. Information leakage can occur in many ways and
can potentially lead to overfitting or overly optimistic error measurements. For example, think of
taking a mean or median across your data before partitioning and then later using this mean or
median to impute missing values across all partitions of your data. In this case, your training data

would be aware of information from your validation, test, or holdout partitions. To avoid this type of
leakage, values for imputation and other basic transformations should be generated from only the
training data or within each partition independently.

It is also important to be mindful of your target of interest and understand whether it can be
characterized as a rare event relative to your total number of samples. Applications such as

detecting fraudulent activity must take special steps to ensure that the data used to train the model
include a representative number of fraudulent samples in to capture the event sufficiently. (For
example, 1 out of every 1,000 credit card transactions is fraudulent .) Fitting a model to such data
without accounting for the extreme imbalance in the occurrence of the event gives you a model that
is extremely accurate at telling you absolutely nothing of value. Special sampling methods that
modify an imbalanced data set are commonly used to provide a more balanced distribution when
modeling rare events (He and Garcia 2009).

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 8

Essential Data Tasks

...

• Divide the data.

• Address rare events.

• Manage missing values.

• Add unstructured data.

• Extract features.

• Handle extreme or unusual values.

• Select useful inputs.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-42 Chapter 1 Introduction

A common predictive modeling practice is to build models from a sample with a primary outcome
proportion different from the true population proportion. This is typically done when the ratio of
primary to secondary outcome cases is small.

Event-based sampling derives its name from the technique used to generate the modeling data. That

is, samples are drawn separately based on the target events and non-events. In the case of a rare

event, usually all events are selected. Then each event outcome is matched by one or (optimally)

more non-event outcomes.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 0

Event-Based Sampling

Target-based samples are created by considering the

primary outcome cases separately from the secondary
outcome cases.

...

Primary outcomeS econdary outcome

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 1

Event-Based Sampling

Select all cases.Select some cases.

...

Primary outcomeS econdary outcome

1.2 Essentials of Supervised Prediction 1-43

The advantage of event-based sampling is that you can obtain (on the average) a model of similar
predictive power with a smaller overall case count. This is in concordance with the idea that the
amount of information in a data set with a categorical outcome is determined not by the total number
of cases in the data set itself, but instead by the number of cases in the rarest outcome category. For
binary target data sets, this is usually the event outcome. (Harrell 2006)

This advantage might seem of minimal importance in the age of extremely fast computers. However,
the model-fitting process occurs only after the completion of a long, tedious, and error-prone data
preprocessing. Smaller sample sizes for data preprocessing are usually welcome.

Although it reduces analysis time, event-based sampling also introduces some analysis
complications:

• Most model fit statistics (especially those related to prediction decisions) and most of the
assessment plots are closely tied to the outcome proportions in the training samples. If the
outcome proportion in the training and validation samples do not match the outcome proportions in

the scoring population, model performance can be greatly misestimated.

• If the outcome proportions in the training sample and scoring populations do not match, model
prediction estimates are biased.

Note: Model Studio automatically adjusts assessment measures, assessment graphs, and
prediction estimates for bias. After running the pipeline, which executes an automated
sequence of steps to build models, you can examine the score code. The score code
contains a section titled Adjust Posterior Probabilities. This code block modifies the
posterior probability by multiplying it by the ratio of the actual probability to the event-based
sampling values specified previously.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 3

The Modeling Sample

+ Similar predictive power

with smaller case count

− Must adjust assessment

measures and graphics

− Must adjust prediction

estimates for bias

+ Model Studio automatically

adjusts for event-based
sampling

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-44 Chapter 1 Introduction

Modifying the Data Partition

In this demonstration, you modify metadata roles of some variables, explore the advanced project
settings, and change the data partition properties.

1. Ensure that the Demo project is open and that churn is not selected. Reopen the project if you
have closed it and deselect churn if it is selected by clicking the check box next to the variable’s

name.

2. Modify the following properties of the variables specified:

a. To specify properties of a variable on the Data tab, first select the desired variable. (You can
select the check boxes of several variables at one time.)

b. Next, in the right pane, select the new role or level of the variables.

Note: Variable metadata includes the role and measurement level of the variable. Common
variable roles are Input, Target, Rejected, Text, and ID. Common variable
measurement levels are Interval, Binary, Nominal, and Ordinal. See the appropriate
drop-down menus in Model Studio for the full list of variable roles and measurement
levels.

For the following variables, change the role to Rejected:

• city

• city_lat

• city_long

• data_usage_amt

• mou_onnet_6m_normal

• mou_roam_6m_normal

• region_lat

• region_long

• state_lat

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.2 Essentials of Supervised Prediction 1-45

• state_long

• tweedie_adjusted

3. Change the default partition by clicking (Settings) in the upper right corner of the window.

Note: When you created a new project in Model Studio, by default, partitioning was performed.
If you want to see or modify the partition settings before creating the project, you can do
this from the user settings. In the user settings, the Partition tab enables you to specify
the method for partitioning as well as associated percentages. Any settings at this level
are global and will be applied to any new project created.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-46 Chapter 1 Introduction

4. Select Project settings. With Partition Data selected in the Edit Project Settings window,
change the Training percentage to 70 and the Test percentage to 0.

These settings can be edited only if no pipelines in the project have been run. After the
first pipeline has been run, the partition tables are created for the project and partition
settings cannot be changed.

Note: Recall that it was shown in the last demonstration that the Partition Data options could
also be accessed and changed while the project is being created, under the Advanced
settings.

5. Select Event-based Sampling.

When event-based sampling is turned on (it is off by default), the desired proportion of event and
non-event cases can be set after the sampling is done. When turned on, the default proportions
for both events and non-events after sampling is 50% for each. The sum of both must be 100%.
After a pipeline has been run in the project, the Event-based Sampling settings cannot be
changed.

Note: Recall that it was shown in the last demonstration that the Event-based Sampling options
could also be accessed and changed while the project is being created, under the
Advanced settings.

Keep the Event-based Sampling options at their default settings.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.2 Essentials of Supervised Prediction 1-47

6. Select Rules.

The Rules options can be used to change the selection statistic and partitioned data set that
determine the champion model during model comparison. Statistics can be selected for class

and interval targets.

Keep the Rules options at their default settings.

7. Be sure to click Save because the partition options were changed.

8. Click the Pipelines tab in the Demo project.

On the Pipelines tab, you can create, modify, and run pipelines. Each pipeline has a unique
name and optional description.

9. Right-click the Data node and select Run.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-48 Chapter 1 Introduction

The green check mark in the node indicates that it ran without error. The partition is successfully
created.

Note: After you run the Data node, you cannot change the partitioning, event-based sampling,
project metadata, project properties, or the target variable. However, you can change
variable metadata with the Manage Variables node.

10. The log file for this partitioning action can be viewed. Click Settings in the upper right

corner.

11. Select Project logs.

12. From the Available Logs window, select Partition Log and then click Open.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.2 Essentials of Supervised Prediction 1-49

The log file can be viewed and even downloaded.

13. Click Close  Cancel to return to the pipeline.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-50 Chapter 1 Introduction

A project is a top-level container for your analytic work in Model Studio. A Model Studio project
contains the data source, the pipelines that you create, and related project metadata (such as
project type, project creator, share list, and last update history). If you create more than one pipeline
in your project, analytic results that compare the performance of multiple pipelines are also stored in
the project.

In Model Studio, metadata is defined as the set of variable roles, measurement levels, and other
configurations that apply to your data set. When creating multiple projects using similar data sets (or
when using a single data set), you might find it useful to store the metadata configurations for usage
across projects. Model Studio enables you to do this by collecting the variables in a repository
named Global Metadata. By storing your metadata configurations as global metadata, they will apply
to new data sets that contain variables with the same name.

You can add nodes to the pipeline to create your modeling process flow.

You can view the list of projects (like above) by navigating to the location where it has been saved.
Shown above is the path for a Linux OS using WinSCP (a File Transfer Protocol application on your
client machine). Generally, the path is /opt/sas/viya/config/data/cas/default/projects/ . You might
have a different path if it is a Windows installation.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 5

Analysis Elements in Model Studio

Projects

Data Sources

Pipelines Nodes

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.2 Essentials of Supervised Prediction 1-51

In Model Studio, you can create analytic process flow in the form of a pipeline. After creating a new
pipeline, you can create visual data mining functionality by adding nodes to the pipeline. Nodes can
be added separately or, to save time, templates can add several nodes at once. To create a pipeline
from a template, specify the template in the New Pipeline window. You can add nodes to a pipeline
in two ways:

1. dragging and dropping from an expanded Nodes pane

2. right-click and select either Add below or Insert above.

Pipelines are grouped together in a top-level container (that is, in a project that also includes the
data set that you want to model and a pipeline comparison tool). A project can contain multiple
pipelines. You can create a new pipeline and modify an existing pipeline.

Pipelines can be saved to the Exchange where they become accessible to other users. All available
nodes, along with descriptions, and all available pipeline templates, including prebuilt and user
created, can be found here.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 6

Pipelines

• Pipelines are structured

flows of analytic actions.

• Pipelines contain the nodes
that process data and

create models.

• Custom pipelines can be
saved to the Exchange for
others to use.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-52 Chapter 1 Introduction

Model Studio supports templates as a method for creating statistical models quickly. A template is a
special type of pipeline that is pre-populated with configurations that can be used to create a model.
A template might consist of multiple nodes or a single node. Model Studio includes a set of
templates that represent frequent use cases, but you can also create models themselves and save
them as templates in the toolkit.

There are three levels of templates available, both for a class target as well as for an interval target.
Intermediate template for class target was shown on the previous slide. You can create a new
template from an existing pipeline, create a new template in the toolbox, and modify an existing
template.

The advanced templates are also available with autotuning functionality. A large portion of the
model-building process is taken up by experiments to identify the optimal set of parameters for the

model algorithm. As algorithms get more complex (neural networks to deep neural networks,
decision trees to forests and gradient boosting), the amount of time required to identify these
parameters grows. There are several ways to support you in this cumbersome work of tuning
machine learning model parameters. These approaches are called hyperparameter optimization and
are discussed later in the course.

The following Pipeline templates are included with Model Studio:

Pipeline Template Name Pipeline Template Description

Blank template A data mining pipeline that contains only a Data node.

Basic template for class
target

A simple linear flow: Data, Imputation, Logistic Regression, Model
Comparison.

Basic template for interval
target

A simple linear flow: Data, Imputation, Linear Regression, Model
Comparison.

Intermediate template for
class target

Extends the basic template with a stepwise logistic regression
model and a decision tree.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 7

Pipelines Templates

• Pre-populated pipeline templates are available for speedy model building.

• Three levels of pipeline templates (basic, intermediate, and advanced) are
available for both class and interval targets.

• The advanced pipeline template is available with autotuning functionality.

• Each increasing level of pipeline template adds more data preprocessing

and models.

• Regression (Linear/Logistic) is part of all the three pipeline template levels.

Note: You will build a basic pipeline, which consists of regression and

imputation.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.2 Essentials of Supervised Prediction 1-53

Pipeline Template Name Pipeline Template Description

Intermediate template for
interval target

Extends the basic template with a stepwise linear regression model
and a decision tree.

Advanced template for class
target

Extends the intermediate template for class target with neural
network, forest, and gradient boosting models, as well as an
ensemble.

Advanced template for class
target with autotuning

Advanced template for class target with autotuned tree, forest,
neural network, and gradient boosting models.

Advanced template for
interval target

Extends the intermediate template for interval target with neural
network, forest, and gradient boosting models, as well as an

ensemble.

Advanced template for
interval target with autotuning

Advanced template for interval target with autotuned tree, forest,
neural network, and gradient boosting models.

Automated feature
engineering template

Template to perform automated feature engineering.

In logistic regression, the expected value of the target is transformed by a link function to restrict its
value to the unit interval. In this way, model predictions can be viewed as primary outcome
probabilities. A linear combination of the inputs generates a logit score, the log of the odds of primary
outcome, in contrast to the linear regression’s direct prediction of the target.

For binary prediction, any monotonic function that maps the unit interval to the real number line can
be considered as a link. The logit link function is one of the most common. Its popularity is due, in
part, to the interpretability of the model.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 8

Logistic Regression

= 0 + 1 . x1 + 2 . x2
^ ^^

...

logit

link function

0 1

5

-5

The logit link function transforms
probabilities (between 0 and 1)
to logit scores (between −∞ and

+∞) .

^

log
p

1 – p
()^

logit scores

1-54 Chapter 1 Introduction

The presence of the logit link function complicates parameter estimation. Parameter estimates are
obtained by maximum likelihood estimation. The likelihood function is the joint probability density of
the data treated as a function of the parameters.

∑ 𝑙𝑜𝑔(𝑝̂𝑖)+ ∑𝑙𝑜𝑔(1 − 𝑝̂𝑖)

The former quantity represents the primary outcome training cases and the later one represents the
secondary outcome training cases, in the above expression.

The maximum likelihood estimates are the values of the parameters that maximize the probability of
obtaining the training sample. These estimates can be used in the logit and logistic equations to
obtain predictions. The plot on the right shows the prediction estimates from the logistic equation.
One of the attractions of a standard logistic regression model is the simplicity of its predictions. The
contours are simple straight lines commonly known as the isoprobability lines. (In higher dimensions,
they would be hyperplanes.)

The predictions can be decisions, rankings, or estimates. The logit equation produces a ranking or
logit score. To get a decision, you need a threshold. The easiest way to get a meaningful threshold is
to convert the prediction ranking to a prediction estimate. You can obtain a prediction estimate using
a straightforward transformation of the logit score, the logistic function. The logistic function is simply
the inverse of the logit function. You can obtain the logistic function by solving the logit equation
for p.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 9

Logistic Regression Example

Us ing the maximum likelihood
estimates, the prediction
f ormula assigns a logit score

to each x1 and x2.

...

logit(p) = -0.81 + 0.92  x1 + 1.11  x2
^

p̂ =
1

1 + e– logit(p) ^

1.2 Essentials of Supervised Prediction 1-55

Missing values can be theoretically and practically problematic for many machine learning tasks,
especially when missing values are present in the target variable. This section addresses only the
more common scenario of missing values in input variables.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 0

Essential Data Tasks

...

• Divide the data.

• Address rare events.

• Manage missing values.

• Add unstructured data.

• Extract features.

• Handle extreme or unusual values.

• Select useful inputs.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 1

Missing Values: Problem 1

Training Data

targetinputs

Problem: Complete case analysis means that
training data cases with missing values on

inputs are ignored.

...

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-56 Chapter 1 Introduction

The issue of missing values in data is (nearly) always present and always a concern. When faced
with missing values in input variables, you must consider whether missing values are distributed
randomly or whether missingness is somehow predictive of the target. If missing values appear at
random in the input data, the input rows that contain missing values can be dropped from the
analysis without introducing bias into the model. However, such a complete case analysis can
remove a tremendous amount of information from the training data and reduce the predictive

accuracy of the model. Many modeling algorithms in SAS Visual Data Mining and Machine Learning
operate under complete case analysis (for example, linear and logistic regression, neural networks
and support vector machines).

Complete case analysis assumes that data are missing completely at random and so does the Mean
imputation. Imputation can be a more complicated issue, when missingness is nonrandom,

dependent on inputs, or canonical. In this course, we use a simple approach that is often useful, but
you should be aware that it is not always the best thing to do.

Missing values affect both model construction and model deployment.

Even a smattering of missing values can cause an enormous loss of data in high dimensions. For

example, suppose that each of the k input variables is missing at random with probability . In this
situation, the expected proportion of complete cases is as follows:

(1-)k

Therefore, a 1% probability of missing (=.01) for 100 inputs retains only 37% of the data for

analysis, 200 keeps13%, and 400 preserves2%. If the “missingness” were increased to 5% (=.05),
then less than 1% of the data would be available with 100 inputs.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 3

Missing Values: Problem 1

...

Training Data

targetinputs

Consequence: Missing values can significantly

reduce your amount of training data for
regression modeling.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.2 Essentials of Supervised Prediction 1-57

The second missing value problem relates to model deployment or using the prediction formula.
How would a model built on the complete cases score a new case if it had a missing value? If there
is missingness in your training data, it is very likely that your scoring data or the new data would also
have, ideally, a similar type of missingness, but in limited amount.

A remedy is needed for the two problems of missing values. The appropriate remedy depends on the
reason for the missing values.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 4

Missing Values: Problem 2

Predict: (x1, x2) = (0.3, ?)

logit(p) = -0.81 + 0.92  x1 + 1.11  x2
^

...

Problem: What if the scoring data also have

missing values?

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 5

Missing Values: Problem 2

Predict: (x1, x2) = (0.3, ?)

logit(p) = -0.81 + 0.92  x1 + 1.11  ?^

logit(p) = ?

...

Consequence: Prediction formulas cannot

score cases with missing values.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-58 Chapter 1 Introduction

Missingness can be predictive. Retaining information that is associated with missing values,
including the missing values themselves, can increase the predictive accuracy of a model. The
following list describes practices for accounting for missingness in training a machine learning model
and describes how missing values must also be handled when scoring new data.

Naïve Bayes: Naïve Bayes models elegantly handle missing values for training and scoring by
computing the likelihood based on the observed features. Because of conditional independence

between the features, naïve Bayes ignores a feature only when its value is missing. Thus, you do not
need to handle missing values before fitting a naïve Bayes model unless you believe that the
missingness is not at random. For efficiency reasons, some implementations of naïve Bayes remove
entire rows from the training process whenever a missing value is encountered. When missing is
treated as a categorical level, infrequent missing values in new data can be problematic when they
are not present in training data, because the missing level will have had no probability associated
with it during training. You can solve this problem by ignoring the offending feature in the likelihood
computation when scoring.

Decision trees: In general, imputation, missing markers, binning, and special scoring considerations
are not required for missing values when you use a decision tree. Decision trees allow for the
elegant and direct use of missing values in two common ways:

• When a splitting rule is determined, missing can be a valid input value, and missing values can
either be placed on the side of the splitting rule that makes the best training prediction or be
assigned to a separate branch in a split.

• Surrogate rules can be defined to allow the tree to split on a surrogate variable when a missing
value is encountered. For example, a surrogate rule could be defined that allows a decision tree to
split on the state variable when the ZIP code variable is missing.

Missing markers: Missing markers are binary variables that record whether the value of another

variable is missing. They are used to preserve information about missingness so that missingness

can be modeled. Missing markers can be used in a model to replace the original corresponding

variable with missing values, or they can be used in a model alongside an imputed version of the

original variable.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 6

Managing Missing Values

• Naïve Bayes

• Decision trees

• Missing indicators

• Imputation

• Binning

• Scoring missing data

1.2 Essentials of Supervised Prediction 1-59

Imputation: Imputation refers to replacing a missing value with information that is derived from
nonmissing values in the training data. Simple imputation schemes include replacing a missing value
in an input variable with the mean or mode of that variable’s nonmissing values. For nonnormally
distributed variables or variables that have a high proportion of missing values, simple mean or
mode imputation can drastically alter a variable’s distribution and negatively impact predictive
accuracy. Even when variables are normally distributed and contain a low proportion of missing
values, creating missing markers and using them in the model alongside the new, imputed variables
is a suggested practice. Decision trees can also be used to derive imputed values. A decision tree
can be trained using a variable that has missing values as its target and all the other variables in the
data set as inputs. In this way, the decision tree can learn plausible replacement values for the
missing values in the temporary target variable. This approach requires one decision tree for every
input variable that has missing values, so it can become computationally expensive for large, dirty
training sets. More sophisticated imputation approaches, including multiple imputation (MI), should
be considered for small data sets (Rubin 1987).

Binning: Interval input variables that have missing values can be discretized into many bins
according to their original numeric values to create new categorical, nominal variables. Missing
values in the original variable can simply be added to an additional bin in the new variable.
Categorical input variables that have missing values can be assigned to new categorical nominal
variables that have the same categorical levels as the corresponding original variables plus one new
level for missing values. Because binning introduces additional nonlinearity into a predictive model
and can be less damaging to an input variable’s original distribution than imputation, binning is
generally considered acceptable, if not beneficial, until the binning process begins to contribute to
overfitting. However, you might not want to use binning if the ordering of the values in an input
variable is important, because the ordering information is changed or erased by introducing a
missing bin into the otherwise ordered values.

Scoring missing data: If a decision tree or decision tree ensemble is used in training, missing

values in new data will probably be scored automatically according to the splitting rules or the

surrogate rules of the trained tree (or trees). If another type of algorithm was trained, then missing

values in new data must be processed in the exact way that they were processed in the training data

before the model was trained.

Source: Best Practices for Machine Learning Applications (Wujek, Hall, and Güneș 2016)
SAS Institute Inc.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-60 Chapter 1 Introduction

A remedy is needed for the two problems of missing values. The appropriate remedy depends on the
reason for the missing values. In this course you will be focusing on imputing missing values.

In Model Studio, you can use a one-size-fits-all approach to handle missing values. In any case with

a missing input measurement, the missing value is replaced with a fixed number. The net effect is to
modify an input’s distribution to include a point mass at the selected fixed number. The location of
the point mass in synthetic distribution methods is not arbitrary. Ideally, it should be chosen to have
minimal impact on the magnitude of an input’s association with the target. With many modeling
methods, this can be achieved by locating the point mass at the input’s mean value.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 7

Managing Missing Values

• Naïve Bayes

• Decision trees

• Missing indicators

• Imputation

• Binning

• Scoring missing data

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.2 Essentials of Supervised Prediction 1-61

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Building a Pipeline from a Basic Template

Although it is nice to be able to build up your own pipelines from scratch, it is often convenient to
start from a template that represents best practices in building predictive models. The application
comes with a nice set of templates available for creating new pipelines. In this demonstration, to
start simple, you build a new pipeline from a basic template for class target.

1. Click next to the current pipeline tab in the upper left corner of the canvas.

2. In the New Pipeline window, select Browse templates under Template.

Note: Some of the options on the Templates menu might be different on your classroom
computer from what is shown above.

1-62 Chapter 1 Introduction

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3. In the Browse Templates window, select Basic template for class target. Click OK.

4. In the New Pipeline window, name the pipeline Basic Template.

1.2 Essentials of Supervised Prediction 1-63

5. Click Save.

The basic template for class target is a simple linear flow and includes the following nodes: Data,
Imputation, Logistic Regression, and Model Comparison. You can add additional nodes by right -
clicking the existing nodes (or dragging and dropping from the Nodes pane.)

Note: Because a predicted response might be different for cases with a missing input value, a
binary imputation indicator variable is often added to the training data. Adding this
variable enables a model to adjust its predictions in the situation where “missingness”
itself is correlated with the target.

6. Click the Run pipeline icon.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-64 Chapter 1 Introduction

7. After the pipeline has successfully run, right-click the Logistic Regression node and select
Results.

The Results window contains two important tabs at the top: one for Node results and one for
Assessment results.

Here are some of the windows included under the Nodes tab in the results from the Logistic
Regression node:

• t-values by Parameter table

• Parameter Estimates table

• Selection Summary table

Here are some of the windows included under the Assessment tab in the results from the
Logistic Regression node:

• Lift Reports plots

• Fit Statistics table

• Output

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.2 Essentials of Supervised Prediction 1-65

Explore the results as you see fit.

8. Close the Results window by clicking Close in the upper right corner of the window.

9. Right-click the Model Comparison node and select Results.

10. Click to expand the Model Comparison table. Unless specified, the default fit statistic (KS) is

used for selecting a champion model with a class target.

Note: To change the default fit statistic for just this comparison, change the class selection
statistic of the Model Comparison properties. To change the default fit statistic for all
projects, change the class selection statistic on the Project Settings menu. The default is
the Kolmogorov-Smirnov statistic (KS).

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-66 Chapter 1 Introduction

Note: The Model Comparison node is always added by default when any model is contained in
the pipeline. If the pipeline contains only a single model, the Model Comparison node
summarizes performance of this one model.

11. Click to exit the maximized view.

12. Click Close to close the Model Comparison Results window.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.3 Introduction to SAS Viya 1-67

1.3 Introduction to SAS Viya

The SAS Analytics Platform is a software foundation that is engineered to generate insights from
your data in any computing environment. Built on a strategy of using analytical insights to drive
business actions, this platform supports every phase of the analytics life cycle from data, to
discovery, to deployment.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 0

SAS Viya on the SAS Platform

SAS Viya is an open, cloud-enabled, analytic run-time environment with a
number of supporting services, including SAS Cloud Analytic Services (CAS).

CAS is the in-memory engine on the SAS Platform.

SAS Viya

SAS®9

The SAS Platform

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 1

SAS Platform Architecture

Application Services

Run-Time Environments

Security, Governance, Administration

Environments

• Customer Intelligence
• Risk
• Fraud and Security

• Visualization
• Data Management
• Analytics

• Streaming
• Cloud
• Hadoop
• Database

Data

In-DB

• Java
• R
• Lua

• SAS
• Python
• REST

APIs or UIs
• SAS Studio

Multi-
Vender

ESP CAS

1-68 Chapter 1 Introduction

Run-time environment refers to the combination of hardware and software in which data
management and analytics occur.

CAS is designed to run in a single-machine symmetric multiprocessing (SMP) or multi-machine

massively parallel processing (MPP) configuration. CAS supports multiple platform and infrastructure
configurations.

CAS also has a communications layer that supports fault tolerance. When CAS is running in an MPP
configuration, it can continue processing requests even if it loses connectivity to some nodes. This
communication layer also enables you to remove or add nodes while the server is running.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 2

SAS Cloud Analytic Services

Cloud Analytic Services (CAS) is an in-memory, distributed, analytics engine.
It uses scalable, high-performance, multi-threaded algorithms to rapidly

perform analytical processing on in-memory data of any size.

Run-Time Environments

SAS Cloud Analytic Services

Application Services
(Middle-Tier)

CAS Controller

CAS Data Connector

CAS Worker

CAS Data Connector

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.3 Introduction to SAS Viya 1-69

Distributed Server: Massively Parallel Processing (MPP)

A distributed server uses multiple machines to perform massively parallel processing. The figure in
the slide above depicts the server topology for a distributed server. Of the multiple machines used,
one machine acts as the controller and other machines act as workers to process data. Client
applications communicate with the controller, and the controller coordinates the processing that is
performed by the worker nodes. One or more machines are designated as worker nodes. Each
worker node performs data analysis on the rows of data that are in-memory on the node. The server
scales horizontally. If processing times are unacceptably long due to large data volumes, more
machines can be added as workers to distribute the workload. Distributed servers are fault tolerant.
If communication with a worker node is lost, a surviving worker node uses a redundant copy of the
data to complete the data analysis. Whenever possible, distributed servers load data into memory in
parallel. This provides the fastest load times.

Single-Machine Server: Symmetric Multiprocessing (SMP)

The figure above depicts the server topology for a single-machine server. The single machine is
designated as the controller. Because there are no worker nodes, the controller node performs data
analysis on the rows of data that are in-memory. The single machine uses multiple CPUs and
threads to speed up data analysis. This architecture is often referred to as symmetric multi-
processing, or SMP. All the in-memory analytic features of a distributed server are available to the
single-machine server. Single-machine servers cannot load data into memory in parallel from any
data source.

Leveraging the CAS server that is part of the SAS Viya release includes a whole host of tangible
benefits. The main reason is represented by a simple three-word phrase: tremendous performance
gains. Because processes run so much faster, you can complete your work faster. This means that
you can complete more work, and even entire projects, in a significantly reduced time frame.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-70 Chapter 1 Introduction

Processing Type
Multi-threaded, Single

Machine (SAS Viya SMP)
Multi-threaded, Multiple

Machines (SAS Viya MPP)

Distributed, parallel processing? Yes Yes

In-memory data persistence? Yes Yes

Common performance speed-up 10x – 20x Up to 100x*

* Increase depends on many factors including hardware allocation; performance could be higher.

In SAS Viya, you might have nondeterministic results or might not get the reproducible results,
essentially because of two reasons:

1. distributed computing environment

2. nondeterministic algorithms

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 3

A Mindset Shift

Computation of model
parameters

Definitive algorithms

Conventional computing
environment

Convergence of model
parameters

Randomness in algorithms

Distributed computing
environment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.3 Introduction to SAS Viya 1-71

In distributed computing, cases are divided over compute nodes and there could be variation in the
results. You might get slightly different results even in the same server when the controllers/workers
are more manageable. In different servers, this is even more expectable. CAS server represents
pooled memory and runs code multi-threaded. Multi-threading tends to distribute the same
instructions to other available threads for execution creating many different queues on many different
cores using separate allocations or subsets of data. Most of the time, multiple threads perform

operations on isolated collections of data that are independent of one another, but part of a larger
table. For that reason, it is possible to have a counter (for example, n+1;) operating on one thread to
produce a result that might be different from a counter operating on another thread, because each
thread is working on a different subset of the data. Therefore, results can be different from thread to
thread unless and until the individual results from multiple threads are summed together. It is not as
complicated as it might sound. That is because SAS Viya automatically takes care of most collation
and reassembly of processing results, with a few minor exceptions where you must further specify
how to combine results from multiple threads.

A nondeterministic algorithm is an algorithm that, even for the same input, can exhibit different
behaviors on different runs, as opposed to a deterministic algorithm. There are several ways an
algorithm might behave differently from run to run. A concurrent algorithm can perform differently on
different runs due to a race condition. A probabilistic algorithm's behaviors depend on a random
number generator. The nondeterministic algorithms are often used to find an approximation to a
solution when the exact solution would be too costly to obtain using a deterministic one (Wikipedia).
Some SAS Visual Data Mining and Machine Learning models are created with a nondeterministic
process. This means that you might experience different displayed results when you run a model,

save that model, close the model, and re-open the report or print the report later.

Image source: By Eleschinski2000 - With a paint program., CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=43528132

A deterministic algorithm that performs f(n) steps always finishes in f(n) steps and always returns the
same result. A nondeterministic algorithm that has f(n) levels might not return the same result on
different runs. A nondeterministic algorithm might never finish due to the potentially infinite size of the
fixed height tree.

It is an altogether different mindset!

You are “converging” on a model or “estimating” a model, not exactly computing the parameters of
the model. Bayesians understand this, when they look for convergence of parameters. They try to
converge to a distribution, not a point. Maybe it would be interesting to try running the models 10
times across different samples and ensembling them to see the dominant signal. You cannot expect
the results to be reproduced because some algorithms have randomness included in the process.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-72 Chapter 1 Introduction

However, the results do converge. This is a distinguished computing environment designed for big
data, and this non-reproducibility is the price we pay.

SAS moved from multi-vendor to multi-cloud support. The IT Department can add compute
resources from whom they want and when they need them.

Each tenant is completely isolated from other tenants. For example, a use-case would be a tenant
for your Human Resources Department. You must guarantee that access to sensitive data is

restricted to appropriate personnel.

Activating multi-tenancy is a deployment-time decision. Ensure that you understand the implications
of this choice before you deploy resources.

SAS Viya is deployed with Transport Layer Security (TLS) to secure network connections and is fully
compliant with SAS security standards.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 4

SAS Viya Infrastructure

SAS Viya is open to any public or private cloud platform.

• SAS Viya and SAS®9 can coexist on the same hardware (physical or virtual).

• Multi-tenancy is supported.

• SAS Viya integrates with existing security practices.

Environments

Security, Governance, Administration

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.3 Introduction to SAS Viya 1-73

Persisted in-memory data is another unique SAS Viya feature. This is the shift away from using flat
files and external data sets to a strategy of using persisted, pre-loaded data tables. In SAS Viya, all
data typically go through an I/O conversion process only once and can be reused as many times as
needed thereafter, without incurring the same expense of conversion into a binary, machine-level
format. SAS Viya data is either stored within the RAM of a single machine (and runs in SMP mode)
or within a shared pool of allocated memory created from several networked machines as part of a
common memory grid (which enables Massively Parallel Processing, or MPP mode). That pooled
memory array is an integral part of CAS. After the data is loaded into CAS, all processing
instructions execute very quickly against the pre-converted, in-memory data.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 5

Data Sources and SAS Viya

A variety of data sources can be accessed. These include native access to
cloud application and data sources, enterprise on-premises data sources,

relational and unstructured data, Hadoop, and various file formats (XML,
JSON, CSV).

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-74 Chapter 1 Introduction

There are many interfaces to SAS Viya. From within each tool, you can extend your analysis into
one of the others. Data can be shared, and models can be extended and compared.

A variety of products sit on the SAS Viya platform. They enable users to perform their jobs as part of
the analytics life cycle. In this course, you use SAS Visual Data Mining and Machine Learning, which
provides end-to-end analytics.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 6

Interfaces to SAS Viya

Although SAS Viya can be used by various SAS applications, it also enables
you to access analytic methods from SAS, Python, Lua, and Java, as well as

through a REST interface that uses HTTP or HTTPS.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 7

Products on SAS Viya

SAS products are licensed on the SAS Viya platform.

SAS® Visual Forecasting

SAS® Decision Manager

SAS® Event Stream Processing

SAS® Scoring Accelerators

SAS® Visual Analytics SAS® Visual Data Mining
and Machine LearningSAS® Econometrics

SAS® Visual Investigator

SAS® Optimization

SAS® Visual Text Analytics SAS® Visual Statistics

SAS® Model Manager

SAS® Data Preparation

SAS® Data Quality

SAS® In-Database Technologies

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1.3 Introduction to SAS Viya 1-75

SAS Viya includes following products:

SAS Visual Analytics Visually explores all data, discovers new patterns, and publishes
reports to the web and mobile devices.

SAS Visual Statistics Adds an additional set of advanced analytic functionality that builds
on SAS Visual Analytics.

SAS Visual Data Mining
and Machine Learning

Surfaces in-memory machine-learning techniques such as gradient

boosting, factorization machines, neural networks, and much more,
through SAS Studio tasks, procedures, and a Python client. The
visual interface is Model Studio, which provides integration between
common analytical processes from data preparation, to exploration,
to model development and deployment.

SAS Visual Text
Analytics

Leverages powerful natural language processing, machine learning,
and linguistic rules to reveal insights in data.

SAS Visual Forecasting Leverages time series data to forecast future results.

SAS Econometrics Provides techniques to model complex business and economic
scenarios and analyze the dynamic impact that specific events might
have over time.

SAS Optimization Enables organizations to effectively consider more alternative
actions and scenarios and determine the best allocation of resources
and the best plans for accomplishing goals.

SAS Data Preparation Quickly prepare data for analytics in a self-service, point-and-click
environment with data preparation from SAS.

SAS Model Manager Provides a framework for creating, managing, monitoring, and
governing analytic models.

SAS Decision Manager Streamlines analytical model and business rule deployment and
automates operational business decisions.

SAS Event Stream
Processing

Analyzes millions of events per second, detects patterns of interest
as they occur, and decides what information should be acted on
immediately, what can be ignored, and what should be stored.

SAS Visual Investigator Analyzes and integrates disparate data throughout an organization
and empowers users to uncover previously unknown relationships
and insights.

Note: The Model Studio interface is superset of SAS Visual Data Mining and Machine Learning,
SAS Visual Forecasting, and SAS Visual Text Analytics.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-76 Chapter 1 Introduction

SAS Visual Data Mining and Machine Learning is a product offering in SAS Viya that contains (1)
underlying CAS actions and SAS procedures for data mining and machine learning applications, and
(2) GUI-based applications for different levels and types of users. These applications are as follows:

• Programming interface: a collection of SAS procedures for direct coding or access through tasks
in SAS Studio

• Interactive modeling interface: a collection of tasks in SAS Visual Analytics for creating models in
an interactive manner with automated assessment visualizations

• Automated modeling interface: a pipeline application called Model Studio that enables you to
construct automated flows consisting of various nodes for preprocessing and modeling, with
automated model assessment and comparison, and direct model publishing and registration.

Each of these executes the same underlying actions in the CAS execution environment. In addition,
there are supplementary interfaces for preparing your data (SAS Data Studio) and managing and
deploying your models (SAS Model Manager and SAS Decision Manager) to support all phases of a
machine learning application.

Note: In this course, you primarily explore the Model Studio interface and its integration with other
SAS Visual Data Mining and Machine Learning interfaces.

You use the SAS Visual Data Mining and Machine Learning web client to visually assemble,
configure, build, and compare data mining models and pipelines for a wide range of analytic data
mining tasks. The software provides to new data miners a variety of end-to-end analytical modeling
templates as well as the opportunity to create, modify, and save your own data mining tools,
templates, and model score codes. SAS Visual Data Mining and Machine Learning provides support
for your custom SAS code in the analytic pipeline models that you create.

The software expedites and simplifies model assessment and model pipeline comparisons when
evaluating competing analytic models for the role of champion model. SAS Visual Data Mining and
Machine Learning readily imports and exports data to other visual SAS analytic applications, as well
as SAS Enterprise Miner on SAS 9.4 (and earlier) releases.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 8

SAS Visual Data Mining and Machine Learning

1.3 Introduction to SAS Viya 1-77

You can share projects and analyses developed in SAS Visual Data Mining and Machine Learning
among concurrent users. SAS Visual Data Mining and Machine Learning generates APIs that enable
model content and score code to be integrated with applications outside of SAS. SAS Visual Data
Mining and Machine Learning supports integration with SAS Model Manager as well as many
commercial databases.

SAS Viya enables customers to develop, deploy, and manage enterprise-class analytical assets
throughout the analytics life cycle with a single platform with the underlying engine called CAS,
which is the acronym for Cloud Analytic Services.

• SAS Viya delivers a single, consolidated, and centralized analytics environment. Customers no
longer need to stitch together different analytic code bases.

• It natively supports programming in SAS and access to SAS from other languages such as R,
Python, Java, and Lua. This means that data scientists and coders not familiar with SAS can use
SAS Viya, but they do not need to learn SAS code.

• It supports access to SAS from third-party applications with public REST APIs, so developers can

easily include SAS analytics in their applications.

• Regardless of which interface is used, the same CAS actions are applied behind the scenes for

the same procedure. This provides important consistency.

Note: A CAS action set is a collection of actions that group functionality (for example, simple
summary statistics). Many SAS procedures are being functionally converted into CAS
actions and CAS action sets to be executed by the CAS server. Procedures that are
executable by the CAS server and submitted from a SAS client can call the corresponding
CAS actions. Then the actions produce output that is very similar to the SAS procedure.

A CAS action, the smallest unit of functionality in CAS, sends a request to the CAS server. The
action parses the arguments of the request, invokes the action function, returns the results, and
cleans the resources.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 9

SAS Viya Consistency
Different Interfaces, Same Results

Su bmit
CAS Action

Return
Ac t ion Results

SAS Visual Data

Mining and Machine
L earning

SAS Visual Analytics

SAS Visual Statistics
… …

CAS-enabled Procedures: TREESPLIT,
L OGSELECT, GENSELECT, …

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

1-78 Chapter 1 Introduction

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Chapter 2 Data Preparation

2.1 Data Exploration .. 2-3

Demonstration: Exploring Source Data .. 2-8

Demonstration: Modifying and Correcting Source Data Using the Data Tab 2-13

Demonstration: Alternate Method to Modify and Correct Source Data Using the

Manage Variables Node (Self-Study) ... 2-19

2.2 Feature Extraction ... 2-24

Demonstration: Adding Text Mining Features .. 2-29

2.3 Input Transformations ... 2-41

Demonstration: Transforming Inputs .. 2-45

2.4 Feature Selection ... 2-50

Demonstration: Selecting Features.. 2-57

Demonstration: Saving a Pipeline to the Exchange .. 2-61

2.5 Variable Clustering (Self-Study) ... 2-64

Demonstration: Clustering Inputs for Data Reduction (Self-Study) 2-66

2.6 Best Practices.. 2-70

Demonstration: Running the Automated Feature Engineering Pipeline Template
(Self-Study) ... 2-74

2.7 Solutions ... 2-78

Solutions to Student Activities (Polls/Quizzes) ... 2-78

2-2 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

2.1 Data Exploration 2-3

2.1 Data Exploration

“The more data, the better” is the rule that generally prevails in any analytical exercise. However,
real life data is usually dirty and noisy because of inconsistencies, incompleteness, duplication, and
merging problems.

Preparing your data for analysis starts with exploring your data. Then, to clean up and reduce the
data to a manageable and relevant size, you must apply various data preprocessing techniques.
Remember the GIGO principle, which essentially states that messy data yields messy analytical

models. Effective machine learning models are built on a foundation of well-prepared data. Before
cleaning and transforming the data, you must think about how the data will be used. You must
consider the analysis goal, the methods that you are using, and whether your data is appropriate in
the first place. Shortcuts in data preprocessing hamper your models.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3

Overview of Data Preprocessing

Non-
linearities

The more data,
the better!

Outliers
Redundant

Inputs
Misscaled
Variables

High
Cardinality

Irrelevant
Inputs

Unstructured
Data

Missing
Values

Sparseness

Messy data yields
messy analytical

models.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

2-4 Chapter 2 Data Preparation

Exploring the data can be one of the most important and time-consuming parts of an analytical
project. When exploring data, analysts try to gain intimate knowledge of the variables by using both
graphical and numerical methods. Common graphical tools include histograms, scatter plots, bar
charts, and stem-and-leaf plots. There are also more modern graphical tools, such as heat maps and
word clouds, which scale well to large data sets. Numerical summary methods are also used to
explore data. These include summary statistics for measure of central tendency such as the mean,
median, or mode. Numeric measures of variability such as variance, standard deviation, range, or
interquartile-range are also used to explore data. Extreme values such as outliers, the minimum, or
the maximum are used to explore data as well as counts or percentages of missing data. Bivariate
measures such as correlation are also used.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4

Exploring the Data

Get to know
your data.

Ask lots of
questions.

Use graphical and numerical methods.

• outliers
• minimums

• maximums
• percent missing

• means
• ranges

• standard deviations
• distributions

• …

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

2.1 Data Exploration 2-5

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Data preprocessing can occur in several places throughout SAS Visual Data Mining and Machine
Learning: in a dedicated application (Data Studio), during visual exploration (SAS Visual Analytics),
and during execution of a pipeline (Model Studio). Here we use the Model Studio application, which
provides data preprocessing capabilities in the form of pipeline nodes. These nodes form a group
called Data Mining Preprocessing.

Data modification is a broad preprocessing category. Any operation that alters the data or data roles
can be considered as a modification, including dimension reduction techniques. Model Studio
provides several SAS Visual Data Mining and Machine Learning nodes to modify your data.

Anomaly Detection The Anomaly Detection node identifies and excludes anomalies using the
support vector data description, or SVDD. Briefly, the SVDD formulation
identifies outliers by determining the smallest possible hypersphere (built
using support vectors) that encapsulates the training data points. The SVDD
then excludes those data points that lie outside of the sphere that is built from
the training data. Anomaly detection with SVDD is useful for data sets where

most of the data belongs to one class and the other class is scarce or
missing.

Filtering The Filtering node excludes certain observations, such as rare values and
outliers. Filtering extreme values from the training data tends to produce
better models because the parameter estimates are more stable.

Imputation The Imputation node replaces missing values in data sets. Simple imputation
schemes include replacing a missing value in an input variable with the mean
or mode of that variable’s nonmissing values. For non-normally distributed
variables or variables that have a high proportion of missing values, simple
imputation might be ineffective. Imputation might also fail to be effective for
variables whose missingness is not at random. For ideal results, create

missing indicators and use them in the model alongside imputed variables.
This practice can result in improved outcomes, even in cases where the
variables are normally distributed and have few missing values.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5

Data Preprocessing with Model Studio

Data modification

2-6 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Manage Variables The Manage Variables node enables you to make modifications (such as
changing the role of a variable or adding new transformations) to the data
while within a Model Studio pipeline. The options available to you are a subset
of the options available under the Data tab.

Replacement The Replacement node enables you to replace outliers and unknown class
levels with specified values. Much like with imputation, simple replacement of
outliers and unknown class level is not always effective. Care should be taken
to use replacement effectively.

Transformations The Transformations node enables you to alter your data by replacing an
input variable with some function of that variable. Transformations have many
use cases. Transformations can be used to stabilize variances, remove
nonlinearity, and correct non-normality.

Dimension reduction decreases the number of variables under consideration. In many applications,
the raw data has very high dimensional features, and some features are redundant or irrelevant to

the task. Reducing the dimensionality helps find the true, latent relationship. Model Studio provides
three nodes in SAS Visual Data Mining and Machine Learning for dimension reduction:

Feature Extraction The Feature Extraction node transforms the existing features (variables) into
a lower-dimensional space. Feature extraction in Model Studio is done using
various techniques, including principal component analysis (PCA), robust
PCA, singular value decomposition (SVD), and autoencoders. This is done by
generating new features that are composites of the existing features. One
drawback to feature extraction is that the composite variables are no longer

meaningful with respect to the original problem.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6

Data Preprocessing with Model Studio

Dimension reduction

Data modification

2.1 Data Exploration 2-7

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Variable Clustering The Variable Clustering node divides numeric variables into disjoint clusters
and chooses a variable that represents each cluster. Variable clustering
removes collinearity, decreases redundancy, and helps reveal the underlying
structure of the data set.

Variable Selection The Variable Selection node uses several unsupervised and supervised
methods to determine which variables have the most impact on the model.
Supervised variable selection techniques include variable selection based on
linear models and tree-based models (such as decision tree, forest, and
gradient boosting). This tool enables you to specify more than one selection

technique, and there are several options for selection criteria. Because there
can be disagreements on selected variables when different techniques are
used, this functionality enables you to select variables that are consistently
selected. Variables that fail to meet the selection criteria are marked as
rejected and not used in successor modeling nodes.

When performing unsupervised learning, the machine is presented with unlabeled data (unlabeled
data has no target). Unsupervised learning algorithms seek to discover intrinsic patterns that
underlie the data, such as a clustering or a redundant parameter (dimension) that can be reduced.

Model Studio provides the Clustering node to perform observation clustering based on distances that
are computed from quantitative or qualitative variables (or both). The node uses the following

algorithms:

• the k -means algorithm for clustering interval (quantitative) input variables

• the k -modes algorithm for clustering nominal (qualitative) input variables

• the k -prototypes algorithm for clustering mixed input that contains both interval and nominal
variables.

Clustering is often used to segment a large data set into several groups. Analysis can be performed
in each group to help users find intrinsic patterns.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

7

Data Preprocessing with Model Studio

Data modification

Dimension reduction

Unsupervised learning

2-8 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Exploring Source Data

In this demonstration, you use the Data Exploration node in Model Studio to assay and explore the
commsdata data source. You will frequently find it useful to profile a data set before continuing your
analysis. Here you select a subset of variables to provide a representative snapshot of the data.
Variables can be selected to show the most important inputs, or to indicate suspicious variables (that
is, variables with anomalous statistics).

1. If you closed your browser and need to log back in, do the following:

a. From the Windows taskbar, launch Google Chrome. When the browser opens, select
SAS Viya  SAS Home from the bookmarks bar or from the link on the page.

b. The User ID and Password fields should be pre-filled. If not, do the following:

1) Enter student for the user ID.

2) Enter Metadata0 for the password.

Note: Use caution when you enter the user ID and password because values are
case sensitive.

c. Click Sign In.

d. Select Yes in the Assumable Groups window.

2. From the Model Studio Projects page, open the Demo project from the available existing
projects.

3. Click the Pipelines tab. (You should be looking at the pipeline called Pipeline 1.)

4. Right-click the Data node and select Add below  Miscellaneous  Data Exploration.

Note: You can also drag the node from the left pane to the top of the Data node, and the node
is added below.

2.1 Data Exploration 2-9

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5. Keep the default setting for Variable selection criterion, which is Importance. The variable
selection criterion specifies whether to display the most important inputs or suspicious variables.
The other possible value is Screening.

Variables can be selected to show the most important inputs or to indicate anomalous statistics.
By default, a maximum of 50 variables will be selected with the Importance criterion.

You can control the selection of suspicious variables by specifying screening criteria like cutoff
for flagging variables with a high percentage of missing values, high cardinality class variables,
class variables with dominant levels, class variables with rare modes, skewed interval variables,
peaky (leptokurtic) interval variables, and interval variables with thick tails (that is, platykurtic
distributions).

6. Right-click the Data Exploration node and select Run (or click the right-pointing arrow icon).

The Data Exploration node gives you a statistical summary of the input data. This node can be a
useful first step in analysis because it provides a subset of variables that are a representative
snapshot of the data. The Data Exploration node can be placed most anywhere in a pipeline
except after the Model Comparison node.

7. When the pipeline finishes running, right-click the Data Exploration node and select Results.

2-10 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

8. Click to expand the Importance Inputs bar chart and examine the relative importance of the

ranked variables. This bar chart is available only if Variable selection criterion is set to
Importance.

The relative variable importance metric is a number between 0 and 1, which is calculated in two
steps. First, it finds the maximum RSS-based variable importance. This method measures
variable importance based on the change of residual sum of squares (RSS) when a split is found

at a node. Second, for each variable, it calculates the relative variable importance as the RSS-
based importance of this variable divided by the maximum RSS-based importance among all the
variables. The RSS and relative importance are calculated from the validation data. If no
validation data exist, these two statistics are calculated instead from the training data.

9. Click to exit the maximized view.

10. Expand the Interval Variable Moments table.

This table displays the interval variables with their associated statistics, which include minimum,
maximum, mean, standard deviation, skewness, kurtosis, relative variability, and the mean plus
or minus two standard deviations. Note that some of the input variables have negative values.

11. Click to exit the maximized view of this window.

2.1 Data Exploration 2-11

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

12. Scroll down in the Data Exploration Results window to examine the Interval Variable Summaries
scatter plot. Observe that several variables have deviation from normality—that is, high kurtosis
on the Y axis and high skewness on the X axis.

13. Use the drop-down menu in the upper right corner to examine a bar chart of the relative
variability for each interval variable.

14. Click to exit the maximized view of this window.

Note: Relative variability is useful for comparing variables with similar scales, such as several
income variables. Relative Variability is the coefficient of variation, which is a measure of

variance relative to the mean, CV=/.

2-12 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

15. Scroll down in the Data Exploration Results window to examine the Missing Values bar chart and
validate that quite a few variables have missing values.

This is an important finding that you address in the next demonstration.

16. Click Close.

17. Double-click the Pipeline 1 tab and rename it Data Exploration. Press the Enter key.

2.1 Data Exploration 2-13

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Modifying and Correcting Source Data Using the Data Tab

In this demonstration, you use the Data tab and Replacement node to modify a data source.

1. Click the Data tab.

2. Right-click the Role column and select Sort  Sort (ascending).

All the Input variables are grouped together after the ID variable(s) and before the Rejected
variables.

2-14 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3. Scroll to the right. Right-click the Minimum column and select Sort  Add to sort (ascending).

Variables with negative minimum values are grouped together.

Note: Add to sort means that the initial sorting done by role still holds, so the sort on minimum
values takes place within each sorted role group.

4. Select the following interval input variables:

• tot_mb_data_roam_curr

• seconds_of_data_norm

• lifetime_value

• bill_data_usg_m03

• bill_data_usg_m06

• voice_tot_bill_mou_curr

• tot_mb_data_curr

• mb_data_usg_roamm01 - mb_data_usg_roamm03

• mb_data_usg_m01 - mb_data_usg_m03

• calls_total

• call_in_pk

• calls_out_pk

• call_in_offpk

• calls_out_offpk

• mb_data_ndist_mo6m

• data_device_age

• mou_onnet_pct_MOM

• mou_total_pct_MOM

(Scroll back to the left to find the Variable Name column. You select 22 interval input variables.)

Note: Selecting the check box of a variable and then selecting another variable while holding
down the Shift key selects those two variables and all the variables between them.

2.1 Data Exploration 2-15

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5. On the right pane, enter 0.0 in the Lower Limit field in the Multiple Variables window. This
specifies the lower limit to be used in the Filtering and Replacement nodes with the Metadata
limits method.

Note: This is a customer billing data, and negative values often imply that there is a credit
applied to the customer’s account. So it is not outside the realm of possibility that there
are negative numbers in these columns. However, there is a general practice to convert
negative values to zeros in telecom data.

Note that you did not edit any variable values. Instead, you have just set a metadata property
that can be invoked.

6. Click the Pipelines tab.

7. Select the Basic Template pipeline.

2-16 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Notice that because of the change in metadata, the green check marks in the nodes in the
pipeline have been changed to gray circles. This indicates that the nodes need to be rerun to
reflect the change in metadata. The nodes will show the green check marks again when the
pipeline is rerun.

8. Expand the Nodes pane on the left side of the canvas.

9. Expand Data Mining Preprocessing.

10. Click and drag the Replacement node and drop it between the Data node and the Imputation
node.

The Replacement node can be used to replace outliers and unknown class levels with specified
values. This is where you invoke the metadata property of the lower limit that you set before.

2.1 Data Exploration 2-17

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

11. In the options panel on the right side, complete the following for the Interval Variables section:

a. Set Default limits method to Metadata limits.

b. Change Alternate limits method to None.

c. Leave Replacement value as the default, Computed limits.

12. Right-click the Replacement node and select Run. Negative values are replaced with zeros in
the training partition of the data.

13. View the results of the Replacement node. The Interval Variables table shows which variables
now have a lower limit of 0.

14. Close the results window of the Replacement node.

15. To update the remainder of the results of the pipeline, click the right-pointing arrow icon.

16. Right-click the Model Comparison node and select Results.

2-18 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

17. Click to expand the Model Comparison table. Click to exit the maximized view.

18. Select Close to return to the pipeline.

19. Double-click the Basic Template tab and rename it Starter Template. Press the Enter key.

2.1 Data Exploration 2-19

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Alternate Method to Modify and Correct Source Data Using the
Manage Variables Node (Self-Study)

In addition to using the Data tab, the Manage Variables node is another powerful tool that can be
used to modify and correct data. The Manage Variables node is used directly within a pipeline.

Note: On the classroom computers, the Data tab should be used to modify and correct source data
as described in the previous demonstration. That method is needed for other classroom
needs. This demonstration provides another means of assigning metadata rules to data. One
drawback to the method shown in this demonstration is that rules defined in the
Manage Variables node are not saved if the pipeline is saved to the Exchange.

1. Select the Basic Template pipeline.

2. Expand the Nodes pane on the left side of the canvas.

3. Expand Data Mining Preprocessing.

2-20 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4. Click and drag the Manage Variables node and drop it between the Data node and the
Imputation node.

The Manage Variables node is a preprocessing node that enables you to make modifications to
the metadata while it is within a Model Studio pipeline.

5. Right-click the Manage Variables node and select Run.

This reads the observations and variables and sets up the incoming variables before modifying
their metadata.

Note: Notice that after the Manage Variables node is run, any nodes beneath it in the same
path change in appearance from showing a green check mark to showing a gray circle.

6. After the node runs, right-click the node again and select the Manage Variables option.

2.1 Data Exploration 2-21

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

7. In the Manage Variables window, right-click the Role column and select Sort  Sort
(ascending).

8. Scroll to the right. Right-click the Minimum column and select Sort  Add to sort (ascending).

9. Modify the following properties of the variables specified:

a. To modify the metadata of a variable in the Manage Variables window, first select the desired
variable. (You might want to select several variables at one time.)

Select the following interval input variables:

• tot_mb_data_roam_curr

• seconds_of_data_norm

• lifetime_value

• bill_data_usg_m03

• bill_data_usg_m06

• voice_tot_bill_mou_curr

• tot_mb_data_curr

• mb_data_usg_roamm01 - mb_data_usg_roamm03

• mb_data_usg_m01 - mb_data_usg_m03

• calls_total

• call_in_pk

• calls_out_pk

• call_in_offpk

• calls_out_offpk

• mb_data_ndist_mo6m

• data_device_age

2-22 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

• mou_onnet_pct_MOM

• mou_total_pct_MOM

(Scroll back to the left to find the Variable Name column. You select 22 interval input
variables.)

b. Next, in the right pane, enter 0.0 into the New Lower Limit field in the Multiple Variables
window.

No variable values were edited. Instead, a metadata property has been defined that can be

invoked by using an appropriate node.

10. Select Close to exit the Manage Variables window. Click Save when asked if you want to save
the changes. The attribute alterations are applied.

2.1 Data Exploration 2-23

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

11. Click and drag the Replacement node and drop it between the Manage Variables node and the
Imputation node.

12. In the options panel on the right side, complete the following for Interval Variables:

a. Set Default limits method to Metadata limits.

b. Change Alternate limits method to None.

c. Leave Replacement value as the default, Computed limits.

13. Right-click the Replacement node and select Run. Negative values are replaced with zeros in
the training partition of the data.

14. Close the results window of the Replacement node.

2-24 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

2.2 Feature Extraction

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 2

Essential Data Tasks

...

• Divide the data.

• Address rare events.

• Manage missing values.

• Add unstructured data.

• Extract features.

• Handle extreme or unusual values.

• Select useful inputs.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 3

Text Mining

80%
Unstructured

20%
S tructured

U nlocking the 80%!

Text mining helps extract meanings,
patterns, and structure hidden in
unstructured textual data.

2.2 Feature Extraction 2-25

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Organizations today are generating and storing tremendous amounts of data. IDC has estimated
that up to 80% of that is unstructured—that is, information that either does not have a predefined
data model or is not organized in a predefined way. Unstructured data includes formats such as
audio, images, video, and textual content. Although this type of information is often rich with insights,
unlocking the full potential within these complex data sources can be tricky. Much of the big data
explosion is due to the rapid growth of unstructured data!

Source: IDC Digital Universe Study, sponsored by EMC, May 2010.

Unstructured free-form text data are commonly available in business. For example, survey results,
call center logs, product reviews, social media feeds, blogs, customer feedback, and other text data
contain information useful for predictive modeling outcomes that is not readily available in structured
data. It is therefore extremely informative to analyze these combined text data sources and use them
along with the structured data.

The Text Mining node in Model Studio enables you to process text data in a document collection.
Often, you might be able to improve the predictive ability of your models that use only numerical data
if you add selected text mining results (clusters or SVD values) to the numerical data. Data are
processed in two phases: text parsing and transformation. Text parsing processes textual data into a
term-by-document frequency matrix. Transformations such as singular value decomposition (SVD)
alter this matrix into a data set that is suitable for data mining purposes. A document collection with
thousands of documents and terms can be represented in a compact and efficient form.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 4

Text Mining Feature Extraction

Term 1 Term 2 Term 3 . . .

Do c 1

Do c 2

Do c 3

. . .

St ructured Data Inputs from Unstructured Data

ID Var 1 Var 2 Var 3 . . . SVD 1 SVD 2 SVD 3 . . . Target

. . .

1. Text parsing

2. Transformation

2-26 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Consider A to be a term-document matrix with m terms and n documents. (Typically, m > n. That is,
there are more terms than documents.) The SVD theorem states that the term-document matrix
(and, in fact, any rectangular matrix of real or complex values) can always be decomposed into the
product of three matrices. Below are the details:

• A is the real m x n matrix that you want to decompose.

• U is an m x r matrix that contains the left singular vectors and satisfying the orthogonality condition
UTU=Ir x r.

• r is the rank of the matrix A.

• Ir x r is an r x r identity matrix.

• S is an r x r diagonal matrix consisting of r positive “singular values” s1  s2  … sr > 0.

• V is an r x n matrix that contains the right singular vectors and satisfies the orthogonality condition
VVT=Ir x r.

• T signifies the transpose of a matrix.

Details: SVD

This brief discussion is based on the very helpful paper “Taming Text with the SVD” (recommended
reading and readily available for downloading from the internet) by Dr. Russ Albright of SAS R&D.
The most relevant aspects of the SVD theorem are presented for dimension reduction, followed by
an example. If you do not understand the abstract explanations, the concrete example at least gives
you the “flavor” of what is happening.

Russ Albright’s example consists of three documents:

Doc 1: Error: invalid message file format

Doc 2: Error: unable to open message file using message path

Doc 3: Error: unable to format variable

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 5

Singular Value Decomposition (SVD)

• Singular value decomposition (SVD) projects the high-dimensional
document and term spaces into a lower-dimension space.

• Singular value decomposition is a method of decomposing a matrix into

three other matrices:

• The singular values can be thought of as providing a measure of importance

used to decide how many dimensions to keep.

A = U S VT

m × n
rectangular

matrix

m × r
orthogonal

matrix

r × r
diagonal
matrix

r × n
orthogonal

matrix

2.2 Feature Extraction 2-27

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

These three documents generate the following 11 x 3 term-document matrix A.

doc 1 doc 2 doc 3

Term 1 error 1 1 1

Term 2 invalid 1 0 0

Term 3 message 1 2 0

Term 4 f ile 1 1 0

Term 5 format 1 0 1

Term 6 unable 0 1 1

Term 7 to 0 1 1

Term 8 open 0 1 0

Term 9 using 0 1 0

Term 10 path 0 1 0

Term 11 variable 0 0 1

With the right software (for example, PROC IML), it is very easy to compute the SVD decomposition
for this example and obtain the separate matrices U, S, and V.

The product UTA produces the SVD projections of the original document vectors. These are the
document SVD input values (COL columns) that you will see in the next demonstration produced by
the Text Mining node (except that they are normalized for each document as explained later).

This amounts to forming linear combinations of the original (possibly weighted) term frequencies for
each document.

First project the first document vector d1 into a three- dimensional SVD space by the matrix
multiplication:

UT was obtained using the SVD matrix function in PROC IML applied to matrix A.

d1 is the term-frequency vector for document 1.

The product of the 3 x 11 UT matrix with the 11 x 1 term-frequency vector d1 for doc 1 gives the
following:

And then write this in transposed form with column labels:

1

TU d 

*

1 1
ˆTU d d 

1
ˆ Td 

2-28 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The SVD dimensions are ordered by the size of their singular values (their importance). Therefore,
the document vector can simply be truncated to obtain a lower-dimensional projection:

The 2-D representation for doc 1 is .

As a final step, these coordinate values are normalized so that the sums of squares for each
document are 1.0:

Using this document’s 2-D representation, 1.632 + 0.492 = 2.847 and 2.897 = 1.70.

Therefore, the final 2-D representation for doc 1 would be .

These are the SVD1 and SVD2 values that you would see for this document. A similar calculation is
performed for the other two documents.

2.2 Feature Extraction 2-29

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Adding Text Mining Features

In this demonstration, you create new features using the Text Mining node. The commsdata data
has five text variables. You use the text variable verbatims, which represents free-form,
unstructured data from a customer survey.

Of the four text variables not used in this demonstration, two are already rejected and two require a
metadata change to be rejected. Call_center and issue_level1 already have roles of Rejected, but
issue_level2 and resolution need to have their roles changed to Rejected.

1. Click the Data tab. Verify that previously selected variables are deselected.

2. Right-click the Variable Name column and select Sort  Sort (ascending).

3. Select issue_level2 and resolution. In the pane on the right, change the role from Text to
Rejected.

This ensures that only the verbatims variable is used as an input for the Text Mining node.

4. Return to the Starter Template pipeline. (Click the Pipelines tab and then select Starter
Template.)

2-30 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5. From the pane on the left, drag and drop a Text Mining node between the Imputation node and
the Logistic Regression node.

6. Right-click the Text Mining node and select Run.

7. Open the results of the Text Mining node. Many windows are available, including tables of Kept
Terms and Dropped Terms. These tables include terms used and ignored, respectively, during

the text analysis.

Note: The plus sign next to a word indicates stemming (for example, +service represents
service, services, serviced, and so on).

8. Expand the Topics table. This table shows topics created by the Text Mining node.

Topics are created based on groups of terms that occur together in several documents. Each
term-document pair is assigned a score for every topic. Thresholds are then used to determine
whether the association is strong enough to consider whether that document or term belongs in
the topic. Because of this, terms and documents can belong to multiple topics.

Because 15 topics were discovered, 15 new columns of inputs are created. The output columns
contain SVD scores that can be used as inputs for the downstream nodes.

2.2 Feature Extraction 2-31

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

9. Click the Output Data tab.

10. Click View Output Data.

11. Click View Output Data again. In this step, you can choose to create a sample of the data to be
viewed.

12. Click the Options button and then select Manage columns.

2-32 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

13. In the left pane, select all Score variables and click the arrow that has a plus sign on it.

2.2 Feature Extraction 2-33

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

14. In the right pane, select all Replacement variables and click the arrow that has a minus
sign on it.

15. Click OK. The SVD coefficients (scores) are shown for the 15 topics discovered (columns COL1
through COL15), for each observation in the data set. Those columns are passed along for the
following nodes.

16. Close the Results window.

2-34 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

17. Alternatively, use the Manage Variables node to see that 15 new interval input columns were
added to the data. Right-click the Text Mining node and select Add below  Data Mining
Preprocessing  Manage Variables.

18. Run the Manage Variables node and view the results when it is complete. Expand the Output
window. At the top of the Incoming Variables table are the 15 new columns representing the
dimensions of the SVD calculations based on the 15 topics discovered by the Text Mining node.

These 15 columns (COL1 through COL15) serve as new, interval inputs for subsequent models.

19. Restore the view of the Output window and close the results.

20. To run the entire pipeline, click the Run pipeline button.

21. Open the results of the Model Comparison node.

The model does not necessarily improve. Explore the results of the final regression model and
see whether it contains one of the text variables.

22. Close the results of the Model Comparison node.

23. Open the results of the Logistic Regression model. Recall that this regression model is based on
stepwise selection.

24. Scroll down in the results until you see the Output window. Expand the Output window.

2.2 Feature Extraction 2-35

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

25. Scroll down in the Output window until you see the Selection Summary table. This table shows
that one of the columns created by the Text Mining node (COL9) did enter the model during the
stepwise selection process and remained in the model after optimization of complexity on the
hold out sample. This variable entered in step 15 and the final model is from step 17, based on
minimum SBC.

26. Restore the view of the Output window and close the Results window.

2-36 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Other Options: The Feature Extraction Node (Self-Study)

Apart from the text data, the initial (structured) data set of raw features might be too large and
unwieldy to be effectively managed, requiring an unreasonable amount of computing resources.
Alternatively, the data set might be too robust, causing a classification algorithm to overfit, and
providing poor extrapolation in the event of new observations. In either case, the Feature Extraction
node can be used to provide a more manageable, representative subset of input variables.

Feature extraction is the process of transforming the existing features into a lower-dimensional
space, typically generating new features that are composites of the existing features. SVD is such a
technique and has already been discussed. There are many other techniques that reduce
dimensionality through such a transformation process, including those discussed on the following
slides and pages.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 7

Feature Extraction Node

The Feature Extraction node creates new features from the initial set of data.
These features encapsulate the central properties of a data set and represent

it in a low dimensional space.

The node offers four methods:

• Singular Value Decomposition (SVD)

• Principal Component Analysis (PCA)

• Robust Principal Component Analysis (RPCA)

• Autoencoder

2.2 Feature Extraction 2-37

You can deploy a variety of techniques to correct for (or perhaps more accurately, take advantage of)
the distribution flattening. One of the most common statistical approaches is that of principal
component analysis (PCA). PCA attempts to find a series of orthogonal vectors that better describe
the directions of variation in the data than the original inputs do. (A geometric interpretation of
orthogonal is that the vectors are perpendicular; a statistical interpretation is that the vectors are
uncorrelated.) The goal is to be able to characterize most of the variation in the data with as few
vectors as possible.

PCA starts by searching the data’s standardized joint distribution for the direction of maximum
variation. When found, this direction is labeled the first principal component, or first eigenvector.

The effect of the first principal component can be removed by projecting the data to a lower
dimensional subspace perpendicular to the first principal component.

The difference between the dimension of the original distribution (that is, the number of inputs) and
the effective dimension of the projected points is called the first eigenvalue.

The data, projected to remove variation in the direction of the first principal component, is again
searched for the direction of maximum variation. When identified, this direction is labeled the second
principal component. The corresponding second eigenvalue can be calculated by again projecting
(the data already projected in the first step) along the direction of the second principal component
and determining the difference in dimension between the once and twice projected data.

The process of identifying directions of variability, projecting, and calculating eigenvalues continues
until the sum of the eigenvalues calculated at each step is close to the dimension of the original input
space. This is a common stopping rule: How many unique components exist in the data? There
are as many components as it takes to ensure that the sum of the eigenvalues is greater than 80%
or 90% of the input count.

In the presence of redundant inputs, most of the data variability can be described by a few
independent principal component vectors.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 8

Principal Component Analysis (PCA)

• Principal components are constructed as
linear transformations of the input

variables.

• The first principal component (PC1) is
constructed in such a way that it captures
as much of the variation in the input

variables set as possible.

• The second principal component (PC2) is
orthogonal to PC1 and captures as much
as possible of the variation in the input

data not captured by PC1.

• And so on ...

P C1

P C2

2-38 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Robust principal component analysis (RPCA) is a matrix decomposition algorithm that decomposes
an input matrix M into a low-rank matrix L0 and a sparse matrix S0, where M = L0 + S0. This
decomposition is obtained by solving a convex programming problem called principal component
pursuit (PCP). The aim in the robust principal component analysis (RPCA) is to recover a low-rank
matrix L0 from highly corrupted measurements M . Unlike the small noise term N0 in classical PCA,
the entries in S0 can have arbitrarily large magnitude, and their support is assumed to be sparse but
unknown. You can use the low-rank matrix L0 to do feature extraction and use the sparse matrix S0
to detect anomalies. Robustness in RPCA comes from the property that the principal components
are computed from observations after removing the outliers—that is, from the low-rank matrix.

There are many applications of RPCA focused on the low-rank matrix, including image processing,
latent semantic indexing, ranking, and matrix completion (Candès et al. 2011). Similarly, there are
many applications of RPCA focused on the sparse matrix. One example is the extraction of moving
objects from the background in surveillance videos.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 9

Robust Principal Component Analysis (RPCA)

RPCA decomposes an input matrix into a sum of two matrices: a low-rank
matrix and a sparse matrix.

Principal components are computed from observations after removing the
outliers.

M = L0 + S0

Used for
feature

extraction

Used for
anomaly
detection

2.2 Feature Extraction 2-39

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

An autoencoder is a neural network that is used for efficient codings and widely used for feature
extraction and nonlinear principal component analysis. Architecturally, an autoencoder is like a
multilayer perceptron neural network because it has an input layer, hidden layers (encoding layers),
and an output layer (decoding layer). However, it differs in that the output layer is duplicated from the
input layer. Therefore, autoencoders are unsupervised learning models. The network is trained to
reconstruct its inputs, which forces the hidden layer to try to learn good representations of the inputs.

Autoencoders are like PCA but are much more flexible than PCA. Autoencoders can represent both
linear and nonlinear transformation in encoding, but PCA can perform only linear transformation.
Autoencoders can be layered to form deep learning network due to its network representation.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 0

Autoencoder: Single Hidden Layer

• An autoencoder is a neural network that uses inputs to predict the inputs.

• Autoencoders extract a highly representative set of nonlinear features from
the bottleneck layer of a specialized network.

X1

X2

X3

X4

X1

X2

X3

X4
ENCODE DECODE

2-40 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

For greater network flexibility, we often use more hidden layers with many nodes, like the one above.
Each layer of the deep network is usually trained separately by using the output of the previous
layer, or by using the training inputs in the case of the first layer. The weights of the individually
trained layers are then used to initialize the entire deep network, and all layers are trained again
simultaneously on the original training examples. When many inputs are used in conjunction with a
much smaller number of hidden units, the features that are extracted as outputs of the hidden units
are a nonlinear projection of the training examples onto a lower-dimensional space. Such features
can be highly predictive of a training example’s class label.

Note: An obvious drawback to feature extraction is that the actual inputs to the model are no longer
meaningful with respect to the business problem. However, you can simply consider this
another transformation of the original inputs to be provided to the model, something that
must be accounted for as part of the scoring process when the model is deployed.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 1

Autoencoder: Many Hidden Layers

ENCODE DECODE

INPUT OUTPUT = INPUT

2.3 Input Transformations 2-41

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

2.3 Input Transformations

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 3

Essential Data Tasks

...

• Divide the data.

• Address rare events.

• Manage missing values.

• Add unstructured data.

• Extract features.

• Handle extreme or unusual values.

• Select useful inputs.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 4

Input Transformations

Transformations stabilize variances, remove nonlinearity, and correct non-
normality in inputs to improve the fit of the model.

Mat hematical Functions
• Centering

• Exponential
• Inverse

• Log
• Range

• Square
• Square root

• Standardize

Bin ning
• Bucket

• Quantile
• Tree-based binning

2-42 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Transformations can be done to change the shape of the distribution of a variable by stretching or
compressing it, to reduce the effect of outliers or heavy tails, or to standardize inputs to be on the
same range and scale. Another major reason that transformations of inputs are done is to reduce the
bias in model predictions.

Transformation of input variables is a common data preprocessing task. In machine learning, two
types of variable transformations are commonly used:

• mathematical transformations such as square, square root, log or inverse

• binning such as bucket, quantile, or tree-based binning

The simple illustration in the slide above shows a variable distribution, which is positively skewed.
The log transformation reduces skewness in it. A distribution that is symmetric or nearly so is often
easier to handle and interpret than a skewed distribution. Extreme input distributions are often
problematic in predictive modeling. A simpler and, arguably, more effective approach transforms or
regularizes offending inputs to eliminate extreme values. Then, a predictive model can be accurately
fit using the transformed input in place of the original input. This not only mitigates the influence of
extreme cases, but also creates the desired asymptotic association between input and target on the
original input scale.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 5

Log ScaleOriginal Input Scale

Transforming Inputs: Mathematical Functions

2.3 Input Transformations 2-43

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The simple illustration in the slide above shows a variable Age, which ranges from 0 to infinity. (In
practice, Age would not identically equal zero nor approach infinity, but the example is to illustrate
how a continuous variable with a large range could be converted to bins.) The Age variable is
converted into a new variable that takes on only four values, represented by the bins 1 through 4.
When the original Age variable falls into a certain age range, the binned version of Age simply takes
the value of the bin that it falls into.

There are many ways that binning can be done. In one case, the bins themselves are of equal width,
but the frequency count within each bin can then be varied. Another approach is to make the width of
the bins different but the frequency count of observations in each bin consistent.

Binning can be done for several reasons. Binning can be used to classify missing values of a
variable, reduce the effect that outliers might have on a model, or illustrate nonlinear relationships

between variables. A binned version of a variable also has less variance than the original numeric
variable.

Note: The ‘Best’ transformation in Model Studio. “Best” is not really a transformation, but a
method or process to select the best transformation for an interval input. In the
Transformations node (below), this method is accessed by selecting “Best” via the Default
interval inputs method property. When specified, the Best method is applied to all interval

inputs coming into the node, unless over-ridden by specific variable transformations
identified in metadata via the Data tab or Manage Variables node.

For more information see Best transformation – What is it? at
https://communities.sas.com/t5/SAS-Communities-Library/Best-transformation-a-new-
feature-in-SAS-Model-Studio-8-3/ta-p/489604.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 6

Transforming Inputs: Binning

Bin Age Range

1 (0, 20]

2 (20, 50]

3 (50, 70]

4 (70 and greater)

https://communities.sas.com/t5/SAS-Communities-Library/Best-transformation-a-new-feature-in-SAS-Model-Studio-8-3/ta-p/489604
https://communities.sas.com/t5/SAS-Communities-Library/Best-transformation-a-new-feature-in-SAS-Model-Studio-8-3/ta-p/489604

2-44 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 7

2.01 Multiple Choice Poll

Why bin an input?

a. It can reduce the effects of an outlier.

b. It can classify missing values (into a category or bin).

c. It can generate multiple effects.

d. all of the above

2.3 Input Transformations 2-45

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Transforming Inputs

In this demonstration, you use the Transformations node to apply a numerical transformation to input
variables.

1. Open the Data Exploration pipeline by clicking on its tab.

2. Run the Data Exploration node. (The pipeline requires a re-run because metadata rules have
been applied on the Data tab.)

3. Right-click the Data Exploration node and select Results.

4. Expand the Interval Variable Moments table. Note that three of the MB_Data_Usg_M variables
have a high degree of skewness. Why are only three listed? There is a total of six in the data set.

5. Restore the view of the Interval Variable Moments table.

6. Expand the Important Inputs chart. Notice that the same MB_Data_Usg_M variables have
been selected as being important variables. Only three of the six MB_Data_Usg_M variables are
listed on the Interval Variable Moments table because, by default, only the variables found to be
important are summarized in the results of the Data Exploration node. Importance is defined by a
decision tree using PROC TREESPLIT. You should transform these three inputs.

Note: The entire chart is not shown above.

7. Restore the view of the Important Variables table.

8. Close the Results window. Transformation rules are assigned on the Data tab. (Alternatively,
transformation rules could be assigned using a Manage Variables node. In the Manage Variables

2-46 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

window, the New Transform column is hidden by default but could be displayed. Click the
Options button in the upper right corner of the Manager Variables table, next to the New Order
column. Then select Manage Columns. Recall, however, that rules established in the Manage
Variables node are not saved if the pipeline is saved to the exchange.)

9. Click the Data tab. Make sure that any selected variables are deselected. It might help to sort by
the Variable Name column if that column is currently not sorted.

10. Scroll down until you see the MB_Data_Usg_M variables. Although only three were deemed as
important in the Data Exploration node, let’s apply a Log transformation to all six of them.

11. Select all six MB_Data_Usg_M variables by selecting the check boxes next to their names.

12. In the Multiple Variables window, in the right pane select the Transform menu and select Log.

Note: Metadata always overrules transformations that are defined within the Transformation
node. Metadata can be set using the Manage Variable node or on the Data tab.

The Transform column does not appear by default in the table on the Data tab, but it can be
added.

2.3 Input Transformations 2-47

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

13. Click the Options button in the upper right corner of the data table. Then select Manage
columns.

14. In the Manage Columns window, under Hidden columns, select Transform, and then click the
single right arrow that has a plus sign on it.

15. Click OK. On the Data tab, the Transform column can be seen by scrolling to the right. All six
MB_Data_Usg_M variables show Log as the transformation rule.

16. Return to the Starter Template pipeline.

2-48 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

17. Expand the left pane on Nodes if it is not opened. Under Data Mining Preprocessing, select the
Transformations node and place it between the Replacement node and the Imputation node.

Note: The idea is you first change metadata in the Data tab or using the Manage Variables
node to specify what you want to do with the variables (so far, you have seen
Replacement and Transformation.) Then you need to add a node (in our example
Replacement or Transformation) to make those changes to the data. The subsequent
node (Replacement or Transformation) actually performs the changes you encoded in

metadata.

18. Do not make changes to the properties of the Transformations node. Although the Default
interval inputs method property indicates None, the metadata rules assigned to the variables
under the Data tab override this default setting.

19. Right-click the Transformation node and select Run.

20. When the run is finished, open the results. Expand the Transformed Variables Summary table.
This table displays information about the transformed variables, including how they were
transformed, the corresponding input variable, the formula applied, the variable level, type, and
variable label.

2.3 Input Transformations 2-49

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Notice that a Log transformation has been applied to all six MB_Data_Usg_M variables and that
the term LOG_ now appears at the beginning of the names of those variables.

Note: In the Formula column, notice that the formula for the Log transformations includes an
offset of 1 to avoid the case of Log(0).

21. Restore the Transformed Variables Summary window and close the results.

22. Run the entire pipeline.

23. Open the results of the Model Comparison node.

24. Close the Results window.

2-50 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

2.4 Feature Selection

The dimension of a problem refers to the number of input variables (more accurately, degrees of
freedom) that are available for creating a prediction. Data mining problems are often massive in
dimension.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 1

Essential Data Tasks

...

• Divide the data.

• Address rare events.

• Manage missing values.

• Add unstructured data.

• Extract features.

• Handle extreme or unusual values.

• Select useful inputs.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 2

The Curse of Dimensionality

1–D

2–D

3–D

2.4 Feature Selection 2-51

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The curse of dimensionality refers to the exponential increase in data required to densely populate
space as the dimension increases. For example, the eight points fill the one-dimensional space but
become more separated as the dimension increases. In a 100-dimensional space, they would be like
distant galaxies.

The curse of dimensionality limits your practical ability to fit a flexible model to noisy data (real data)
when there are many input variables. A densely populated input space is required to fit highly
complex models. When you assess how much data is available for data mining, you must consider
the dimension of the problem.

When a model is fit using all available inputs, it typically results in a model that does not generalize
well. The purpose of all predictive models is that they are eventually applied to new data. When a
model is overfit to one data source, it might be very accurate at making predictions for that same
data source, but it might lose a significant amount of accuracy when applied to new data. A model
using all available inputs will likely be overfit to the data set used to construct the model. One way to
avoid this is to use only a subset of all inputs in the final model.

There are many techniques available for selecting inputs for a model. Some of these methods might
be supervised, where the target variable is used in the process. Other techniques are unsupervised
and ignore the target. Further, some modeling algorithms themselves might reduce the number of
inputs during the model building process (for example, decision trees) but others might not (for
example, neural networks), where some external method is used to select inputs.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 3

Feature Selection

Using all available inputs usually leads to a model that does not generalize
well to new data.

Raw Data Modeling Data

targetinputs targetinputs

2-52 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Input selection (that is, reducing the number of inputs) is the obvious way to thwart the curse of
dimensionality. Unfortunately, reducing the dimension is also an easy way to disregard important
information.

The two principal reasons for eliminating a variable are redundancy and irrelevancy.

A redundant input does not give any new information that was not already explained by other inputs.
In the example above, knowing the value of input x1gives you a good idea of the value of x2.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 4

Feature Selection Strategies

Irrelevancy

0.70

0.60

0.50

0.40

x4

x3x1

x2

Redundancy

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 5

Irrelevancy

0 . 70

0 . 60

0 . 50

0 . 40

x 4

x 3

Unsupervised Selection

Example: x1 is household income and x2 is home value.

Redundancy

x1

x2

Input x2 has the
same information
as input x1.

2.4 Feature Selection 2-53

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

For decision tree models, the modeling algorithm makes input redundancy a relatively minor issue.
For other modeling tools, input redundancy requires more elaborate methods to mitigate the
problem.

An irrelevant input does not provide information about the target. In the example above, predictions
change with input x4, but not with input x3.

For decision tree models, the modeling algorithm automatically ignores irrelevant inputs. Other
modeling methods must be modified or rely on additional tools to properly deal with irrelevant inputs.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 6

Redundancy

x1

x2

Supervised Selection

Example: Target is the response to direct mail solicitation, x3 is religious

affiliation, and x4 is the response to previous solicitations.

0.70

0.60

0.50

0.40

x4

x3

Predictions change with

input x4 but much less
with input x3.

Irrelevancy

2-54 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Many data mining databases have hundreds of potential model inputs (independent or explanatory
variables) that can be used to predict the target (dependent or response variable). The Variable
Selection node assists you in reducing the number of inputs by rejecting input variables based on
the selection results. This node finds and selects the best variables for analysis by using
unsupervised and supervised selection methods. You can choose among one or more of the
available selection methods in the variable selection process.

If you choose the unsupervised selection method, you can specify in the Selection process
property whether this method is run prior to the supervised methods (sequential selection). If you
choose to perform a sequential selection, which is default, any variable rejected by the unsupervised
method is not used by the subsequent supervised methods. If you are not performing a sequential
selection, the results from the unsupervised method are combined with the chosen supervised
methods.

If you choose multiple methods, the results from the individual methods are combined to generate
the final selection result. This is done with combination criterion. This is a "voting" method such that
each selection method gets a vote on whether a variable is selected. As an option, you choose at
what voting level (combination criterion) a variable is selected. Voting levels range from the least
restrictive option (at least one chosen method selects the variable) to the most restrictive option (all
chosen methods select the variable). Any variable that is not selected in the final outcome is
rejected, and subsequent nodes in the pipeline do not use that variable.

You also have the option to accomplish pre-screening of the input variables before running the
chosen variable selection methods. In pre-screening, if a variable exceeds the maximum number of
class levels threshold or the maximum missing percent threshold, that variable is rejected and not
processed by the subsequent variable selection methods.

Note: The Advisor options also accomplishes variable pre-screening when the project is created,
so this option can be used to increase the level of pre-screening over what is done at the
project level.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 7

Feature Selection in Model Studio

The Variable Selection node performs unsupervised and several supervised
methods of variable selection to reduce the number of inputs.

2.4 Feature Selection 2-55

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Details: Variable Selection Methods

The following variable selection methods are available in the Variable Selection node:

• Unsupervised Selection: Identifies the set of input variables that jointly explains the maximum
amount of data variance. The target variable is not considered with this method. Unsupervised
Selection specifies the VARREDUCE procedure to perform unsupervised variable selection by
identifying a set of variables that jointly explain the maximum amount of data variance. Variable
selection is based on covariance analysis.

• Fast Supervised Selection: Identifies the set of input variables that jointly explain the maximum
amount of variance contained in the target. Fast Supervised Selection specifies the VARREDUCE
procedure to perform supervised variable selection by identifying a set of variables that jointly
explain the maximum amount of variance contained in the response variables. Supervised
selection is essentially based on AIC, AICC, and BIC stop criterion.

• Linear Regression Selection: Fits and performs variable selection on an ordinary least squares
regression predictive model. This is valid for an interval target and a binary target. In the case of a
character binary target (or a binary target with a user-defined format), a temporary numeric
variable with values of 0 or 1 is created, which is then substituted for the target. Linear Regression

Selection specifies the REGSELECT procedure to perform linear regression selection based on
ordinary least square regression. It offers many effect-selection methods, including Backward,
Forward, Forward-swap, Stepwise methods, and modern LASSO and Adaptive LASSO methods.
It also offers extensive capabilities for customizing the model selection by using a wide variety of
selection and stopping criteria, from computationally efficient significance level-based criteria to
modern, computationally intensive validation-based criteria.

• Decision Tree Selection: Trains a decision tree predictive model. The residual sum of squares
variable importance is calculated for each predictor variable, and the relative variable importance
threshold that you specify is used to select the most useful predictor variables. Decision Tree
Selection specifies the TREESPLIT procedure to perform decision tree selection based on CHAID,
Chi-square, Entropy, Gini, Information gain ratio, F test, and Variance target criterion. It produces a
classification tree, which models a categorical response, or a regression tree, which models a
continuous response. Both types of trees are called decision trees because the model is
expressed as a series of IF-THEN statements.

• Forest Selection: Trains a forest predictive model by fitting multiple decision trees. The residual
sum of squares variable importance is calculated for each predictor variable, averaged across all
the trees, and the relative variable importance threshold that you specify is used to select the most
useful predictor variables. Forest Selection specifies the FOREST procedure to create a predictive
model that consists of multiple decision trees.

• Gradient Boosting Selection: Trains a gradient boosting predictive model by fitt ing a set of additive
decision trees. The residual sum of squares variable importance is calculated for each predictor
variable, averaged across all the trees, and the relative variable importance threshold that you
specify is used to select the most useful predictor variables. Gradient Boosting Selection specifies

the GRADBOOST procedure to create a predictive model that consists of multiple decision trees.

2-56 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

• Create Validation Sample from Training Data specifies whether a validation sample should be
created from the incoming training data. This is recommended even if the data have already been
partitioned so that only the training partition is used for variable selection, and the validation
partition can be used for modeling.

Note: You can choose all the above methods for variable selection, but this might result in
enormous processing time depending on your data and distributed environment. Another
important thing to note is that if you use the Text Mining node before the Variable Selection
node in the pipeline, and any of the tree-based methods (decision trees, forest and gradient
boosting) are used for variable selection in addition to the default methods, an error is
returned. The log indicates that the ID for tree appears multiple times in the same BY group.
Decision trees, forest, and gradient boosting are discussed in the next chapter.

2.4 Feature Selection 2-57

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Selecting Features

In this demonstration, you use the Variable Selection node to reduce the number of inputs for
modeling.

1. In the Starter Template, place a Variable Selection node between the Text Mining node and the
Logistic Regression node.

2. Select the Variable Selection node.

In the properties, varying combinations of criteria can be used to select inputs. Keep
Combination Criterion at Selected by at least 1. This means that any input selected by at
least one of the selection criteria chosen is passed on to subsequent nodes as inputs. The Fast
Supervised Selection method is selected by default. The Create Validation from Training
property is also selected by default, but its button is initially disabled.

2-58 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3. In addition, turn on the Unsupervised Selection and Linear Regression Selection methods by
clicking the button slider next to each property name. When a property is turned on,

additional options appear. The screen capture below shows the additional options of the
Unsupervised Selection method after it is selected. You can hide the new options by selecting
the down arrow next to the property name.

Keep the default settings for all the new options that appear for the Unsupervised Selection and
Linear Regression Selection methods.

After the Unsupervised Selection and Linear Regression Selection methods are selected and
the options for each are hidden, the properties panel resembles the following:

Note: The Create Validation from Training property was initially selected by default, but
the slider button did not become active until another method was selected. This
property specifies whether a validation sample should be created from the incoming
training data. It is recommended to create this validation set even if the data has
already been partitioned so that only the training partition is used for variable
selection and the original validation partition can be used for modeling.

2.4 Feature Selection 2-59

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4. Run the Variable Selection node and view the results when it is complete.

5. Expand the Variable Selection table. This table contains the output role for each variable. At the
top of the table are the input variables selected by the node. These variables have a blank cell in
the Reason column.

6. Scroll down in the Variable Selection table. It shows which variables have been rejected by the
node. The reason for rejection is shown in the Reason column. Only a subset of the rejected
variables is shown below.

The Variable Selection table shows the variables that are rejected because of the variable
selection and pre-screening process (turned-off in this case), as well as the reason for the
rejection. This is in addition to other variables not processed by the Variable Selection node.

Recall that sequential selection (default) is performed, and any variable rejected by the
unsupervised method is not used by the subsequent supervised methods . The variables that are
rejected by supervised methods are represented by combination criterion (at least one in this
case) in the Reason column. If you want to see whether they were selected or rejected by each
method, look the Variable Selection Combination Summary.

7. Restore the view of the Variable Selection table and close the results.

2-60 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

8. Expand the Variable Selection Combination Summary table. For each variable that it includes
the result (Input or Rejected) for each method that was used, the total count of each result, and
the final output role (Input or Rejected). Finally, specific output for each selection method is also
available in the results. Only a subset of the variables is shown below.

The first variable in the table is selected by both fast-supervised selection and linear regression,
the last variable in the table is selected by only the linear regression selection, and because the

combination criterion is at least one, the output role of this variable is Input.

9. Restore the view of the Variable Selection Combination Summary table and close the results.

10. Run the pipeline by clicking the Run pipeline button.

11. Open the results of the Model Comparison node.

12. Close the results of the Model Comparison node.

2.4 Feature Selection 2-61

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Saving a Pipeline to the Exchange

The current Starter Template pipeline is in multiple demonstrations of machine learning algorithms.
In this demonstration, you save the Starter Template pipeline to the Exchange, where it will be
available for other users.

1. In the upper right corner of the Starter Template pipeline window, click the Save pipeline to The
Exchange button.

2. Change the name of the pipeline to CPML demo pipeline, and for the description, enter This
pipeline was created in the CPML class. It includes a logistic regression model and some
data preparation.. Click Save.

3. To see the saved pipeline in the Exchange, you must exit the current project. Click the View all
projects button in the upper left corner to exit the Demo project.

2-62 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4. Click Open The Exchange in the right side pane.

5. In the left pane, expand Pipelines and select Data Mining and Machine Learning.

2.4 Feature Selection 2-63

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The newly saved CPML demo pipeline is added to the list of pipeline templates.

6. To exit the Exchange, click the View all items button in the upper left corner.

2-64 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

2.5 Variable Clustering (Self-Study)

When presented with many variables to predict an outcome, you might want to reduce the number of
variables in some way to make the prediction problem easier to tackle. Many of these variables are
redundant, the concept that has already been introduced in Chapter 1. Including redundant inputs
can degrade the analysis by

• destabilizing the parameter estimates

• increasing the risk of overfitting

• confounding interpretation

• increasing computation time

• increasing scoring effort

• increasing the cost of data collection and augmentation.

One approach to variable reduction is variable clustering. Variable clustering divides numeric
variables into disjoint or hierarchical clusters. Variables in different clusters are conditionally
independent given their own clusters. For each cluster that contains more than one variable, the
variable that contributes the most to the variation in that cluster is chosen as the representative
variable. All other variables are rejected.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 1

Variable Clustering

X11

X12

X8

X2
X10

X3

X1

X20

X15

X19 X9

X13

X4

X6

X5

X7

X14

X18

X21

X24

X17

X16

X25

X22

X23

X26

X27

2.5 Variable Cluster ing (Self -Study) 2-65

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Variable clustering is a useful technique for data reduction because it finds the best variables for
analysis. It removes collinearity, decreases variable redundancy, and helps reveal the underlying
structure of the input variables in a data set in the sense that the groups of variables reveal the main
dimensionalities of the data.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 2

Input Reduction with Variable Clustering

Variable clustering reduces the number of variables by grouping similar
variables together.

By clustering inputs, you do the following:

1. detect redundancies (collinearity) between variables

2. understand the underlying structures

3. reduce the number of variables

2-66 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Clustering Inputs for Data Reduction (Self-Study)

In this demonstration, you use the Variable Clustering node to reduce the number of inputs for
modeling.

1. Return to the Demo project and open the Data Exploration pipeline by clicking on its tab.

2. In the Data Exploration pipeline, right-click the Data node and select Add below  Data Mining
Preprocessing  Variable Clustering. Your pipeline should resemble the following:

3. Select the Variable Clustering node. In the properties, you have an option of including
categorical variables in the analysis. Turn the option on by selecting the Include class variables
box. This means class variables are also used in variable clustering.

Also, clear the box for Export class level indicators. This specifies not to export the class level
indicators to replace the original class variables.

Note: Class variables are handled in a different way in Model Studio. Individual binary class
level variables are used in the clustering process, but the original class variables are kept
or dropped in the selection process. This selection depends on the variables that are
included in a cluster, and the variable or variable level that is selected from each cluster.

2.5 Variable Cluster ing (Self -Study) 2-67

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Note: Also note that you have a Cluster representation property where you can choose to export
the first principal component for each cluster (property value “Cluster component”). With the
“Cluster component” option, the first principal component is extracted from all variables in a
cluster and output as new variable _CLUSn (for example, _CLUS1, _CLUS2, _CLUS3, and
so on), and the original cluster variables are rejected. The total number of generated
component variables corresponds to the number of identified clusters. For more information,

see “Three new Variable Clustering features in SAS Model Studio 8.3” at
https://communities.sas.com/t5/SAS-Communities-Library/Three-new-Variable-Clustering-
features-in-SAS-Model-Studio-8-3/ta-p/489430.

4. Observe that the default value of the regularization parameter Rho () is 0.8. You do not need to
change its value.

Note: You use Rho to control the sparsity of connections among variables. Tuning the
regularization parameter from low to high increases the number of disconnected

components and splits larger clusters into smaller ones. Those divided clusters naturally
form a hierarchical structure during this process.

5. Run the Variable Clustering node and view the results when it is complete.

Expand the Clustered Variables table. This table contains all the clustered variables, a list of
their cluster IDs, variable labels, first principal components, and whether they were selected.
Only a subset of the selected variables is shown below.

Note: For class variables, the principal component might be blank. This is valid and expected.

https://communities.sas.com/t5/SAS-Communities-Library/Three-new-Variable-Clustering-features-in-SAS-Model-Studio-8-3/ta-p/489430
https://communities.sas.com/t5/SAS-Communities-Library/Three-new-Variable-Clustering-features-in-SAS-Model-Studio-8-3/ta-p/489430

2-68 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The first column has cluster membership against each variable. Scrolling down in the Clustered
Variables table shows that there are nearly 13 clusters created. Each cluster has different

number of inputs. The last column has information about the input variables selected (YES) or
not selected (NO) within each cluster by the node. You can verify that the original class variables
are kept or dropped in the selection process and not the dummy variables.

Graphical LASSO based on Friedman, Hastie, and Tibshirani (2008) is performed. It estimates

the inverse covariance matrix at a specified regularization parameter (=0.8 in this case). The

inverse covariance matrix interprets the partial correlation between variables given other
variables. Conditional dependency among variables is interpreted by estimating the inverse
covariance matrix. The off-diagonal elements of an inverse covariance matrix correspond to
partial correlations, so the zero elements imply conditional independence between the pair of
variables. The conditional independence provides a better model for understanding the direct
link between variables than does simple correlation analysis, which models each pair of
variables without considering other variables.

6. Restore the view of the Clustered Variables table.

2.5 Variable Cluster ing (Self-Study) 2-69

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

7. Expand the Clustered Variables network.

This is a spatial map that gives the orientation and relative distance of clusters and cluster
members. Cluster members with a stronger link are connected by a thicker line. There are clearly
13 clusters standing out in different color shades. Many of them seem to be closer and
consequently similar.

8. Restore the view of the Clustered Variables Network.

9. Close the Results.

2-70 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

2.6 Best Practices

Data preprocessing covers a range of processes that are different for raw, structured, and
unstructured data (from one or multiple sources). Data preprocessing processes focus on improving
the quality of data and its completeness, standardizing how it is defined and structured, collecting
and consolidating it, and taking transformation steps to make it useful, particularly for machine
learning analysis. The selection and type of preparation processes can differ depending on your
purpose, your data expertise, how you plan to interact with the data, and what type of questions you
want to answer.

The table below summarizes some challenges that you might encounter in preparing your data. It
also includes suggestions for how to handle the challenge by using the Data Mining Preprocessing
pipeline nodes in Model Studio.

Data Problem Common Challenges Suggested Best Practice

Data Collection • Biased Data

• Incomplete data

• High-dimensional data

• Sparsity

• Take time to understand the
business problem and its context

• Enrich the data

• Dimension reduction (Feature
Extraction, Variable Clustering,
and Variable Selection nodes)

• Change representation of data
(Transformations node)

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 5

Data Preparation Best Practices

Transform
Variables

Replace
Values Bin

Variables

Discretize

Winsorize

Filter Cases

Extract
Features

Oversample Impute
Values

Cluster
Variables

There is no single
recipe!

There is no linear
process flow!

2.6 Best Practices 2-71

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Data Problem Common Challenges Suggested Best Practice

“Untidy” Data • Value ranges as columns

• Multiple variables in the same
column

• Variables in both rows and
columns

• Transform the data with SAS

code (Code node)

Outliers • Out-of-range numeric values and
unknown categorical values in

score data

• Discretization (Transformations
node)

• Winsorizing (Imputation node)

Sparse target variables • Low primary event occurrence
rate

• Overwhelming preponderance of
zero or missing values in target

• Proportional oversampling

Variables of disparate
magnitudes

• Misleading variable importance

• Distance measure imbalance

• Gradient dominance

• Standardization (Transformations
node)

High-cardinality
variables

• Overfitting

• Unknown categorical values in
holdout data

• Binning (Transformations node)

• Replacement (Replacement
node)

Missing Data • Information loss

• Bias

• Binning (Transformations node)

• Imputation (Imputation node)

Strong multicollinearity • Unstable parameter estimates • Dimension reduction (Feature
Extraction, Variable Clustering,

and Variable Selection nodes)

Note: Some of these challenges can also be handled in the modeling stage, such as using tree-
based methods for handling missing data automatically, which is discussed in subsequent
chapters.

2-72 Chapter 2 Data Preparation

Shown above is the automated feature engineering pipeline template in Model Studio. Whether you
perform feature selection or feature extraction, your goal is to include the subset of features that
describe most, but not all, of the variance and to reduce the signal-to-noise ratio in your data.
Although intuition would tell you that elimination of features equates to a loss of information, in the
end this loss is compensated for by the ability of the model to more accurately map the remaining
features to the target in a lower-dimensional space. The result is simpler models, shorter training
times, improved generalization, and a greater ability to visualize the feature space.

Some high-dimensional data sets require special attention to perform feature extraction efficiently.
One example is a data set of user ratings for items (such as movies) in which each column
represents an item and each row is a user (or vice versa). In the template above, the SAS code
node makes sure that the variables with high cardinality are not rejected from the analysis (by
default Model Studio rejects nominal variables that has more than 20 levels) by increasing the
highest acceptable cardinality level to 1000. This node also specifies level encoding transformation
in the metadata for these high-cardinality variables (nominals that have cardinality between 20 and
1000). The Transformations node connected to the SAS code node performs a level encoding
transformation that transforms these high cardinality nominal variables to numeric. This is a simple
transformation that assigns numeric values for each level of the nominal variable according to an

alphabetical order. Level encoding is not an ideal transformation, but it works well in terms of
improving model accuracy when compared to excluding those variables from the analysis. Note that
transformations specified in the metadata would take place only if you run a Transformation node
after this specification. For this reason, in the Transformations node that is connected to the SAS
Code node, there is no transformation specified for Class Inputs. Instead, it is set to None. Here the
Transformation code’s role is simply to implement the transformation (or transformations) specified in
the metadata.

More effective transformations for high cardinality variables include target -based transformations
such as creating a feature that captures the frequency of the occurrence of each level of the nominal
variable. For high cardinality, this helps a lot! You might use ratio or percentage of a level to all the
levels present. Similarly, you can encode a high-cardinality variable by using another numeric input
variable by choosing the max, min or median value of that variable for each level of the high-
cardinality nominal variable.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 6

Automated Feature Engineering Pipeline Template

2.6 Best Practices 2-73

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Note: For more details, see “Automate your feature engineering.”
(https://blogs.sas.com/content/subconsciousmusings/2018/08/09/automate-your-
feature-engineering/)

https://blogs.sas.com/content/subconsciousmusings/2018/08/09/automate-your-feature-engineering/
https://blogs.sas.com/content/subconsciousmusings/2018/08/09/automate-your-feature-engineering/

2-74 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Running the Automated Feature Engineering Pipeline Template
(Self-Study)

In this demonstration, you run the automated feature engineering pipeline template on commsdata.

1. Click next to the current pipeline tab in the upper left corner of the canvas.

2. In the New Pipeline window, under Template, select Browse templates.

Note: Some of the options on the Templates menu might be different on your classroom
computer.

2.6 Best Practices 2-75

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3. In the Browse Templates window, select Automated feature engineering template . Click OK.

4. In the New Pipeline window, enter the name Feature Engineering.

2-76 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5. Click Save.

The template automatically creates engineered features by using popular feature transformation
and extraction techniques. The idea is to automatically learn a set of features (from potentially
noisy, raw data) that can be useful in supervised learning tasks without manually creating
engineered features. These are the steps of the template:

Step 1: Perform level encoding for high-cardinality variables.

Step 2: Create new features by using the Best transformation, PCA / SVD, and autoencoder
methods.

Step 3: Compare the predictive performance of the newly engineered features to original
features. The five feature sets are used as inputs for the gradient boosting algorithm.

The gradient boosting algorithm is used because it is an effective supervised learning
algorithm that often outperforms other algorithms in terms of predictive accuracy.

Note: A more detailed explanation of the template can be found in “3 steps of the automated
feature engineering template in SAS.” (https://communities.sas.com/t5/SAS-
Communities-Library/3-steps-of-the-automated-feature-engineering-template-in-SAS/ta-

p/484383)

https://communities.sas.com/t5/SAS-Communities-Library/3-steps-of-the-automated-feature-engineering-template-in-SAS/ta-p/484383
https://communities.sas.com/t5/SAS-Communities-Library/3-steps-of-the-automated-feature-engineering-template-in-SAS/ta-p/484383
https://communities.sas.com/t5/SAS-Communities-Library/3-steps-of-the-automated-feature-engineering-template-in-SAS/ta-p/484383
https://communities.sas.com/t5/SAS-Communities-Library/3-steps-of-the-automated-feature-engineering-template-in-SAS/ta-p/484383
https://communities.sas.com/t5/SAS-Communities-Library/3-steps-of-the-automated-feature-engineering-template-in-SAS/ta-p/484383
https://blogs.sas.com/content/subconsciousmusings/files/2018/08/featuresflowchart.png

2.6 Best Practices 2-77

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6. Select each node one-by-one, right-click, and select Run. Do not click the Run pipeline icon.

Note: Running this template can substantially increase run time. Remember that limited
resources are available in your class environment. Automatic hyperparameter tuning
(autotuning) is turned on to find the optimal hyperparameter settings of the gradient
boosting algorithm, so the comparison between feature sets is fairer and not dependent
on the hyperparameters. However, keep in mind that autotuning comes with an additional
computing cost. If this step takes too long to run, you can change the autotuning settings,
or simply turn it off and use the default hyperparameter settings. With the default settings
in the template, we recommend running this pipeline node-by-node. You might encounter
an error of insufficient resources if you run the entire pipeline.

7. After the pipeline has successfully run, right-click the Model Comparison node and select
Results.

8. Click to expand the Model Comparison table. Unless specified, the default fit statistic (KS) is

used for selecting a champion model with a class target.

Explore the results.

You compare the performance of the five different feature sets (three automatically engineered
sets, the original set with level encoding for the high-cardinality variables, and the original set
without level encoding).

It is important to remember that using this template does not guarantee that one of the
automatically created feature sets performs better than the original features for your data,

because every data set is unique and this template uses only a few techniques. Instead, the goal
of this is to show an example of how you can create different automatically engineered feature
sets by using many other tools provided in Model Studio and test their performance in a similar
way with a minimal effort.

9. Click to exit the maximized view.

10. Click Close to close the Model Comparison Results window.

http://support.sas.com/resources/papers/proceedings17/SAS0514-2017.pdf

2-78 Chapter 2 Data Preparation

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

2.7 Solutions

Solutions to Student Activities (Polls/Quizzes)

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 8

2.01 Multiple Choice Poll – Correct Answer

Why bin an input?

a. It can reduce the effects of an outlier.

b. It can classify missing values (into a category or bin).

c. It can generate multiple effects.

d. all of the above

Chapter 3 Decision Trees and
Ensembles of Trees

3.1 Introduction ... 3-3

Demonstration: Building a Decision Tree Model with Default Settings 3-5

3.2 Tree-Structure Models ... 3-11

Demonstration: Improving a Decision Tree Model by Changing the Tree Structure

Parameters ... 3-17

3.3 Recursive Partitioning ... 3-19

Demonstration: Improving a Decision Tree Model by Changing the Recursive
Partitioning Parameters ... 3-40

3.4 Pruning.. 3-41

Demonstration: Improving a Decision Tree Model by Changing the Pruning
Parameters ... 3-50

Exercises... 3-52

3.5 Ensembles of Trees ... 3-53

Demonstration: Building a Gradient Boosting Model... 3-63

Exercises... 3-65

Demonstration: Modeling a Binary Target with a Forest .. 3-71

Exercises... 3-74

3.6 Solutions ... 3-75

Solutions to Exercises ... 3-75

Solutions to Student Activities (Polls/Quizzes) ... 3-80

Summary of Decision Tree, Forest, and Gradient Boosting Models 3-82

3-2 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3.1 Introduction 3-3

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3.1 Introduction

Now that you have ensured that you have sufficient and appropriate data, massaged the data into a
form suitable for modeling, identified key features to include in your model, and established how the
model is to be used, you are ready to use powerful machine learning algorithms to build predictive
models or discover patterns in your data. This is really the phase where you should allow yourself
more freedom to experiment with different approaches to identify the algorithms (and configuration of
options for those algorithms) that produce the best model for your specific application.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3

Essential Discovery Tasks

...

3-4 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The success of your machine learning application comes down to the effectiveness of the actual
model that you build. The popular “no free lunch” theorem (Wolpert 1996) states that no one model
works best for every problem. We will start building predictive model by training a decision tree.

Note: Selecting your algorithm is discussed in a broader sense at the end of Chapter 5 when we
finish training several algorithms.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4

Essential Discovery Tasks

...

• Select an algorithm.

• Im prove the model.

• Optimize complexity of the model.

• Regularize and tune

hyperparameters of the model.

• Bui ld ensemble models.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5

Essential Discovery Tasks

...

• Select an algorithm.

• Im prove the model.

• Optimize complexity of the model.

• Regularize and tune

hyperparameters of the model.

• Bui ld ensemble models.

3.1 Introduction 3-5

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Building a Decision Tree Model with Default Settings

In this demonstration, you use the CPML demo pipeline as a starting place in a new pipeline in the
Demo project. You add a Decision Tree node and build a Decision Tree model using the default
settings of the node.

1. Return to the Demo project and click the Pipelines tab. Click the plus sign (+) next to the Starter
Template tab to add a new pipeline.

2. In the New Pipeline window, enter Chapter 3 in the Name field. For Template, select Browse
templates.

3-6 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3. Scroll down as needed in the Browse Template window and select CPML demo pipeline .
Click OK.

4. Click Save in the New Pipeline window.

5. In the Chapter 3 pipeline, right-click the Variable Selection node and select Add below 
Supervised Learning  Decision Tree.

6. Keep all properties for the Decision Tree at their defaults. Run the Decision Tree node.

3.1 Introduction 3-7

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

7. Open the results for the Decision Tree node.

There are several charts and plots to help you in evaluating the model’s performance. The first
plot is the Tree Diagram, which presents the final tree structure for this particular model, such as
the depth of the tree and all end leaves.

The Pruning Error Plot shows the model’s performance based on the misclassification rate –
because the target is binary – throughout the recursive splitting process when new end leaves
have been added to the final model.

3-8 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The Variable Importance table shows the input variables most significant to the final model. The
most important input variable has its relative importance as one and all others are measured
based on the most important input.

The Node Score Code window shows the final score code that can be deployed in production.

Similarly, the Train Code window shows the train code that can be used to train the model based
on different data sets or in different platforms.

3.1 Introduction 3-9

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Finally, the Output window shows the final decision tree model parameters, the variable
important table, and the pruning iterations.

8. Click the Assessment tab.

The first chart is the Cumulative Lift, showing the model’s performance ordered by the
percentage of the population. This chart is very useful for selecting the model based on a
particular target of the customer base. It shows how much better the model is than the random
events.

3-10 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

For a binary target, you also have the ROC curve, which shows the model’s performance
considering the true positive rate and the false positive rate. It is good to foresee the
performance on a specific business events, when all positive cases are selected. It shows the
model’s performance based on the positive cases were predicted right and the positive cases
were predicted wrong. ROC is very useful for deployment.

Finally, you have the Fit Statistics output, which shows the model’s performance based on some
assessment measures, such as average square error.

The Fit Statistics table shows an average square error of 0.0856 on the VALIDATE partition.

9. Close the Results window.

3.2 Tree-Structure Models 3-11

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3.2 Tree-Structure Models

Decision trees are statistical models designed for supervised prediction problems . Supervised
prediction encompasses predictive modeling, pattern recognition, discriminant analysis, mul tivariate
function estimation, and supervised machine learning.

Handwriting recognition is a classic application of supervised prediction. The example data set is a
subset of the pen-based recognition of handwritten digits data, available from the UCI repository
(Blake et al. 1998). The cases are digits written on a pressure-sensitive tablet. The input variables

measure the position of the pen. They are scaled to be between 0 and 100. Two of the original
sixteen inputs are shown (X1 and X10). The target is the true written digit (0-9). This subset contains
the 1064 cases corresponding to the three digits 1, 7, and 9. Each case represents a point in the
input space. (The data were jittered for display because many of the points overlap.)

In the pen-digits data, the inputs have an interval measurement scale and the target has a nominal
measurement scale. The generic supervised prediction problem places no restrictions on the scales
of the inputs or the target.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

8

Supervised Prediction for a Nominal Target:
Handwriting Recognition

1

1

11 1

1

1

1

1

1

1

1

1

11

1

1
1

1 1 11

1

1

1

1

1

1

1

1

1

11
1

1

1
1

1

11
1

1 11

1

1

1

11 11

1

1 11
1

1

1

1

11 11

11

1

1 11

1

11

1

11

1

1

1

1

1

1 11

1

1

1

1 11 11

1

11

1

1

1

1

11

1

11
1

11
1

11 1

1

1 11

11

11 11 1 111 11 1

1
1

1

1
1

11

1

1 1 1

1

111

11

1

1

1

1

1 1 1

1

1 11
1

1
1

1

1

1
1 1

1

11

1

1

1

1 1

1
1

1

1

1

1

1

11
1

11

1

1

11 1 1

1

11 1

1

1

1 1
1

1

1 1

1

1 11
1

1

1

1 111 11

1

1

1

1

1

1

1 11

1

1

1

111

1

1

1 11

1

1

1
1 1

1

1 11

1
1

1

1

1
1 11 11

1

1

1

111

1

1 1

1

1

1

1

1 11

1

11

1

1

1 11

1

1 1

1
1

1

1

111 1

1

1

1
1

1

1

11

1

11

1

1

1

11

1

1
11

1

1 1

1

11 11 1 1
1

1

1

1

11 1

11

1 11

1

1

1

1

1

1

1

1

11 11

1 1
11

1

1

1 1 111 1

1

11

1

1

1

1

1

11 777 7777
7

777
7

7

7 777 7

7

777 7
7
77 77 77

7

7777 77 7

7

7
7
7 7

7

77 77 77 77
7

77 7777 77 77 77

7

7
7

77

7 777 77

7

7 7
7
77777

7
7

77 777777

7

7

7 77

7
7

7

777

7

7

7

7
7

7

777
7
7 7777 77 7777777

77
7 77 77

7

7 77777 7

7

7
7

7
7

77 7

7

77
777 7

7

77
7
7
7
7

7

7 7

77

777

7

7
7

77
77 7

7

7
7

7
77777 7

7

7 7

7

7
77

77 777 7

7

7 777
7

7

7
7

7777
7

77 777

7

7

7

7
7
7 777777 77 777

7

77 7 77
7

777

7
7

7
7

77
7

7 777 7

7

7

7

7

77
7

777

7

7

7

7

7 7 7 777

7

7

7
7

77 777 777
7
7 777

7 7
77

7
7
777 777 77777

7

77 77
7

777

7

7

7

77 777 77
7
77 77
7
7

7
7

7

7

7 7 7 7

7

7

7

777
77

7

7

7 7

9

9

9

9

9

9

9 9

9

9

9

9

9

9
9

9
99

9 9

9

9

99

9

9

9
9

99

9

9

9

9
9

9
9

9

9

99

9
9

9

9

9

9

9 9
99

9

9

9

9

9
9

9

9

9

9
9

9

9
9 99

99

9

9

9

99

9

9

99

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9 9 9

9

9

9

9

9

9

9

9

9

9

9
9

9 9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9
9

9 9

9

9

9 9

9

9

9

9 9

9

99
9

9

9

9

9

9

9

99

9

9

9
9

9

9

9

9

9
9

9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

99
9

9

9
9

9

99

99

9 9

9

9

9

99

9

9
9

9

99

9

9
9

9

9

9

9

9

9
9

9 9

9

9

9 9

9

9

9

9

99

9
9

99

9

9

9

9

9

9

9

9 9

9

9

9

9

9
9

9

9

9

9

9

9

9

9 9
9

9 9

9

9

9

9

9
9

9

9

9

9

9

9

9
9

9

9

9

9

9

9

9

9

9
9

9
9

9

9

9

9

99

9

9

9

9

99

9 9

9

9

9
9

9

9 9

99
9

9

9

9

9

9

99

9

9

99

9
9

99

9

9

9

99

9

9

9

9

9

9

9

9

X1

0

20

40

60

80

100

X10

0 20 40 60 80 100

3-12 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

A decision tree is so called because the predictive model can be represented in a tree-like structure.
A decision tree is read from the top down starting at the root node. Each internal node represents a
split based on the values of one of the inputs. The inputs can appear in any number of splits
throughout the tree. Cases move down the branch that contains its input value. In a binary tree with
interval inputs, each internal node is a simple inequality. A case moves left if the inequality is true
and right otherwise. The terminal nodes of the tree are called leaves. The leaves represent the

predicted target. All cases reaching a particular leaf are given the same predicted value. When the
target is categorical, the model is a called a classification tree. The leaves give the predicted class
as well as the probability of class membership.

Note: Decision trees can also have multi-way splits where the values of the inputs are partitioned
into disjoint ranges. Multi-way splits request more evaluations for the candidate splits,

considering all inputs in all n-way splits. For example, in 4-way splits, all possible candidates
for 2-way splits, 3-way splits, and 4-way splits are evaluated.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

9

Classification Tree

X1<38.5

X10<51.5X10<.5

9 (99%)1 (78%)X10<40.57 (96%)

X1<.5X1<.5

1 (95%)X10<17.5 X10<71.51 (80%)

1 (56%)7 (91%) 7(73%)X10<61

9 (87%)1 (64%)

yes no

3.2 Tree-Structure Models 3-13

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

A classification tree can be thought of as defining several multivariate step functions. Each function
corresponds to the posterior probability of a target class.

The Boston housing data are available from the UCI repository (Blake et al. 1998). The cases are
506 census tracts in Boston. The target is the median home value (MEDV). Two of the thirteen
inputs are shown: the average number of rooms (RM) and the nitrogen oxide concentration in the air
(NOX).

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 0

Leaves of a Classification Tree

Leaf Pr(1|x) Pr(7|x) Pr(9|x) Decision

1 .03 .96 .01 7

2 .09 .91 .00 7

3 .56 .44 .00 1

4 .95 .05 .00 1

5 .80 .10 .10 1

6 .64 .09 .27 1

7 .00 .13 .87 9

8 .10 .73 .17 7

9 .78 .01 .21 1

10 .01 .00 .99 9

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 1

Supervised Prediction for an Interval Target:
Median Home Value

3-14 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

When the target is continuous, the model is a called a regression tree. The leaves give the predicted
value of the target. All cases that reach a particular leaf are assigned the same predicted value.

The path to each leaf can be expressed as a Boolean rule. The rules take this form:

If the inputs  {region of the input space}, then the predicted value = value.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 2

Regression Tree

RM<6.9

NOX<.66NOX<.67

16RM<6.5 14

NOX<.51

22 NOX<.63

27

2719

RM<7.4

4633

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 3

Leaves = Boolean Rules

If RM  {values} and NOX  {values}, then MEDV=value.

Leaf RM NOX Predicted MEDV

1 <6.5 <.51 22

2 <6.5 [.51, .63) 19

3 <6.5 [.63, .67) 27

4 [6.5, 6.9) <.67 27

5 <6.9 .67 14

6 [6.9, 7.4) <.66 33

7 7.4 <.66 46

8 6.9 .66 16

3.2 Tree-Structure Models 3-15

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The regions of the input space are determined by the split values. For interval-scaled inputs, the
boundaries of the regions are perpendicular to the split variables. Consequently, the regions are
intersections of subspaces defined by a single splitting variable.

Details: Simple Prediction Illustration

Decision trees provide an excellent introduction to predictive modeling. Decision trees, similar to all
modeling methods described in this course, address each of the modeling essentials described in
the introduction. Cases are scored using prediction rules. A split-search algorithm facilitates input
selection. Model complexity is addressed by pruning.

The following simple prediction problem illustrates each of these model essentials:

Consider a data set with two inputs and a binary target. The inputs, x1 and x2, locate the case in the
unit square. The target outcome is represented by a color: yellow is primary and blue is secondary.
The analysis goal is to predict the outcome based on the location in the unit square.

To predict cases, decision trees use rules that involve the values of the input variables.

The rules are arranged hierarchically in a tree-like structure with nodes connected by lines. The
nodes represent decision rules, and the lines order the rules. The first rule, at the base (top) of the
tree, is named the root node. Subsequent rules are named interior nodes. Nodes with only one

connection are leaf nodes.

3-16 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The depth of a tree specifies the number of generations of nodes. The root node is generation 0. The
children of the root node are the first generation, and so on.

To score a new case, examine the input values and apply the rules defined by the decision tree.

The input values of a new case eventually lead to a single leaf in the tree. A tree leaf provides a
decision (for example, classify as yellow) and an estimate (for example, the primary -target

proportion).

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 4

3.01 Multiple Choice Poll

Which of the following statements is true regarding decision trees?

a. To predict cases, decision trees use rules that involve the values or
categories of the input variables.

b. Decision trees can handle only categorical targets.

c. The predictor variables can appear only in a single split in the tree.

d. The splits in decision trees can be only binary.

3.2 Tree-Structure Models 3-17

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Improving a Decision Tree Model
by Changing the Tree Structure Parameters

In this demonstration, you change the default settings of the Decision Tree node that was just added
in the Starter Template pipeline. You modify the tree structure parameters and compare this model
performance to the models built earlier in the course.

1. To recall, the previous model, based on the default settings, achieved an average square error of
0.0856 on the VALIDATE partition.

2. Try to improve the model’s performance by modifying some of the settings of the Decision Tree
model. Expand the Splitting Options properties in the properties pane of the Decision Tree
node.

3. Increase Maximum depth from 10 to 14.

4. Increase Minimum leaf size from 5 to 15.

5. Increase Number of interval bins from 20 to 100.

6. Run the Decision Tree node.

7. Open the results for the Decision Tree node.

8. Click the Assessment tab.

3-18 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The average square error for the tuned Decision Tree model is 0.0801 on the VALIDATE
partition. This fit statistic is approximately 6% better than the first model using the default
settings.

9. Close the Results window.

3.3 Recursive Partit ioning 3-19

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3.3 Recursive Partitioning

The most common method to improve decision tree models is by recursive partitioning when we
grow a base tree model.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 8

Essential Discovery Tasks

...

• Select an algorithm.

• Im prove the model.

• Optimize complexity of the model.

• Regularize and tune

hyperparameters of the model.

• Bui ld ensemble models.

3-20 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Recursive partitioning is the standard method used to fit decision trees. Recursive partitioning is a
top-down, greedy algorithm. A greedy algorithm is one that makes locally optimal choices at each
step. Starting at the root node, a number of splits that involve a single input are examined. Finding
the split point for the root node, is the first step of recursive partitioning. For interval inputs, the splits
are disjoint ranges of the input values. For nominal inputs, the splits are disjoint subsets of the input
categories. Various split-search strategies can be used to determine the set of candidate splits. A

splitting criterion is used to choose the split. The splitting criterion measures the reduction in
variability of the target distribution in the child nodes. The goal is to reduce variability and thus
increase purity in the child nodes. The cases in the root node are then partitioned according to the
selected split.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 9

Root-Node Split

D1 = 364
D7 = 364

D9 = 336
n = 1064

D1 = 71
D7 = 1

D9 = 294
n = 366

D1 = 293
D7 = 363

D9 = 42
n = 698

yes no
X1<38.5

3.3 Recursive Partit ioning 3-21

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The root-node split corresponds to a partition of the input space where the boundary is perpendicular
to one input dimension. The result is a tree that has a depth of one, hence the term 1-deep space.

The partitioning is now repeated in each child node as if it were the root node of a new tree. The split
selection at a node depends entirely on the cases in that local region of the input space. As the
partitioning continues deeper in the tree, the data become more fragmented.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 0

1-Deep Space

1

1

11 1

1

1

1

1

1

1

1

1

11

1

1

1

1 1 11

1

1

1

1

1

1

1

1

1

11
1

1

1
1

1

11
1

1 11

1

1

1

11 11

1

1 1
1

1

1

1

1

11 11

11

1

1 11

1

11

1

11

1

1

1

1

1

1 11

1

1

1

1 11 11

1

11

1

1

1

1

11

1

11

1

11

1

11 1

1

1 11

11

11 11 1 111 11 1

1
1

1

1
1

11

1

1 1 1

1

111

11

1

1

1

1

1 1 1

1

1 1
1

1

1
1

1

1

1
1 1

1

11

1

1

1

1 1

1

1

1

1

1

1

1

11
1

11

1

1

11 1 1

1

11 1

1

1

1 1
1

1

1 1

1

1 11

1

1

1

1 111 11

1

1

1

1

1

1

1 11

1

1

1

1
11

1

1

1 11

1

1

1
1 1

1

1 11

1
1

1

1

1

1 11 11

1

1

1

111

1

1 1

1

1

1

1

1 11

1

11

1

1

1 1
1

1

1 1

1
1

1

1

111 1

1

1

1
1

1

1

11

1

11

1

1

1

11

1

1
11

1

1 1

1

11 11 1 1
1

1

1

1

11 1

11

1 11

1

1

1

1

1

1

1

1

11 11

1 1
11

1

1

1 1 111 1

1

11

1

1

1

1

1

11
777 7777

7

777
7

7

7 777 7

7

777 7
7
77 77 77

7

7777 77 7

7

7
7
7 7

7

77 77 77 77
7

77 7777 77 77 77

7

7
7

77

7 777 77

7

7 7
7

77777

7
7

77 777777

7

7

7 77

7
7

7

777

7

7

7

7
7

7

777
7
7 7777 77 7777777

77
7 77 77

7

7 77777 7

7

7
7

7
7

77 7

7

77
777 7

7

77
7
7
7
7

7

7 7

77

7 77

7

7
7

77
7

7
7

7

7
7

7
77777 7

7

7 7

7

7
77

77 777 7

7

7 777
7

7

7
7

7777
7

77 777

7

7

7

7

7
7 777777 77 777

7

77 7 77
7

777

7
7

7
7

77

7

7 777 7

7

7

7

7

77
7

777

7

7

7

7

7 7 7 7
77

7

7

7
7

77 777 777

7

7 777
7 7

77

7

7
777 777 77777

7

77 77
7

777

7

7

7

77 777 77
7
77 77

7

7

7
7

7

7

7 7 7 7

7

7

7

777

77
7

7

7 7

9

9

9

9

9

9

9 9

9

9

9

9

9

9
9

9
99

9 9

9

9

99

9

9

9
9

99

9

9

9

9

9

9
9

9

9

99

9
9

9

9

9

9

9 9
99

9

9

9

9

9
9

9

9

9

9
9

9

9
9 99

99

9

9

9

99

9

9

99

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9 9 9

9

9

9

9

9

9

9

9

9

9

9
9

9 9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9
9

9 9

9

9

9 9

9

9

9

9 9

9

99
9

9

9

9

9

9

9

99

9

9

9
9

9

9

9

9

9

9

9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

99
9

9

9
9

9

99

9
9

9 9

9

9

9

99

9

9
9

9

99

9

9
9

9

9

9

9

9

9

9

9 9

9

9

9 9

9

9

9

9

99

9
9

99

9

9

9

9

9

9

9

9 9

9

9

9

9

9

9

9

9

9

9

9

9

9

9 9

9

9
9

9

9

9

9

9
9

9

9

9

9

9

9

9

9
9

9

9

9

9

9

9

9

9

9

9
9

9

9

9

9

99

9

9

9

9

99

9 9

9

9

9

9

9

9 9

99

9
9

9

9

9

9

99

9

9

99

9
9

99

9

9

9

99

9

9

9

9

9

9

9

9

X1

0

20

40

60

80

100

X10

0 20 40 60 80 100

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 1

Depth 2

D1 = 293
D7 = 363

D9 = 42
n = 698

D1 = 285
D7 = 143

D9 = 41
n = 469

D1 = 8
D7 = 220

D9 = 1
n = 229

yes no
X10<0.5

D1 = 71
D7 = 1

D9 = 294
n = 366

D1 = 4
D7 = 0

D9 = 276
n = 280

D1 = 67
D7 = 1

D9 = 18
n = 86

yes no
X10<51.5

Root

3-22 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The process is repeated. The depth is governed by stopping rules, which are discussed later.

It seems reasonable that this greedy algorithm could be improved by incorporating some type of
look-ahead or backup. Aside from the computational burden, trees built using limited look -ahead are
not shown to be an improvement. In many cases, they produce inferior trees (Murthy and Salzberg
1995).

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 2

2-Deep Space

1

1

11 1

1

1

1

1

1

1

1

1

11

1

1
1

1 1 11

1

1

1

1

1

1

1

1

1

11
1

1

1
1

1

11
1

1 11

1

1

1

11 11

1

1 11
1

1

1

1

11 11

11

1

1 11

1

11

1

11

1

1

1

1

1

1 11

1

1

1

1 11 11

1

11

1

1

1

1

11

1

11
1

11
1

11 1

1

1 11

11

11 11 1 111 11 1

1
1

1

1
1

11

1

1 1 1

1

111

11

1

1

1

1

1 1 1

1

1 11
1

1
1

1

1

1
1 1

1

11

1

1

1

1 1

1
1

1

1

1

1

1

11
1

11

1

1

11 1 1

1

11 1

1

1

1 1
1

1

1 1

1

1 11
1

1

1

1 111 11

1

1

1

1

1

1

1 11

1

1

1

111

1

1

1 11

1

1

1
1 1

1

1 11

1
1

1

1

1
1 11 11

1

1

1

111

1

1 1

1

1

1

1

1 11

1

11

1

1

1 11

1

1 1

1
1

1

1

111 1

1

1

1
1

1

1

11

1

11

1

1

1

11

1

1
11

1

1 1

1

11 11 1 1
1

1

1

1

11 1

11

1 11

1

1

1

1

1

1

1

1

11 11

1 1
11

1

1

1 1 111 1

1

11

1

1

1

1

1

11 777 7777
7

777
7

7

7 777 7

7

777 7
7
77 77 77

7

7777 77 7

7

7
7
7 7

7

77 77 77 77
7

77 7777 77 77 77

7

7
7

77

7 777 77

7

7 7
7
77777

7
7

77 777777

7

7

7 77

7
7

7

777

7

7

7

7
7

7

777
7
7 7777 77 7777777

77
7 77 77

7

7 77777 7

7

7
7

7
7

77 7

7

77
777 7

7

77
7
7
7
7

7

7 7

77

777

7

7
7

77
77 7

7

7
7

7
77777 7

7

7 7

7

7
77

77 777 7

7

7 777
7

7

7
7

7777
7

77 777

7

7

7

7
7
7 777777 77 777

7

77 7 77
7

777

7
7

7
7

77
7

7 777 7

7

7

7

7

77
7

777

7

7

7

7

7 7 7 777

7

7

7
7

77 777 777
7
7 777

7 7
77

7
7
777 777 77777

7

77 77
7

777

7

7

7

77 777 77
7
77 77
7
7

7
7

7

7

7 7 7 7

7

7

7

777
77

7

7

7 7

9

9

9

9

9

9

9 9

9

9

9

9

9

9
9

9
99

9 9

9

9

99

9

9

9
9

99

9

9

9

9
9

9
9

9

9

99

9
9

9

9

9

9

9 9
99

9

9

9

9

9
9

9

9

9

9
9

9

9
9 99

99

9

9

9

99

9

9

99

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9 9 9

9

9

9

9

9

9

9

9

9

9

9
9

9 9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9
9

9 9

9

9

9 9

9

9

9

9 9

9

99
9

9

9

9

9

9

9

99

9

9

9
9

9

9

9

9

9
9

9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

99
9

9

9
9

9

99

99

9 9

9

9

9

99

9

9
9

9

99

9

9
9

9

9

9

9

9

9
9

9 9

9

9

9 9

9

9

9

9

99

9
9

99

9

9

9

9

9

9

9

9 9

9

9

9

9

9
9

9

9

9

9

9

9

9

9 9
9

9 9

9

9

9

9

9
9

9

9

9

9

9

9

9
9

9

9

9

9

9

9

9

9

9
9

9
9

9

9

9

9

99

9

9

9

9

99

9 9

9

9

9
9

9

9 9

99
9

9

9

9

9

9

99

9

9

99

9
9

99

9

9

9

99

9

9

9

9

9

9

9

9

X1

0

20

40

60

80

100

X10

0 20 40 60 80 100

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 3

Split Characteristics

X1

0

20

40

60

80

100

X10

1

1

11 1

1

1

1

1

1

1

1

1

11

1

1
1

1 1 11

1

1

1

1

1

1

1

1

1

11
1

1

1
1

1

11
1

1 11

1

1

1

11 11

1

1 11
1

1

1

1

11 11

11

1

1 11

1

11

1

11

1

1

1

1

1

1 11

1

1

1

1 11 11

1

11

1

1

1

1

11

1

11
1

11
1

11 1

1

1 11

11

11 11 1 111 11 1

1
1

1

1
1

11

1

1 1 1

1

111

11

1

1

1

1

1 1 1

1

1 11
1

1
1

1

1

1
1 1

1

11

1

1

1

1 1

1
1

1

1

1

1

1

11
1

11

1

1

11 1 1

1

11 1

1

1

1 1
1

1

1 1

1

1 11
1

1

1

1 111 11

1

1

1

1

1

1

1 11

1

1

1

111

1

1

1 11

1

1

1
1 1

1

1 11

1
1

1

1

1
1 11 11

1

1

1

111

1

1 1

1

1

1

1

1 11

1

11

1

1

1 11

1

1 1

1
1

1

1

111 1

1

1

1
1

1

1

11

1

11

1

1

1

11

1

1
11

1

1 1

1

11 11 1 1
1

1

1

1

11 1

11

1 11

1

1

1

1

1

1

1

1

11 11

1 1
11

1

1

1 1 111 1

1

11

1

1

1

1

1

11 777 7777
7

777
7

7

7 777 7

7

777 7
7
77 77 77

7

7777 77 7

7

7
7
7 7

7

77 77 77 77
7

77 7777 77 77 77

7

7
7

77

7 777 77

7

7 7
7
77777

7
7

77 777777

7

7

7 77

7
7

7

777

7

7

7

7
7

7

777
7
7 7777 77 7777777

77
7 77 77

7

7 77777 7

7

7
7

7
7

77 7

7

77
777 7

7

77
7
7
7
7

7

7 7

77

777

7

7
7

77
77 7

7

7
7

7
77777 7

7

7 7

7

7
77

77 777 7

7

7 777
7

7

7
7

7777
7

77 777

7

7

7

7
7
7 777777 77 777

7

77 7 77
7

777

7
7

7
7

77
7

7 777 7

7

7

7

7

77
7

777

7

7

7

7

7 7 7 777

7

7

7
7

77 777 777
7
7 777

7 7
77

7
7
777 777 77777

7

77 77
7

777

7

7

7

77 777 77
7
77 77
7
7

7
7

7

7

7 7 7 7

7

7

7

777
77

7

7

7 7

9

9

9

9

9

9

9 9

9

9

9

9

9

9
9

9
99

9 9

9

9

99

9

9

9
9

99

9

9

9

9
9

9
9

9

9

99

9
9

9

9

9

9

9 9
99

9

9

9

9

9
9

9

9

9

9
9

9

9
9 99

99

9

9

9

99

9

9

99

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9 9 9

9

9

9

9

9

9

9

9

9

9

9
9

9 9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9
9

9 9

9

9

9 9

9

9

9

9 9

9

99
9

9

9

9

9

9

9

99

9

9

9
9

9

9

9

9

9
9

9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

99
9

9

9
9

9

99

9
9

9 9

9

9

9

99

9

9
9

9

99

9

9
9

9

9

9

9

9

9
9

9 9

9

9

9 9

9

9

9

9

99

9
9

99

9

9

9

9

9

9

9

9 9

9

9

9

9

9
9

9

9

9

9

9

9

9

9 9
9

9
9

9

9

9

9

9
9

9

9

9

9

9

9

9
9

9

9

9

9

9

9

9

9

9
9

9
9

9

9

9

9

99

9

9

9

9

99

9 9

9

9

9
9

9

9 9

99
9

9

9

9

9

9

99

9

9

99

9
9

99

9

9

9

99

9

9

9

9

9

9

9

9

0 20 40 60 80 100

3.3 Recursive Partit ioning 3-23

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Let i(.) be some measure of within-node impurity, and let Δi represent the overall reduction in
impurity for the tree. Many splitting criteria (including Gini and entropy) are based on the reduction in
node impurity (that is, the reduction of within-node variability) induced by the split.

The Gini index is a measure of variability for categorical data (developed by the eminent Italian
statistician Corrado Gini in 1912). The Gini index can be used as a measure of node impurity where

1 2, , , rp p p are the proportions of each target class in a node. The Gini splitting criterion was

proposed by Breiman et al. (BFOS 1984).

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 4

Impurity Reduction Measures

Child2

impurity2

n2

Child1

impurity1

n1

Child4

impurity4

n4

Child3

impurity3

n3

Parent
impurity0

n0

31 2 4

0 0 0 0

(0) (1) (2) (3) (4)
nn n n

i i i i i i
n n n n

 
      

 

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 5

The Gini Index and Impurity

Pr(interspecific encounter) = 1-(6/7)2-(1/7)2 = .24

high diversity, low purity

2

1

1 2
r

j j k

j j k

p p p
 

  

Pr(interspecific encounter) = 1-2(3/8)2-2(1/8)2 = .69

low diversity, high purity

3-24 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The Gini index can be interpreted as the probability that any two elements of a multi -set, chosen at
random (with replacement), are different. A pure node has a Gini index of 0. As the number of evenly
distributed classes increases, the Gini index approaches 1.

In mathematical ecology, the Gini index is known as Simpson’s diversity index. In cryptanalysis, it is
1 minus the repeat rate (Good, discussion of Patil and Taillie, 1982).

When the target has an interval measurement level, splitting criteria can be based on reducing

variance of the target in child nodes. Other more robust measures of spread such as the least
absolute deviation (LAD) were proposed (BFOS 1984).

Details: Impurity Reduction Measures for Class Targets

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 6

Variance Reduction

RM<6.94yes no

506

23

ˆ 9.2

n

y









76

37

ˆ 8.9

n

y









430

20

ˆ 6.3

n

y









3.3 Recursive Partit ioning 3-25

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

After a set of candidate splits is determined, a splitting criterion is used to determine the best one.
In some situations, the worth of a split is obvious. If target distributions are the same in the child
nodes as they are in the parent node, then no improvement was made, and the split is worthless.
In contrast, if a split results in pure children, then the split is definitely the best.

In classification trees, the three most well-known splitting criteria are based on the Gini index (BFOS
1984), entropy (Quinlan 1993), and the chi-square test (Kass 1980). Well-known algorithms and
software products associated with these three splitting criteria are CART (classification and
regression tree); C5.0 (developed by the machine learning researcher Quinlin); and the CHAID
algorithm (chi-squared automatic interaction detection).

Details: Impurity Reduction Measures for Interval Targets

Regression trees endeavor to partition the input space into segments where the target values are
alike. (That is, each segment or node has low variability.) All target values would be equal in a pure
node. In other words, the variance of the target would be zero within a pure node.

The split-search considerations and the p-value adjustments are the same as with classification
trees. However, the appropriate splitting criteria are different. The default splitting criterion for a

regression tree is change in response variance. CHAID and F Statistic are also available as splitting
methods.

Entropy and the Gini index are measures of variability of nominal variables. When the target
distribution is continuous, the sample variance is the obvious measure of impuri ty. (Morgan and
Sonquist 1963, BFOS 1984)

 
2

1

1
()

tn

jt t

jt

i t y y
n 

 

Note: The denominator is ni, not ni1. This is the MLE and not the usual unbiased estimate of
sample variance.

The F test can be used analogously to the chi-square test for regression trees. A split at a node can
be thought of as a one-way analysis of variance where the B branches are the B treatments. Let

1

1

i

i

n

i ijn
j

y y



  be the mean of the target in each node and y be the mean in the root node (the

overall mean). The between-node sum of squares (SSbetween) is a measure of the distance between
the node means and the overall mean. The within-node sum of squares (SSwthin) measures the
variability within a node. Large values of the F statistic indicate departures from the null hypothesis
that all the node means are equal. When the target values, conditional on the inputs, are
independently, normally distributed with constant variance, then the F statistic follows an F
distribution with B – 1 and n – B degrees of freedom. The p-value of the test is used in the same way
as the p-value for a chi-square test for classification trees.

The total sum of squares (SStotal) can be considered fixed with regard to comparing splits at a
particular node. Thus, it follows from the ANOVA identity

total between withinSS SS SS 

that the F test statistic can be thought of as either maximizing the differences between the node
means or reducing the within-node variance. This latter interpretation indicates the equivalency
between the F statistic and the reduction in impurity (variance) splitting criterion.

 


  
       

  
total between

total within

1

SS SS SS1
var SS SS

B
i i

i i

n

n n n n n

3-26 Chapter 3 Decision Trees and Ensembles of Trees

Thus, using variance is equivalent to not adjusting the F test for degrees of freedom (number
of branches).

In summary, these are the options in Model Studio to grow a decision tree.

For categorical responses, the available criteria are CHAID, CHISQUARE, ENTROPY, GINI, and
IGR (information gain ratio). The default is IGR. For continuous responses, the available criteria are
CHAID, FTEST, and VARIANCE. The default is VARIANCE.

CHAID uses the value of a chi-square statistic for a classification tree or an F statistic for a
regression tree. Based on the significance level, the value of the chi-square of F statistic is used to
merge similar levels of the predictor variable until the number of children in the proposed split
reaches the number specified as the maximum possible branches. The p-values for the final split
determine the variable on which to split.

Split criteria using the p-value (Chi-square, CHAID of F Test) can request a Bonferroni adjustment to
the p-value for a variable after the split has been determined.

CHISQUARE uses a chi-square statistic to split each variable and then uses the p-values that
correspond to the resulting splits to determine the splitting variable.

ENTROPY uses the gain in information or the decrease in entropy to split each variable and then to

determine the split. A minimum of decrease in entropy or increase in information gain ration can be

specified.

GINI uses the decrease in the Gini index to split each variable and then to determine the split.

IGR uses the entropy metric to split each variable and then uses the information gain ratio to
determine the split.

For continuous responses the available criteria are CHAID, FTEST and VARIANCE.

CHAID is described above.

FTEST uses an F statistic to split each variable and then uses the resulting p-value to determine the
split point.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 7

Split Criteria in Model Studio

• Categorical target

• CHAID – Chi-square Automatic Interaction Detection

• Chi-Square

• Entropy

• Gini

• Information gain ratio

• Interval target

• CHAID

• F test

• Variance

3.3 Recursive Partit ioning 3-27

A Bonferroni adjustment can be applied to both CHAID and FTEST criteria.

VARIANCE uses the change in response variance to split each variable and then to determine the
split.

To select useful inputs, trees use a split-search algorithm. Decision trees confront the curse of
dimensionality by ignoring irrelevant inputs.

Note: Curiously, trees have no built-in method for ignoring redundant inputs. Because trees can be

trained quickly and have a simple structure, this is usually not an issue for model creation.
However, it can be an issue for model deployment, in that trees might somewhat arbitrarily
select from a set of correlated inputs. To avoid this problem, you must use an algorithm that
is external to the tree to manage input redundancy.

Understanding the default algorithm for building trees enables you to better use SAS Visual Data
Mining and Machine Learning to build a tree and interpret your results. The description presented
here assumes a binary target, but the algorithm for interval targets is similar. (The algorithm for
categorical targets with more than two outcomes is more complicated and is not discussed.)

The first part of the algorithm is called the split search. The split search starts by selecting an input

for partitioning the available training data. If the measurement scale of the selected input is interval,

each unique value serves as a potential split point for the data. If the input is categorical, the
average value of the target is taken within each categorical input level. The averages serve the same

role as the unique interval input values in the discussion that follows.

For a selected input and fixed split point, two groups are generated. Cases with input values less
than the split point are said to branch left. Cases with input values greater than the split point are
said to branch right. The groups, combined with the target outcomes, form a 2x2 contingency table
with columns specifying branch direction (left or right) and rows specifying target value (0 or 1). A
Pearson chi-squared statistic is used to quantify the independence of counts in the table’s columns.
Large values for the chi-squared statistic suggest that the proportion of zeros and ones in the left
branch is different from the proportion in the right branch. A large difference in outcome proportions
indicates a good split.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 8

Decision Tree Split Search

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

x1

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x2

Calculate the
logworth of every

partition on input x1.

left right

Classification Matrix

3-28 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Because the Pearson chi-squared statistic can be applied to the case of multiway splits and multi-
outcome targets, the statistic is converted to a probability value, or p-value. The p-value indicates the
likelihood of obtaining the observed value of the statistic assuming identical target proportions in
each branch direction. For large data sets, these p-values can be very close to zero. For this reason,
the quality of a split is reported by logworth = -log(chi-squared p-value).

Note: At least one logworth must exceed a threshold for a split to occur with that input. By default,
this threshold corresponds to a chi-squared p-value of 0.20 or a logworth of approximately
0.7.

The best split for an input is the split that yields the highest logworth.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 9

Decision Tree Split Search

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x1

x2

max
logworth(x1)

0.95

0.52left right

Select the partition
with the maximum

logworth.

53%

47%

42%

58%

3.3 Recursive Partit ioning 3-29

Several peripheral factors make the split search somewhat more complicated than what is described
above.

First, the tree algorithm settings disallow certain partitions of the data. Settings, such as the
minimum number of observations required for a split search and the minimum number of
observations in a leaf, force a minimum number of cases in a split partition. This minimum number of
cases reduces the number of potential partitions for each input in the split search.

Second, when you test for the independence of column categories in a contingency table, it is
possible to obtain significant (large) values of the chi-squared statistic even when there are no
differences in the true, underlying proportions between split branches. In other words, if there are
many ways to split the variable that labels the rows of the table (and thus many Chi-square tables
and tests), then you are likely to get at least one with a very small p-value even when the variable
has no true effect. As the number of possible split points increases, the likelihood of obtaining
significant values also increases. In this way, an input with a multitude of unique input values has a
greater chance of accidentally having a large logworth than an input with only a few distinct input
values.

Statisticians face a similar problem when they combine the results from multiple statistical tests. As
the number of tests increases, the chance of a false positive result likewise increases. To maintain
overall confidence in the statistical findings, statisticians inflate the p-values of each test by a factor
equal to the number of tests being conducted. If an inflated p-value shows a significant result, then
the significance of the overall results is assured. This type of p-value adjustment is known as a
Bonferroni correction.

Because each split point corresponds to a statistical test, Bonferroni corrections are automatically
applied to the logworth calculations for an input. These corrections, also called Bonferroni
adjustments, penalize inputs with many split points by reducing the logworth of a split by an amount
equal to the log of the number of distinct input values. This is equivalent to the Bonferroni correction
because subtracting this constant from logworth is equivalent to multiplying the corresponding chi -
squared p-value by the number of split points. The adjustment enables a fairer comparison of inputs
with many and few levels later in the split-search algorithm.

Third, for inputs with missing values, two sets of Bonferroni-adjusted logworths are generated. For
the first set, cases with missing input values are included in the left branch of the contingency table
and logworths are calculated. For the second set of logworths, missing value cases are moved to the
right branch. The best split is then selected from the set of possible splits with the missing values in
the left and right branches, respectively.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3-30 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The partitioning process is repeated for every input in the training data. Inputs whose adjusted
logworth fails to exceed the threshold are excluded from consideration.

Again, the optimal split for the next input considered is the one that maximizes the logworth function
for that input.

After you determine the best split for every input, the tree algorithm compares each best split ’s
corresponding logworth. The split with the highest adjusted logworth is deemed best.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 0

Decision Tree Split Search

max
logworth(x1)

0.95

left right

53% 42%

47% 58%

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x1

x2

0.63

max
logworth(x2)

4.92

bottom top

54%

46%

35%

65%

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 1

Decision Tree Split Search

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x1

x2

max
logworth(x2)

4.92

bottom top

max
logworth(x1)

0.95

left right

Compare partition
logworth ratings.

54%

46%

35%

65%

53%

47%

42%

58%

3.3 Recursive Partit ioning 3-31

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The training data are partitioned using the best split rule.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 2

Decision Tree Split Search

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x1

x2

0.63

x2<0.63 ≥0.63

Create a partition rule
from the best partition

across all inputs.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 3

Decision Tree Split Search

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x1

x2

Repeat the process
in each subset.

x2<0.63 ≥0.63

3-32 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The logworth of the x2 split is negative. This might seem surprising, but it results from several
adjustments made to the logworth calculation. (The Bonferroni adjustment was described previously.
Another, called the depth adjustment, is outlined in a self-study section.)

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 4

Decision Tree Split Search

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x1

x2

0.52

max
logworth(x1)

5.72

left right

61%

39%

55%

45%

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 5

Decision Tree Split Search

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x1

x2

max
logworth(x1)

5.72

left right

61% 55%

39% 45%

0.02

max
logworth(x2)

-2.01

bottom top

38%

62%

55%

45%

3.3 Recursive Partit ioning 3-33

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The split search continues within each leaf. Logworths are compared as before.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 6

Decision Tree Split Search

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x1

x2

max
logworth(x2)

-2.01

bottom top

38%

62%

55%

45%

max
logworth(x1)

5.72

left right

61%

39%

55%

45%

Compare partition
logworth ratings.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 7

Decision Tree Split Search

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x1

x2

0.52

max
logworth(x2)

-2.01

bottom top

38% 55%

62% 45%

max
logworth(x1)

5.72

left right

61%

39%

55%

45%

3-34 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Because the significance of secondary and subsequent splits depends on the significance of the
previous splits, the algorithm again faces a multiple comparison problem. To compensate for this
problem, the algorithm increases the threshold by an amount related to the number of splits above
the current split. For binary splits, the threshold is increased by log10(2) d ≈ 0.3∙d, where d is the
depth of the split on the decision tree.

Note: By increasing the threshold for each depth (or equivalently decreasing the logworths), the
tree algorithm makes it increasingly easy for an input’s splits to be excluded from
consideration.

The data are partitioned according to the best split, which creates a second partition rule. The
process repeats in each leaf until there are no more splits whose adjusted logworth exceeds the
depth-adjusted thresholds. This process completes the split -search portion of the tree algorithm.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 8

Decision Tree Split Search

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x1

x2

x1<0.52 ≥0.52

Create a second
partition rule.

x2<0.63 ≥0.63

3.3 Recursive Partit ioning 3-35

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The resulting partition of the input space is known as the maximal tree. Development of the maximal
tree is based exclusively on statistical measures of split worth on the training data. It is likely that the
maximal tree fails to generalize well on an independent set of validation data. The maximal tree is
the starting place for how complexity of the model will be optimized. Optimizing the complexity of a
tree is done through pruning, and this is covered in the next section.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 9

Repeat to form a
maximal tree.

Decision Tree Split Search

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x1

x2

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 0

Handling of Missing Values in Decision Trees

• Use in search: missing values are used as a value.

• No m inal inputs: treat missing values as a separate level.

• Ord inal inputs: require modification of the split search strategy for missing values
by adding a separate branch adjacent to the ordinal levels.

• I n terval inputs: treat missing values as having the same unknown nonmissing

value.

• Additional options:

• L argest branch: assign observations to the largest branch.

• Most correlated branch: assign observations to the branch with the smallest

residual sum of squares among observations that contain missing values.

• Sep arate branch: assign observations to a separate branch.

3-36 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

One of the key benefits of recursive partitioning is the treatment of missing input data. Parametric
regression models require complete cases. One missing value on one input variable eliminates that
case from analysis. Imputation methods are often used before model fitting to fill in the missing
values.

If the value of the target variable is missing, the observation is excluded from training and evaluating
the decision tree model.

Decision trees can use missing values in the calculation of the worth of a splitting rule. This
consequently produces a splitting rule that assigns the missing values to the branch that maximizes
the worth of the split. This is a desirable option when the existence of a missing value is predictive of
a target value. Decision trees can use missing values in the split search as a new category or as an
unknown numeric nonmissing value.

It treats missing input values as a separate level of the input variable. A nominal input with L levels
and a missing value can be treated as an L + 1 level input. If a new case has a missing value on a
splitting variable, then the case is sent to whatever branch contains the missing values.

For splits on a categorical variable, this amounts to treating a missing value as a separate category.
For numerical variables, it amounts to treating missing values as having the same unknown
nonmissing value.

One advantage of using missing data during the search is that the worth of the split is computed with
the same number of observations for each input. Another advantage is that an association of the
missing values with the target values can contribute to the predictive ability of the split.

The search for a split on an input uses observations whose values are missing on the input. All such
observations are assigned to the same branch. The branch might or might not contain other
observations. The resulting branch maximizes the worth of the split.

Another option is to not use missing values in the split search. In this case, Decision Trees assigns
the observations that contain missing values to a particular branch according to some criteria.

• Largest branch: assign observations to the largest branch.

• Most correlated branch: assign observations to the branch with the smallest residual sum of
squares among observations that contain missing values.

• Separate branch: assign observations to a separate branch.

3.3 Recursive Partit ioning 3-37

When a split is applied to an observation in which the required input value is missing, surrogate
splitting rules can be considered before assigning the observation to the branch for missing values.

A surrogate splitting rule is a backup to the main splitting rule. For example, the main splitting rule
might use COUNTY as input, and the surrogate might use REGION. If the COUNTY is unknown and
the REGION is known, the surrogate is used.

If several surrogate rules exist, each surrogate is considered in sequence until one can be applied to
the observation. If none can be applied, the main rule assigns the observation to the branch that is
designated for missing values.

The surrogates are considered in the order of their agreement with the main splitting rule. The
agreement is measured as the proportion of training observations that the surrogate rule and the
main rule assign to the same branch. The measure excludes the observations to which the main rule
cannot be applied. Among the remaining observations, those on which the surrogate rule cannot be
applied count as observations that are not assigned to the same branch. Thus, an observation that
has used a missing value on the input in the surrogate rule but not the input in the primary rule
counts against the surrogate.

The Number of Surrogate Rules property determines the number of surrogates that are sought. A
surrogate is discarded if its agreement is less than or equal to the largest proportion of observations
in any branch. As a consequence, a node might have fewer surrogates specified than the number in
the Number of Surrogate Rules property.

Surrogate splits can be used to handle missing values (BFOS 1984). A surrogate split is a partition
using a different input that mimics the selected split. A perfect surrogate maps all the cases that are
in the same node of the primary split to the same node of the surrogate split. The agreement
between two splits can be measured as the proportion of cases that are sent to the same branch.
The split with the greatest agreement is taken as the best surrogate.

When surrogate rules are requested, if a new case has a missing value on the splitting variable, then
the best surrogate is used to classify the case. If the surrogate variable is missing as well, then the
second-best surrogate is used. If the new case has a missing value on all the surrogates, it is sent to
the branch that contains the missing values of the training data.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 1

Surrogate Splits

Agreement=76%

Yes No

Yes

No

X10 < 41.5

X1<38.5

1

1

11 1

1

1

1

1

1

1

1

1

11

1

1

1

1 1 11

1

1

1

1

1

1

1

1

1

11
1

1

1
1

1

11
1

1 11

1

1

1

11 11

1

1 1
1

1

1

1

1

11 11

11

1

1 11

1

11

1

11

1

1

1

1

1

1 11

1

1

1

1 11 11

1

11

1

1

1

1

11

1

11

1

11

1

11 1

1

1 11

11

11 11 1 111 11 1

1
1

1

1
1

11

1

1 1 1

1

111

11

1

1

1

1

1 1 1

1

1 1
1

1

1
1

1

1

1
1 1

1

11

1

1

1

1 1

1

1

1

1

1

1

1

11
1

11

1

1

11 1 1

1

11 1

1

1

1 1
1

1

1 1

1

1 11

1

1

1

1 111 11

1

1

1

1

1

1

1 11

1

1

1

1
11

1

1

1 11

1

1

1
1 1

1

1 11

1
1

1

1

1

1 11 11

1

1

1

111

1

1 1

1

1

1

1

1 11

1

11

1

1

1 1
1

1

1 1

1
1

1

1

111 1

1

1

1
1

1

1

11

1

11

1

1

1

11

1

1
11

1

1 1

1

11 11 1 1
1

1

1

1

11 1

11

1 11

1

1

1

1

1

1

1

1

11 11

1 1
11

1

1

1 1 111 1

1

11

1

1

1

1

1

11
777 7777

7

777
7

7

7 777 7

7

777 7
7
77 77 77

7

7777 77 7

7

7
7
7 7

7

77 77 77 77
7

77 7777 77 77 77

7

7
7

77

7 777 77

7

7 7
7

77777

7
7

77 777777

7

7

7 77

7
7

7

777

7

7

7

7
7

7

777
7
7 7777 77 7777777

77
7 77 77

7

7 77777 7

7

7
7

7
7

77 7

7

77
777 7

7

77
7
7
7
7

7

7 7

77

7 77

7

7
7

77
7

7
7

7

7
7

7
77777 7

7

7 7

7

7
77

77 777 7

7

7 777
7

7

7
7

7777
7

77 777

7

7

7

7

7
7 777777 77 777

7

77 7 77
7

777

7
7

7
7

77

7

7 777 7

7

7

7

7

77
7

777

7

7

7

7

7 7 7 7
77

7

7

7
7

77 777 777

7

7 777
7 7

77

7

7
777 777 77777

7

77 77
7

777

7

7

7

77 777 77
7
77 77

7

7

7
7

7

7

7 7 7 7

7

7

7

777

77
7

7

7 7

9

9

9

9

9

9

9 9

9

9

9

9

9

9
9

9
99

9 9

9

9

99

9

9

9
9

99

9

9

9

9

9

9
9

9

9

99

9
9

9

9

9

9

9 9
99

9

9

9

9

9
9

9

9

9

9
9

9

9
9 99

99

9

9

9

99

9

9

99

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9 9 9

9

9

9

9

9

9

9

9

9

9

9
9

9 9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9
9

9 9

9

9

9 9

9

9

9

9 9

9

99
9

9

9

9

9

9

9

99

9

9

9
9

9

9

9

9

9

9

9
9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

9

99
9

9

9
9

9

99

9
9

9 9

9

9

9

99

9

9
9

9

99

9

9
9

9

9

9

9

9

9

9

9 9

9

9

9 9

9

9

9

9

99

9
9

99

9

9

9

9

9

9

9

9 9

9

9

9

9

9

9

9

9

9

9

9

9

9

9 9

9

9
9

9

9

9

9

9
9

9

9

9

9

9

9

9

9
9

9

9

9

9

9

9

9

9

9

9
9

9

9

9

9

99

9

9

9

9

99

9 9

9

9

9

9

9

9 9

99

9
9

9

9

9

9

99

9

9

99

9
9

99

9

9

9

99

9

9

9

9

9

9

9

9

454

12 354

244

3-38 Chapter 3 Decision Trees and Ensembles of Trees

Details: Variable Importance Based on Gini Reduction

BFOS (1984) devised a measure of variable importance for trees. It can be particularly useful for
tree interpretation.

Let (,)js x t be a surrogate split (including the primary split) at the tth internal node using the jth input.

Importance is a weighted average of the reduction in impurity for the surrogate splits using the jth
input across all the internal nodes in the tree. The weights are the node sizes.

1

Importance() ()((),),


 
T

t
j j

t

n
x i s x t

n

where Δ(i) represents impurity reduction. For interval targets, variance reduction is used. For

categorical targets, variance reduction reduces to Gini reduction.

In the Decision Tree task, variable importance is calculated similarly to BFOS (1984), although it
takes the square root. Further, the Decision Tree node incorporates the agreement between the
surrogate split and the primary split in the calculation. The variable importance measure is scaled to
be between 0 and 1 by dividing by the maximum importance. Thus, larger values indicate greater
importance. Variables that do not appear in any primary or saved surrogate splits have 0 importance.

One major difference between variable importance in the Decision Tree task and in BFOS (1984) is

that, by default, surrogates are not saved. Therefore, they are not included in the calculation. This

practice disregards a fundamental purpose of variable importance: unmasking inputs that have splits

that are correlated with primary splits.

If two variables are highly correlated and they are both used in primary splitting rules, they dilute
each other’s importance. Requesting surrogates remedies this, and also remedies the situation
where one of the two variables happens not to appear in any primary splitting rule.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3.3 Recursive Partit ioning 3-39

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 2

3.02 Multiple Choice Poll

Which of the following statements is true regarding decision trees?

a. The recursive partitioning used to construct decision trees leads them to
being uninterpretable.

b. The optimal split for the next input considered is the one that minimizes

the logworth function for that input.

c. The maximal decision tree is usually the one used to score new data.

d. The logworth of a split can sometimes be negative.

3-40 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Improving a Decision Tree Model by Changing the Recursive
Partitioning Parameters

In this demonstration, you change more settings of the Decision Tree node in the Starter Template
pipeline. You modify the recursive partitioning parameters and compare this model performance to
the models built earlier in the course.

Recall that the previous model, based on changing the tree structure parameters, achieved an
average square error of 0.0801 on the VALIDATE partition. We will try to improve the model’s
performance by modifying some of the settings of the Decision Tree model.

1. Under the Grow Criterion properties, change Class target criterion from Information gain
ratio to Gini.

2. Run the Decision Tree node.

3. Open the results for the Decision Tree node.

4. Click the Assessment tab.

The average square error for the tuned Decision Tree model is 0.0621 on the VALIDATE
partition. This fit statistic is approximately 22% better than the previous model by changing only
the recursive partitioning parameters.

5. Close the Results window.

3.4 Pruning 3-41

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3.4 Pruning

Recall that the goal is to build models that can be used to score future observations to enable you to
make business decisions, such as to churn or not churn, flag fraudulent activity, predict potential
revenue, and so on. Machine learning algorithms are very effective at learning a mapping between
the features and known target values in your existing data; if left unattended, they can often create a
100% accurate mapping, as shown below.

 Example of Overfitting Training and Validation Error Compromise

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 7

Essential Discovery Tasks

...

• Select an algorithm.

• Im prove the model.

• Optimize complexity of the model.

• Regularize and tune

hyperparameters of the model.

• Bui ld ensemble models.

3-42 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Evidently, a model that is complex enough to perfectly fit the existing data will not generalize well
when used to score new observations. It might provide accurate answers for some cases by chance,
but in general it does not represent the trend of the data. This is referred to as overfitt ing. A decision
tree is a prime example of an algorithm that can easily overfit the data. If the tree can continue to
split the data all the way down to each observation being in its own leaf, it will be 100% accurate for
every observation in the training data. But after a certain depth, the tree is not providing any

information that can be applied in general.

Honest assessment, which is highly related to the bias-variance tradeoff, involves calculating error
metrics from scoring the model on data that were not used in any way during the training process.
The distinctions between the validation data and the test data, and to incorporate them as part of
your model training, assessment, and selection process has briefly been discussed in Chapter 1.

A large decision tree can be grown until every node is as pure as possible. If at least two
observations have the same values on the input variables but different target values, it is not
possible to achieve perfect purity. The tree with the greatest possible purity on the training data is the
maximal classification tree.

The maximal tree is the result of overfitting. It adapts to both the systematic variation of the target
(signal) and the random variation (noise). It usually does not generalize well on new (noisy) data.

A small tree with only a few branches might underfit the data. It might fail to adapt sufficiently to the
signal. This usually results in poor generalization.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 8

Maximal Tree

3.4 Pruning 3-43

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Tree complexity is a function of the number of leaves, the number of splits, and the depth of the tree.
Determining complexity is crucial with flexible models like decision trees. A well -fit tree has low bias
(adapts to the signal) and low variance (does not adapt to the noise). The determination of model
complexity usually involves a tradeoff between bias and variance. An underfit tree that is not
sufficiently complex has high bias and low variance. In contrast, an overfit tree has low bias and high
variance.

The maximal tree represents the most complicated model that you are willing to construct from a set
of training data. To avoid potential overfitting, many predictive modeling procedures offer some
mechanism for adjusting model complexity. For decision trees, this process is known as pruning.

The subtree method specifies how to construct the subtree in terms of subtree methods. Possible
values include the following:

• C4.5: The pruning is done with a C4.5 algorithm.

• Cost complexity: The subtree with a minimum leaf-penalized ASE is chosen.

• Reduced error: The smallest subtree with the best assessment value is chosen.

The C4.5 algorithm is available only for class targets.

With reduced error pruning, the assessment measure for class targets is misclassification rate, and
the assessment measure for interval targets is ASE.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 9

Pruning Options

• Subtree method: specifies how to construct the subtree in terms of subtree
methods.

• C4 .5: The pruning is done with a C4.5 algorithm (class target only).

- Confidence – specifies the binomial distribution confidence level to use to determine the
error rates of merged and split nodes.

• Cost complexity: The subtree with a minimum leaf-penalized ASE is chosen.

• Red uced error: The smallest subtree with the best assessment value is chosen.

3-44 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The selection method specifies how to construct the subtree in terms of selection methods. Possible
values include the following:

• Automatic: specifies the appropriate subtree for the specified subtree pruning method.

• Largest: specifies the full tree.

• N: specifies the largest subtree with at most N leaves.

The Number of leaves property specifies the number of leaves that are used in creating the subtree
when the subtree selection method is set to N.

The Confidence property specifies the binomial distribution confidence level to use to determine the
error rates of merged and split nodes. The default value is 0.25. This option is available only when
C4.5 is the pruning method.

The Cross validation folds property specifies the number of cross validation folds to use for cost -
complexity pruning when there is no validation data. Possible values range from 2 to 20.

The 1–SE rule property specifies whether to perform the one standard error rule when performing
cross validated cost complexity pruning.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 0

Pruning Options

• Selection method: specifies how to construct the subtree in terms of
selection methods.

• Au tomatic: specifies the subtree for the selected subtree pruning method.

• L argest: specifies the full tree.

• N: specifies the largest subtree with at most N leaves.

- Number of leaves: specifies the number of leaves that are used in creating the subtree
when the subtree selection method is set to N.

• Cross validation folds: specifies the number of cross validation folds to use
for cost-complexity pruning when there is no validation data.

• 1 –SE rule: specifies whether to perform the one standard error rule when
performing cross validated cost complexity pruning.

3.4 Pruning 3-45

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

In bottom-up (post) pruning, a large tree is grown and then branches are lopped off in a backward
fashion using some model selection criterion. The bottom-up strategy of intentionally creating more
nodes than will be used is also called retrospective pruning and originated with cost-complexity
pruning (BFOS 1984).

For any subtree, T, in a tree grown from 1 to n leaves, define its complexity or size (number of
leaves) as L, and define R(L) as the validation set misclassification cost. Other assessment

measures can also be used.

In SAS Viya, the pruning process starts with the maximal tree Tmax with L leaves. The maximal tree is
denoted as TL. Construct a series of smaller and smaller trees TL, TL-1, TL-2, …, T1, such that the

following holds: For every value of Hi, where 1≤Hi≤L, consider the class THi of all subtrees of size

Hi. Select the subtree in the series that minimizes R(THi).

Note: The trees in the series of subtrees are not necessarily nested.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 1

Bottom-Up Pruning

1. Grow a maximal tree:

2. Prune to create optimal sequence of subtrees:

3-46 Chapter 3 Decision Trees and Ensembles of Trees

The subtree with the best performance on validation data is selected.

Top-down pruning is usually faster but is considered less effective than bottom-up pruning. Breiman
and Friedman, in their criticism of the FACT tree algorithm (Loh and Vanichsetakul 1988), discussed
their experiments with stopping rules as part of the development of the CART methodology:

“Each stopping rule was tested on hundreds of simulated data sets with different structures.
Each new stopping rule failed on some data set. It was not until a very large tree was built
and then pruned, using cross validation to govern the degree of pruning, that we observed
something that worked consistently.”

Bottom-up pruning has two requirements:

• A method for honestly measuring performance.

The simplest remedy is to split the data into training and validation sets. The validation data are
used for model comparison. Data splitting is inefficient when the data are small. Removing data
from the training set can degrade the fit. Furthermore, evaluating performance on a single
validation set can give imprecise results.

A more efficient remedy—but more computationally expensive—is k -fold cross validation. In k -fold
cross validation, performance measures are averaged over k models. Each model is fit with

(k1)/k of the data and assessed on the remaining 1/k of the data. The average over the k holdout
data sets is then used to honestly estimate the performance for the model fitted to the full data set.
Cross validation is discussed later in this chapter.

• A relevant model selection criterion.

For classification problems, the most appropriate measures of generalization depend on the number
of correct and incorrect classifications and their consequences.

For many purposes, including analyses with interval targets, average square error has been found to
work very well as a general method for selecting a subtree on the validation data. It is recommended
for most practical situations and, in particular, in situations with rare target levels and in which the
benefits or costs of correct or incorrect classification are not easy to specify.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 2

Bottom-Up Pruning

3. Choose the best tree on validation data:

3.4 Pruning 3-47

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The objective of a machine learning algorithm is to find the model parameters that minimize the loss
function over the independent samples. For example, these parameters could be maximum depth or
split criteria in a decision tree. As the complexity of your model increases, its predictive abilities often
decrease after a certain point due to overfitting and multicollinearity issues. Hence, the resulting
models often do not generalize well to new data, and they yield unstable parameter estimates.

Autotuning searches for the best combination of the decision tree parameters. Performing

autotuning can substantially increase run time.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 4

Essential Discovery Tasks

...

• Select an algorithm.

• Im prove the model.

• Optimize complexity of the model.

• Regularize and tune

hyperparameters of the model.

• Bui ld ensemble models.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 5

Autotuning

• Search for the best combination of values in different properties:

• Maximum depth

• Interval input bins

• Split criteria (class and interval targets)

• Search method

- Bayesian, Genetic algorithm, Latin hypercube sample, Random

• Validation method

- Partition, cross validation

• Objective function (class and interval targets)

3-48 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Autotuning runs based on some options, which limit the search of all possible combinations in terms
of the decision tree parameters.

Maximum Depth specifies whether to autotune the maximum depth parameter. It ranges from 1 to
150. The default initial value for the maximum depth is 10. The default for the range is from 1 to 19.

Interval input bins specifies whether to autotune the number of interval input bins. It ranges from 2
to 500. The default initial value for the number of bins is 20. The default for the range is from 20 to

200.

Grow Criterion specifies whether to autotune the grow criterion. For class target, the options are
Entropy, CHAID, Information gain ratio, Gini, and Chi-square. For interval target, the options are
Variance, F test, and CHAID.

Search Options specifies the options for autotuning searching. The following options are available:

• Genetic algorithm uses an initial Latin hypercube sample that seeds a genetic algorithm. The
genetic algorithm generates a new population of alternative configurations at each iteration.

• Latin hypercube sample performs an optimized grid search that is uniform in each tuning
parameter, but random in combinations.

• Random generates a single sample of purely random configurations.

• Bayesian uses priors to seed the iterative optimization.

Number of evaluations per iteration specifies the number of tuning evaluations in one iteration.
This option is available only if the search method is Genetic algorithm or Bayesian. The default value
is 10. It ranges from 2 to 2,147,483,647.

Maximum number of evaluations specifies the maximum number of tuning evaluations. This option
is available only if the Search method is Genetic algorithm or Bayesian. The default value is 50. It

ranges from 3 to 2,147,483,647.

Maximum number of iterations specifies the maximum number of tuning iterations. This option is
available only if the search method is Genetic algorithm or Bayesian. The default value is 5. It ranges
from 1 to 2,147,483,647.

Sample size specifies the sample size. This option is available only if the search method is Random
or Latin hypercube sample. The default value is 50. It ranges from 2 to 2,147,483,647.

There are some general options associated with the autotuning search.

Validation method specifies the validation method for finding the objective value. If your data is
partitioned, then that partition is used. Validation method, Validation data proportion, and Cross
validation number of folds are all ignored.

• Partition specifies using the partition validation method. With partition, you specify proportions to
use for randomly assigning observations to each role.

– Validation data proportion specifies the proportion of data to be used for the partition
validation method. The default value is 0.3.

• K-fold cross validation specifies using the cross validation method. In cross validation, each
model evaluation requires k training executions (on k-1 data folds) and k scoring executions (on
one holdout fold). This increases the evaluation time by approximately a factor of k.

– Cross validation number of folds specifies the number of partition folds in the cross
validation process (the k defined above). Possible values range from 2 to 20. The default
value is 5.

3.4 Pruning 3-49

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Nominal target objective function specifies the objective function to optimize for tuning
parameters for a nominal target. Possible values are average square error, area under the curve, F1
score, F0.5 score, gamma, Gini coefficient, Kolmogorov-Smirnov statistic, multi-class log loss,
misclassification rate, root average squared error, and Tau. The default value is misclassification
rate.

Interval target objective function specifies the objective function to optimize for tuning parameters
for an interval target. Possible values are average squared error, mean absolute error, mean square
logarithmic error, root average squared error, root mean absolute error, and root mean square
logarithmic error. The default value is average squared error.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 6

3.03 Multiple Choice Poll

Which of the following statements is true regarding decision trees?

a. A well-fit tree has low bias and high variance.

b. Accuracy is obtained by multiplying the proportion of observations falling
into each leaf by the proportion of those correctly classified in the leaf

and then summing across all leaves.

c. In bottom-up pruning, the subtree with the best performance on training

data is selected.

d. Top-down pruning is usually slower but is considered more effective than
bottom-up pruning.

3-50 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Improving a Decision Tree Model by Changing the Pruning
Parameters

In this demonstration, you change the default settings of the Decision Tree node in the Starter
Template pipeline. You modify the pruning parameters and compare this model performance to the
model built earlier in the course.

1. To recall, the previous model, based on changings on the tree structure and the recursive
partitioning parameters, achieved an average square error of 0.0621 on the Validate partition.

2. Try to improve the model’s performance by modifying some of the settings of the Decision Tree
model. In the properties pane, expand the properties under Pruning Options.

3. Change Subtree method from Cost complexity to Reduced error.

4. Run the Decision Tree node.

5. Open the results for the Decision Tree node.

6. Click the Assessment tab.

The average square error for the tuned Decision Tree model is 0.0619 on the VALIDATE
partition. This fit statistic is slightly better than the model tuned based on the tree structure and
the recursive partitioning parameters, by approximately 1%.

7. Close the Results window.

8. Run the entire pipeline and view the results of the Model Comparison node. The Model
Comparison table shows that the Decision Tree model is currently the champion from the Starter
Template pipeline. This is based on the default fit statistic KS.

3.4 Pruning 3-51

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

9. Close the results of the Model Comparison node.

3-52 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Exercises

1. Building a Decision Tree

a. Build a decision tree using the Autotune feature. Add a Decision Tree node to the Starter
pipeline, below the Variable Selection node. Use the Autotune feature. Explore the settings
that are made available when Autotune is selected. Run a few distinct models by changing
the range of the parameters available in the Autotune option.

Note: This exercise might take several minutes to run.

b. What criteria were selected for the champion model?

• Split criteria

• Pruning method

• Maximum number of branches

• Maximum tree depth

c. How does the autotuned decision tree compare to the other models in the pipeline,
particularly to the Decision Tree model built during the demonstration? Consider the fit
statistic average square error for this comparison.

3.5 Ensembles of Trees 3-53

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3.5 Ensembles of Trees

Even with an understanding of some of the basic guidelines for selecting an algorithm and
incorporating hyperparameter tuning, determining the single most effective machine learning
algorithm (and its tuning parameters) to use for a problem and data set is a daunting task. Ensemble
modeling can take some of that weight off your shoulders and can give you peace of mind that the
predictions are the result of a collaborative effort, or consensus, among multiple models that are
trained either from different algorithms that approach the problem from different perspectives, or
from the same algorithm applied to different samples or using different tuning parameter settings, or
both.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6 2

Essential Discovery Tasks

...

• Select an algorithm.

• Im prove the model.

• Optimize complexity of the model.

• Regularize and tune

hyperparameters of the model.

• Bui ld ensemble models.

3-54 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Decision trees are unstable models. That is, small changes in the training data can cause large
changes in the topology of the tree. However, the overall performance of the tree remains stable
(Breiman et al. 1984). In the above example, changing the class label of one case resulted in a
completely different tree with nearly the same accuracy.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6 3

Instability

Accuracy = 80%

One reversal

Accuracy = 81%

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6 4

Competitor Splits

Logworth

Input RangeMin Max

X1

X2

3.5 Ensembles of Trees 3-55

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The instability results from the large number of univariate splits considered and the fragmentation of
the data. At each split, there are typically a number of splits on the same and different inputs that
give similar performance (competitor splits). A small change in the data can easily result in a different
split being chosen. This in turn produces different subsets in the child nodes. The changes in the
data are even larger in the child nodes. The changes continue to cascade down the tree.

Methods have been devised to take advantage of the instability of trees to create models that are
more powerful. Perturb and combine (P & C) methods generate multiple models by manipulating the
distribution of the data or altering the construction method (such as changing the tree settings) and
then averaging the results (Breiman 1998). (The “perturb” step is illustrated above, where perhaps
the splitting criteria changes between the trees. The “combine” step is illustrated on the next slide.)
Any unstable modeling method can be used, but trees are most often chosen because of their speed
and flexibility.

Here are some perturbation methods:

• resample

• subsample

• add noise

• adaptively reweight

• randomly choose from the competitor splits

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6 5

Perturb

T1 T2 T3

3-56 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

An ensemble model is the combination of multiple models. The combinations can be formed in these
ways:

• voting on the classifications

• using weighted voting, where some models have more weight

• averaging (weighted or unweighted) the predicted values

Ensemble methods are a very active area of research in the fields of machine learning and statistics.
Many other P & C methods have been devised.

The attractiveness of P & C methods is their improved performance over single models. Bauer and
Kohavi (1999) demonstrated the superiority of P & C methods with extensive experimentation. One
reason why simple P & C methods give improved performance is variance reduction. If the base
models have low bias and high variance, then averaging decreases the variance. In contrast ,
combining stable models can negatively affect performance. The reasons why adaptive P & C

methods work go beyond simple variance reduction and are the topic of much research. (For
example, see Breiman 1998.) Graphical explanations show that ensembles of trees have decision
boundaries of much finer resolution than would be possible with a single tree (Rao and Potts 1997).

A new case is scored by running it down the multiple trees and averaging the results. Multiple
models need to be stored and processed. The simple interpretation of a single tree is lost.

Bagging goes a long way towards making a silk purse out of a sow's ear, especially if the
sow's ear is twitchy. …What one loses, with the trees, is a simple and interpretable structure.
What one gains is increased accuracy.

— Breiman (1996)

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6 6

Combine

T1 T2 T3

ave(T1, T2, T3) =

Truth

...

3.5 Ensembles of Trees 3-57

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Bagging (bootstrap aggregation) is the original P & C method (Breiman 1996).

1. Draw K bootstrap samples.

A bootstrap sample is a random sample of size n drawn from the empirical distribution of a
sample of size n. That is, the training data is resampled with replacement. Some of the cases will
be left out of the sample, and some cases will be represented more than once.

2. Build a tree on each bootstrap sample.

Pruning can be counterproductive (Bauer and Kohavi 1999). Large trees with low bias and high
variance are ideal.

3. Vote or average.

For classification problems, take the mean of the posterior probabilities or take the plurality vote
of the predicted class. Bauer and Kohavi (1999) found that averaging the posterior probabilities
gave slightly better performance than voting. Take a mean of the predicted values for regression.

Breiman (1996) used 50 bootstrap replicates for classification and 25 for regression and for
averaging the posterior probabilities. Bauer and Kohavi (1999) used 25 replicates for both voting
and averaging.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6 7

Bagging (Bootstrap Aggregation)

case
1

2
3

4
5

6

freq
1

0
2

0
2

1

k=1

freq
0

1
0

2
2

1

k=2

freq
3

1
0

2
0

0

k=3

freq
1

1
2

0
1

1

k=4 …

...

3-58 Chapter 3 Decision Trees and Ensembles of Trees

“Boosting is a machine learning ensemble meta-algorithm for primarily reducing bias, and also
variance.” (Breiman 1996). "The term boosting refers to a family of algorithms that are able to
convert weak learners to strong learners." (Zhou 2012).

Arcing (adaptive resampling and combining) methods are examples of boosting. They sequentially
perturb the training data based on the results of the previous models. Cases that are incorrectly
classified are given more weight in subsequent models. Arc-x4 (Breiman 1998) is a simplified

version of the AdaBoost (adaptive boosting, also known as Arc-fs) algorithm of Freund and Schapire
(1996). Both algorithms give similar performance (Breiman 1998, Bauer and Kohavi 1999).

At the k th step, a model (decision tree) is fit using weights for each case. For the ith case, the arc-x4
weights (that is, the selection probabilities) are

 

4

4

1 ()
()

1 ()

m i
p i

m i





,

where kim )(0 is the number of times that the ith case is misclassified in the preceding steps.

Unlike bagging, pruning the individual trees improves performance (Bauer and Kohavi 1999).

The weights are incorporated either by using a weighted analysis or by resampling the data such
that the probability that the ith case is selected is)(ip . For convenience, the weights can be

normalized to frequencies by multiplying by the sample size, n (as shown above). Bauer and Kohavi
(1999) found that resampling performed better than reweighting for arc-x4 but did not change the

performance of AdaBoost. AdaBoost uses a different (more complicated) formula for)(ip . Both

formulas put greater weight on cases that are frequently misclassified.

The process is repeated K times, and the K models are combined by voting or averaging the
posterior probabilities. AdaBoost uses weighted voting where models with fewer misclassifications,
particularly of the hard-to-classify cases, are given more weight. Breiman (1998) used K=50. Bauer
and Kohavi (1999) used K=25.

Arcing improves performance to a greater degree than bagging, but the improvement is less
consistent (Breiman 1998, Bauer and Kohavi 1999).

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6 8

Boosting

case
1

2
3

4
5

6

freq
1

1
1

1
1

1

k=1

freq
1.5

.75
1.5

.75

.75

.75

k=2

freq
.5

.25
4.25

1.5
.25

.25

k=3

freq
.97

.06
4.69

.53

.06

.51

k=4 …

m
1

0
1

0
0

0

m
1

0
2

1
0

0

m
2

0
3

1
0

1

*Shown is Arc-x4, one method of boosting

...

3.5 Ensembles of Trees 3-59

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

You can visualize the effects of bagging and boosting on a data set with two inputs. These methods
tend to smooth the prediction surface when compared to a single tree.

Details: Gradient Boosting with an Interval Target

The gradient boosting algorithm is a weighted (
M ...1

) linear combination of (usually) simple

models (
MTT ...1

). (Friedman 2001). In SAS Visual Data Mining and Machine Learning, the base

model is a decision tree.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6 9

Single, Bagged, and Boosted Tree

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

7 0

Gradient Boosting with Decision Trees

• The gradient boosting algorithm is similar to standard boosting, except at
each iteration, the target is the residual from the previous decision tree

model.

• At each step, the accuracy of the tree is computed.

• Successive samples are adjusted to accommodate previous inaccuracies.

• The model is a weighted (1… M) linear combination of (usually) simple
models.

3-60 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Begin with an initial guess, 0F , and proceed in a stage-wise manner fitting subsequent (m) tree

models to “pseudo” residuals (imy~). The residuals are computed from target values (iy) and

predictions from the function at the previous iteration ()(1 im xF ). The function)(xFm is updated by

adding the fitted model,)(xTmm to)(1 xFm .

The shrinkage parameter,  (0< <1) controls the learning rate of the algorithm. Friedman (2001)

found that small values (1.0) lead to better generalization.

In regression trees with interval targets and least-square loss criterion, the “pseudo” residual, imy~ ,

and the ‘guess’, 0F , are defined as follows:

imy~ = iy -)(1 im xF 

0F = y

In classification trees with a binary target ( 1,1y) and binomial log-likelihood loss criterion, the

“pseudo” residuals and 0F are

imy~ =)))(2exp(1/(2 1 imii xFyy 















y

y
F

1

1
log

2

1
0 .

The binary target predictions from the final approximation)(xFM
 can be transformed to yield

probability estimates.

)1/(1ˆ)(2

1

xFMep


  ,)1/(1ˆ)(2

1

xFMep 

Friedman (2002) showed that accuracy and speed can be improved by sub-sampling training data
randomly (without replacement) at each iteration leading to the stochastic gradient boosting
algorithm.

Gradient boosting trains a sequence of trees over multiple iterations similar to boosting. The main
difference is that it minimizes a stochastic gradient descent function when oversampling to reduce
the residuals of the model.

SAS Viya Data Mining and Machine Learning creates a series of trees, which form a single model. A
tree in the series is fit to the residuals of the prediction from the earlier trees in the series. The
residual is defined in terms of the derivative of a loss function. For squared error on an interval
target, ˆ ˆ

i i
r y y  . Each time that the data are used to grow a tree, the accuracy of the tree is

computed. Successive samples are adjusted to accommodate previous inaccuracies. Each
successive sample is weighted per the accuracy of the previous models. (See the SAS Viya Data
Mining and Machine Learning documentation for more details.)

3.5 Ensembles of Trees 3-61

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Autotuning searches for the best combination of the gradient boosting parameters. Performing
autotuning can substantially increase run time.

Autotuning runs based on the following options, which limit the search of all possible combinations in
terms of the gradient boosting parameters.

L1 Regularization penalizes the absolute value for the weights. Different values for L1 are tried
between the range defined by From and To. The default initial value for the L1 is 0. The default for
the range is from 0 to 10.

L2 Regularization penalizes the square value for the weights. Different values for L2 are t ried
between the range established by From and To. The default initial value for the L2 is 0. The default
for the range is from 0 to 10.

Learning Rate controls the size of the weight changes. It ranges from 0 (exclusive) to 1. The default
initial value is 0.1. The default initial value for the learning rate is 0.1. The default for the range is
from 0.01 to 1.

Number of Inputs per Split specifies the number of inputs evaluated per split. The default value is
100. The default range is from 1 to100.

Number of Iterations specifies the number of iterations of a boosting series. The default initial value
is 100. The range is from 20 to 150.

Subsample Rate specifies the subsample rate. The default initial value is 0.5. The default range is
from 0.1 1.

Search Options specifies the options for autotuning searching. The following options are available:

• Genetic algorithm uses an initial Latin hypercube sample that seeds a genetic algorithm. The
genetic algorithm generates a new population of alternative configurations at each iteration.

• Latin hypercube sample performs an optimized grid search that is uniform in each tuning
parameter, but random in combinations.

• Random generates a single sample of purely random configurations.

• Bayesian uses priors to seed the iterative optimization.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

7 1

Autotuning

• Search for the best combination of values in different properties:

• Regularization (L1 and L2)

• Learning rate

• Number of inputs per split

• Number of iterations (trees)

• Subsample rate

• Search method

- Bayesian, Genetic algorithm, Latin hypercube sample, Random

• Validation method

- Partition, cross validation

• Objective function (class and interval targets)

Note: Quantile binning usually does better than bucket binning, which is default.

3-62 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Number of evaluations per iteration specifies the number of tuning evaluations in one iteration.
This option is available only if the Search method is Genetic algorithm or Bayesian. The default
value is 10. It ranges from 2 to 2,147,483,647.

Maximum number of evaluations specifies the maximum number of tuning evaluations. This option
is available only if the Search method is Genetic algorithm or Bayesian. The default value is 50. It
ranges from 3 to 2,147,483,647.

Maximum number of iterations specifies the maximum number of tuning iterations. This option is
available only if the Search method is Genetic algorithm or Bayesian. The default value is 5. It
ranges from 1 to 2,147,483,647.

Sample size specifies the sample size. This option is available only if the Search method is Random
or Latin hypercube sample. The default value is 50. It ranges from 2 to 2,147,483,647.

There are some general options associated with the autotuning search.

Validation method specifies the validation method for finding the objective value. If your data is
partitioned, then that partition is used. Validation method, Validation data proportion, and Cross
validation number of folds are all ignored.

• Partition specifies using the partition validation method. With partition, you specify proportions to
use for randomly assigning observations to each role.

– Validation data proportion specifies the proportion of data to be used for the Partition
validation method. The default value is 0.3.

• K-fold cross validation specifies using the cross validation method. In cross validation, each
model evaluation requires k training executions (on k-1 data folds) and k scoring executions (on
one holdout fold). This increases the evaluation time by approximately a factor of k.

– Cross validation number of folds specifies the number of partition folds in the cross
validation process (the k defined above). Possible values range from 2 to 20. The default value
is 5.

Nominal target objective function specifies the objective function to optimize for tuning
parameters for a nominal target. Possible values are average squared error, area under the curve,
F1 score, F0.5 score, gamma, Gini coefficient, Kolmogorov-Smirnov statistic, multi-class log loss,
misclassification rate, root average squared error, and Tau. The default value is misclassification
rate.

Interval target objective function specifies the objective function to optimize for tuning parameters
for an interval target. Possible values are average square error, mean absolute error, mean square
logarithmic error, root average square error, root mean absolute error, and root mean square
logarithmic error. The default value is average square error.

3.5 Ensembles of Trees 3-63

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Building a Gradient Boosting Model

The algorithm for gradient boosting evolved from the application of boosting methods to regression
trees. The main idea is to compute a sequence of simple trees, where each successive tree is built
for the prediction residuals of the preceding tree. This method builds trees by partitioning the data
into samples at each split node. Then, at each step of the boosting trees algorithm, a best
partitioning of the data is determined, and the deviations of the observed values from the respective
residuals for each partition are computed. The next trees will be fitted to those residuals, to find
another partition that further reduces the residual variance for the data, given the preceding
sequence of trees.

This additive weighted approach of trees can produce excellent fit of the predicted values to the
observed values, even if the specific nature of the relationships between the inputs and the target is
complex. For that reason, the method of gradient boosting by fitting a weighted additive expansion of
simple trees can create general and powerful machine learning models.

In this demonstration, you add a Gradient Boosting node to the Starter Template pipeline. You build a
default Gradient Boosting model, change some of the settings, and compare the model to the other
models in the pipeline.

1. In the Chapter 3 pipeline, right-click the Variable Selection node and select Add below 
Supervised Learning  Gradient Boosting.

2. Keep all properties for the Gradient Boosting node at their defaults. Run the Gradient Boosting
node.

3. Open the results for the Gradient Boosting node.

4. Click the Assessment tab.

The Fit Statistics table, shown above, shows an average square error of 0.0576 on the
VALIDATE partition.

This performance is pretty good, even better than the Decision Tree tuned in the previous
demonstrations. Regardless, try to improve the Gradient Boosting performance by changing
some of the default settings.

5. Close the Results window.

6. Reduce Number of trees from 100 to 50.

7. Under the Tree-splitting Options properties, increase Maximum depth from 6 to 8.

3-64 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

8. Increase Minimum leaf size from 5 to 15.

9. Increase Number of interval bins from 20 to 100.

10. Run the Gradient Boosting node.

11. Open the results for the Gradient Boosting node.

12. The average square error for the tuned Gradient Boosting model is 0.0565 on the VALIDATE
partition. This fit statistic is slightly better than the first model by using the default settings, by
approximately 2%.

13. Close the Results window.

3.5 Ensembles of Trees 3-65

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Exercises

2. Building a Gradient Boosting Model

a. Build a gradient boosting model using the Autotune feature. Add a Gradient Boosting node to
the Chapter 3 pipeline, below the Variable Selection node. Use the Autotune feature. Explore
the settings that are made available when Autotune is selected. Run a few options by

changing the range of the parameters search.

Note: This exercise might take several minutes to run.

b. What criteria were selected for the champion model?

• The number of trees

• Number of variables per split

• Number of bins

• Maximum number of branches

• Maximum depth

c. How does the autotuned Gradient Boosting compare to the other models in the pipeline,
particularly to the Gradient Boosting model built during the demonstration? Consider the fit
statistic average square error for this comparison.

3-66 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

A random forest is an ensemble of simple decision trees, each one able to produce its own response
to a set of input variables. For classification problems, this response takes the form of a class, which
classifies a set of independent variables with one of the categories in the dependent variable.
Alternatively, for regression problems, the tree takes the form of an estimate of the dependent
variable given the set of independent variables.

A forest model consists of an arbitrary number of simple decision trees that are used to determine
the final outcome. For a categorical target, the response of the ensemble of simple decision trees is
the vote for the most popular class or the average of the posterior probabilities of the individual
trees. For an interval target, the response of the ensemble model is the average of the estimate of
the individual decision trees.

The trees that make up a forest differ from each other in two ways:

• The training data for each tree are sampled with replacement from all observations that were
originally in the training data.

• The input variables considered for splitting for any given tree are selected randomly from all
available inputs.

Among these variables, only the variable most associated with the target is used when forming
a split. This means that each tree is created on a sample of the inputs and from a sample of
observations. Repeating this process many, many times creates a more stable model than a single
tree. The reason for using a sample of the data to construct each tree is because when less than all
available observations are used, the generalization error is often improved. In addition, a different
sample is taken for each tree.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

7 4

Forest Models

• A forest model is an ensemble of classification, or regression, trees.

• Trees in the forest differ from each other in two ways:

• Training data for a tree is a sample with replacement from all observations.

• Input variables considered for splitting a node are randomly selected from

available inputs. Only the variable most associated with the target is split
for that node.

3.5 Ensembles of Trees 3-67

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

In the forest algorithm, rather than taking bootstrap samples of only the rows, variables are also
randomly sampled. This results in a forest, consisting of trees that use different combinations of rows
and variables to determine splits. This additional perturbation (beyond bagging) leads to greater
diversity in the trees, and better predictive accuracy.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

7 5

Forest Algorithm

• Recall that bagging takes bootstrap samples of the rows of training data.
All columns are considered for splitting at every step.

• The forest algorithm samples the rows and the columns at each step.

• The forest algorithm perturbs the training data more than the bagging

algorithm.

• This increased variation among the trees in the ensemble often leads
to improved predictive accuracy.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

7 6

Out-of-Bag Sample

• The out-of-bag sample refers to the training data that is excluded during
the construction of an individual tree.

• Observations in the training data that are used to construct an individual

tree are the bagged sample.

• Some model assessments such as the iteration plots are computed using
the out-of-bag sample as well as all the training data.

3-68 Chapter 3 Decision Trees and Ensembles of Trees

A decision tree in a forest trains on new training data that are derived from the original training data
presented to the model. Training different trees with different training data reduces the correlation of
the predictions of the trees, which in turn should improve the predictions of the forest. The training
data for an individual tree exclude some of the available data. The data that are withheld from
training are called the out-of-bag sample. Observations in the training sample are called the bagged
observations, and the training data for a specific decision tree are called the bagged data. For each

individual tree, the out-of-bag sample is used to form predictions. These predictions are more
reliable than those from training data.

Model assessment such as misclassification rates, average squared error, and iteration plots are
constructed on both the entire training data set as well as the out-of-bag sample.

Autotuning searches for the best combination of the forest parameters. Performing autotuning can
substantially increase run time.

Autotuning runs based on some options, which limit the search of all possible combinations in terms
of the forest parameters.

Maximum Depth specifies how deep each tree can grow. It ranges from 1 to 50. The default initial
value for the maximum depth is 20. The default for the range is from 1 to 29.

Number of Trees specifies the number of trees in the forest. It ranges from 1 to 1000. The default
initial value for the number of trees is 100. The default for the range is from 20 to 150.

In-bag Sample Proportion specifies the in-bag sample proportion. It ranges from 0 (exclusive) to 1.
The default initial value for the proportion is 0.6. The default for the range is from 0.1 to 0.9.

Number of Inputs per Split specifies the number of inputs evaluated per split. The default value is
100. The default range is from 1 to100.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

7 7

Autotuning

• Search for the best combination of values in different properties:

• Maximum depth

• Number of trees

• In-bag sample proportion

• Number of inputs per split

• Search method

- Bayesian, Genetic algorithm, Latin hypercube sample, Random

• Validation method

- Partition, cross validation

• Objective function (class and interval targets)

3.5 Ensembles of Trees 3-69

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Search Options specifies the options for autotuning searching. The following options are available:

• Genetic algorithm uses an initial Latin hypercube sample that seeds a genetic algorithm. The
genetic algorithm generates a new population of alternative configurations at each iteration.

• Latin hypercube sample performs an optimized grid search that is uniform in each tuning
parameter, but random in combinations.

• Random generates a single sample of purely random configurations.

• Bayesian uses priors to seed the iterative optimization.

Number of evaluations per iteration specifies the number of tuning evaluations in one iteration.
This option is available only if the search method is Genetic algorithm or Bayesian. The default value
is 10. It ranges from 2 to 2,147,483,647.

Maximum number of evaluations specifies the maximum number of tuning evaluations. This option
is available only if the search method is Genetic algorithm or Bayesian. The default value is 50. It
ranges from 3 to 2,147,483,647.

Maximum number of iterations specifies the maximum number of tuning iterations. This option is
available only if the search method is Genetic algorithm or Bayesian. The default value is 5. It ranges
from 1 to 2,147,483,647.

Sample size specifies the sample size. This option is available only if the search method is Random
or Latin hypercube sample. The default value is 50. It ranges from 2 to 2,147,483,647.

There are some general options associated with the autotuning search.

Validation method specifies the validation method for finding the objective value. If your data is
partitioned, then that partition is used. Validation method, Validation data proportion, and Cross
validation number of folds are all ignored.

• Partition specifies using the partition validation method. With partition, you specify proportions to
use for randomly assigning observations to each role.

– Validation data proportion specifies the proportion of data to be used for the Partition
validation method. The default value is 0.3.

• K-fold cross validation specifies using the cross validation method. In cross validation, each
model evaluation requires k training executions (on k-1 data folds) and k scoring executions (on
one holdout fold). This increases the evaluation time by approximately a factor of k.

– Cross validation number of folds specifies the number of partition folds in the cross
validation process (the k defined above). Possible values range from 2 to 20. The default value
is 5.

Nominal target objective function specifies the objective function to optimize for tuning
parameters for a nominal target. Possible values are average square error, area under the curve, F1
score, F0.5 score, gamma, Gini coefficient, Kolmogorov-Smirnov statistic, multi-class log loss,

misclassification rate, root average square error, and Tau. The default value is misclassification rate.

Interval target objective function specifies the objective function to optimize for tuning parameters
for an interval target. Possible values are average square error, mean absolute error, mean square
logarithmic error, root average square error, root mean absolute error, and root mean square
logarithmic error. The default value is average square error.

3-70 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

7 8

3.04 Multiple Choice Poll

Which of the following statements is true regarding tree-based models?

a. Small changes in the training data can cause large changes in the
topology of a tree.

b. Ensemble models are used only with decision trees.

c. In the boosting algorithm, cases that are correctly classified are given
more weight in subsequent models.

d. In the bagging algorithm, the training data is resampled without

replacement.

3.5 Ensembles of Trees 3-71

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Modeling a Binary Target with a Forest

In this demonstration, you add a Forest node to the Chapter 3 pipeline. You build a default Forest
model, change some of the settings, and compare the model to the other models in the pipeline.

1. In the Starter Template pipeline, right-click the Variable Selection node and select Add
below  Supervised Learning  Forest.

2. Keep all properties for the Forest at their defaults. Run the Forest node.

3. Open the results for the Forest node.

4. Click the Assessment tab.

The Fit Statistics table shows an average square error of 0.0630 on the VALIDATE partition.

5. This performance is again pretty good, better than the decision tree tuned in the previous
demonstrations. But again, try to improve the forest performance by changing some of the
default settings. Close the Results window.

6. Reduce Number of trees from 100 to 50.

7. Under the Tree-splitting Options properties, change Class Target Criterion from Information
gain ratio to Entropy.

8. Decrease Maximum depth from 20 to 12.

9. Increase Minimum leaf size from 5 to 15.

10. Increase Number of interval bins from 20 to 100.

3-72 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

11. Clear the box for the option Use default number of inputs to consider per split, which by
default is the square root of the number of available inputs. Set this parameter to 7 (half of
inputs).

12. Run the Forest node.

13. Open the results for the Forest node.

14. Click the Assessment tab.

The average square error for the tuned Forest model is 0.0601 on the VALIDATE partition. This
fit statistic is a little bit better than the first model by using the default settings, by approximately
5%.

15. Close the Results window.

3.5 Ensembles of Trees 3-73

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

16. Run the entire pipeline and view the results of model comparison. The Forest is now the
champion model of the pipeline, based on default KS.

17. Close the Results window.

3-74 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Exercises

3. Building a Forest Model

a. Build a forest using the Autotune feature. Add a Forest node to the Chapter 3 pipeline, below
the Variable Selection node. Use the Autotune feature. Explore the settings that are available
when Autotune is selected.

Note: This exercise might take several minutes to run.

b. What criteria were selected for the champion model?

• The number of trees

• Number of variables per split

• Number of bins

• Maximum number of branches

• Maximum depth

c. How does the autotuned forest compare to the other models in the pipeline, particularly to
the Forest model built during the demonstration? Consider the fit statistic average square
error for this comparison.

3.6 Solutions 3-75

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3.6 Solutions

Solutions to Exercises

1. Building a Decision Tree

a. Build a decision tree using the Autotune feature. Add a Decision Tree node to the Chapter 3
pipeline, below to the Variable Selection node. Use the Autotune feature. Explore the
settings that are made available when Autotune is selected, but keep all properties at their
defaults.

1) On Starter Template pipeline, right-click the Variable Selection node and select Add
below  Supervised Learning  Decision Tree.

2) In the properties pane, turn on the Perform Autotuning option. The default properties
show starting values and ranges that are tried for each property in the Decision Tree
model.

3) Right-click the Decision Tree node and select Run. This process might take few minutes.

4) When the execution is over, right-click the Decision Tree node and select Results.

5) Examine the Results window. Maximize the Autotune Results window and notice the
different evaluations performed. Restore the Autotune Results window.

6) Scroll down and observe the Fit Statistics window. The average square error for the
Autotune model is 0.0610 on the VALIDATE partition.

3-76 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

7) Scroll down and maximize the Output window. This output shows the set of parameters
selected for the final Decision Tree model.

b. What criteria were selected for the champion model?

• Split criteria: GINI

• Pruning method: Cost Complexity

• Maximum number of branches: 2

• Maximum tree depth: 15

c. How does the autotuned decision tree compare to the other models in the pipeline,
particularly to the Decision Tree model built during the demonstration? Consider the fit
statistics average square error for this comparison.

It performed better than the decision tree built during the demonstration.

2. Building a Gradient Boosting Model

a. Build a gradient boosting model using the Autotune feature. Add a Gradient Boosting node
to the Chapter 3 pipeline, below to the Variable Selection node. Use the Autotune feature.
Explore the settings that are made available when Autotune is selected, but keep all
properties at their defaults.

1) On the Starter Template pipeline, right-click the Variable Selection node and select Add
below  Supervised Learning  Gradient Boosting.

2) In the properties pane, turn on the Perform Autotuning option. The default properties
show starting values and ranges that are tried for each property in the Gradient Boosting
model.

3) Right-click the Gradient Boosting node and select Run. This process might take few
minutes.

4) When the execution is over, right-click the Gradient Boosting node and select Results.

3.6 Solutions 3-77

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5) Examine the Results window. Maximize the Autotune Results window and notice the
different evaluations performed. Restore the Autotune Results window.

6) Scroll down and observe the Fit Statistics window. The average square error for the
Autotune model is 0.0595 on the VALIDATE partition.

7) Scroll down and maximize the Output window. This output shows the set of parameters
selected for the final Gradient Boosting model.

3-78 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

b. What criteria were selected for the champion model?

• The number of trees: 142

• Number of variables per split: 9

• Number of bins: 20

• Maximum number of branches: 2

• Maximum depth: 6

c. How does the autotuned Gradient Boosting compare to the other models in the pipeline,
particularly to the Gradient Boosting model built during the demonstration? Consider the fit
statistic average square error for this comparison.

It performed better than the gradient boosting built during the demonstration.

3. Building a Forest Model

a. Build a forest using the Autotune feature. Add a Forest node to the Chapter 3 pipeline,
below the Variable Selection node. Use the Autotune feature. Run few options by changing
the range of the parameters search.

1) On the Starter Template pipeline, right-click the Variable Selection node and select
Add below  Supervised Learning  Forest.

2) In the properties pane, turn on the Perform Autotuning option. The default properties
show starting values and ranges that are tried for each property in the Forest model.

3) Right-click the Forest node and select Run. This process might take few minutes.

4) When the execution is over, right-click the Forest node and select Results.

5) Examine the Results window. Maximize the Autotune Results window and notice the
different evaluations performed. Restore the Autotune Results window.

6) Scroll down and observe the Fit Statistics window. The average square error for the
Autotune model is 0.0588 on the VALIDATE partition.

3.6 Solutions 3-79

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

7) Scroll down and maximize the Output window. This output shows the set of parameters
selected for the final Forest model.

b. What criteria were selected for the champion model?

• The number of trees: 78

• Number of variables per split: 5

• Number of bins: 20

• Maximum number of branches: 2

• Maximum depth: 29

c. How does the autotuned forest compare to the other models in the pipeline, particularly to
the Forest model built during the demonstration? Consider the fit statistic average square
error for this comparison.

It performed better than the Forest built during the demonstration.

3-80 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Solutions to Student Activities (Polls/Quizzes)

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 5

3.01 Multiple Choice Poll – Correct Answer

Which of the following statements is true regarding decision trees?

a. To predict cases, decision trees use rules that involve the values or
categories of the input variables.

b. Decision trees can handle only categorical targets.

c. The predictor variables can appear only in a single split in the tree.

d. The splits in decision trees can be only binary.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 3

3.02 Multiple Choice Poll – Correct Answer

Which of the following statements is true regarding decision trees?

a. The recursive partitioning used to construct decision trees leads them to
being uninterpretable.

b. The optimal split for the next input considered is the one that minimizes

the logworth function for that input.

c. The maximal decision tree is usually the one used to score new data.

d. The logworth of a split can sometimes be negative.

3.6 Solutions 3-81

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 7

3.03 Multiple Choice Poll – Correct Answer

Which of the following statements is true regarding decision trees?

a. A well-fit tree has low bias and high variance.

b. Accuracy is obtained by multiplying the proportion of observations falling
into each leaf by the proportion of those correctly classified in the leaf

and then summing across all leaves.

c. In bottom-up pruning, the subtree with the best performance on training

data is selected.

d. Top-down pruning is usually slower but is considered more effective than
bottom-up pruning.

Copyright © S AS Inst i tute Inc. A l l r i ghts reserved.

79

3.04 Multiple Choice Poll – Correct Answer

Which of the following statements is true regarding tree-based models?

a. Small changes in the training data can cause large changes in the
topology of a tree.

b. Ensemble models are used only with decision trees.

c. In the boosting algorithm, cases that are correctly classified are given
more weight in subsequent models.

d. In the bagging algorithm, the training data is resampled without
replacement.

3-82 Chapter 3 Decision Trees and Ensembles of Trees

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Summary of Decision Tree, Forest, and Gradient Boosting Models

The following chart shows the different models’ performance for decision tree, gradient boosting, and
forest. The decision tree model was improved based on the topics covered in this chapter, such as
different tree structures, criteria for recursive partitioning, and pruning approaches. For the decision
tree, starting from the default settings, each one of those topics was applied to improve the model’s
performance. Finally, the decision tree based on the Autotune feature was created.

Similarly, for gradient boosting and forest, we started from the model with the default settings and
tuned the models to increase performance. At the end, we ran both gradient boosting and forest
based on the Autotune feature.

The Autotune feature achieved the best model performance for the decision tree and for the forest.
The tuned model built during the demonstration achieved the best model performance for the

gradient boosting.

0.0595

0.0601

0.063

0.0568

0.0565

0.0576

0.061

0.0619

0.0621

0.0801

0.0856

Forest - autotune

Forest - tuned

Forest - default settings

Gradient boosting - autotune

Gradient boosting - tuned

Gradient boosting - default settings

Decision tree - autotune

Decision tree - pruning

Decision tree - recursive partitioning

Decision tree - tree structure

Decision tree - default settings

Average Square Error

Chapter 4 Neural Networks

4.1 Introduction ... 4-3

Demonstration: Building a Neural Network Model with Default Settings 4-15

4.2 Network Architecture ... 4-20

Demonstration: Improving a Neural Network Model by Changing the Network
Architecture Parameters .. 4-27

4.3 Learning .. 4-28

Demonstration: Improving a Neural Network Model by Changing the Network
Learning and Optimization Parameters .. 4-52

Exercises... 4-54

4.4 Solutions ... 4-55

Solutions to Exercises ... 4-55

Solutions to Student Activities (Polls/Quizzes) ... 4-57

4-2 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4.1 Introduction 4-3

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4.1 Introduction

The discovery phase of the analytic life cycle continues. At this point we have the appropriate data,
we have explored and created new features on the data, and we are now ready to use machine

learning algorithms to build predictive models or discover patterns in the data. In the previous
chapter, we created and refined decision tree and tree-based models. Now we continue the
experimentation with different types of approaches by building neural network models.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3

Essential Discovery Tasks

...

• Select an algorithm.

• Im prove the model.

• Optimize complexity of the model.

• Regularize and tune

hyperparameters of the model.

4-4 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Assuming that the functional form (that is, the equation) defining the nonlinear relationship between
y and x is known a priori, and that only the parameters are unknown, then the parameters can be

estimated using a technique known as nonlinear regression (Seber and Wild 1989).

Note: If the nonlinear equation is not known, one option is to assume that the input-output
relationship takes on some hypothesized functional form. A popular choice is a polynomial. A
single input, x, polynomial of degree d is given by the equation:





d

k

k

k

d

d xwwxwxwxwwy
1

0

2

210 ...ˆ

One reason for the polynomial’s popularity is the Weierstrass approximation theorem. The
theorem asserts that any continuous-valued function on a real interval [a:b], can be
approximated arbitrarily closely by a polynomial function. This means that a linear regression
model using polynomials of sufficient complexity is actually a universal approximator.

Nonlinear regression models are more difficult to estimate than linear models. Not only must you
specify the full nonlinear regression expression to be modeled, an optimization method must be
used to efficiently guide the parameter search process. You must also provide initial parameter
estimates. The value of these initial parameter estimates is critical. Starting at a bad location in the
parameter space results in an inferior solution or, perhaps, even failure to achieve convergence at
all.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4

Nonlinear Regression

• Nonlinear regression models are more difficult to specify and to estimate
than linear models.

• At a minimum, they require the following:

• relatively accurate initial parameter estimates

• the completely specified nonlinear equation

• an optimization method to efficiently guide the parameter search process

4.1 Introduction 4-5

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Traditional nonlinear modeling techniques become vastly more difficult as the number of inputs
increase. For example, it is uncommon to see parametric nonlinear regression models with more

than a few inputs, because a suitable parametric function is usually not derivable. And smoothing
splines and other nonparametric regression methods suffer because of the relative sparseness of
data in higher dimensions.

In contrast, neural networks are also flexible multivariate function estimators that generally perform
well in sparse, high-dimensional spaces. Moreover, it is not necessary to specify their functional

form.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5

Traditional Approaches versus Neural Networks

• Traditional nonlinear methods are limited with respect to the number
of inputs that they can consider.

• Nonlinear models can fail because it is very difficult to specify their

functional form (equation).

• Nonparametric regression models can fail because of the relative
sparseness of data in higher dimensions.

• Neural networks, which require no specified form, often work well
in sparse, high-dimensional spaces.

4-6 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Although neural networks are parametric nonlinear regression models, they behave like
nonparametric regression (smoothing splines), in that it is not necessary to specify the functional
form of the model. This enables construction of models when the relationship between the inputs
and outputs is unknown.

The chief benefit of artificial neural networks is their unlimited flexibility. A neural network is a
universal approximator, which means that, with a sufficient number of hidden units and enough time,
a neural network can model any input-output relationship, no matter how complex.

The question of how many layers and, in particular, how many neurons are needed in each layer for
a given modeling task is a very difficult one to answer. This issue is discussed later in the chapter.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6

Universal Approximation

Given enough neurons and time, a neural network can model any
input/output relationship, to any degree of precision.

4.1 Introduction 4-7

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

This is the famous black box objection to neural networks. Suggesting mystery, the term black box
is often used simply to disparage neural networks by implying that they can never be interpreted.

There are two ways to respond to this criticism.

1. The first response is to recognize that, in many tasks, pure prediction is the goal. Understanding
how the inputs affect the prediction is of secondary importance. In other applications, the
opposite is true: predictive power is a consideration only to the extent that it validates the
interpretive power of the model. Neural networks are most appropriate for pure prediction tasks .

2. The second response is to show ways in which the black box has been “opened,” at least
partially. Two approaches are direct weight examination through Hinton diagrams and input
sensitivity assessment. A particularly interesting method of opening the black box is
decomposition (Tsukimoto 2000), which contends that the weights in a neural network can be
approximated by a set of IF-THEN rules. A related approach is to use a decision tree to interpret
the neural network’s predictions.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

7

Response to the Lack of Interpretability Objection

• This is the famous black-box objection, often raised merely to disparage
neural networks.

• There are two ways to respond to this objection:

• by admitting that neural networks are most relevant to pure prediction tasks

• by applying other modeling techniques, such as decision trees, to try to help

“open” the black box

4-8 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Sometimes neural networks do not outperform simpler and easier to implement models like
regression. This has led to disenchantment with the more complex neural networks. A possible

explanation for this failure was suggested by David Shepard Associates (1999) in The New Direct
Marketing:

“…if marketers think they can blindly use [neural networks] without the aid of an experienced
statistician or an AI expert, they are making, in our opinion, a very serious mistake …”

Not only is there a wide array of neural network architectures available today, the staggering number
of options within any given architecture makes successful model construction less likely if the
modeler is unfamiliar with the theoretical and practical implications of each option.

Another possible explanation for this disenchantment with the relative performance of neural
networks in some situations is found in the signal-to-noise ratio.

To illustrate, in the left panel of the above diagram, the nonlinear model that is produced by the
nonlinear neural network would clearly produce a superior fit to the data, as compared to the fit

produced by the linear regression model. There is a strong pattern (signal) relative to the amount of
variation (noise) around the pattern. The signal-to-noise ratio is high.

The situation in the right panel is different: the signal-to-noise ratio is low. The regression and neural
network models will likely offer a comparable fit to the data. Therefore, Ockham’s razor would imply
that, in this case, there would be no advantage to using the more complex neural network.

Note: Ockham’s razor states that “entities must not be multiplied beyond necessity.” Thus, if
competing hypotheses are equal in other respects, Ockham’s razor recommends choosing
the hypothesis with the fewest postulates. In short, the simplest hypothesis is usually the
correct one.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

8

Impact of Noisy Data

neural network

regression

neural network

regression

high
noise

signal
 low

noise

signal


4.1 Introduction 4-9

With its exotic sounding name, a Neural Network model (formally, for the models discussed in this
course, multilayer perceptrons) is often regarded as a mysterious and powerful predictive tool.
Perhaps surprisingly, the most typical form of the model is, in fact, a natural extension of a
regression model.

The prediction formula used to predict new cases is similar to a regression's, but with an interesting
and flexible addition. This addition enables a properly trained neural network to model virtually any
association between input and target variables. However, flexibility comes at a price because the
problem of input selection is not easily addressed by a neural network. The inability to select inputs
is offset (somewhat) by a complexity optimization method named stopped training. Stopped training
can reduce the chances of overfitting, even in the presence of redundant and irrelevant inputs.

Like regressions, neural networks predict cases using a mathematical equation involving the values
of the input variables.

A neural network can be thought of as a regression model on a set of derived inputs, called hidden
units. In turn, the hidden units can be thought of as regressions on the original inputs. The hidden
unit “regressions” include a default link function (in neural network language, an activation function),
the hyperbolic tangent. The hyperbolic tangent is a shift and rescaling of the logistic function.

Because of a neural network’s biological roots, its components receive different names from

corresponding components of a regression model. Instead of an intercept estimate, a neural network

has a bias estimate. Instead of parameter estimates, a neural network has weight estimates.

What makes neural networks interesting is their ability to approximate virtually any continuous

association between the inputs and the target. You simply specify the correct number of hidden units

and find reasonable values for the weights. Specifying the correct number of hidden units involves

some trial and error. Finding reasonable values for the weights is done by least squares estimation

(for interval-valued targets).

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

9

Neural Network Prediction Formula

0

1

5- 5

- 1

tan h

activation function

prediction estimate

weight estimate
bias estimate

hidden unit

4-10 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

When the target variable is binary, as in the demonstration data, the main neural network regression
equation receives the same logit link function featured in logistic regression. As with logistic
regression, the weight estimation process changes from least squares to maximum likelihood.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 0

Neural Network Binary Prediction Formula

0

1

5-5

-1

tanh

0 1

5

-5

logit
link function

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 1

Neural Network Diagram

y

target
layer

H1

H2

H3

hidden
layer

x2

input
layer

x1

4.1 Introduction 4-11

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Multilayer perceptron models were originally inspired by neurophysiology and the interconnections
between neurons, and they are often represented by a network diagram instead of an equation. The
basic model form arranges neurons in layers. The first layer, called the input layer, connects to a
layer of neurons called a hidden layer, which, in turn, connects to a final layer called the target or
output layer. Each element in the diagram has a counterpart in the network equation. The blocks in
the diagram correspond to inputs, hidden units, and target variables. The block interconnections
correspond to the network equation weights.

To demonstrate the properties of a neural network model, consider again the two-color prediction
problem. As always, the goal is to predict the target color based on the location in the unit square.

As with regressions, the predictions can be decisions, rankings, or estimates. The logit equation
produces a ranking or logit score.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 2

Prediction Illustration: Neural Networks

logit equation

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

x1

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x2

4-12 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

As with a regression model, the primary task is to obtain parameter, or in the neural network case,
weight estimates that result in accurate predictions. However, a major difference between a neural

network and a regression model is the number of values to be estimated and the complicated
relationship between the weights.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 3

Prediction Illustration: Neural Networks

logit equation

Need weight estimates.

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

x1

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x2

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 4

Prediction Illustration: Neural Networks

logit equation

Log-likelihood Function

Weight estimates are found
by maximizing:

0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

x1

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x2

4.1 Introduction 4-13

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

For a binary target, the weight estimation process is driven by an attempt to maximize the log-
likelihood function. Unfortunately, in the case of a Neural Network model, the maximization process
is complicated by local optima as well as a tendency to create overfit models. A technique illustrated
in the next section (usually) overcomes these difficulties and produces a reasonable model.

Note: By default, the Neural Network task scales all input variables prior to the weight estimation
step so that they have a midrange of zero, a minimum of -1, and a maximum of 1. This
default standardization method is known as Midrange. Other options for this property are
standard deviation and no standardization. These settings are controlled by the
Standardization Method property, which is found on the Options tab.

Even a relatively simple neural network with three hidden units permits elaborate associations
between the inputs and the target. Although the model might be simple, explanation of the model is
decidedly not. This lack of explicability is frequently cited as a major disadvantage of a neural
network. Of course, complex input or target associations are difficult to explain no matter what

technique is used to model them. Neural networks should not be faulted, assuming that they
correctly modeled this association.

After the prediction formula is established, obtaining a prediction is strictly a matter of plugging the
input measurements into the hidden unit expressions. In the same way as with regression models,
you can obtain a prediction estimate using the logistic function.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 5

Prediction Illustration: Neural Networks

logit equation 0.70

0.60

0.50

0.40

0.40

0.60

0.50

0.50

0.60

0.30

Probability estimates are
obtained by solving the logit

equation for p for each (x1, x2).^
0.0 0.50.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1.0

x1

0.0

0.5

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1.0

x2

4-14 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 6

4.01 Multiple Choice Poll

Which of the following statements is true regarding neural networks?

a. Neural networks are one of the slowest scoring models.

b. Neural networks cannot handle large volumes of data.

c. Neural networks are most appropriate for pure prediction tasks.

d. Neural networks perform well when the signal to noise ratio is low.

4.1 Introduction 4-15

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Building a Neural Network Model with Default Settings

In this demonstration, you create a new pipeline using the CPML demo pipeline and add a Neural
Network node to it. You build the Neural Network model using the default settings of the node.

1. Click the plus sign (+) next to the Chapter 3 pipeline tab to add a new pipeline.

2. In the New Pipeline window, enter Chapter 4 in the Name field, access the menu under the
Template property, and select CPML demo pipeline .

3. Click Save.

4. In the Chapter 4 pipeline, right-click the Variable Selection node and select Add below 
Supervised Learning  Neural Network.

5. Keep all properties for the Neural Network at their defaults.

6. Run the Neural Network node.

4-16 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

7. Open the results for the Neural Network node.

There are several charts and plots to help you evaluate the model’s performance. The first plot is
the Network Diagram, which presents the final neural network structure for this model, including
the hidden layer and the hidden units.

The Iteration plot shows the model’s performance based on the valid error throughout the
training process when new iterations are added to achieve the final model.

4.1 Introduction 4-17

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The Node Score Code window shows the final score code that can be deployed in production.

Similarly, the Train Code window shows the train code that can be used to train the model based
on different data sets or in different platforms.

4-18 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Finally, the Output window shows the final neural network model parameters, the iteration
history, and the optimization process.

8. Click the Assessment tab.

The first chart is the Cumulative Lift, showing the model’s performance ordered by the
percentage of the population. This chart is very useful for selecting the model based on a
particular target of the customer base. It shows how much better the model is than the random
events.

4.1 Introduction 4-19

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

For a binary target, you also have the ROC curve, which shows the model’s performance
considering the true positive rate and the false positive rate. It is good to foresee the
performance on a specific business events, when all positive cases are selected. It shows that
the model’s performance based on the positive cases were predicted right and the positive
cases were predicted wrong. ROC is very useful for deployment.

Finally, you have the Fit Statistics output, which shows the model’s performance based on some
assessment measures, such as average square error.

The Fit Statistics shows an average square error of 0.0743 on the VALIDATE partition.

9. Close the Results window.

4-20 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4.2 Network Architecture

One of the methods for improving neural network models are changing their architectures by adding
hidden layers and adding hidden units, all of which make the models more flexible.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 0

Essential Discovery Tasks

...

• Select an algorithm.

• Im prove the model.

• Optimize complexity of the model.

• Regularize and tune

hyperparameters of the model.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 1

Multilayer Perceptron

 
 


















h

i

d

j

jijiii xwwgwwyg
1 1

00

1)ˆ(

hidden layer

hidden layerinput layer target layer

 yg ˆ1

x1

xd

w0

w01

w0n
wdn

w1n

wd1

w11

w1

wn

......

4.2 Netw ork Architecture 4-21

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

There are three layers in the basic multilayer perceptron (MLP) neural network:

1. An input layer contains a neuron/unit for each input variable. The input layer neurons have no
adjustable parameters (weights). They simply pass the positive or negative input to the next
layer.

2. A hidden layer has hidden units that (by default) perform a sigmoidal transformation of the
weighted and summed input activations.

3. An output layer shapes and combines the nonlinear hidden layer activation values.

A single hidden-layer multilayer perceptron constructs a limited extent region, or bump, of large
values surrounded by smaller values (Principe et al. 2000). For example, the intersection of the
hyper-planes created by a hidden layer consisting of three hidden units forms a triangle-shaped
bump.

The hidden and output layers must be connected by a nonlinear function in order to act as separate
layers. Otherwise, the multilayer perceptron collapses into a linear perceptron. More formally, if
matrix A is the set of weights that transforms input matrix X into the hidden layer output values, and
matrix B is the set of weights that transforms the hidden unit output into the final estimates Y, then
the linearly connected multilayer network can be represented as Y=B[A(X)]. However, if a single-
layer weight matrix C=BA is created, exactly the same output can be obtained from the single-layer
network: Y=C(X).

The number of parameters in an MLP with k interval inputs grows quickly with the number of hidden
units, h, considered. The number of parameters is given by the equation

1)2(1)1( khhkh .

Note: The “number of parameters” equations in this chapter assume that the inputs are interval or
ratio level. Each nominal or ordinal input increases k by the number of classes in the
variable, minus 1.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 2

Skip-Layer Perceptron

skip layer

 
 

 














d

k

kk

h

i

d

j

jijiii xwxwwgwwyg
1

11

1 1

00

1)ˆ(

hidden layer

 yg ˆ1

x1

xd

w0

w01

w0n

wdn

w1n

wd1

w11

w1

wn

......

4-22 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

By adding direct connections from the input to output layers, bypassing the hidden layer, it is
possible to combine the linear and nonlinear neural network paradigms. The result is known as a
sk ip-layer network .

Because a multilayer perceptron is already a universal approximator, in general there is little to be
gained by adding direct connections. Adding direct connections does not make it any more
universal. However, a multilayer perceptron is inherently stationary (Leisch et al. 1999). This means
that it will tend to perform poorly when applied to nonstationary data. In this case, adding direct
connections can help.

The number of parameters in a skip-layer network with k inputs and h hidden units is 1)2( kkh .

In SAS Visual Data Mining and Machine Learning, skip-layer perceptrons are constructed when the
property Allow direct connections between input and target neurons, located on the Options
tab, is selected.

As Sarle (1997) writes in his Neural Network FAQ, “If you have only one input, there seems to be no
advantage to using more than one hidden layer. But things get much more complicated when there
are two or more inputs.”

When a second layer of hidden units is added, the single layer network’s bumps form disjoint regions
(Principe et al. 2000). The number of neurons in the second hidden layer determines the number of
bumps formed in the input space (Principe et al. 2000). Now approximations in different areas of the
input space can be adjusted independently of each other. This gives an MLP with two hidden layers
the ability to realize discontinuous input-output mappings.

Unfortunately, the number of parameters in a two-layer network grows very quickly. If there are h1
and h2 units in the first and second hidden layers respectively, and k (interval) inputs, the number of
parameters is given by the following equation:

1)1()1(2121  hhhkh

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 3

MLP with Two Hidden Layers

  
  


















2 1

1 1 1

000

1)()ˆ(
h

k

h

j

d

i

iijkjkjjkkkk xwwgwwgwwyg

nested hidden layers

 yg ˆ1

0w

10w

… …

kw01

khw
10

1x

dx

k
w11

1w

2hw

11w

21h
w

1j
w

2
0h

w
2hjw

11hw

21hhw

jk
w1

kh
w

11

kdw
1

khdw
1

jkdw
kdw

1

jkw0

4.2 Netw ork Architecture 4-23

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Details: More Than Two Hidden Layers

You need at most two hidden layers to approximate any function (Cybenko 1988). In fact, with
gradient-based learning methods, it has been found that when more than two hidden layers are
used, learning often slows to a crawl. This is known as the vanishing gradient problem. This problem

arises because the chain rule, used to update the hidden unit weights, has the effect of multiplying n
small numbers to compute the gradients of the front layers in an n-layer network. The gradient
therefore decreases exponentially with n.

Recently, however, a major advance in neural network research known as deep learning (Hinton
2006) has shown that consideration of more than two hidden layers can offer substantial gains. The
layers are typically trained in pairs, thereby overcoming the vanishing gradient problem. Deep

learning methods transform the representation at one level (starting with the raw input) into a
representation at a higher, slightly more abstract level. In order to model a target vector, a final layer
of output units can be added to the top of the network, and the whole system can be fine-tuned using
backpropagation.

The possible number of hidden layers in SAS Visual Data Mining and Machine Learning ranges from
0 to 10. The default is 1.

After the weighted inputs and the bias have been combined, the neuron’s net input is passed
through an activation function. Many of the defining hidden unit activation functions are members of
the sigmoid family. The most famous member of the sigmoid family is the logistic function:

  p
e

net
net

ˆ
1

1
logistic 





, where 




d

i

ii xwwnet
1

0

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 4

Activation Functions

logistic

tanh

0

1

1
0 Net Input

A
ct

iv
at

io
n

4-24 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The logistic activation function constrains its output to the range 0:1, making it an ideal for

generating probability (p̂) estimates. In statistics, the logistic function is better known as the

logit-link function:

)
ˆ1

ˆ
ln()ˆ(logit

p

p
p


 = ln(odds)

Although the logistic activation function was used in early neural network research, many other
sigmoidal activation functions exist. One that plays a key role in the Neural Network node is the
hyperbolic tangent (tanh). In fact, it is the default hidden unit activation function.

netnet

netnet

ee

ee
net








)(tanh

The hyperbolic tangent ranges from -1 to 1. This means that the inflection point is at 0 rather than at
0.5, as it is in the logistic sigmoid. This offers a small advantage during network initialization.

Interestingly, with respect to the hidden layer neurons, it does not seem to matter which of the

sigmoid activation functions is used. The logistic and the hyperbolic tangent activation functions
perform more or less equivalently.

Several useful non-sigmoidal activation functions are also available. For example, the exponential

activation function generates values that range from 0 to . This is particularly useful when fitting
distributions that are undefined for negative input values (for example, Poisson or gamma

distributions).

exponential(net) nete

Sigmoid and hyperbolic tangent functions have lower and upper limits. The softplus activation
function returns nonnegative values. Softplus values range from zero to infinity.

softplus(net) = ln⁡(1 + 𝑒𝑛𝑒𝑡)

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 5

Function Plot Equation Range

Exponential 𝑒)

Identity ()

Logistic
1

1+ 𝑒
(1)

Rectified Linear Unit (ReLU)
 ⁡ ⁡

 ⁡ ⁡
)

Sine n⁡() 1 1

Softplus ln⁡(1+ 𝑒))

Hyperbolic Tangent (Tanh)
(𝑒 𝑒)

(𝑒 + 𝑒)
(1 1)

Activation Functions

4.2 Netw ork Architecture 4-25

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The identity activation function does not transform its argument at all. (See below.) This is useful

when the desired response range is - to , such as when a normal target distribution is assumed.

identity(net) = net

Identity is the default output activation function.

Another activation function is the rectifier. The rectifier has now become the de facto standard in
neural networks. Although many variants exist, the rectifier activation function is usually defined by
the following equation:

),0max()(netnetrectifier 

It has been argued to be more biologically plausible than the widely used logistic sigmoid and its
more practical counterpart, the hyperbolic tangent. A neuron using the rectifier activation function is
called a rectified linear unit or, simply, a rectilinear unit (ReLU).

And finally, the sine activation function is also available. This is a well-known mathematical function.
There are many ways to define the sine function. For example, the sine function can be defined

using a right-angled triangle or a unit circle (LeCun et al. 1998).

The weights and biases give the sigmoidal surfaces their range. For example, because the
maximum value returned by the hyperbolic tangent activation function is 1, the upper bound of the
hyperbolic tangent’s activation range is given by the output unit’s bias plus its weight:

1010110110)1()tanh(wwwwxwwww 

Conversely, the minimum activation value of the hyperbolic tangent function is –1, which means that
the lower bound of the hyperbolic tangent’s activation range is as follows:

1010110110)1()tanh(wwwwxwwww 

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 6

Shaping the Sigmoid

4-26 Chapter 4 Neural Netw orks

The weights and biases also give the sigmoid surfaces their flexibility. The sign of the weight
associated with input x controls the direction of the sigmoid. Positive weight values produce the
familiar s-shaped curve, and a negative weight value flips the sigmoid horizontally. The larger the
absolute value of the weight, the steeper the curve. Steep sigmoids are often held to be
responsible for overfitting.

Note: Stopped training is one way to help keep the sigmoids from becoming too steep. This method
is discussed in Section 3 of this chapter.

The question of the number of hidden units required is more difficult to answer than the required
number of layers. If the network has too many hidden units, it will model random variation (noise) as
well as the desired pattern (signal). This means that the model will fail to generalize. Conversely,
having too few hidden units will fail to adequately capture the underlying signal. This means that the
error value will tend to stabilize at a high value. Again, the model will fail to generalize.

Unfortunately, the optimal number of hidden units is problem specific.

However, there are guidelines. For example, Principe et al. (2000) suggest that the number of units
in the first hidden layer should be about twice the number of input dimensions. This will reflect the
number of discriminant functions in the input space. If a second hidden layer is required, then the
number of hidden units in the second layer should reflect the number of distinct regions needed
(Principe et al. 2000).

The appropriate number of hidden units is, perhaps, best determined empirically. You start with a
linear network and measure its performance on some appropriate metric, l ike the Schwarz-Bayesian
criterion. Then increase the number of hidden units by one and observe the impact on the network ’s
fit. Continue adding hidden units until the network’s performance drops. The final network is given by
the number of hidden units in the network prior to the hidden unit addition that degraded the model’s
performance.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 7

How Many Hidden Units Do You Need?

• The optimal number of units required in each hidden layer is problem
specific.

• Principe et al. (2000) offered the following guidelines:

• The number of units in the first hidden layer should be about twice the number

of input dimensions.

• The number of units in the second hidden layer reflects the number of distinct
regions needed.

• The optimal number can be determined empirically.

4.2 Netw ork Architecture 4-27

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Improving a Neural Network Model by Changing the Network
Architecture Parameters

In this demonstration, you change the default settings of the Neural Network node in the Chapter 4
pipeline. You modify the network architecture parameters.

1. Recall that the average square error of the previous model, based on the default settings, was
0.0743 on the VALIDATE partition.

2. Try to improve the Neural Network performance by changing some of the default settings
assigned to the network architecture.

3. Change Input standardization from Midrange to Z score.

4. Clear the box for Use the same number of neurons in hidden layers.

5. Under Custom Hidden Layer Options, enter 26 for Hidden layer 1: number of neurons (twice
as many as the number of inputs).

6. Run the Neural Network node.

7. Open the results for the Neural Network node.

8. Click the Assessment tab.

The average square error for the tuned Neural Network model is 0.0697 on the VALIDATE
partition. This fit statistic is much better than the first model by using the default settings,
by approximately 6%.

9. Close the Results window.

4-28 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4.3 Learning

The way in which neural network models optimize complexity is very different from other algorithms.
For example, there is not a clear “sequence of models that increase in complexity” in the same way

there is for decision trees and regression models using a stepwise method. For neural networks,
complexity is optimized through the learning process and the numerical methods used to search for
updates in weight estimates. Stopped training is also a method to optimize complexity, but it is
mostly used to avoid overfitting. These methods to optimize complexity are discussed in this section.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 0

Essential Discovery Tasks

...

• Select an algorithm.

• Im prove the model.

• Optimize complexity of the model.

• Regularize and tune

hyperparameters of the model.

4.3 Learning 4-29

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Two steps are very important in a neural network. The first one is to find a good set of parameters
that minimizes the error (avoid bad local minima). The second one is to ensure that this set of

parameters performs well (minimize the error) in different (new) data sets (avoid overfitting).

A global minimum is a set of weights generating the smallest amount of error. A simple strategy to
ensure that a global minimum has been attained is a brute-force search of the parameter space.
Unfortunately, the curse of dimensionality quickly makes this method infeasible.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 2

Learning Process

• Avoiding Bad Local Minima and Overfitting

• Parameter Estimation

• Numerical Optimization Methods

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 3

Global and Local Minima

))w(xw(ww 2

11

2

0110 exp  B ad Local Minima

Go o d Local Minima / Global Minima

4-30 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Many optimization algorithms are not guaranteed to converge to a global error minimum. Rather,
many search optimization algorithms are heuristic methods that key on local features of the error
surface when making their decisions. This makes them vulnerable to local minima—that is, areas of
the error surface generating non-optimal error values. (See the diagram below.)

From the optimization algorithm’s perspective, when a local minimum is reached, any movement
away from the bottom leads to an increase in error. Because this is unacceptable, the search stops.

Unlike the parabolic error surface of a generalized linear model fit using least squares (which has no
local minima), the error surface of a nonlinear model is plagued with local minima. Fortunately, many
of these local minima have nearly the global error value. It is only the worst of them that must be
avoided.

Details: Initialization Procedure

One way to avoid the worst local minima is to start with good weight values. In the Neural Network
task, this is accomplished by means of the following five-step initialization process:

1. Standardize the inputs to have a midrange of 0, a minimum value of -1, and a maximum value of
1 (midrange).

2. Set the input-to-hidden weights to a small random number.

3. Use the hyperbolic tangent activation function so that the inflection point is at zero. The Elliott or
arctangent functions are acceptable alternatives because they also have a zero inflection point.

4. Set the hidden-to-output connection weights to zero.

4.3 Learning 4-31

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5. Because the hidden-to-output weights are set to zero in step 4, the output activation is given
solely by the output bias on the first iteration. Therefore, the output bias is initialized to the mean
of the target.

These initializations help prevent the optimization algorithms from stepping into treacherous regions
of the parameter space, that is, regions of the parameter space with many bad local minima.

Bartlett (1997) demonstrated that generalization depends more on the magnitude of the weights than
on the number of weights. Very large magnitude weights tend to generate an irregular fit to the data,

as the model adapts to noise (random variation). In other words, large weights are responsible for
overfitting.

Weight decay is one way to keep the weights from growing too large. It penalizes large weights by
adding a term that is proportional to the sum of squared weights (Bishop 1995). That is,

 



n

i

ii
n 1

2
functionerror

1
function objective w

The decay parameter, which can range from zero to one, controls the relative importance of the
penalty term. Specifying too large of a penalty term risks the model under-fitting the data. However,
as Ripley (1996) points out, the advantages of weight decay far outweigh its risks [emphasis added]:

Weight decay helps the optimization in several ways. When weight decay terms are included, it is
normal to find fewer local minima, and as the objective function is more nearly quadratic, the
quasi-Newton and conjugate gradient methods exhibit super-linear convergence in many fewer
iterations. There seems no reason to ever exclude a regularizer such as weight decay. (pp.
159-160)

In any event, the influence of the penalty term is usually kept extremely small. In many published

studies, the magnitude of the decay parameter () is on the order of 0.000001.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 4

Weight Decay

 = 0  > 0

0

0

w11

w1

w11

w1

0

0

 



n

i

ii
n 1

2
functionerror

1
function objective w

4-32 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Stopped training is another way to keep the weights from growing too large. It is closely related to
ridge regression (Sarle 1995). In SAS Viya, training starts with a pseudo randomly generated set of

initial weights. The NNET procedure then computes the objective function for the training partition,
and the optimization algorithm adjusts the weights. This process is repeated until any one of the
following conditions is met:

• The objective function that is computed using the training partition stops improving.

• The objective function that is computed using the validation partition stops improving.

• The process has been repeated the number of times specified in the MAXITER= and MAXTIME=
options in the OPTIMIZATION statement.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 5

Stopped Training

4.3 Learning 4-33

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The error function defines the surface of the parameter space. In this way, the neural network learns
or searches for the best set of weights to minimize the error, depends on the type of the surface.

Then, the numerical method to estimate the weights is based on the error function.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 6

Learning Process

• Avoiding Bad Local Minima and Overfitting

• Parameter Estimation

• Numerical Optimization Methods

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 7

Standardization Methods

Mid range

• 𝑒
(𝑛)

• Midrange is 0. Half range is 1.

• Ranges from -1 to 1 .

Z-Score
• 𝑒 ⁡ ⁡ ⁡ 𝑒 1

• 𝑡

• Ranges from 0 to 1 .

St andardization can be defined for hidden and target layers.

4-34 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Standardizing means to rescale your data to have a mean of zero and a standard deviation of 1. The
value of a standardized variable is sometimes called a z-score or a standard score. Here is the
equation to standardize your data:

where x is the original value, μ is the variable’s mean, and σ is the variable’s standard deviation. The
absolute value of z represents the distance between the raw score and the population mean in units
of the standard deviation. z is negative when the original value is below the mean, positive when
above.

Normalizing is another rescaling method with many meanings in statistics and statistical
applications. Most commonly, normalizing rescales numeric data between zero and 1 using the
following equation:

where xmin is the variable’s minimum value, and xmax is the variable’s maximum value.

Model stability and parameter estimate precision are influenced during multivariate analysis when
multi-scaled variables are used. For example, in boundary detection, a variable that ranges between
0 and 100 will outweigh a variable that ranges between 0 and 1. Using variables without

standardization can give variables with larger ranges greater importance in the analysis.
Transforming the data to comparable scales can prevent this problem.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 8

Parameter Estimation

The objective function is minimized.

Weight estimates are adjusted using numerical optimization techniques.

2))(()(ww  yQ

)()()1(δww ttt 

Error plateaus

Global minimum

4.3 Learning 4-35

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

A global minimum is a set of weights generating the smallest amount of error. A simple strategy to
ensure that a global minimum has been attained is a brute-force search of the parameter space.
Unfortunately, the curse of dimensionality quickly makes this method infeasible.

Search optimization algorithms are heuristic methods that key on local features of the error surface
when making their decisions. This makes them vulnerable to error plateaus (that is, areas of the
error surface generating non-optimal error values). An error plateau is an area of the error space in
which very little improvement is attained, given the current dot product of the inputs and weights.
Previously, error plateaus were viewed as local minima. It is possible for a model to get stuck at a
local minima, but this will occur only if the process has arrived at a saddle point for each model
degree of freedom. Therefore, local minima are highly unlikely in higher dimensional spaces.

From the optimization algorithm’s perspective, when an error plateaus is reached, any further
movements yield very little improvement in the error. And at this point, the search stops.

Unlike the parabolic error surface of a generalized linear model fit using least squares (which has no
local minima), the error surface of a nonlinear model is plagued with error plateaus. Fortunately,
many of these error plateaus have nearly the global error value. It is only the worst of them that must
be avoided.

To efficiently search this landscape for an error minimum, optimization must be used. The
optimization methods use local features of the error surface to guide their descent. Specifically, the
weights associated with a given error minimum are located using the following procedure:

1. Initialize the weight vector to small random values, w(0).

2. Use an optimization method to determine the update vector, (t).

3. Add the update vector to the weight values from the previous iteration to generate new
estimates:

)()()1(ttt
δww 

4. If none of the specified convergence criteria have been achieved, then go to step 2.

4-36 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

If the probability distribution is a member of the exponential family, minimizing deviance is
equivalent to maximizing likelihood. But deviance offers the advantage that it does not require a

probability density function, which makes the calculation of deviance more efficient. Deviance also
offers other numerical advantages. For example, the deviance measures are automatically scaled.

The default method for fitting an interval target is a normal distribution. The deviance measure used
to fit a normal distribution is the familiar ordinary least squares equation (below):

  2))(()(ww yQ

A Poisson distribution is usually thought of as the appropriate distribution for count data. Because
the variance is proportional to the mean, the deviance function for a Poisson distribution is the
following:

 ))](())(/ln([2)(www  yyyQ

In a gamma distribution, the variance is proportional to the square of the mean. It is often used when
the target represents an amount. The gamma deviance function is given by the following:

  )(/))(())(/ln(2)(wwww  yyQ

Entropy

Cross or relative entropy is for independent interval targets with values between zero and 1
(inclusive). Identical to the Bernoulli distribution if the target is binary, it offers some
advantages over the Bernoulli distribution when the data are proportions. The entropy deviance
estimate is given by the following:
































)(1

1
ln/)1(

)(
ln 2)(

ww
w



y
y

y
yQ

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 9

Distribution Deviance Measure

Normal

Poisson

Gamma

Entropy

Deviance

  ))(ln(ln2)(ww llQ staturated  

  2))(()(ww yQ

 ))(())(/ln(2)(  www  yyyQ

 )(/))(())(/ln(2)(  wwww  yyQ
































)(1

1
ln/)1(

)(
ln 2)(

ww
w



y
y

y
yQ

4.3 Learning 4-37

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The slide above summarizes the appropriate activation and error function combinations.

If the target is interval, there are four possible activation functions to be used: Identity, Sine,
Hyperbolic Tangent, and Exponential. If the target distribution is normal, the error function should be
Normal. If the target distribution is exponential, the error function can be Poisson or Gamma. If the
target is nominal, the activation functional should be Softmax and the error function should be
Entropy.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 0

Target Activation Function and Error Function
Combinations

Target Activation Function Error Function

Interval Identity Normal

Sine Normal

Hyperbolic tangent Normal

Exponential Poisson

Exponential Gamma

Nominal Softmax Entropy

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 1

Learning Process

• Avoiding Bad Local Minima and Overfitting

• Parameter Estimation

• Numerical Optimization Methods

4-38 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

There are two optimization methods available in the Neural Network node of Model Studio: limited
memory BFGS and stochastic gradient descent. They are both discussed briefly over the next few
slides.

The error function defines a surface in the parameter space. If it is a linear model fit by least
squares, the error surface is a parabola. However, in a nonlinear model, this error surface is often a
complex landscape consisting of numerous deep valleys and steep cliffs.

To efficiently search this landscape for an error minimum, optimization must be used. The
optimization methods use local features of the error surface to guide their descent. Specifically, the
weights associated with a given error minimum are located using the following procedure:

1. Initialize the weight vector to small random values, w(0).

2. Use an optimization method to determine the update vector, (t).

3. Add the update vector to the weight values from the previous iteration to generate new
estimates:

)()()1(ttt
δww 

4. If none of the specified convergence criteria have been achieved, then go to step 2.

In this topic, you examine few ways of determining the update vector (t) used in step 2 above.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 2

Iterative Updating

)()()1(δww ttt 

4.3 Learning 4-39

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The default optimization method in the neural network task in SAS Visual Data Mining and Machine
Learning is a variant of the BFGS method known as limited memory BFGS. Like the original BFGS,

the limited memory BFGS (L-BFGS) uses an estimation of the inverse Hessian to steer the search.
But, whereas BFGS stores an n by n approximation to the Hessian (where n is the number of
variables), the L-BFGS variant stores only a few vectors that represent the approximation implicitly.
Thus, L-BFGS is well suited for optimization problems with a large number of variables (Byrd et al.
1995).

The LBFGS is an optimization algorithm in the family of quasi-newton methods that approximates
the BFGS algorithm using only some specific gradients to represent the approximation implicitly. It
uses less computer memory due to its linear memory requirement. The algorithm starts with initial
estimates of the optimal value of weights and progresses continuously to improve the estimates of
the weights. The derivatives of the function of the estimates are used to drive the algorithm to find
the direction of the steepest descent. The derivatives are also used to find the estimate of the
Hessian matrix (second derivative).

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 3

LBFGS

Limited-Memory Broyden-Fletcher-Goldfarb-Shanno optimization algorithm:

• LBFGS is the default optimization method for the Neural Network task.

• An estimation of the inverse Hessian matrix is used to steer the search.

• Rather than a full nxn (n = number of variables) approximation to the
inverse Hessian, only a few vectors are stored to represent the

approximation.

• This method is well suited for optimization problems with a large number

of variables.

4-40 Chapter 4 Neural Netw orks

Re-invented several times, the back propagation (backprop) algorithm initially just used gradient

descent to determine an appropriate set of weights. The gradient,
)(t

g , is the vector of partial

derivatives of the error function with respect to the weights; it points in the steepest direction uphill.

By negating the step size (that is, learning rate) parameter,, a step is made in the direction that is
locally steepest downhill.

)()(tt
gδ  

The weights associated with a given error minimum are located using the following procedure:

1. Initialize the weight vector to small random values, w(0).

2. Use an optimization method to determine the update vector, (t).

3. Add the update vector to the weight values from the previous iteration to generate new
estimates:

)()()1(ttt
δww 

4. If none of the specified convergence criteria has been achieved, then go to step 2.

Unfortunately as gradient descent approaches the desired weights, it exhibits numerous back -and-
forth movements known as hemstitching. To control the training iterations wasted in this
hemstitching, later versions of back propagation included a momentum term, yielding the modern
update rule:

)1()()( ttt
δgδ 

The momentum term retains the last update vector, δ(t-1), using this information to “dampen” potentially
oscillating search paths. The cost is an extra learning rate parameter (0 ≤ α ≤ 1) that must be set.

Note: The default value of α is 0. This means that, by default, backprop performs gradient descent.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 4

Batch Gradient Descent

• Uses a partial (fraction) of the
training observations to calculate

the gradient on each descent
step

• Results in a smooth progression
to the error minima

)1()()(δgδ  ttt 

4.3 Learning 4-41

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

In the (default) batch variant of the gradient descent algorithm, generation of the weight update
vector is determined by using all of the examples in the training set. That is, the exact gradient is
calculated, ensuring a relatively smooth progression to the error minima.

Note: For a linear neuron, with squared error, the error surface is a quadratic bowl. The vertical
cross-sections are parabolas, and the horizontal cross-sections are ellipses. For multilayer
networks, the error surface is much more complicated. But provided that the weights are not
too big, locally the error surface can be well approximated by a piece of a quadratic bowl
(Hinton 2013).

However, when the training data set is large, computing the exact gradient is computationally
expensive. The entire training data set must be assessed on each step down the gradient. Moreover,
if the data is redundant, the error gradient on the second half of the data will be almost identical to
the gradient on the first half. In this event it would be a waste of time to compute the gradient on the
whole data set. You would be better off computing the gradient on a subset of the weights, updating
the weights, and then repeat on a new subset. In this case, each weight update is based on an
approximation to the true gradient. But as long as it points in approximately the same direction as
the exact gradient, the approximate gradient is a useful alternative to computing the exact gradient
(Hinton 2007).

A compromise between batch gradient descent and single-case stochastic gradient descent is to
divide the training data into small batches, compute the gradient using a single batch, make an
update, and then move to the next batch of observations. This is known as mini-batch gradient
descent.

Like single-case stochastic gradient descent, mini-batch gradient descent is typically faster than
batch gradient descent. And because the weights are updated less often than when single-
observation stochastic gradient descent is used, mini-batch gradient descent typically uses less
computation updating the weights, that is, each mini-batch computes the gradients for a number of
cases in parallel. However, it is important that the mini-batches contain approximately balanced
classes (Hinton 2013).

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 5

Stochastic Gradient Descent

• Uses a single training
observation to calculate an

approximate gradient for each
descent step

• Results in a chaotic progression
to the error minima

() () (1)δ g δi i i     

4-42 Chapter 4 Neural Netw orks

Stochastic gradient descent (SGD) is another numerical optimization method available for the Neural
Network task in Visual Data Mining and Machine Learning.

Stochastic gradient descent is a stochastic approximation of the gradient descent optimization. It
approximates the true gradient by using a single data point in the training data set.

The gradient descent is an optimization algorithm to find the minimum value for a function iteratively.
It takes steps proportional to the negative of the gradient of the function at the current point. The

gradient is a multi-variable generalization of the derivative. The derivative can be defined on
functions of a single variable. For functions of several variables, which is the case of the predictive
models, including the neural networks, the gradient is defined. As the gradient represent the slope of
the tangent for a particular function, it points in the direction of the greatest rate of increase of the
function, which in the neural network case would be the point that minimize the loss function.

If a multi-variable function F(x) is differentiable in a neighborhood of a point a, F(x) decreases fastest
if it goes from a point a in the direction of the negative gradient of F at a.

These sets of hyperparameters are discussed below.

Learning Rate

The learning rate is a training parameter that controls the size of weight and bias changes in learning
of the training algorithm. Neural networks are often trained by weight decay methods. This means
that at each iteration, we calculate the derivative of the loss function with respect to each weight and
subtract it from that weight. However, by doing that, the weights can change too much in each
iteration, making the weights to big and tending to overfit the model. One way to avoid that is to
multiply each derivative by a small value, the learning rate described above, before they subtract it
from its corresponding weight.

You can think of a loss function as a surface, where each direction that you can move in represents
the value of a weight. Gradient descent is like taking leaps in the current direction of the slope, and
the learning rate is like the length of the leap that you take.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 6

Hyperparameters

Learning Rate Controls the size of the changes in weights and biases during the
learning process for the SGD optimizer.

Annealing Rate Reduces automatically the learning rate as SGD progresses,
causing smaller steps as SGD approaches a solution. Effectively, it
replaces the learning rate parameter as a function of the number
of iterations that SGD has performed.

Regularization 1 (L1) Shrinks the weights by a constant amount toward to 0.

Regularization 2 (L2) Shrinks the weight by an amount proportional to w. it is the
weight decay.

Momentum A fraction of the previous weight update to the current one.
The momentum parameter is used to prevent the system from
converging to a local minimum

4.3 Learning 4-43

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The learning rate is defined in the context of optimization, and it is related to minimize the loss
function, in this particular case, of a neural network. We define a loss function for a neural network,
and the goal is to minimize this loss function. For this optimization problem, we use, for example,
gradient descent or other variants of a weight decay, where the model parameters (weights and
biases in the network) are updated in a way to decrease the loss function.

Mathematically, if the loss function is L(X, W, b), then our goal is to minimize L. For a convex
optimization problem like this, we use derivatives of the loss function ∇L.

Therefore, the updates of the model weights and biases are W=W−η∇L.

This ∇ here is called the learning rate. It determines how quickly or how slowly you want to update
the parameters. Usually, one can start with a large learning rate, and gradually decrease the learning
rate as the training progresses.

Annealing Rate

Annealing is a way to automatically reduce the learning rate as SGD progresses, causing smaller
steps as SGD approaches a solution.

Regularization L1 and L2

A standard way for regularization is to penalize the weights, preventing them from growing too large.
It relies strongly on the implicit assumption that a model with small weights is somehow simpler than
a network with large weights, and a model with large weights tends to over fit. The penalties try to
keep the weights small, close to zero, or even zero. An alternative name in literature for weight
penalties is weight decay because it forces the weights to decay toward zero.

L2 norm

Penalizes the square value of the weight (which explains also the 2 in the name). Tends to
drive all the weights to smaller values.

L1 norm

Penalizes the absolute value of the weight. Tends to drive some weights to exactly zero.

Momentum

Momentum simply adds a fraction m of the previous weight to update to the current one.

The momentum parameter is used to prevent the system from converging to a bad local minima.

4-44 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Complexity optimization is an integral part of neural network modeling. Other modeling methods
select an optimal model from a sequence of possible models. In the Neural Network task, only one

model is estimated, so what is compared?

SAS Visual Data Mining and Machine Learning treats each iteration in the optimization process as a
separate model. The iteration with the smallest value of the selected fit statistic is chosen as the final
model. This method of model optimization is called stopped training.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 7

Fit Statistic versus Optimization Iteration

Initial hidden unit weights

^logit(p) = ^ logit(0.5)0 + 0·H1 + 0·H2 + 0·H3

...

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 8

Fit Statistic versus Optimization Iteration

H1 = tanh(-1.5 - .03x1 - .07x2)

H2 = tanh(.79 - .17x1 - .16x2)

H3 = tanh(.57 + .05x1 +.35x2)

Initial hidden unit weights

^logit(p) = ^ logit(0.5)0 + 0·H1 + 0·H2 + 0·H3

Random initial
input weights and biases

4.3 Learning 4-45

To begin model optimization, model weights are given initial values. The weights multiplying the
hidden units in the logit equation are set to zero, and the bias in the logit equation is set equal to the
logit(π1), where π1 equals the primary outcome proportion. The remaining weights (corresponding to
the hidden units) are given random initial values (near zero).

This “model” assigns each case a prediction estimate: 1
ˆ ip . An initial fit statistic is calculated on

training and validation data. For a binary target, this is proportional to the log likelihood func tion:

 

outcomes
ondary

i

outcomes
primary

i pp
sec

))ˆ(ˆ1log())ˆ(ˆlog(ww

where

ip̂ is the predicted target value.

ŵ is the current estimate of the model parameters.

Training proceeds by updating the parameter estimates in a manner that decreases the value of the
objective function.

As stated above, in the initial step of the training procedure, the neural network model is set up to
predict the overall average response rate for all cases.

One step substantially decreases the value average squared error (ASE). Amazingly, the model that
corresponds to this one-iteration neural network closely resembles the standard regression model,
as seen from the fitted isoclines.

The second iteration step goes slightly astray. The model actually becomes slightly worse on the
training and validation data.

Things are back on track in the third iteration step. The fitted model is already exhibiting nonlinear
and nonadditive predictions. Half of the improvement in ASE is realized by the third step.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 9

Fit Statistic versus Optimization Iteration

0 5 15 20

Iteration

10

ASE

validationtraining

...

4-46 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Most of the improvement in validation ASE occurred by the ninth step. (Training ASE continues to
improve until convergence in step 23.) The predictions are close to their final form.

Step 12 brings the minimum value for validation ASE. Although this model is ultimately chosen as
the final model, SAS Enterprise Miner continues to train until the likelihood objective function
changes by a negligible amount on the training data.

In step 23, training is declared complete due to lack of change in the objective function from step 22.
Notice that between step 13 and step 23, ASE actually increased for the validation data. This is an

indication of overfitting.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 0

Fit Statistic versus Optimization Iteration

0 5

validationtraining

ASE

Iteration

201510 23

4.3 Learning 4-47

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The Neural Network task selects the modeling weights from iteration 13 for the final model. In this
iteration, the validation ASE is minimized. You can also configure the Neural Network task to select

the iteration with minimum misclassification for final weight estimates.

Note: The name stopped training comes from the fact that the final model is selected as if training
were stopped on the optimal iteration. Detecting when this optimal iteration occurs (while
actually training) is somewhat problematic. To avoid stopping too early, the Neural Network
task continues to train until convergence on the training data or until reaching the maximum

iteration count, whichever comes first.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 1

Fit Statistic versus Optimization Iteration

ASE

Iteration

0.70

0.60

0.50

0.40

0.40

0.60

0.50

0.50

0.60

0.30

0 5 15 2010 12

4-48 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

One of the hardest components in neural network modeling is finding the model parameters that
minimize the loss function. These parameters are associated with the number of hidden layers, the

number of hidden units, the activation function, the target function, and so on. As the complexity of
your model increases, its predictive abilities often decrease after a certain point due to overfitting
and multicollinearity issues. Therefore, the resulting models often do not generalize well to new data,
and they yield unstable parameter estimates. Some of the machine learning procedures in SAS Viya
offer the Autotune option, which searches the optimal combination of hyperparameters to fit the best
model under certain conditions.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 2

Essential Discovery Tasks

...

• Select an algorithm.

• Im prove the model.

• Optimize complexity of the model.

• Regularize and tune

hyperparameters of the model.

4.3 Learning 4-49

When the Autotune feature is used, SAS Visual Data Mining and Machine Learning returns the

optimal number of units for each hidden layer. Autotuning is invoked by selecting the Performing

Autotuning option property on the Options tab in the Neural Network node.

Autotuning is available only when the number of hidden layers is less than 6.

The Autotuning statement activates the tuning optimization algorithm, which searches for the best
hidden layers and regularization parameters based on the problem and specified options. If the
algorithm used to train the neural network is based on the Stochastic Gradient Descent, the
Autotune feature also searches for the best values of the learning rate and annealing rate. In
addition, the Autotune feature searches for the best hyperparameter values for the number of hidden
layers, the number of hidden units in each hidden layer, the L1 regularization, and the L2
regularization parameters.

You can also define the search method for the hyperparameters, as Bayesian, Genetic algorithm,
Latin hypercube sample, or Random sample. The genetic algorithm method uses an initial Latin
hypercube sample that seeds a genetic algorithm to generate a new population of alternative
configurations at each iteration. The Latin Hypercube method performs an optimized grid search that
is uniform in each tuning parameter, but random in combinations. The Random method generates a
single sample of purely random configurations. The Bayesian method uses priors to seed the
iterative optimization.

Finally, you can specify the number of tuning evaluations in one iteration. This option is available
only if the Search method is Genetic algorithm or Bayesian. Similarly, you can specify the maximum
number of tuning evaluations and the maximum number of tuning iterations.

For the search method, Random or Latin hypercube is also possible to specify a sample size.

Finally, you can specify the validation method for finding the objective value, including partition and
cross validation – including the proportion of the validation data set and the number of folds for cross
validation – and the objective function depending on the level of the target variable.

Autotuning searches for the best combination of the neural network parameters. Performing
autotuning can substantially increase run time.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 3

Autotuning Options

Autotuning searches for the best combination of values in different
properties:

• Number of hidden layers

• Number of neurons

• Regularizations L1 and L2 weight decay

• Learning rate

• Annealing rate

• Search method

- Bayesian, Genetic algorithm, Latin hypercube sample, Random

• Validation method

- Partition, cross validation

• Objective function (class and interval targets)

4-50 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Autotuning runs based on some options, which limit the search of all possible combinations in terms
of the neural network parameters.

Number of Hidden Layers specifies whether to autotune the number of hidden layers. It ranges
from 1 to 5. The default initial value is 1. The default range is from 0 to 2.

Number of Neurons specifies whether to autotune the number of neurons. It ranges from 1 to 1000.
The default initial value is 1. The default range is from 1 to 100.

L1 Weight Decay specifies whether to autotune the L1 weight decay parameter. It penalizes the
absolute value for the weights. Different values of L1 are tried between the range defined by From
and To. The default initial value for the L1 is 0. The default range is from 0 to 10.

L2 Weight Decay specifies whether to autotune the L2 weight decay parameter. It penalizes the
square value for the weights. Different values of L2 are tried between the range established by from
and to. The default initial value for the L2 is 0. The default range is from 0 to 10.

Learning Rate specifies whether to autotune the learning rate for the hidden layers. It controls the
size of the weight changes. It ranges from 0 (exclusive) to 1. The default initial value is 0.1. The
default initial value for the learning rate is 0.1. The default for the range is from 0.01 to 1. It works
just for the SGD algorithm.

Annealing Rate specifies whether to autotune the annealing rate for the hidden layers. It
automatically reduces the learning rate as SGD progresses. The default initial value is 0.001. The
default range is from 0.000001 to 0.1. It works just for the SGD algorithm.

Search Options specifies the options for autotuning searching. The following options are available:

• Genetic algorithm uses an initial Latin hypercube sample that seeds a genetic algorithm. The
genetic algorithm generates a new population of alternative configurations at each iteration.

• Latin hypercube sample performs an optimized grid search that is uniform in each tuning
parameter, but random in combinations.

• Random generates a single sample of purely random configurations.

• Bayesian uses priors to seed the iterative optimization.

Number of evaluations per iteration specifies the number of tuning evaluations in one iteration.
This option is available only if the Search method is Genetic algorithm or Bayesian. The default
value is 10. It ranges from 2 to 2,147,483,647.

Maximum number of evaluations specifies the maximum number of tuning evaluations. This option
is available only if the Search method is Genetic algorithm or Bayesian. The default value is 50. It
ranges from 3 to 2,147,483,647.

Maximum number of iterations specifies the maximum number of tuning iterations. This option is
available only if the Search method is Genetic algorithm or Bayesian. The default value is 5. It
ranges from 1 to 2,147,483,647.

Sample size specifies the sample size. This option is available only if the Search method is Random
or Latin Hypercube sample. The default value is 50. It ranges from 2 to 2,147,483,647.

There are some general options associated with the autotuning search.

Validation method specifies the validation method for finding the objective value. If your data is
partitioned, then that partition is used. Validation method, Validation data proportion, and Cross
validation number of folds are all ignored.

• Partition specifies using the partition validation method. With partition, you specify proportions to
use for randomly assigning observations to each role.

o Validation data proportion specifies the proportion of data to be used for the Partition
validation method. The default value is 0.3.

4.3 Learning 4-51

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

• K-fold cross validation specifies using the cross validation method. In cross validation, each
model evaluation requires k training executions (on k-1 data folds) and k scoring executions (on
one holdout fold). This increases the evaluation time by approximately a factor of k.

o Cross validation number of folds specifies the number of partition folds in the cross
validation process (the k defined above). Possible values range from 2 to 20. The default
value is 5.

Nominal target objective function specifies the objective function to optimize for tuning
parameters for a nominal target. Possible values are average squared error, area under the curve,
F1 score, F0.5 score, gamma, Gini coefficient, Kolmogorov-Smirnov statistic, multi-class log loss,
misclassification rate, root average squared error, and Tau. The default value is misclassification
rate.

Interval target objective function specifies the objective function to optimize for tuning parameters
for an interval target. Possible values are average squared error, mean absolute error, mean

squared logarithmic error, root average squared error, root mean absolute error, and root mean
squared logarithmic error. The default value is average squared error.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 4

4.02 Multiple Choice Poll

Which of the following statements is true regarding neural networks?

a. Neural networks in SAS Visual Data Mining and Machine Learning have
a built-in method for selecting useful inputs.

b. The algorithms in neural networks are guaranteed to converge to a global

error minimum.

c. The initial weight values in a neural network have no impact on whether

the optimization algorithm is vulnerable to local minima.

d. There are two optimization methods available for neural networks in
Visual Data Mining and Machine Learning: limited memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) and stochastic gradient descent (SGD).

4-52 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Improving a Neural Network Model by Changing the Network
Learning and Optimization Parameters

In this demonstration, you change the previous settings of the Neural Network node in the Chapter 4
pipeline. You modify the learning and optimization parameters and compare this model performance
to the other model in the pipeline.

1. Recall that in the previous model, based on changes in the network architecture, achieved an
average square error of 0.0697 on the VALIDATE partition. This fit statistic was better than the
first model by using the default settings, approximately 6%.

Try to improve the neural network performance by changing now some of the default settings
assigned to the learning and optimization parameters.

2. Under the Common Optimization Options properties, increase L1 weight decay from 0 to
0.01.

3. Decrease L2 weight decay from 0.1 to 0.0001.

4. Run the Neural Network node.

5. Open the results for the Neural Network node.

6. Click the Assessment tab.

The average square error for the tuned Neural Network model is 0.0691 on the VALIDATE
partition. This fit statistic is slightly better than the previous model, approximately 1%.

7. Close the Results window.

4.3 Learning 4-53

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

8. Run the entire pipeline and view the results of model comparison. The Neural Network model is
the champion of the pipeline based on default KS.

9. Close the Results window.

4-54 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Exercises

1. Building a Neural Network

a. Build a neural network using the Autotune feature. Add a Neural Network node to the
Chapter 4 pipeline, below the Variable Selection node. Use the Autotune feature. Explore the
settings that are made available when Autotune is selected. Run a few options by changing

the range of the parameters search.

Note: This exercise might take several minutes to run.

b. What criteria were selected for the champion model?

• Number of hidden layers

• Number of hidden nodes

• Architecture

• Optimization technique

c. How does the autotuned neural network compare to the other models in the pipeline,
particularly to the Neural Network model built during the demonstrat ion? Consider the fit
statistic average square error for this comparison.

4.4 Solutions 4-55

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4.4 Solutions

Solutions to Exercises

1. Building a Neural Network

a. Build a neural network using the Autotune feature. Add a Neural Network node to the
Chapter 4 pipeline, below to the Variable Selection node. Use the Autotune feature. Explore
the settings that turn on when Autotune is selected, but keep all properties at their defaults.

1) On the Starter Template pipeline, right-click the Variable Selection node and select Add
below  Supervised Learning  Neural Network.

2) In the properties pane, turn on the Perform Autotuning option. The default properties
show starting values and ranges that are tried for each property in the Neural Network
model.

3) Right-click the Neural Network node and select Run. This process might take few
minutes.

4) When the execution is over, right-click the Neural Network node and select Results.

5) Examine the Results window. Maximize the Autotune Results window and notice the
different evaluations performed. Restore the Autotune Results window.

6) Scroll down and observe the Fit Statistics window. The average square error for the
Autotune model is 0.0563 on the VALIDATE partition.

4-56 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

7) Scroll down and maximize the Output window. This output shows the set of parameters
selected for the final Neural Network model.

b. What criteria were selected for the champion model?

• Number of hidden layers: 2

• Number of hidden nodes: 50

• Architecture: MLP

• Optimization technique: SGD

c. How does the autotuned neural network compare to the other models in the pipeline,
particularly to the Neural Network model built during the demonstration? Consider the fit
statistics average square error for this comparison.

The model’s performance is worse than the demonstration’s model performance .

4.4 Solutions 4-57

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Solutions to Student Activities (Polls/Quizzes)

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 7

4.01 Multiple Choice Poll – Correct Answer

Which of the following statements is true regarding neural networks?

a. Neural networks are one of the slowest scoring models.

b. Neural networks cannot handle large volumes of data.

c. Neural networks are most appropriate for pure prediction tasks.

d. Neural networks perform well when the signal to noise ratio is low.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5 5

4.02 Multiple Choice Poll – Correct Answer

Which of the following statements is true regarding neural networks?

a. Neural networks in SAS Visual Data Mining and Machine Learning have
a built-in method for selecting useful inputs.

b. The algorithms in neural networks are guaranteed to converge to a global

error minimum.

c. The initial weight values in a neural network have no impact on whether

the optimization algorithm is vulnerable to local minima.

d. There are two optimization methods available for neural networks in
Visual Data Mining and Machine Learning: limited memory Broyden-

Fletcher-Goldfarb-Shanno (LBFGS) and stochastic gradient descent (SGD).

4-58 Chapter 4 Neural Netw orks

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Summary of Neural Network Models

The following chart shows the different performances for the Neural Network models. The Neural
Network model was improved based on the topics covered in this chapter, such as the introduction,
the network architecture, and the different options for learning and optimization. Starting from the

default settings, each one of those topics were applied to improve the model ’s performance. Finally,
the neural network based on the Autotune feature was created.

The Autotune feature achieved the best model, beating the neural network with the default settings
and the ones with the tuning on the parameters based on the network architecture and the learning
and optimization options.

0.0563

0.0691

0.0697

0.0743

Neural network - autotune

Neural network - learning and optimization

Neural network - architecture

Neural network - default settings

Average Square Error

Chapter 5 Support Vector
Machines and Additional Topics

5.1 Large-Margin Linear Classifier ... 5-3

Demonstration: Building a Support Vector Machine Based on Default Settings............... 5-10

5.2 Methods of Solution... 5-14

Demonstration: Changing the Methods of Solution for a Support Vector Machine 5-18

5.3 Nonlinear Classifier: Kernel Trick... 5-19

Demonstration: Changing the Kernel Function for a Support Vector Machine and
Adding Model Interpretability .. 5-27

Exercises... 5-36

5.4 Selecting Your Algorithm ... 5-38

5.5 Additional Tools... 5-42

5.6 Solutions ... 5-52

Solutions to Exercises ... 5-52

Solutions to Student Activities (Polls/Quizzes) ... 5-55

5-2 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5.1 Large-Margin Linear Classif ier 5-3

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5.1 Large-Margin Linear Classifier

Support vector machines are another type of supervised machine learning algorithm. Therefore, they
apply to the Model component under the Discovery phase of the analytics life cycle.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3

Essential Discovery Tasks

...

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4

Support Vector Machines (SVMs)

How do you classify red versus green?

5-4 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Support vector machine (SVMs) were originally developed for pure classification tasks to solve
pattern recognition problems. They have since expanded and now can be used for regression tasks
as well (Vapnik, Golowich, and Smola). However, in Model Studio, currently only classification tasks
are possible for binary targets.

Support vector machines have been broadly used in fields such as image classification, handwriting
recognition, financial decision, and text mining.

In this simple illustration, the goal is to classify red (the dots in the upper left on the slide above)
versus green (in the lower right). There are many classification rules (lines) that could be used to
perfectly separate the red and green cases. In fact, when data are perfectly linearly separable, as is
the case above, there are infinitely many solutions. So how will a unique solution be discovered?

Given two input variables (as shown above), the support vector machine is a line. Given three input
variables, the support vector is a plane, and with more than three input variables, the support vector
is a hyperplane.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5

How Do You Classify Red versus Green?

5.1 Large-Margin Linear Classif ier 5-5

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

For mathematical convenience, the binary target is defined by values +1 and -1, rather than the
usual 1 and 0. The renumbering is done automatically by Model Studio. Because the linear separator
equals 0, classification is determined by a point falling on the positive or negative side of the line.

This is a simple linear problem to start with. Later, you see a more complex nonlinear problem. In the
illustration above, think of the vector w as the mechanism that affects the slope of H. The bias
parameter, b, is the measure of offset of the separating line (or plane, in higher dimensions) from the

origin.

A dot product is a way to multiply vectors that result in a scalar, or a single number, as the answer. It
is an element by element multiplication, and then a sum across the products. Consider the following
example:

If a =

1

2

3

a

a

a

 
 
 
  

 and b =

1

2

3

b

b

b

 
 
 
  

 then ,a b = 1 1 2 2 3 3a b a b a b  .

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6

Linear Separation of the Training Data

• A separating hyperplane H is given by the following:

• the normal vector w

• an additional parameter, b, called bias

{ W

H

 0,  bxwH

Dot product

5-6 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Data points located in the direction of the normal vector are diagnosed as positive. Data points on
the other side of the hyperplane are diagnosed as negative.

Here again is the simple illustration shown a few slides ago. If the data points are linearly separable,
then an infinite number of separating hyperplanes (that is, classification rules) exist.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

7

Training versus Prediction

• Training:

Select w and b in such a way that the hyperplane separates the training
data – that is, construction of a hyperplane.

• Prediction of the class for a new

observation:

On which side of the hyperplane (+/-)

is the new data point located?

W

H

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

8

Which Hyperplane Is the Best One?

5.1 Large-Margin Linear Classif ier 5-7

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The starting point to get to a unique solution is to think of a “fat” hyperplane. This leads to a
separator that has the largest margin of error, essentially wiggle room, on either side.

Among all these hyperplanes, only one of them has the maximum margin. It is essentially the
median of the fat hyperplane.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

9

A “Fat” Hyperplane

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 0

A Maximum-Margin Hyperplane

H

5-8 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The normal vector for the maximum-margin separating hyperplane is given here:

sv

ii

sv

i

i xyw 



#

1



(The mathematical details of this solution are provided in the next section.)

The properties of the maximum-margin hyperplane are described by the support vectors. The
construction of the maximum-margin hyperplane is not explicitly dependent on the dimension of the
input space. Because of this, the curse of dimensionality is avoided. The curse of dimensionality
states that the more input variables a model uses, the more data points are needed to fit the model.
In the illustration above, only the five points that are the carrying vectors are used to determine w.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 1

What Are the Support Vectors?

Only these points
determine the

location of the
hyperplane.

“Carrying Vectors”
are the points

closest to the
hyperplane.

5.1 Large-Margin Linear Classif ier 5-9

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 2

5.01 Poll

Because only the observations closest to the separating hyperplane are used
to construct the support vector machine, the curse of dimensionality is

avoided.

 True

 False

5-10 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Building a Support Vector Machine Based on Default Settings

In this demonstration, you create a new pipeline using the CPML demo pipeline and add a Support
Vector Machine node to it. You build the Support Vector Machine model using the default settings of
the node.

1. Click the plus sign (+) next to the Chapter 4 pipeline tab to add a new pipeline.

2. In the New Pipeline window, enter Chapter 5 in the Name field. For Template, select CPML
demo pipeline.

3. Click Save.

4. In the Chapter 5 pipeline, right-click the Variable Selection node and select Add below 
Supervised Learning  SVM.

5. Keep all properties for the support vector machine at their defaults.

6. Run the SVM node.

7. Open the results for the Support Vector Machine model.

There are several charts and plots to help you evaluate the model’s performance. The first table
is Fit Statistics, which presents the support vector machine’s performance considering several
assessment measures.

5.1 Large-Margin Linear Classif ier 5-11

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The Training Results table shows the parameters for the final Support Vector Machine model,
such as the support vectors and the margin, among others.

The Path EP Score Code window shows the final score code that can be deployed in production.

Similarly, the Train Code window shows the train code that can be used to train the model based
on different data sets or in different platforms.

5-12 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Finally, the Output window shows the final Support Vector Machine model parameters, the
training results, the iteration history, the misclassification matrix, the fit statistics , and the
predicted probability variables.

8. Click the Assessment tab.

The first chart is the Cumulative Lift, showing the model’s performance ordered by the
percentage of the population. This chart is very useful for selecting the model based on a
particular target of the customer base. It shows how much better the model is than the random
events.

5.1 Large-Margin Linear Classif ier 5-13

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

For a binary target, you also have the ROC Reports output, which shows the model’s
performance in terms of ROC curve by considering the true positive rate and the false positive
rate. It is good to foresee the performance on a specific business event when all positive cases
are selected. It shows that the model’s performance based on the positive cases were predicted
right and the positive cases were predicted wrong. ROC is very useful for deployment.

Finally, you have the Fit Statistics output, which shows the model’s performance based on some
assessment measures, such as average square error.

9. The Fit Statistics table shows an average square error of 0.1142 on the VALIDATE partition.

10. Close the Results window.

5-14 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5.2 Methods of Solution

One of the methods to improve support vector machine models is by changing the kernel functions
and the penalty.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 6

Essential Discovery Tasks

...

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 7

Optimization Problem

The solution for finding the separating hyperplane H becomes an
optimization problem under two constraints:

• If the target is 1, then H must be greater or equal to 1.

• If the target is -1, then H must be less than or equal to -1.

• The binary target is written as +/- 1 for mathematical convenience.

But these constraints can be combined into a single constraint:

• The product of the target and H must be greater than or equal to 1 for all

cases.

5.2 Methods of Solution 5-15

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

If the target variable equals 1, then H must be greater than or equal to 1. If the target is -1, then H
must be less than or equal to -1. The optimal hyperplane satisfies these conditions and also has
minimal norm. The denoting of the binary target as +1 or -1 is simply for ease in mathematical
details. This trick enables the combination of the two constraints into a single constraint.
Optimization problems with a single constraint are mathematically easier to solve than optimization
problems under two constraints.

Details:

Mathematically, these constraints are written as follows:

1,  bxw i

if yi = 1 and

1,  bxw i

if yi = -1.

However, these two constraints can be combined into a single constraint where

  1,  bxwy ii

for i = 1, 2, …n.

The width of this maximum margin hyperplane is determined by the usual calculation of a point to a
line. In general, the distance from a point (𝑥0 ,𝑦0) to a line 𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0, is given by
|𝐴𝑥0+ 𝐵𝑦0 + 𝐶|/𝑠𝑞𝑟𝑡(𝐴2 + 𝐵2).

Using this calculation, the maximum margin hyperplane is found by maximizing 2/||w||, where ||w|| is
the norm of the vector w, which is defined as ||w||= sqrt(w’w). The norm of a vector is a measure of
length.

Maximizing 2/||w|| is equivalent to minimizing ||w||. Because ||w|| is defined by using a square root, it
becomes mathematically simpler to minimize the square of ||w||; the solution is the same.

5-16 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

If the data points are not linearly separable, we have a so-called soft margin hyperplane. In this
case, we need to account for errors that the separating hyperplane might make. During the
optimization process, the distance between a point in error and the hyperplane is typically denoted
by ξ.

Details: The Solution

Given the need to account for errors, the optimization problem is solved by minimizing:


i

iCw 2||||

under the single constraint

  0,1,  iiii bxwy 
.

The method used to solve the optimization problem is the Lagrange approach. Here, Lagrange
multipliers αi ≥ 0 are introduced. They summarize the problem in a Lagrange function. Constraints: ξi
≥ 0 and αi ≥ 0, so you must find the saddle point of the Lagrange function.

For the optimization problem above, the Lagrange function becomes

    1,||||
2

1
,,,

11

2  


bxwyCwbwL iii

n

i

i

n

i

i 

.

In order to find the saddle point,
  ,,,bwL

is minimized with respect to w, b, and ξ but maximized

with respect to i .

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 8

Training Data Not Linearly Separable

Errors are accounted for during the optimization process:

• Penalty: C*(distance to hyperplane)

• C is an error weight (regularization parameter).

Error: distance to H

H

5.2 Methods of Solution 5-17

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Self-Study: The Lagrange Approach

Take the following derivatives of the Lagrange function:

0),,,(



bwL

b ,
0),,,(




bwL

w

and obtain

0
1




i

n

i

i y
,

ii

n

i

i xyw 



1



This leads to the so-called dual problem. Maximize





n

ji

jijiji

n

i

i xxyyW
1,1

,
2

1
)(

under the constraints

Ci 0
 and

0
1




i

n

i

i y

After plugging back into the Lagrange function and reformulating, you have the classification
function:

 bxwsignxf newnew  ,)(









 



bxxysign newii

n

i

i ,
1



5-18 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Changing the Methods of Solution for a Support Vector
Machine

In this demonstration, you change the default settings of the Support Vector Machine node in the
Chapter 5 pipeline. You modify the methods of solution parameters for the Support Vector Machine
node.

1. Recall that the average square error of the previous model, based on the default settings, was
0.1142 on the VALIDATE partition.

Try to improve the support vector machine performance by changing some of the default settings
assigned to the methods of solution.

2. Change the Penalty property from 1 to 0.1.

3. Run the Support Vector Machine node.

4. Open the results for the Support Vector Machine node.

5. Click the Assessment tab. See the Fit Statistics window.

6. The average square error for the tuned Support Vector Machine model is 0.0971 on the
VALIDATE partition. This fit statistic is much better (approximately 15%) than the first model,
which used the default settings.

7. Close the Results window.

5.3 Nonlinear Classif ier: Kernel Trick 5-19

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5.3 Nonlinear Classifier: Kernel Trick

A method to optimize the complexity in Support Vector Machine models is by changing the margins.

In most realistic scenarios, not only is data not linearly separable, but a soft margin classifier would
make too many mistakes to be a viable solution.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 1

Essential Discovery Tasks

...

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 2

Problem: Not Linearly Separable Data Points

I n put space 2-D

5-20 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

A solution is most real-world cases requires transforming the data to a higher dimension and then
finding the maximum margin hyperplane in this higher dimension.

Here is an example that is not linearly separable in two dimensions, but it is easy to separate in
three dimensions. This can be generalized to higher dimensions.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 3

Idea: Feature Space

• Feature space is a nonlinear
transformation of the input variables

into a high-dimensional
feature space.

• The maximum-margin hyperplane is
constructed in the high-dimensional

feature space.

I n put space 2-D

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 4

Solution: A Transformation

Feature space 3-DI n put space 2-D

5.3 Nonlinear Classif ier: Kernel Trick 5-21

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The original data points occur only in dot products. So, whether solving for the parameters of H or
when scoring a new observation, the calculations depend on dot products.

Details:

Here is the equation used to solve the Dual Optimization problem:





n

ji

jijiji

n

i

i xxyyW
1,1

,
2

1
)(

.

Here is the equation used to classify a new case:









 



bxxysignxf newii

n

i

inew ,)(
1



.

Both equations rely on dot products of the data.

For data that are not linearly separable, the data points are transformed to a feature space with a
function Φ. Then we separate the data points Φ(𝑥) in the feature space. Usually, the dimension of
the feature space is much higher than the dimension of the input space.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 5

Important Observations

5-22 Chapter 5 Support Vector Machines and Additional Topics

If the classification really is easier in the high-dimensional feature space, you want to construct the
separating hyperplane there. This requires dot product calculations in the feature space. This
creates a problem, as dot products in feature spaces are mathematically difficult to calculate.

You can overcome the curse of dimensionality because you need to calculate only inner products

between vectors in the feature space. Φ(𝑥) is the transformation from the input space to the feature
space. You do not need to perform the mapping explicitly. If 𝛫 satisfies Mercer’s theorem, it

describes an inner product.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 6

A New Problem Arises

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 7

Solution: The Kernel Trick

5.3 Nonlinear Classif ier: Kernel Trick 5-23

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

These are the two kernel functions available in Model Studio. Why do we call it a trick? You do not
have to know exactly what the feature space looks like. It is enough to specify the kernel function as
a measure of similarity. You do not perform the exact kernel calculations but consider the result. Still,
you have the geometric interpretation in the form of a separating hyperplane (that is, more
transparency as for a neural network).

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 8

Examples of Kernel Functions

• Linear:

• Polynomial:

jiji xxxx ,),(K

 djiji xxxx ,),(K

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 9

Solution: The Kernel Trick

Feature spaceI n put space

Nonlinear separation
with kernel function

Linear separation
with dot product

5-24 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

In the slide above, the points are not linearly separable in two dimensions but are in three
dimensions. Using a kernel function in the input space when there is nonlinear separation is
equivalent to performing dot products in a higher-dimensional feature space that does have linear
separation.

Support vector machines can model nonlinear data. Compared to neural networks, at times support
vector machines are faster and might not stick to local minima.

In Model Studio, for polynomial kernels, only degrees of 2 and 3 are available. The kernel function is
used for spatial classification.

• Linear K(u, v) = uTv.

• Quadratic K(u, v) = (uTv + 1)2. The 1 is added to avoid zero-value entries in the Hessian matrix.

• Cubic K(u, v) = (uTv + 1)3. The 1 is added to avoid zero-value entries in the Hessian matrix.

The penalty value balances model complexity and training error. A larger penalty value creates a
more robust model at the risk of overfitting the training data.

The tolerance value balances the number of support vectors and model accuracy. A tolerance value
that is too large creates too few support vectors, and a value that is too small overfits the training

data. It is a user-defined value to control the absolute error of the object function. The iteration stops
if the absolute error is less than or equal to the tolerance value.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 0

Parameters for SVMs for Classification

• The kernel function and its parameters

• Used for spatial classification.

- Linear:

- Polynomial:

• The penalty C (regularization term)

• Balances model complexity and training error. A larger penalty value creates a more robust
model at the risk of overfitting the training data.

• The tolerance

• Balances the number of support vectors and model accuracy. A tolerance value that is too
large creates too few support vectors, and a value that is too small overfits the training data.

5.3 Nonlinear Classif ier: Kernel Trick 5-25

There is almost always a trade-off in terms of accuracy versus interpretability. Machine learning
algorithms are good at generating very accurate (and generalizable) predictive models using quite
complex combinations of mathematical and logical elements. They provide very good predictions,
but it can be nearly impossible to understand how they arrived at those predictions or in general
what the behavior or trend of the model is. This is a big problem in regulated industries and other
applications where it is important to be able to explain why a model gave a certain answer. So,
model interpretability (understanding the predictions) is the usual criticism of machine learning
models. As machine learning models become more sophisticated, the ability to quickly and
accurately interpret these models can diminish.

This criticism stems from the complex parameterizations found in the model. Although it is true that
little insight can be gained by analyzing the actual parameters of the model, much can be gained by
analyzing the resulting prediction decisions. SAS Visual Data Mining and Machine Learning provides
three plots that help users interpret model results:

Partial Dependence – A PD plot depicts the functional relationship between the model inputs and
the model’s predictions. A PD plot shows how the model’s predictions partially depend on the values
of the input variables of interest. To create a one-way PD plot, identify the plot variable and the
complementary variables. Next, create a replicate of the training data for each unique value of the
plot variable. In each replicate, the plot variable is replaced by the current unique value. Finally,
score each replicate with your model and compute the average predicted value within each replicate.
The final result is a view of how the prediction changes with respect to the plot variable.

Individual Conditional Expectation – An ICE plot presents a disaggregation of the PD plot to
reveal interactions and differences at the observation level. The ICE plot is generated by choosing a
plot variable and replicating each observation for every unique value of the plot variable. Then, each
replicate is scored. SAS Visual Data Mining and Machine Learning creates a segmented ICE plot. A
segmented ICE plot is created from a cluster of observations instead of on individual observations.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 1

Model Interpretability

SAS Visual Data Mining and Machine Learning provides model interpretability
plots that help interpret model results:

• Partial dependence (PD) plot

• Individual conditional expectation (ICE) plot

• Local interpretable model-agnostic

explanation (LIME) plot

Accuracy

Interpretability

Machine Learning
Models

5-26 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Local Interpretable Model-Agnostic Explanations – A LIME plot creates a localized linear
regression model around a particular observation based on a perturbed sample set of data. That is,
near the observation of interest, a sample set of data is created. This data set is based on the
distribution of the original input data. The sample set is scored by the original model, and sample
observations are weighted based on proximity to the observation of interest. Next, variable selection
is performed using the LASSO technique. Finally, a linear regression is created to explain the

relationship between the perturbed input data and the perturbed target variable. The final result is an
easily interpreted linear regression model that is valid near the observation of interest.

Note: Each of these plots work for all models and are used to compare results across many
different models.

Note: For more details, visit the blog series at https://blogs.sas.com/content/tag/interpretability/.

https://blogs.sas.com/content/tag/interpretability/

5.3 Nonlinear Classif ier: Kernel Trick 5-27

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Changing the Kernel Function for a Support Vector Machine
and Adding Model Interpretability

In this demonstration, you change the previous settings of the Support Vector Machine node in the
Chapter 5 pipeline. You modify the kernel function and other parameters and compare this model
performance to the other model in the pipeline. Later, you use the Model Interpretability capability to

add some explanation to the support vector machine model.

1. To recall, the previous model, based on changings in the methods of solution, achieved an
average square error of 0.0971 on the VALIDATE partition. This fit statistic was better than the
first model (which used the default settings) by approximately 15%.

Try to improve the support vector machine performance by changing some of the default settings
assigned to the kernel function parameters.

2. For Kernel, change the function from Linear to Polynomial. Leave Polynomial degree as 2.

3. For Tolerance, change 0.000001 to 0.5.

4. For Maximum iterations, change 25 to 10.

5. Run the Support Vector Machine node.

6. Open the results for the Support Vector Machine model.

7. Click the Assessment tab. See the Fit Statistics window.

The average square error for the tuned Support Vector Machine model is 0.0912 on the
VALIDATE partition. This fit statistic is slightly better than the previous model, by approximately
6%.

5-28 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

8. Close the Results window.

Some improvement in the model performance has been observed. However, model
interpretation is still a challenging task in machine learning models that include support vector
machines.

9. Under Model Interpretability, select all the three check boxes: Input relative importance
table, Partial dependence plots, and Cluster-based ICE plots.

10. Under Cluster-based ICE plots, change Maximum number of variables from 3 to 5. This
ensures that the PD plots (the default is already 5) and the ICE plots are created for the five
most important variables in the Input relative importance table.

11. Explain Individual Predictions specifies whether to use a cluster-based version of the LIME
method to explain the model predictions. For brevity, leave it cleared, which is default.

12. Run the Support Vector Machine node.

13. Open the results for the Support Vector Machine model.

14. Now you see an additional tab along with the Node and Assessment tabs. Click the Model
Interpretability tab.

5.3 Nonlinear Classif ier: Kernel Trick 5-29

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

15. Click to expand the Input Relative Importance table.

The most important input variables are listed in descending order of their importance. Total Days
Over Plan appears to be the most important predictor, followed by Handset Age Group, and so
on. Input relative importance is calculated by depth-one decision trees using each input to
estimate the predicted values of the support vector machine model.

16. Click to exit the maximized view of this window.

17. Click to expand the Partial Dependence plot.

5-30 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

This plot shows the relationship between Total Days Over Plan and the model’s prediction.
There is a positive linear relationship. This is an important insight for the business.

18. To see the relationship between model’s prediction and other variables, click the drop-down
arrow in the upper right corner of the window.

These are the five most important inputs in the Input Relative Importance table.

19. Select the Handset Age Group variable.

There is a decrease in the probability of churn the older the handset is . Does this make business
sense?

20. Click to exit the maximized view of this window.

5.3 Nonlinear Classif ier: Kernel Trick 5-31

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

21. Click to expand the Individual Conditional Expectation plot.

ICE plots help resolve interesting subgroups and interactions between model variables. The
most useful feature to observe when evaluating an ICE plot of an interval input is intersecting
slopes. Intersecting slopes indicate that there is an interaction between the plot variable and one
or more complementary variables. Total Days Over Plan does not show any interactions.

22. Click the drop-down arrow in the upper right corner of the window to see ICE plots of other
variables. Select the Handset Age Group variable.

A segmented ICE plot is created from a cluster of observations instead of on individual
observations. The most useful feature to observe when evaluating an ICE plot of a categorical
input is significant differences between each cluster’s plot. Significant differences between each
cluster’s plot indicate group effects. For Handset Age Group, the differences in the plot indicate

that there are significant differences between the clusters.

5-32 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

23. Click to exit the maximized view of this window.

24. Close the Results window.

25. Run the entire pipeline and view the results of model comparison. The Support Vector Machine
model is the champion of this pipeline based on default KS.

26. Close the Results window.

5.3 Nonlinear Classif ier: Kernel Trick 5-33

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

One of the hardest processes in support vector machine models is to find the model parameters that
minimize the loss function.

When the autotuning feature is used, SAS Visual Data Mining and Machine Learning returns the
penalty, the kernel function, and the degree of the kernel function if it is a polynomial function.
Autotuning is invoked by selecting the Performing Autotuning option property on the Options tab in
the Support Vector Machine node.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 3

Essential Discovery Tasks

...

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 4

Autotuning

• Search for the best combination of values in different properties:

• Penalty

• Polynomial degree

• Search method

- Bayesian, Genetic algorithm, Latin hypercube sample, Random

• Validation method

- Partition, cross validation

• Objective function (class targets)

5-34 Chapter 5 Support Vector Machines and Additional Topics

You can define the search method for the hyperparameters, as Bayesian, Genetic Algorithm, Latin
hypercube sample, or Random sample. The genetic algorithm method uses an initial Latin
hypercube sample that seeds a genetic algorithm to generate a new population of alternative
configurations at each iteration. The Latin hypercube method performs an optimized grid search that
is uniform in each tuning parameter, but random in combinations. The Random method generates a
single sample of purely random configurations. The Bayesian method uses priors to seed the

iterative optimization.

Finally, you can specify the number of tuning evaluations in one iteration. This option is available
only if the Search method is Genetic algorithm or Bayesian. Similarly, you can specify the maximum
number of tuning evaluations and the maximum number of tuning iterations.

For the search method Random or Latin hypercube is also possible to specify a sample size.

Finally, you can specify the validation method for finding the objective value, including partition and
cross validation – including the proportion of the validation data set and the number of folds for cross
validation – and the objective function depending on the level of the target variable.

Note: Performing autotuning can substantially increase run time.

Autotuning searches for the best combination of the following support vector machine parameters:

Number of Hidden Layers specifies whether to autotune the number of hidden layers. It ranges
from 1 to 5. The default initial value is 1. The default range is from 0 to 2.

Number of Neurons specifies whether to autotune the number of neurons. It ranges from 1 to 1000.
The default initial value is 1. The default range is from 1 to 100.

Penalty specifies whether to autotune the penalty value. The initial value is 1. The search process
can be ranged from 0.000001 to 100, defined by From and To options.

Polynomial degree specifies whether to autotune the polynomial degree for the SVM model. The
initial value is 1. The search process can be ranged from 1 to 3, defined by From and To options.

Search Options specifies the options for autotuning searching. The following options are available:

• Genetic algorithm uses an initial Latin Hypercube sample that seeds a genetic algorithm. The
Genetic algorithm generates a new population of alternative configurations at each iteration.

• Latin hypercube sample performs an optimized grid search that is uniform in each tuning
parameter, but random in combinations.

• Random generates a single sample of purely random configurations.

• Bayesian uses priors to seed the iterative optimization.

Number of evaluations per iteration specifies the number of tuning evaluations in one iteration.
This option is available only if the Search method is Genetic algorithm or Bayesian. The default
value is 10. It ranges from 2 to 2,147,483,647.

Maximum number of evaluations specifies the maximum number of tuning evaluations. This option
is available only if the Search method is Genetic algorithm or Bayesian. The default value is 50. It
ranges from 3 to 2,147,483,647.

Maximum number of iterations specifies the maximum number of tuning iterations. This option is
available only if the Search method is Genetic algorithm or Bayesian. The default value is 5. It
ranges from 1 to 2,147,483,647.

Sample size specifies the sample size. This option is available only if the Search method is Random
or Latin hypercube sample. The default value is 50. It ranges from 2 to 2,147,483,647.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5.3 Nonlinear Classif ier: Kernel Trick 5-35

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

There are some general options associated with the autotuning search.

Validation method specifies the validation method for finding the objective value. If your data is
partitioned, then that partition is used. Validation method, Validation data proportion, and Cross
validation number of folds are all ignored.

• Partition specifies using the partition validation method. With partition, you specify proportions to
use for randomly assigning observations to each role.

– Validation data proportion specifies the proportion of data to be used for the Partition
validation method. The default value is 0.3.

• K-fold cross validation specifies using the cross validation method. In cross validation, each
model evaluation requires k training executions (on k-1 data folds) and k scoring executions (on
one holdout fold). This increases the evaluation time by approximately a factor of k.

– Cross validation number of folds specifies the number of partition folds in the cross
validation process (the k defined above). Possible values range from 2 to 20. The default
value is 5.

Nominal target objective function specifies the objective function to optimize for tuning
parameters for a nominal target. Possible values are average square error, area under the curve, F1
score, F0.5 score, gamma, Gini coefficient, Kolmogorov-Smirnov statistic, multi-class log loss,
misclassification rate, root average squared error, and Tau. The default value is misclassification
rate.

Interval target objective function specifies the objective function to optimize for tuning parameters
for an interval target. Possible values are average squared error, mean absolute error, mean square
logarithmic error, root average squared error, root mean absolute error, and root mean squared
logarithmic error. The default value is average square error.

5-36 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Exercises

1. Building a Support Vector Machine Model

a. Build a Support Vector Machine model using the Autotune feature. Add a Support Vector
Machine node to the Chapter 5 pipeline, connected to the Variable Selection node. Use the
Autotune feature. Explore the settings that are made available on when Autotune is

selected. Run a few options by changing the range of the parameters search.

Note: This exercise might take several minutes to run.

b. What kernel was selected during the autotune process? What is the value of the penalty
parameter, and is it much different from the default value (1) used for the other SVMs?

c. How does the autotuned SVM compare to the other models in the pipeline? Consider
statistics such as KS and misclassification rate.

5.3 Nonlinear Classif ier: Kernel Trick 5-37

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Summary of SVM Models

The following chart shows the different performances for the Support Vector Machine models. The
Support Vector Machine model was improved based on the topics covered in this chapter, such as
the introduction, the methods of solution, and the kernel functions. Starting from the default settings,

each one of those topics were applied to improve the model’s performance. Finally, the support
vector machine based on the Autotune feature was created.

The tuned support vector machine based on the kernel functions achieved the best model, beating
all other configurations, including the one based on the Autotune feature.

0.0946

0.0912

0.0971

0.1142

Support vector machine - autotune

Support vector machine - kernel function

Support vector machine - methods of solution

Support vector machine - default settings

Average Square Error

5-38 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5.4 Selecting Your Algorithm

When you are presented with a data set, the first thing to consider is how to obtain results, no matter
what those results might look like. So, let’s come back to selecting an algorithm.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 7

Essential Discovery Tasks

...

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 8

Selecting Your Algorithm

You can guide the decision of which algorithm to use by answering a few key
questions:

• What are you trying to achieve with your model?

• How accurate does your model need to be?

• How much time do you have to train your model?

• How interpretable or understandable does your model need to be?

• Does your model have automatic hyperparameter tuning capability?

(Wujek, Hall, and Güneș 2016)

Again, there is no single recipe! Try many different models.

5.4 Selecting Your Algorithm 5-39

Users with less experience tend to choose algorithms that are easy to implement and can obtain
results quickly. This approach is acceptable if it is the first step of the process. After you obtain some
results and become more familiar with the data, you might spend more time experimenting with more
sophisticated algorithms. This might strengthen your understanding of the data, and potentially
further improve the results.

Even in this stage, the best algorithms might not be the methods that have achieved the highest
reported accuracy. Most algorithms usually require careful tuning and extensive training to obtain the
best achievable performance. Selecting the modeling algorithm for your machine learning application
can sometimes be the most difficult part. The decision of which algorithm to use can be guided by
answering a few key questions (Wujek, Hall, and Güneș 2016):

What is the size and nature of your data? If you expect a linear relationship between your
features and your target, linear or logistic regression or a linear kernel support vector machine might
be sufficient. Linear models are also a good choice for large data sets due to their training efficiency
and due to the curse of dimensionality. As the number of features increase, the distance between
points grows and observations are more likely to be linearly separable. To an extent, nonlinearity
and interaction effects can be captured by adding higher-order polynomial and interaction terms in a
regression model. More complex relationships can be modeled through the power of the more
sophisticated machine learning algorithms such as decision trees, random forests, neural networks,
and nonlinear kernel support vector machines. Of course, these more sophisticated algorithms can
require more training time and might be unsuitable for very large data sets.

What are you trying to achieve with your model? Are you creating a model to classify

observations, predict a value for an interval target, detect patterns or anomalies, or provide

recommendations? Answering this question will direct you to a subset of machine learning

algorithms that specialize in the problem.

How accurate does your model need to be? Although you always want your model to be as
accurate as possible when applied to new data, it is still always good to strive for simplicity. Simpler
models train faster and are easier to understand, making it easier to explain how and why the results
were achieved. Simpler models are also easier to deploy. Start with a regression model as a
benchmark, and then train a more complex model such as a neural net, random forest, or gradient
boosted model. If your regression model is much less accurate than the more complex model, you
have probably missed some important predictor or interaction of predictors. An additional benefit of a
simpler model is that it will be less prone to overfitting the training data.

How much time do you have to train your model? This question goes together with the question
of how accurate your model needs to be. If you need to train a model in a short amount of time,
linear or logistic regression and decision trees are probably your best options. If training time is not
an issue, take advantage of the powerful algorithms (neural networks, support vector machines,
gradient boosting, and so on) that iteratively refine the model to better represent complex
relationships between features and the target of interest.

How interpretable or understandable does your model need to be? It is very important to
establish the expectations of your model consumer about how explainable your model must be. If an
uninterpretable prediction is acceptable, you should use as sophisticated an algorithm as you can
afford in terms of time and computational resources. Train a neural network, a support vector
machine, or any flavor of ensemble model to achieve a highly accurate and generalizable model. If
interpretability or explainable documentation is important, use decision trees or a regression
technique, and consider using penalized regression techniques, generalized additive models,
quantile regression, or model averaging to refine your model.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5-40 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Does you model have automatic hyperparameter tuning capability? Optimal hyperparameter
settings are extremely data-dependent. Therefore, it is difficult to offer a general rule about how to
identify a subset of important hyperparameters for a learning algorithm or how to find optimal values
of each hyperparameter that would work for all data sets. Controlling hyperparameters of a learning
algorithm is very important because proper control can increase accuracy and prevent overfitting.

The following table presents some best practices for selecting SAS Visual Data Mining and Machine
Learning supervised learning algorithms:

Algorithm

Type

Target Type Usage Scale Interpre-

tability

Auto-

tuning

Common

Concerns

Regression

(Linear,

Logistic,

GLM)

• Linear

regression

and GLM for

interval
target.

• Logistic

regression

for nominal

and binary

target.

• Modeling linear or

linearly separable

phenomena.

• Manually specifying
nonlinear and explicit

interaction.

• LASSO regression

includes a regularization

term for linear and

logistic regression to

deal w ith multicollinearity

and overfitting issues.

Small

to

large

data
sets

High No • Missing values

• Outliers

• Standardization

• Parameter

tuning

SVM Binary Modeling linear or linearly

separable phenomena by

using linear kernels or

polynomial kernels up to

degree three

Small

to

large

data

sets

Low Yes • Missing values

• Overfitting

• Outliers

• Standardization

• Parameter

tuning

Tree-based

Modeling

(Decision

Tree,

Forest,

Gradient

Boosting)

• Interval

• Binary

• Nominal

• Modeling nonlinear and

nonlinear separable

phenomena in large data

sets

• Interactions considered

automatically, but

implicitly

• Missing values and

outliers in input variables

handled automatically in

many implementations

• Tree ensembles (forests,

gradient boosting) can

increase prediction
accuracy and decrease

overfitting, but also

decrease scalability and

interpretability

Mid-

size to

large

data

sets

Moderate Yes • Instability w ith

small training

sets

• Gradient

boosting can be

unstable w ith

noise or outliers

• Overfitting

• Parameter

tuning

5.4 Selecting Your Algorithm 5-41

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Algorithm

Type

Target Type Usage Scale Interpre-

tability

Auto-

tuning

Common

Concerns

Neural
Netw ork

• Interval

• Binary

• Nominal

• Modeling nonlinear and

nonlinearly separable

phenomena.

• All interactions

considered in fully

connected, multilayer

topologies.

Mid-
size to

large

data

sets

Low Yes • Missing values

• Overfitting

• Outliers

• Standardization

• Parameter

tuning

Bayesian

Netw ork
• Binary

• Nominal

• Modeling linearly
separable phenomena in

large data sets.

• Well suited for extremely

large data sets w here

complex methods are

intractable.

Small

to

extre-

mely

large

data

sets

Moderate No • Linear
independence

assumption

• Infrequent

categorical

levels

5-42 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5.5 Additional Tools

There are several additional tools available in Model Studio that have not been covered in previous
chapters of this course. This section discusses three of these tools: the Save Data node, the SAS
Code node, and the Open Source Code node.

Here are some other useful tools:

• Batch Code: The Batch Code node is a Supervised Learning node. It enables you to import
external SAS models that are saved in batch code format.

• Score Code import: The Score Code Import node is a Supervised Learning node that enables
you to import external models that are saved as SAS score code.

• Ensemble: The Ensemble node is a Postprocessing node. It creates new models by combining
the posterior probabilities (for class targets) or the predicted values (for interval targets) from
multiple predecessor models.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 0

Additional Tools

There are other additional tools available in Model Studio.

Three of the most useful are these:

• Save Data node

• SAS Code node

• Open Source Code node

5.5 Additional Tools 5-43

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The Save Data node is a Miscellaneous node that enables you to save the training table that is
produced by a predecessor node to a caslib. This table could be partitioned into training, validation,
or test sets based on the project settings. In that case, the table contains the _partind_ variable that
identifies the partitions.

By default, the training table produced by a pipeline is temporary and exists only for the duration of
the run of a node and has local session scope. The Save Data node enables you to save that table

to disk in the location associated with the specified output library. This table can then be used later
by other applications for further analysis or reporting.

The default output caslib where tables are to be saved can be specified in the Output Library Project
settings. You can overwrite this location using the Output library property.

In addition, you can load the table in memory and promote this table to have global scope in the
specified caslib. This enables multiple CAS sessions to access this table.

If you run the node, the results consist of an output table containing information about the saved
table, including a list of variables and their basic attributes.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 1

Save Data Node

The Save Data node is used to save data exported by a node in a pipeline to a
CAS library.

5-44 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The properties of the Save Data node are as follows:

• Output library – specifies the output caslib where the table will be saved on disk. Use Browse to
navigate to the proper library. If the user has specified an output library under Project Settings,
then this library will be used by default.

• Table name – specifies the name for the CAS table being saved. The default value
is tmpSaveData.

• Replace existing table – specifies whether to override an existing CAS table with the same name
when saving. By default, this option is deselected.

• Promote table – specifies whether to load the table in memory and promote the table to global
space. By default, this option is deselected.

After running the node, you can open the Results window. Two tabs are in the Results window:
Properties and Output.

• Properties – specifies the various properties selected before running the node. These include the
output library, the table name, whether to replace or promote the table, and the CAS session ID.

• Output – displays the SAS output of the saved data run.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 2

Properties Panel

5.5 Additional Tools 5-45

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The SAS Code node is a Miscellaneous node that enables you to incorporate new or existing SAS
code into Model Studio pipelines. The node extends the functionality of Model Studio by making
other SAS procedures available for use in your data mining analysis. You can also write SAS DATA
steps to create customized scoring code, conditionally process data, or manipulate existing data
sets. The SAS Code node is also useful for building predictive models, formatting SAS output,
defining table and plot views in the user interface, and for modifying variables’ metadata. The node
can be placed at any location within a pipeline (except after the Ensemble or Model Comparison
nodes). By default, the SAS Code node does not require data. The exported data that is produced by
a successful SAS Code node run can be used by subsequent nodes in a pipeline.

To indicate that the SAS Code node produces a model that should be assessed, right-click the SAS
Code node and select Move  Supervised Learning. If a SAS Code node that is marked as a
Supervised Learning node does not generate any score code, either as DS1 or as an analytical store
(astore), then no assessment reports nor model interpretability reports are generated. If the node
produces score code that does not create the expected predicted or posterior probability variables,
then the node will fail.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 3

SAS Code Node

The SAS Code node is used to run SAS code.

5-46 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The SAS Code node properties are as follows:

• Code editor – invokes the SAS Code Editor.

• Train only data – specifies whether the node should receive the training observations only if the
data is partitioned. By default, this option is deselected. Currently, this property is unavailable for
this node. To specify that the node receive only training data, add the following WHERE clause to
your code:

where &dm_partitionvar.=1;

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 4

Properties Panel

5.5 Additional Tools 5-47

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The code editor window is opened from a property in the properties panel. The code editor window
enables the user to view a Macros table and a Macro Variable table from the left column, which
contain a list of macros and macro variables, respectively, that are available to the SAS session.

Additional options are available as shortcut buttons on the top of the editor window. These options
enable you to do the following:

• browse

• control settings, which include general (such as showing line numbers and font size) and editing
(such as enabling autocomplete and auto indention) code options

• undo and redo

• cut, copy, and paste

• find and replace

• clear all code

User-written code is saved through a shortcut button (the good old 3.5-inch floppy disk icon) in the
upper right corner of the editor window.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 5

Code Editor

5-48 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

SAS Viya users have access to more power than they might realize. All SAS Enterprise Miner and
SAS/STAT procedures are included with a Visual Data Mining and Machine Learning license on SAS
Viya. This means that by using the SAS Code node in a pipeline, users have access to the
Enterprise Miner procedures that are specific to that product and to the entire suite of tools available
with SAS®9 SAS/STAT software.

The in-memory CAS table would require being copied to a location accessible by these procedures
in the form of a SAS data set.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 6

Access to SAS Enterprise Miner and
SAS/STAT Procedures

• The SAS Visual Data Mining and Machine Learning
license includes procedures (PROCs) from SAS/STAT

product and SAS Enterprise Miner.

• Write code into a SAS Code node.

• In-memory Data (CAS tables) requires conversion to
SAS data sets.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 7

Executing Open Source Code
Types of Openness

Open Source in SAS SAS in Open Source

5.5 Additional Tools 5-49

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Open source in SAS Viya supports Python and R languages and requires Python or R and
necessary packages to be installed on the same machine as the SAS Compute Server. It downloads
data samples from SAS Cloud Analytic Services for use in Python or R code and transfers data by
using a data frame or CSV file using the Base SAS Java Object.

The Open Score Code node enables you to import external code that is written in Python or R. The
version of Python or R software does not matter to the node, so any version can be used as the
code is passed along. The Python or Rscript executable must be in system path on Linux, or the
install directories can be specified with PYTHONHOME or RHOME on Windows.

The node enables the user to prototype machine learning algorithms that might exist in open source
languages but have not yet been vetted to be included directly as a node in Model Studio. This node
can subsequently be moved to a Supervised Learning group if a Python or R model needs to be
assessed and included to be part of model comparison. The node can execute Python or R software
regardless their versions.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 8

Open Source Code Node

• The Open Source Code node is used to run Python
or R code in a pipeline.

• Requires Python or R and necessary packages to be

installed on the same machine as the SAS Compute
Server.

• Cannot be part of an ensemble.

• Does not support registering, publishing, or
downloading scoring code or scoring APIs.

• Enables the comparison of Python or R models

within a Model Studio pipeline.

5-50 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

After selecting the language (Python or R) from properties, use the Open button to enter respective
code in the editor. Because this code is not executed in CAS, a data sample (10,000 observations by
default) is created and downloaded to avoid movement of large data. Use Data Sample properties to
control the sample size and method. Apply caution and do not specify full data or a huge sample
when the input data is large. When performing model comparison with other Supervised Learning
nodes in the pipeline, note that this node might not be using full data.

Input data can be accessed by the Python or R code via a CSV (comma-separated-value file) or as
a data frame. When Generate data frame is selected, a data frame is generated from the CSV, and
input data is available in dm_inputdf, which is a pandas data frame in Python or an R data frame.
When data are partitioned, an additional data frame, dm_traindf, is also available in the editor. That
frame contains training data. If a Python or R model is built and needs to be assessed,
corresponding predictions or posterior probabilities should be made available in dm_scoreddf data
frame. To do so, right-click and select Move  Supervised Learning to indicate that model
predictions should be merged with input data and model assessment should be performed. Note that
the number of observations in dm_inputdf and dm_scoreddf should be equal for successful merge to
occur.

Note that this node cannot support operations such as Download score code , Register models,
Publish models, and Score holdout data from the Pipeline Comparison tab because it does not
generate SAS score code.

Properties of the Open Source Code node are as follows:

• Code editor – invokes the SAS Code Editor.

• Language – specifies the open source language to be used. Available options for this property are
R and Python. The default setting is R.

• Generate data frame – specifies whether to generate an R data frame or a pandas data frame in
Python. In addition, categorical inputs are encoded as factors in R. If this option is disabled, the
input data should be accessed as a CSV file. By default, this option is enabled.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4 9

Properties Panel

5.5 Additional Tools 5-51

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

• Data Sample – controls sampling of the data. By default, this property is collapsed. Thee Data
Sample property has been expanded in the screen capture above. When expanded, the
subcategories are shown. The subcategories are as follows:

– Sampling Method – specifies the sampling method. When the input data has a partition
variable or a class target (or both), the sample is stratified using them. Otherwise, a simple
random sample is used. The available settings are None, Simple Random and Stratify. The
default setting is Stratify.

– Sample using – specifies whether to sample using the number of observations or the percent
of observations from input data. The available settings are Number of observations and
Percent of Observations. The default setting is Number of observations.

– Number of Observations or Percent of Observations –depends on the setting for the
Sample using property. When Sample using is set to Number of Observations, this
property specifies the number of observations to sample from input data. The default in this

case is 10,000, and the user can enter numeric values manually. When Sample using is set
to Percent of Observations, this property specifies the percent of observations to sample
from input data. In this case, a slider bar appears which ranges from 1 to 100 and the default
setting is 10.

– Include SAS formats – specifies whether to include SAS formats in input data to
downloaded CSV files, when passing data to open source software. By default, this option is
enabled.

Like the SAS Code node, for the Open Source Code node, the code editor window is opened from a
property in the properties panel. The code editor window enables the user to view a list of R
variables or Python variables, depending on what open source language is being used, that are

available to the editor session.

Additional options are available as shortcut buttons that are identical to those described earlier in
this section of the SAS Code node.

Further information on the Open Source Code node in Model Studio, including a short video
illustrating use of the node, can be found here: https://communities.sas.com/t5/SAS-Communities-
Library/How-to-execute-Python-or-R-models-using-the-Open-Source-Code/ta-p/499463

https://communities.sas.com/t5/SAS-Communities-Library/How-to-execute-Python-or-R-models-using-the-Open-Source-Code/ta-p/499463
https://communities.sas.com/t5/SAS-Communities-Library/How-to-execute-Python-or-R-models-using-the-Open-Source-Code/ta-p/499463

5-52 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

5.6 Solutions

Solutions to Exercises

1. Building a Support Vector Machine Model

a. Build a support vector machine using the Autotune feature. Add an SVM node to the Chapter
5 pipeline, connected to the Variable Selection node. Use the Autotune feature. Explore the
settings that are made available when Autotune is selected, but keep all properties at their
defaults, except the polynomial degree.

1) On the Starter Template pipeline, right-click the Variable Selection node and select Add
below  Supervised Learning  SVM.

2) In the properties pane, turn on the Perform Autotuning option. The default properties
show starting values and ranges that are tried for each property in the SVM model.

3) Under Polynomial Degree , change the maximum range by changing To from 3 to 2.

4) Right-click the SVM node and select Run. This process might take few minutes.

5) When the execution is over, right-click the SVM node and select Results.

5.6 Solutions 5-53

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6) Examine the Results window. Maximize the Autotune Results window and notice the
different evaluations performed. Restore the Autotune Results window.

7) Scroll down and observe the Fit Statistics window. The average square error for the
Autotune model is 0.0946 on the VALIDATE partition.

8) Scroll down and maximize the Output window. This output shows the set of parameters
selected for the final Support Vector Machine model.

b. What Kernel was selected during the autotune process? What is the value of the penalty
parameter and is it much different from the default value (1) used for the other SVMs?

A polynomial kernel with degree of 2 was selected. The penalty term is 9.8435, which
is very different from the default value of 1. One single iteration was selected.

5-54 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

c. How does the autotuned SVM compare to the other models in the pipeline? Consider
statistics such as KS and misclassification rate.

The autotuned SVM was worse than the last model tuned during the demonstrations.

5.6 Solutions 5-55

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Solutions to Student Activities (Polls/Quizzes)

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 3

5.01 Poll – Correct Answer

Because only the observations closest to the separating hyperplane are used
to construct the support vector machine, the curse of dimensionality is

avoided.

 True

 False

5-56 Chapter 5 Support Vector Machines and Additional Topics

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Chapter 6 Model Assessment and
Deployment

6.1 Model Assessment and Comparison .. 6-3

Demonstration: Comparing Multiple Models of a Single Pipeline in Model Studio............ 6-21

Demonstration: Comparing Multiple Models across Pipelines Using the Pipeline
Comparison Tab and Registering the Champion 6-25

6.2 Model Deployment ... 6-28

Demonstration: Model Studio Models in Model Manager... 6-30

6.3 Solutions ... 6-34

Solutions to Student Activities (Polls/Quizzes) ... 6-34

Summary of All Models .. 6-35

6-2 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6.1 Model Assessment and Comparison 6-3

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6.1 Model Assessment and Comparison

Given that machine learning models tend to be difficult to interpret, their primary use is to create
predictions that create value (monetary or otherwise) for an organization or other entity. The actual

mechanism by which machine learning models create their predictions requires thought and
attention. For example, making predictions on an individual’s local machine is a good idea only for a
limited time in most cases. If a model is useful, it needs to be used by an organization in an
operational manner to make decisions quickly, if not automatically. Keep in mind that some level of
data preparation has likely been applied to the data set in its original, raw form, and this must be
accounted for when making predictions on new observations. Moving the logic that defines all the
necessary data preparation and mathematical expressions of a sophisticated predictive model from
a development environment such as a personal computer into an operational database is one of the
most difficult and tedious aspects of machine learning. Mature, successful organizations are masters
of this process—called model deployment, deployment, or model production.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3

Essential Deployment Tasks

...

6-4 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

We typically build several models, and it is therefore important first to assess individual models and
then compare those several models and determine the best model typically called as a champion

model. The champion model is then deployed into production, a process called scoring. Even after a
model has been deployed, it must be monitored and then updated per requirements.

Model assessment is evaluating the efficacy of your models built.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

4

Essential Deployment Tasks

...

• Assess models.

• Com pare models.

• Score the champion model.

• Monitor model performance over

time.

• Update the model as needed.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

5

Essential Deployment Tasks

...

• Assess models.

• Com pare models.

• Score the champion model.

• Monitor model performance over

time.

• Update the model as needed.

6.1 Model Assessment and Comparison 6-5

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

No model is uniformly the best, particularly when considering the deployment over time, when data
changes. All models are based somehow on the data provided. The data describes the problem or

the business scenario analyzed. When the scenario changes, the data change and the model can
degrade in terms of predictions.

It is also important to evaluate the model according to the business needs. What is more important
to a problem? The ability to explain the prediction, the model’s accuracy, the speed to score, or the
speed to train? In well-regulated industries, you need to explain the prediction, so some techniques

are more suitable. In some business scenarios, the target might change dynamically, so the models
need to be trained very fast. In some cases, the model needs to be scored in real time, so the
scoring process is the most important variable in this equation. There is no universal best model. It
depends on what is required in terms of problem solving and business needs.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

6

Evaluation of Model Performance

• No model is uniformly the best (particularly over time).

• Dimensions for comparison:

• speed of training

• speed of scoring

• feasibility of deployment

• noise tolerance

• explanation ability

• Best results can come from hybrid, integrated models.

6-6 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The purpose of predictive modeling is generalization, which is the performance of the predictions on
new data. As was stated before, evaluating the model on the same data the model was fit on usually

leads to an optimistically biased assessment. The simplest strategy for correcting the optimism bias
is data splitting, where a portion of the data is used to fit the model and the rest is held out for
empirical validation.

The training data set is used to fit the model to the data provided. This data set enables the model to
learn the relationship between the input variables (descriptors) and the target. However, overtraining

the model based on this data set might lead the model to perform poorly in the new data. The model
is fitted to capture the relationship between the inputs and the target for that data set. When the data
set changes and new data are coming in, the model tends to fail.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

7

Honest Assessment

How predictive is the model that you learned?

• Error on the training data is not a good indicator of performance on future
data.

• The new data will probably not be exactly the same as the training data!

• Overfitting – Fitting the training data too precisely usually leads to poor

results on new data (generalization).

6.1 Model Assessment and Comparison 6-7

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

It is important that the validation data set is used to optimize the model parameters. The training data
set will be used to fit the model. The test data set is used to evaluate how the model would perform

based on new data. It is useful to assess how the model can generalize the new data, which most
likely will differ from the one used to train and validate the model.

The cases in these data sets (training, validation, and test) should be distinct. No case should be
assigned to more than one data set.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

8

Parameter Tuning

It is important that the tes t data are not used i n any way to create the
classifier.

• Some learning schemes operate in two stages:

• Stage 1: builds the basic structure

• Stage 2: optimizes parameter settings

• Proper procedure uses three sets:

• Training data are used to fit the model.

• Validation data are used to optimize parameters (minimize the prediction error).

• Test data are used to assess how the model generalizes new data.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

9

Cross Validation

• F i rst step: Data are split into k subsets of equal size (k-fold cross validation).

• Second step: Each subset in turn is used for validation and the remainder
for training (subsets area stratified before cross validation).

• The error estimates are averaged to yield an overall error estimate.

A B C D E

Train

BCDE

ACDE

ABDE

ABCE

ABCD

Validate

A

B

C

D

E

1)

2)

3)

4)

5)

6-8 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Data splitting is a simple but costly technique. When the data set is too small to split into training and
validation, we can use cross validation. Cross validation avoids overlapping test sets.

• First step: Data are split into k subsets of equal size.

• Second step: Each subset in turn is used for validation and the remainder for training.

This is called k-fold cross validation.

In a k-fold cross validation, the data set is divided into k subsets. For example, in a five-fold cross
validation, the initial data set is divided into A, B, C, D, and E subsets. On the first run, the subsets B,
C, D, and E are used to train the model, and the subset A is used to validate the model. Then the
subsets A, C, D, and E are used to train the model, and the subset B is used to validate. The
process goes on until all subsets are used for training and validation.

Often the subsets are stratified before the cross validation is performed. The error estimates are
averaged to yield an overall error estimate.

Two factors determine the appropriate validation assessment rating, or more properly, assessment
measure:

• the target measurement scale

• the prediction type

An appropriate measure for a binary target might not make sense for an interval target. Similarly,
models tuned for decision predictions might make poor estimate predictions.

For this discussion, a binary target is assumed with a primary outcome (target=1) and a secondary
outcome (target=0). The appropriate assessment measure for interval targets is noted below.

The measure that you should use to judge a model depends on the type of prediction that you want.

Consider decision predictions first. With a binary target, you typically consider two decision types:

• the primary decision, corresponding to the primary outcome

• the secondary decision, corresponding to the secondary outcome

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 0

Fit Statistics

Decisions

Rankings

Estimates

Ac curacy/Misclassification
P rofit/Loss

R O C Index
G ini Coefficient

Average Square Error
R M SE/SBC/AIC/Likelihood

Prediction Type Statistic

6.1 Model Assessment and Comparison 6-9

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Matching the primary decision with the primary outcome yields a correct decision called a true
positive. Likewise, matching the secondary decision to the secondary outcome yields a correct
decision called a true negative. Decision predictions can be rated by their accuracy, that is, the
proportion of agreement between prediction and outcome.

Mismatching the secondary decision with the primary outcome yields an incorrect decision called a
false negative. Likewise, mismatching the primary decision to the secondary outcome yields an
incorrect decision called a false positive. A decision prediction can be rated by its misclassification--
that is, the proportion of disagreement between the prediction and the outcome.

Consider ranking predictions for binary targets. With ranking predictions, a score is assigned to each
case. The basic idea is to rank the cases based on their likelihood of being a primary or secondary
outcome. Likely primary outcomes receive high scores and likely secondary outcomes receive low
scores.

When a pair of primary and secondary cases is correctly ordered, the pair is said to be in
concordance. Ranking predictions can be rated by their degree of concordance--that is, the
proportion of such pairs whose scores are correctly ordered.

When a pair of primary and secondary cases is incorrectly ordered, the pair is said to be in
discordance. Ranking predictions can be rated by their degree of discordance--that is, the proportion

of such pairs whose scores are incorrectly ordered.

When a pair of primary and secondary cases ordered equal, the pair is said to be a tied pair. This
implies that your model is not able to differentiate between primary and secondary outcomes. Lesser
number of tied pairs is better.

Finally, consider estimate predictions. For a binary target, estimate predictions are the probability of
the primary outcome for each case. Primary outcome cases should have a high predicted probability.
Secondary outcome cases should have a low predicted probability.

The squared difference between a target and an estimate is called the squared error.
Averaged over all cases, squared error is a fundamental assessment measure of model
performance.

When calculated in an unbiased fashion, the average square error is related to the amount of bias in
a predictive model. A model with a lower average square error is less biased than a model with a
higher average square error.

In summary, decisions require high accuracy or low misclassification, rankings require high
concordance or low discordance, and estimates require low (average) squared error.

Model fit statistics can be grouped by prediction type.

For decision prediction, the Model Comparison tool rates model performance based on accuracy
or misclassification, profit or loss, and by the Kolmogorov-Smirnov (KS) statistic. Accuracy and
misclassification tally the correct or incorrect prediction decisions. The Kolmogorov-Smirnov statistic
describes the ability of the model to separate the primary and secondary outcomes.

Note: The Kolmogorov-Smirnov (Youden) statistic is a goodness of fit statistic that represents the
maximum distance between the model ROC curve and the baseline ROC curve.

For ranking predictions, there are two closely related measures of model fit that are commonly used.
The ROC index is like concordance (described earlier). The Gini coefficient (for binary prediction)

equals 2  (ROC Index – 0.5).

Note: The ROC index equals the percent of concordant cases plus one-half times the percent of
tied cases.

6-10 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

For estimate predictions, there are at least two commonly used performance statistics. The
Schwarz's Bayesian criterion (SBC) is a penalized likelihood statistic. This likelihood statistic can be
thought of as a weighted average square error.

The confusion matrix is a cross tabulation of the actual and predicted classes. The counts need to be
adjusted if the class proportion in the training sample is not the same as in the population.

It is common practice to try to balance the classes, particularly with rare outcomes.

A confusion matrix presupposes an allocation (decision) rule. A primitive rule allocates cases to the
class with the greatest posterior probability. For binary targets, this corresponds to a 50% cutoff on
the posterior probability.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 1

The Confusion Matrix

Predicted Outcome

Primary Secondary

Actual
Outcome

Primary TP F N TP+FN

Secondary F P TN FP+TN

FPTN

TN
ySpecificit




FNTP

TP
ySensitivit




6.1 Model Assessment and Comparison 6-11

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

In addition to numeric measures of model performance, data scientists often use graphical tools to
assess models as well. One commonly used graphical measure of assessment is the ROC chart. To

understand ROC chart, two important measures are worth discussing: sensitivity and specificity.

The sensitivity of a model is the true positive rate.

The specificity of a model is the true negative rate.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 2

ROC Curve

• The ROC (receiver operating characteristic) curve is a bidimensional graph
that shows the performance of a binary classifier.

• Axis Y represents the cumulative rate

of True Positives (sensitivity).

• Axis X represents the cumulative rate

of False Positives (1 – Sp ecificity).

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 3

Statistical Graphics: ROC Chart

0.0

1.0

0.0 1.0

The y coordinate shows the fraction of
primary outcome

cases captured in the top 40% of all cases.

top 40%

The x coordinate shows the fraction
of secondary outcome cases

captured in the top 40% of all cases.

6-12 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

• Axis Y represents the cumulative rate of true positives (sensitivity).

• Axis X represents the cumulative rate of false positives (1 – specificity).

A ROC curve shows the probability distribution just for the events, the positive class. It compares the
events predicted correctly (true positives) against the events predicted incorrectly (false
positives). The higher the sensitivity (true positive rate close to 1) and the lower the false negative
rate (specificity close to 1 – one minus specificity close to zero), the better the model. The ROC

index gives us the area under the ROC curve: the greater the area, the higher the index.

Therefore, the ROC chart plots how the true positive rate changes as the false positive rate
changes. The classification accuracy of a model is demonstrated by the degree that the ROC curve
pushes upward and to the left.

Interpreting ROC charts can be easier when it is understood how they are constructed. We discuss
their construction over the next several slides.

To create a ROC chart, predictions are generated for a set of validation data. For chart generation,
the predictions must be rankings or estimates. The validation data are sorted from high to low (either
scores or estimates). Each point on the ROC chart corresponds to a specific fraction of the sorted
data.

For example, the red point on the ROC chart corresponds to the selection of 40% of the validation
data with the highest predicted probabilities.

The vertical, or y, coordinate of the red point indicates the fraction of primary outcome cases
captured in the gray region (here, approximately 45%).

The horizontal, or x, coordinate of the red point indicates the fraction of secondary outcome cases
captured in the gray region (here, approximately 25%).

The ROC chart represents the union of similar calculations for all selection fractions.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 4

ROC Curve

• The ROC curve represents the probability distribution of the detection and
the false alarms.

• The greater the area is above the random guess (diagonal), the better the

model is.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curva ROC

1-SPE

R
E

C

C 1

C 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Curva ROC

1-SPE

R
E

C

C 1

C 2

6.1 Model Assessment and Comparison 6-13

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The ROC (receiver operating characteristic) curve is a bi-dimensional graph that shows the
performance of a binary classifier. ROC chart displays the ability of a model to avoid false positive
and false negative classifications. A false positive classification means that an observation has been
identified as an event when it is a nonevent. A false negative classification means that an
observation has been identified as a nonevent when it is an event.

The ROC chart provides a nearly universal diagnostic for predictive models. Models that capture
primary and secondary outcome cases in a proportion approximately equal to the selection fraction
are weak models (left). Models that capture mostly primary outcome cases without capturing
secondary outcome cases are strong models (right).

The tradeoff between primary and secondary case capture can be summarized by the area under
the ROC curve. This area can be referred to as the C-Statistic. (In machine learning literature, it is
more commonly called the ROC Index.) Perhaps surprisingly, the C-Statistic is closely related to
concordance, the measure of correct case ordering.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 5

Assessment Measure: C-Statistic

0 .0

1 .0

0 .0 1 .0

w eak model
ROC Index < 0.6

st rong model
ROC Index > 0.7

6-14 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Cumulative percentile hits and lift charts are a graphical representation of the advantage of using a
predictive model to choose which customers to contact in comparison to no model. The lift chart

shows how much more likely we are to receive respondents than if we contact a random sample of
customers.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 6

CPH: Cumulative Percentile Hits

• Definition: CPH(P,M) = % of all targets in the first P% of the list scored by
model M.

• CPH is frequently called gains.

0

20

40

60

80

100

5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

Random

5% of random list have 5% of targets

Percentile List

C
u

m
u

lative %
 H

its

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 7

CPH: Random List versus Model Ranked

0

10

20

30

40

50

60

70

80

90

100

5

15 25 35 45 55 65 75 85 95

Random

Model

5% of random list have 5% of targets,

5% of model ranked list have 21% of targets
CPH(5%,model)=21%.

Percentile List

Cum
ulative %

 H
its

6.1 Model Assessment and Comparison 6-15

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The lift chart uses the predictions of the response model to calculate the percentage of positive
responses according to the percent of customers contacted and maps these points to create the lift
chart. It calculates the points on the lift curve by determining the ratio between the result predicted
by the predictive model and the result using no model.

For example, if you contact 5% of all customers, using no model, you should get 5% of responders.
By using the predictive model, you should get 21% of responders contacting the same 5% of
customers. The y value of the lift curve at 5% is 21/5=4.2.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 8

Lift

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
5 15 25 35 45 55 65 75 85 95

Lift

L ift(P,M) = CPH(P,M) / P

P -- percent of the list

Lift (at 5%)

= 21% / 5%

= 4.2
better

than random

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

1 9

Lift: Measure of Model Quality

• Lift helps you decide which models are better to use.

• If cost/benefit values are not available or changing, you can use lift to select
a better model.

• The model with the higher lift curve is generally better for model

deployment.

6-16 Chapter 6 Model Assessment and Deployment

The Lift chart aims to select the best model in a particular business scenario (for example,
considering a limit in the budget or an operational capacity to contact a fixed number of prospects or
customers.

For example, the Lift charts would help you decide which model you should choose to deploy
according to the gain achieved in different percentiles for the population. If you expect to deploy a
campaign to contact 20% of your customers, you should choose the model that performs best on
this percentile.

Because lift is based on response rate, it might be helpful to understand how a response chart is
constructed.

As with ROC charts, a model is applied to validation data to sort the cases from highest to lowest
(again, by prediction rankings or estimates). Each point on the response chart corresponds to a
selected fraction of cases.

For example, the red point on the response chart corresponds to the selection of 40% of the
validation data with the highest predicted probabilities.

The x coordinate of the red point is simply the selection fraction (in this case, 40%). This is illustrated
with the vertical blue line in the plot above.

The vertical coordinate for a point on the response chart is the proportion of primary outcome cases

in the selected fraction. This is illustrated with the horizontal yellow line in the plot above. It is often

called the cumulative percent response but is more widely known as cumulative gain in the

predictive modeling literature. Dividing cumulative gain by the primary outcome proportion yields lift.

Plotting cumulative gain for all selection fractions yields a gains chart (also called a response chart).
Notice that when all cases are selected, the cumulative gain equals the overal l primary outcome
proportion.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 0

Statistical Graphics: Response Chart

For example, this point on
the response chart

corresponds to the 40% of

cases with the highest
predicted values.

50%

100%

0% 100%

top 40%

percentage of

selected cases

percentage of

primary outcomes

6.1 Model Assessment and Comparison 6-17

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Comparing several models is essential to determine the champion model that is scored last.

In Model Studio, you can compare models within a pipeline as well as across several pipelines using
a Model Comparison node and a Pipeline Comparison tab.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 1

Essential Deployment Tasks

...

• Assess models.

• Com pare models.

• Score the champion model.

• Monitor model performance over

time.

• Update the model as needed.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 2

Comparing Models in Model Studio

• Model Comparison Node

• Compares models

within a pipeline

• Pipeline Comparison Tab

• Compares models
across pipelines

2 1 3

6-18 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The Model Comparison node is automatically added to a pipeline when a Supervised Learning node
is also added. The Model Comparison node enables you to compare the performance of competing
models using various benchmarking criteria. There are many assessment criteria that can be used to
compare models. For class targets, these include measures of error, lift -based measures, and
measures derived from the ROC curve. You can select the measure and specify the depth to use
when applying a lift-based measure or the cutoff to use when applying an ROC-based measure. For

interval targets, there are various measures of error available for choosing the champion model. All
measures of assessment are computed for each of the data partitions that are available (train,
validate, and test). You can also select which data partition to use for selecting the champion.

The Pipeline Comparison tab compares only the champion models for each pipeline. The selected
model from the Model Comparison node of each pipeline is added to the Pipeline Comparison tab.

This enables you to compare models from the different pipelines in your project and to select a
champion model. To add models that were not selected by the Model Comparison node to the
Pipeline Comparison tab, right-click the given model, and select Add challenger model.

Model Studio gives you several options of model assessment and comparison. Below is a glossary
of assessment measures offered.

Class selection statistics:

Accuracy A measure of how many observations are correctly classified for
each value of the response variable. It is the number of event and
non-event cases classified correctly, divided by all cases.

Area under the curve (C
statistic)

It is a measure of goodness of fit for binary outcome. It is the
concordance rate and it is calculated as the area under the curve.

Average squared error The sum of squared errors (SSE) divided by the number of
observations.

Captured response The number of events in each bin divided by the total number of
events.

Cumulative captured
response

Cumulative the captured response.

Cumulative lift Cumulative lift up to and including the specified percentile bin of the
data, sorted in descending order of the predicted event probabilities .

F1 score The weighted average of precision (positive predicted value) and
recall (sensitivity). It is also known as the F-score or F-measure.

False discovery rate The expected proportion of type error I – incorrectly reject the null
hypothesis (false positive rate).

False positive rate The number of positive cases misclassified (as negative).

6.1 Model Assessment and Comparison 6-19

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Gain Similar to a lift chart. It equals the expected response rate using the
predictive model divided by the expected response rate from using
no model at all.

Gini
A measure of the quality of the model. It has values between -1 and
1. Closer to 1 is better. It is also known as Somer’s D.

Kolmogorov-Smirnov
statistic (KS)

A goodness-of-fit statistic that represents the maximum separation
between the model ROC curve and the baseline ROC curve.

KS (Youden) A goodness-of-fit index that represents the maximum separation
between the model ROC curve and the baseline ROC curve.

Lift A measure of the advantage (or lift) of using a predictive model to
improve on the target response versus not using a model. It is a
measure of the effectiveness of a predictive model calculated as the
ratio between the results obtained with and without the predictive
model. The higher the lift in the lower percentiles of the chart, the
better the model is.

Misclassification
(Event)

Considers only the classification of the event level versus all other
levels. Thus, a non-event level classified as another non-event level
does not count in the misclassification. For binary targets, these two
measures are the same. It is computed in the context of the ROC
report. That is, at each cutoff value, this measure is calculated.

Misclassification (MCE) A measure of how many observations are incorrectly classified for
each value of the response variable. This is the true misclassification
rate. That is, every observation where the observed target level is
predicted to be a different level counts in the misclassification rate.

Multiclass log loss The loss function applied to multinomial target. It is the negative log-
likelihood of the true labels given a probabilistic classifier’s
prediction.

ROC separation The area under the ROC curve is the accuracy. The ROC separation
enables you to change the ROC-based cutoff and evaluate the
model’s performance under different ranges of accuracy.

Root average squared
error

It is the square root of the average differences between the
prediction and the actual observation.

6-20 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Interval selection statistics:

Average squared error The sum of squared errors (SSE) divided by the number of
observations.

Root average squared
error

It is the square root of the average squared differences between the
prediction and the actual observation.

Root mean absolute
error

It is the square root of the average differences between the
prediction and the actual observation, not considering the direction
of the error.

Root mean squared
logarithmic error

It is the square root of the average squared differences between the
prediction and the actual observation. The differences between the
prediction and actual observation is measure by the log function.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 3

6.01 Multiple Choice Poll

Which of the following statements is true regarding the ROC curve?

a. The vertical axis is the sensitivity, and the horizontal axis is specificity.

b. The C-statistic equals the percent of concordant cases plus one-half times
the percent of tied cases.

c. A strong model has an ROC curve that follows a line that has a 45-dgree
angle going through the origin.

d. The ROC curve has no upper bound on the Y axis.

6.1 Model Assessment and Comparison 6-21

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Comparing Multiple Models of a Single Pipeline in Model
Studio

In this demonstration, you run the Model Comparison node in the Chapter 3 pipeline. You compare
the models’ performances based on different fit statistics.

Note: Although not shown here, you could look at the results of the Model Comparison node from
any of the other pipelines where models were built.

The Model Comparison node enables you to compare the performance of competing models using
various assessment measures. There are many criteria that can be used to compare models. For
class targets, there are 18 different measures, including measures of error, lift , and ROC. You can
select the measure and specify the depth to use when applying a lift-based measure or the cutoff to

use when applying an ROC-based measure. For interval targets, there are four measures of error:
ASE, RASE, RMAE, and RMSLE. All measures of assessment are computed for each of the data
partitions that are available (train, validate, and test). You can also select which data partition to use
for selecting the champion.

Note: If multiple supervised learning nodes are connected to the Model Comparison node, then
only successfully completed models are compared. Models that have failed or been stopped
are not considered. The selected model from the Model Comparison node of each pipeline is
added to the Pipeline Comparison tab. This enables you to compare models from the
different pipelines in your project and to select a champion model.

1. You can change the default assessment measures on the Project settings option under the
Rules property. (Recall that the short-cut button for Project settings is found in the upper right
corner of the project window.)

2. Click Cancel if you opened the Project settings window.

6-22 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3. You can also change the default settings under the properties for the Model Comparison node.
Click the Chapter 3 pipeline tab to open it. Select the Model Comparison node. Its properties
are shown below.

Note: The complete list of assessment measures is described in the course notes before the
current demonstration.

4. It is possible that tree-based models were built and assessed individually, but the Model
Comparison node was not run. Right-click the Model Comparison node and select Run.

5. When the Model Comparison node is done (the green check mark is visible), right-click the
Model Comparison node and select Results.

The first results table shows the champion model based on the assessment measure selected.
(This comparison does not include the models developed during the exercises by using the
Autotune feature).

6.1 Model Assessment and Comparison 6-23

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The criteria used to evaluate the models and select the champion are shown in the Properties
table.

6. Click the Assessment tab to see more results.

On the Assessment tab, you can find two plots and one table presenting the performance
and the fit statistics for all the models compared. The first plot shows the Lift report based
on % Response. You also have the options to see the models’ performance based on the

Cumulative % Response , % Captured Response , Cumulative % Captured Response ,
Cumulative Lift, Gain, and Lift.

6-24 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

The second plot shows the ROC report based on Accuracy. You also have the options to see
the models’ performances based on the F1 Score and ROC.

Finally, the Fit Statistics table shows all models’ performances based on the data partitions
defined in the project (train, validate, and test) for a series of fit statistics, such as Area Under
ROC, Average Square Error, Gini Coefficient, and KS, among others.

7. Close the results.

6.1 Model Assessment and Comparison 6-25

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Comparing Multiple Models across Pipelines Using the
Pipeline Comparison Tab and Registering the Champion

Pipeline Comparison enables you to compare the best models from each pipeline created. In
addition to that, it enables you to register the champion model and use it in the Manage Models tool.

(The models built in student exercises and self-study demonstrations are ignored in this
demonstration.)

1. Click Pipeline Comparison.

At the top, you see the champion model from each pipeline as well as the model deemed the
overall champion in the pipeline comparison--the champion of champions. In addition, several
charts and tables are provided that summarize the performance of the overall champion model,
show the variable importance list of the model, provide training and score codes, and show other

outcomes from the selected best model. The default assessment measure for Pipeline
Comparison is Kolmogorov-Smirnov (KS).

All the results shown are for the overall champion model only. There might be a need to perform
a model comparison of each of the models shown.

2. Select the check boxes next to all the models shown at the top of the Results page. You can also
select the check box next to Champion at the top of the table.

6-26 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

3. When multiple models are selected, the Compare button in the upper right corner is activated.
Click the Compare button.

The Compare results are shown, where assessment statistics and graphics can be compared
across all champion models from each of the pipelines.

4. Close the Compare results window and deselect models in the table at the top of the window
until only the overall champion model is selected. The overall champion model is indicated with

the star symbol in the Champion column.

5. Click the three vertical dots on the right top corner to access the Project pipeline menu. Note that
Manage Models is not available.

6.1 Model Assessment and Comparison 6-27

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6. Select Register models. The champion model is registered.

When the champion model is registered, it can be viewed and used in the Manage Model tool,
where you can export the score code in different formats, deploy the model, and manage its
performance over time.

6-28 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6.2 Model Deployment

Scoring is the generation of predicted values for a data set that might not contain a target variable.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 8

Essential Deployment Tasks

...

• Assess models.

• Com pare models.

• Score the champion model.

• Monitor model performance over

time.

• Update the model as needed.

6.2 Model Deployment 6-29

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

After you train and compare predictive models, one model is selected to represent the association
between the inputs and the target. After it is selected, this model must be put to use. The model is

translated to score code or a score model data set. It is then applied to the scoring data set, where
predicted outcomes are obtained.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 9

Model Implementation

The champion
model uses input

measurements of
new data
to make the best

predictions.

predictedinputs

Scoring Data

6-30 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Model Studio Models in Model Manager

In this demonstration, you place the champion model selected by Pipeline Comparison in Model
Studio into the Manage Models tool in SAS Viya.

1. In Pipeline Comparison, click the “snowman” icon (three vertical dots) to access the project
pipeline menu. Notice that the Manage Model option is now available, after you have registered

the champion model in the previous demonstration. Select Manage Model.

2. You are redirected to the Manage Model tool. A window containing a list of files is shown, which
includes codes for training and scoring the model. Click the second icon assigned to the projects
on the left pane of the window. This icon takes you to the Model Manager projects.

3. The Model Manager project named Demo is based on the Model Studio project of the same
name. Also in this project are models that were registered within Model Studio. Select the Demo
project (step 1) and click the open shortcut button in the upper right corner (step 2), or click the
project name.

Step 1 Step 2

6.2 Model Deployment 6-31

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

4. Models within the Demo project that have been registered are shown.

There is currently a single model in the Demo project, a forest. The name of the model, Forest
(Chapter 3), is based on the champion model and pipeline name from Model Studio.

Across the top of the page is a series of tabs. These tabs are used during the entire model
management process, which goes beyond just model deployment.

The Models tab shows registered models within the Model Manager project.

The Variables tab is where input variables and output variables can be added to both project and
model objects.

The Properties tab contains the project metadata. Project metadata includes information such as
the name of the project, the type of project, the project owner, the project location, and which
tables and variables are used by project processes, such as scoring. Project properties are
organized into General, Tags, and User Defined.

The Scoring tab is where scoring tests can be run and also where published models can be
validated.

The Performance tab shows performance monitoring reports, which are generated from scored
data.

The History tab shows the history of how the project and model have been used, including
information about when the project and models were created, when champion models were
defined, and when the model was last deployed.

5. Click the name of the model.

6-32 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6. Select dmcas_epscorecode.sas in the column on the left.

Above is the score code generated by the model. The score code can be exported to deploy the
model in production considering distinct environments and platforms.

Note: For more information about model deployment using Model Manager or about Model
Manager in general, consider taking further training on the product.

6.2 Model Deployment 6-33

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Even after a model has been deployed, it must be monitored. Because models are often trained on
static snapshots of data, their predictions typically become less accurate over time as the

environment shifts away from the conditions that were captured in the training data. For example,
consider a movie recommendation model that must adapt as viewers grow and mature through
stages of life. After a certain period, the error rate on new data surpasses a predefined threshold,
and models must be retrained or replaced. Champion-challenger testing is another common model
deployment practice, in which a new, challenger model is compared against a currently deployed
model at regular time intervals. When a challenger model outperforms a currently deployed model,
the deployed model is replaced by the challenger, and the champion-challenger process is repeated.
Yet another approach to refreshing a trained model is through online updates. Online updates
continuously change the value of model parameters or rules based on the values of new, streaming
data. It is prudent to assess the trustworthiness of real-time data streams before implementing an
online modeling system.

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

3 1

Essential Deployment Tasks

...

• Assess models.

• Com pare models.

• Score the champion model.

• Monitor model performance over

time.

• Update the model as needed.

6-34 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

6.3 Solutions

Solutions to Student Activities (Polls/Quizzes)

C o p yrigh t © SAS In sti tu te In c. A l l ri gh ts reserved .

2 4

6.01 Multiple Choice Poll – Correct Answer

Which of the following statements is true regarding the ROC curve?

a. The vertical axis is the sensitivity, and the horizontal axis is specificity.

b. The C-statistic equals the percent of concordant cases plus one-half times
the percent of tied cases.

c. A strong model has an ROC curve that follows a line that has a 45-dgree
angle going through the origin.

d. The ROC curve has no upper bound on the Y axis.

6.3 Solutions 6-35

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Summary of All Models

The following chart shows the different models’ performance for logistic regression, decision tree,
gradient boosting, forest, neural network, and support vector machine. The comparison of these
models considers the default settings, the tune based on the topics covered throughout the chapters,
and the Autotune feature for each technique.

The Neural Network model autotuned during the exercise was the best model.

0.0946

0.0912

0.0971

0.1142

0.0563

0.0691

0.0697

0.0743

0.0595

0.0601

0.063

0.0568

0.0565

0.0576

0.061

0.0619

0.0621

0.0801

0.0856

0.0689

Support vector machine - autotune

Support vector machine - kernel function

Support vector machine - methods of solution

Support vector machine - default settings

Neural network - autotune

Neural network - learning and optimization

Neural network - architecture

Neural network - default settings

Forest - autotune

Forest - tuned

Forest - default settings

Gradient boosting - autotune

Gradient boosting - tuned

Gradient boosting - default settings

Decision tree - autotune

Decision tree - pruning

Decision tree - recursive partitioning

Decision tree - tree structure

Decision tree - default settings

Logistic regression - default settings

Average Square Error

6-36 Chapter 6 Model Assessment and Deployment

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Appendix A References

A.1 References ... A-3

A-2 Appendix A References

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

A.1 References A-3

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

A.1 References

Alpaydin, E. and F. Gürgen. 1996. “Comparison of Statistical and Neural Classifiers and Their
Applications to Optical Character Recognition and Speech Classification. ” in Neural Network
Systems: Techniques and Applications (Leondes, ed.). San Diego, CA: Academic Press.

Banks, R. B. 1994. Growth and Diffusion Phenomena: Mathematical Frameworks and Application.
New York: Springer-Verlag.

Bartlett, P. L. 1997. “For Valid Generalization, the Size of the Weights is More Important than the
Size of the Network.” in: Advances in Neural Information Processing Systems Volume 9 (Mozer,
Jordan, and Petsche, eds.). Cambridge, MA: The MIT Press.

Bauer, E. and R. Kohavi. 1999. “An Empirical Comparison of Voting Classification Algorithms:
Bagging, Boosting, and Variants.” Machine Learning. 36:105–139.

Beck, A. 1997. “Herb Edelstein discusses the usefulness of data mining.” DS Star. Vol. 1:No. 2.
Available at www.tgc.com/dsstar/.

Berger, J. 1980. Statistical Decision Theory. New York: Springer-Verlag.

Berk, K. N. and D. E. Booth. 1995. “Seeing a Curve in Multiple Regression.” Technometrics 37:4.

Bishop, C. M. 1995. Neural Networks for Pattern Recognition. New York: Oxford University Press.

Blake, C., E. Keogh, and C. J. Merz. 1998. UCI Repository of machine learning databases. Irvine,
CA: University of California, Department of Information and Computer Science. Available at
http://archive.ics.uci.edu/ml/

Box, G. E. P. and G. M. Jenkins. 1976. Time Series Analysis: Forecasting and Control.
San Francisco: Holden-Day Inc.

Breiman, L. et al. 1984. Classification and Regression Trees. Belmont, CA: Wadsworth International
Group.

Breiman, L. 1996a. “Technical Note: Some Properties of Splitting Criteria.” Machine Learning.
24:41–47.

Breiman, L. 1996b. “Bagging Predictors.” Machine Learning. 24:123–140.

Breiman, L. 1998. “Arcing Classifiers (with discussion).” Annals of Statistics. 26:801–849.

[BFOS], Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification
and Regression Trees. New York: Chapman & Hall.

Broomhead, D. S. and David Lowe. 1988. Radial basis functions, multi-variable functional
interpolation and adaptive networks (Technical report). RSRE. 4148.

Broyden, C. G. 1970 “The Convergence of a Class of Double-rank Minimization Algorithms.” Journal
of the Institute of Mathematics and Its Applications 6:76–90.

Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu. 1995. “A limited memory algorithm for bound constrained
optimization.” SIAM Journal on Scientific Computing. 16, 1190-1208.

Bryson, A. E. and Y. C. Ho. 1969. Neural Networks: Computers with Intuition. Singapore:
World Scientific.

Cai, Z. and C. L. Tsai. 1999. “Diagnostics for Nonlinearity in Generalized Linear Models.”
Computational Statistics and Data Analysis 29:445–469.

Carroll, R. J. and D. Ruppert. 1988. Transformation and Weighting in Regression. New York:
Chapman & Hall.

http://www.tgc.com/dsstar/
http://archive.ics.uci.edu/ml/
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA196234
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA196234
https://en.wikipedia.org/wiki/Royal_Signals_and_Radar_Establishment

A-4 Appendix A References

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Chatfield, C. and J. Faraway. 1998. “Time Series Forecasting with Neural Networks:
A Comparative Study Using the Airline Data.” Applied Statistics 47:231–250.

Chester, D.L.1990. “Why Two Hidden-Layers are Better than One” in IJCNN-90-WASH-DC.
Lawrence Erlbaum. Vol. 1:265–268.

Cuellar, M.P., M. Delgado, and M.C. Pegalajar. 2006. “An Application of Non-Linear Programming to
Train Recurrent Neural Networks in Time Series Prediction Problems.” Enterprise Information

Systems VII (Springer Netherlands) 95–102.

Cybenko, G. 1988. Continuous Valued Neural Networks with Two Hidden Layers Are Sufficient .
Technical Report. Dept. of Computer Science. Tufts University: Medford, MA.

David Shepard Associates. 1999. The New Direct Marketing: How to Implement a Profit-Driven
Database Marketing Strategy. New York: McGraw-Hill.

De Vries, B. and J. C. Principe. 1992. “The Gamma Filter - A New Class of Adaptive IIR Filters
with Restricted Feedback.” IEEE Transactions. Signal Processing. In Press.

De Vries, B. and J. C. Principe. 1992. “The Gamma Model - A New Model for Temporal Processing.”
Neural Networks Vol.5:565–576.

De Vries, B. and J. C. Principe. 1992. Short Term Memory Structures for Dynamic Neural Networks .
Princeton, NJ: David Sarnoff Research Center.

Dorffner, G. 1996. “Neural Networks for Time Series Processing.” Neural Network World 6:447–468.

Efron, B. 1983. “Estimating the Error Rate of a Prediction Rule: Improvement on Cross Validation. ”
Journal of the American Statistical Association 78:316–331.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani. 2004. “Least Angle Regression (with
Discussion).” Annals of Statistics, 32: 407–499.

Ellingsen, B.K. 1994. “A Comparative Analysis of Backpropagation and Counterpropagation Neural
Networks.” Department of Information Science. University of Bergen: Bergen, Norway.

Elman, J.L. 1990. “Finding Structure in Time.” Cognitive Science 14:179–221.

Ezekiel, M. 1924. “A Method for Handling Curvilinear Correlation for any Number of Variables.”
Journal of the American Statistical Association 19:431–453.

Falhman, S. E. 1988 “Faster-learning variations on back-propagation: an empirical study.”
Proceedings of the 1988 Connectionist Models Summer School. (D. Touretzky, G. E. Hinton,
and T. J. Sejnowski, eds.).pp. 31–51. San Mateo, CA. Morgan Kaufmann.

Fahlman, S. E. and C. Lebiere. 1990. “The Cascade-Correlation Learning Architecture.” in Advances
in Neural Information Processing Systems Volume 2. (D Touretzky, ed.). San Mateo, CA:
Morgan Kaufmann.

Fan, J. and I. Gijbels. 1996. Local Polynomial Modeling and its Applications . New York: Chapman &
Hall.

Fletcher, R. 1970. “A New Approach to Variable Metric Algorithms.” Computer Journal 13: 317–322.

Fletcher, R. 1987. Practical Methods of Optimization. New York: Wiley.

Freund, Y. and R. E. Schapire. 1996. “A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting.” Journal of Computer and System Science. 55:119–139.

Friedman, J. H. 1991. “Multivariate Adaptive Regression Splines (with discussion).” Annals of
Statistics 19:1–141.

A.1 References A-5

Friedman, J. H. 1994. “An Overview of Predictive Learning and Function Approximation.” In From
Statistics to Neural Networks. Theory and Pattern Recognition Applications . (Cherkasy,
Friedman, Wechsler, eds.) New York: Springer-Verlag.

Friedman, J. H. 1997. “On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality.”
Data Mining and Knowledge Discovery 1:55–77.

Friedman, J. H. 2001. “Greedy function approximation: A gradient boosting machine.”
The Annals of Statistics. 29:1189–1232.

Friedman, J. H. 2002. “Stochastic gradient boosting.” Computational Statistics & Data Analysis .
38:367–378.

Friedman, J. H. and W. Stuetzle 1981. “Projection Pursuit Regression.” Journal of the American
Statistical Association. 76:817–823.

Furnival, G. M. and R. W. Wilson. 1974. “Regression by Leaps and Bounds.” Technometrics, 16,
499–511.

Georges, J. E. 2003. “Beyond Expectations: Quantifying Variability in Predictive Models .”
Proceedings of the M2003 SAS Data Mining Conference. Cary, NC: SAS Institute Inc.

Georges, J. E. 2004. “Qualities to Quantities: Using Non-numeric Data in Parametric Prediction.”
Proceedings of the M2004 SAS Data Mining Conference. Cary, NC: SAS Institute Inc.

Goldfarb, D. 1970. “A Family of Variable Metric Updates Derived by Variational Means.” Mathematics
of Computation 24: 23–24.

Hand, D. J. 1997. Construction and Assessment of Classification Rules . New York: Wiley.

Hand, D. J. 2005. “What you get is what you want? – Some dangers of black box data mining.”
M2005 Conference Proceedings. Cary, NC: SAS Institute Inc.

Hand, D. J. 2006. “Classifier technology and the illusion of progress.” Statistical Science 21:1–14.

Hand, D. J. and W. E. Henley. 1997. “Statistical classification methods in consumer credit scoring:
a review.” Journal of the Royal Statistical Society A. 160:523–541.

Hand, David, Heikki Mannila, and Padraic Smyth. 2001. Principles of Data Mining. Cambridge,
Massachusetts: The MIT Press.

Harrell F. E., K. L. Lee, and D. B. Mark. 1996. “Multivariate Prognostic Models: Issues in Developing
Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors. ”
Statistics in Medicine 15:361–387.

Harrell, F. E. 2006. Regression Modeling Strategies. New York: Springer-Verlag New York, Inc.

Harrison, D. and D. L. Rubinfeld. 1978. “Hedonic Prices in the Demand for Clean Air.” Journal of
Environmental Economics and Management 5:81–102.

Hassibi, B. and D. G. Stork. 1993. “Second Order Derivatives for Network Pruning:
Optimal Brain Surgeon.” In Advances in Neural Information Processing Systems, Volume 5.
(Hansen, Cowan, and Giles, eds.) San Mateo, CA: Morgan Kaufmann.

Hastie, T. J. and R. J. Tibshirani. 1986. “Generalized Additive Models (with discussion).” Statistical

Science 1:297–318.

Hastie, T. J. and R. J. Tibshirani. 1990. Generalized Additive Models. New York: Chapman & Hall.

Hastie, T. J. and R. J. Tibshirani, and Jerome Friedman. 2001. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. New York: Springer-Verlag New York, Inc.

Hebb, D. O. 9949. The Organization of Behavior. New York: Wiley.

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

A-6 Appendix A References

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Hecht-Nielsen, R. 1987. “Counterpropagation Networks.” Applied Optics 26:4979–4984.

Hertz, J., A. Krogh, and R. G. Palmer. 1991. Introduction to the Theory of Neural Computation.
Redwood City, CA: Addison-Wesley Publishing Co.

Hettich, S. and S. D. Bay. 1999. The UCI KDD Archive [<http://kdd.ics.uci.edu>]. Irvine, CA:
University of California, Department of Information and Computer Science.

Hinton, G. E., S. Osindero, and Y. W. Teh. 2006. “A Fast Learning Algorithm for Deep Belief
Networks.” Neural Computation 18. MIT. 1527–1554.

Hinton, G. E., N. Shrivastava, and K. Swersky. 2013. “Overview of Mini-Batch Gradient Descent”
Video from Coursera - University of Toronto - Course: Neural Networks for Machine Learning:
Published on Nov 5, 2013. Available at https://www.coursera.org/course/neura.

Hoaglin, D. C., F. Mosteller, and J. W. Tukey. 1983. Understanding Robust and Exploratory Data
Analysis. New York: Wiley.

Hoerl, A. E. and R. W. Kennard. 1970. “Ridge Regression: Biased Estimation for Nonorthogonal
Problems.” Technometrics 12:55–67.

Hogg, R. V. 1979. “Statistical Robustness: One View of Its Use in Applications Today. ”
The American Statistician 33:108–115.

Holden, K. 1995. “Vector Autoregression Modeling and Forecasting.” Journal of Forecasting
14:159–166.

Holland, J. H. 1976. “Studies of Spontaneous Emergence of Self-Replicating Systems Using Cellular
Automata and Formal Grammars.” In Automata, Languages, Development. (A. Lindenmayer
and G. Rozenberg, eds.) Amsterdam: North-Holland.

Holland, J. H. 1992. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence, 2nd Edition. Cambridge, MA:
The MIT Press.

Huber, P. J. 1964. “Robust Estimation of a Location Parameter.” Annals of Mathematical Statistics
35:73–101.

Jacobs, R. A., M. I. Jordan, S. J. Nowlan, and G. E. Hinton. 1991. “Adaptive Mixture of Local
Experts.” Neural Computation 3:79–87.

Jaeger, H. 2001. "The ‘echo state’ approach to analyzing and training recurrent neural networks".
GMD Report 148. GMD - German National Research Institute for Computer Science.

Jaeger, H. 2002. “Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the
echo state network approach”. GMD Report 159. Fraunhofer Institute AIS.

Jaeger, H. 2007. “Echo state network.” Scholarpedia 2(9):2330.

Johnson, D. E. 1998. Applied Multivariate Methods for Data Analysis . Pacific Grove, CA:
Druxbury Press.

Johnson, G. 1991. In the Palaces of Memory. Vintage Books: Random House, Inc. NY, NY.

Jordan, M. I. and R. A. Jacobs. 1994. “Hierarchical Mixture of Experts and the EM algorithm.”
Neural Computation 6:181–214.

Kass, G. V. 1980. “An exploratory technique for investigating large quantities of categorical data. ”
Applied Statistics. 29:119–127.

Kohavi, R., D. Sommerfield, and J. Dougherty. 1996. “Data Mining using MLC.” International Journal
on Artificial Intelligence Tools. 6:234–245.

http://kdd.ics.uci.edu/
https://www.coursera.org/course/neura
http://minds.jacobs-university.de/sites/default/files/uploads/papers/EchoStatesTechRep.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf
http://minds.jacobs-university.de/sites/default/files/uploads/papers/ESNTutorialRev.pdf

A.1 References A-7

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Landwehr, J. D., D. Pregibon, and A. C. Shoemaker. 1984. “Graphical Methods for Assessing
Logistic Regression Models (with discussion).” Journal of the American Statistical Association
79:61–83.

Larsen, W. A. and S. J. McCleary. 1972. “The Use of Partial Residual Plots in Regression Analysis.”
Technometrics 14:781–790.

LeCun, Y., P. Y. Simard, and B. Pearlmutter. 1993. “Autonomic learning rate maximization by on-line
estimation of Hessian’s eigenvectors” In Advances in Neural Information Processing Systems
(S. J. Hanson, J. D. Cowan, and C. L. Giles, eds.) Vol. 5:156–163. San Mateo, CA: Morgan
Kaufmann.

LeCun Y., L. Bottou, G. B. Orr, and K. R. Müller. 1998. “Efficient BackProp.” In Neural Networks:
Tricks of the Trade. Lecture Notes in Computer Science (G. B. Orr and K. R. Müller, eds).

Vol. 1524. Berlin: Springer,

Leisch, F., A. Trapletti, and K. Hornik. 1999. “Stationarity and Stability of Autoregressive Neural
Network Processes.” In Advances in Neural Information Processing Systems 11. (Kearns, Solla,
Cohn, eds.) Cambridge, MA: The MIT Press.

Loh, W. and Y. Shih. 1997. “Split Selection Methods for Classification Trees.” Statistica Sinica.
7:815–840.

Loh, W. and N. Vanichsetakul. 1988. “Tree-Structured Classification Via Generalized Discriminant
Analysis (with discussion).” Journal of the American Statistical Association. 83:715–728.

Lukosevicius, M. and H. Jaeger. 2010. “Reservoir Approaches to Recurrent Neural Network
Training.” Computer Science Revue 3(3):127–149.

Lukosevicius, M. 2012. “A Practical Guide to Applying Echo State Networks.” In Neural Networks:
Tricks of the Trade, 2nd ed. (G. Montavon, G. B. Orr, and K. R. Müller, eds.) Springer LNCS
7700:659–686.

Maass W., T. Natschlaeger, and H. Markram. 2002. “Real-time computing without stable states: A
new framework for neural computation based on perturbations.” Neural Computation.
14(11):2531–2560.

Maldonado, M., J. Dean, W. Czika, and S. Haller. 2014. “Leveraging Ensemble Models in SAS®
Enterprise MinerTM.” Proceedings of the SAS Global Forum 2014 Conference. Cary, NC: SAS
Institute Inc. Available at http://support.sas.com/resources/papers/proceedings14/SAS133-
2014.pdf.

Masters, T. 1993. Practical Neural Network Recipes in C++. Boston: Academic Press Inc. Harcourt
Brace & Co. Publishers.

Melssen, W., R. Wehrens, and L. Buydens. 2006. “Supervised Kohonen networks for classification
problems.” Chemometrics and Intelligent Laboratory Systems 83:99–113.

McCullagh, P. and J. A. Nelder. 1989. Generalized Linear Models, Second Edition. New York:
Chapman & Hall.

McLachlan, G. J. 1992. Discriminant Analysis and Statistical Pattern Recognition. New York: Wiley.

Minsky, Marvin. 1986. The Society of Mind. New York: Simon and Schuster.

Mitra, S. 2000. “Neuro-Fuzzy Rule Generation: Survey in Soft Computing Framework.”
IEEE Transactions on Neural Networks. Vol. II, No 3 (May).

Moody, J. 1994. “Prediction Risk and Architecture Selection for Neural Networks.” In From Statistics
to Neural Networks. Theory and Pattern Recognition Applications . (Cherkasy, Friedman,
Wechsler, eds.) New York: Springer-Verlag.

http://support.sas.com/resources/papers/proceedings14/SAS133-2014.pdf
http://support.sas.com/resources/papers/proceedings14/SAS133-2014.pdf

A-8 Appendix A References

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Morgan, J. N. and J. A. Sonquist. 1963. “Problems in the Analysis of Survey Data, and a Proposal.”
Journal of the American Statistical Association. 58:415–434.

Mosteller, F. and J. W. Tukey. 1977. Data Analysis and Regression. Reading, MA: Addison-Wesley.

Murthy, S. K., S. Kasif, and S. Salzberg. 1994. “A System of Induction of Oblique Decision Trees.”
Journal of Artificial Intelligence Research. 2:1–32.

Murthy, S. K. and S. Salzberg. 1995. “Lookahead and Pathology in Decision Tree Induction.”
Proceedings of IJCAI-95, Montreal. 1025–1031.

NC Health and Human Services. North Carolina State Center for Health Statistics. “Statistics and
Reports.” Available at http://www.schs.state.nc.us/data/archivedvitalstats.cfm#vol1.

Ng, A. 2013. “Stochastic Gradient Descent” Video from Coursera - Stanford University - Course:
Machine Learning: Published on Nov 1, 2013. Available at https://www.coursera.org/course/ml.

Olah, C. “Understanding LSTM Networks.” Available at http://colah.github.io/posts/2015-08-
Understanding-LSTMs. Posted Aug 27, 2015. Accessed March 7, 2016.

Pao, Y. 1989. Adaptive Pattern Recognition and Neural Networks . Reading, MA: Addison-Wesley.

Parker, D. B. 1985. Learning Logic: Technical Report TR-47. Center for Computational Research
in Economics and Management Science. MIT. Cambridge, MA.

Patil, G. P. and C. Taillie. 1982. “Diversity as a Concept and its Measurement (with discussion).”
Journal of the American Statistical Association. 77:548–567.

Pearlmutter, B. 1995. “Gradient calculations for dynamic recurrent neural networks: A survey.” Neural
Networks. IEEE Transactions. 6(5):1212–1218.

Piatesky-Shapiro, G. 1998. “What Wal-Mart might do with Barbie association rules.” Knowledge
Discovery Nuggets. 98:1. Available at http://www.kdnuggets.com/.

Poh, H., J. Yao, and T. Jasic. 1998. “Neural networks for the Analysis and Forecasting of Advertising
and Promotion Impact.” International Journal of Intelligent Systems in Accounting, Finance, and
Management 7:253–268.

Potts, W. J. E. 1999. “Generalized Additive Neural Networks.” In KDD-99 Proceedings.
(Chaudhuri, Madigan, eds.). ACM.

Prechelt, L. 1996. “A Quantitative Study of Experimental Evaluations of Neural Network Learning
Algorithms: Current Research Practice.” Neural Networks 9:457–462.

Prechelt, L. 1997. “Investigation of the CasCor Family of Learning Algorithms.” Neural Networks
10:885–896.

Prechelt, L. 1998. “Automatic Early Stopping Using Cross Validation: Quantifying the Criteria. ”
Neural Networks 11:761–767.

Principe, J.C., N. R. Euliano, and W. C. Lefebvre. 2000. Neural and Adaptive Systems. New York:
Wiley.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learning. San Mateo, CA: Morgan Kaufmann.

Raftery, A. E. 1995. “Bayesian Model Selection in Social Research (with discussion).”
In Sociological Methodology 1995 (Marsden ed.) New York: Blackwell.

Rao, J. S. and W. J. E. Potts. 1997. “Visualizing Bagged Decision Trees.” Proceedings of the Third
International Conference on Knowledge Discovery and Data Mining (Heckerman, Mannila,
Pregibon, and Uthurusamy, eds.). Menlo Park, CA: AAAI Press.

Rendle, S. 2010. “Factorization Machines. “ The Institute for Scientific and Industrial Research.
Osaka University, Japan.

http://www.schs.state.nc.us/data/archivedvitalstats.cfm#vol1
https://www.coursera.org/course/ml
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://www.kdnuggets.com/

A.1 References A-9

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Rendle, S. 2012. “Factorization Machines with libFM.” ACM Transactions on Intelligent Systems and
Technology, vol. 3, no. 3, article 57.

Ridgeway, Greg. 1999. “The State of Boosting.” Computing Science and Statistics. 31:171–181.

Riedmiller, M. and H. Braun. 1993. “A direct adaptive method for faster back propagation learning:
The RPROP algorithm.” Proceedings of the International Conference on Neural Networks . San
Francisco, CA. pp. 586–591.

Riedmiller, M. 1994. “Supervised Learning in Multi-layer Perceptrons – From Backpropagation
to Adaptive Learning Algorithms.” Int. Journal of Computer Standards and Interfaces 16.

Ripley, B. D. 1996. Pattern Recognition and Neural Networks. New York: Cambridge University
Press.

Rubinkam, M. 2006. “Internet Merchants Fighting Costs of Credit Card Fraud.” AP Worldstream.
The Associated Press.

Rud, Olivia Parr. 2001. Data Mining Cookbook: Modeling Data, Risk , and Customer Relationship
Management. New York: Wiley.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. “Learning Representations by
Back-Propagating Errors.” Nature 323:533–536.

Runkle, D. E. 1987. “Vector Autoregressions and Reality (with discussion).” Journal of Business
and Economic Statistics 5:437–454.

Sarle, W. S. 1994a. “Neural Networks and Statistical Models.” Proceedings of the Nineteenth Annual
SAS® Users Group International Conference. Cary, NC: SAS Institute Inc. 1538–1550.

Sarle, W. S. 1994b. “Neural Network Implementation in SAS® Software.” Proceedings of the
Nineteenth Annual SAS® Users Group International Conference. Cary, NC: SAS Institute Inc.
1550–1573.

Sarle, W. S. 1995. “Stopped Training and Other Remedies for Overfitting.” Proceedings of the 27th
Symposium on the Interface.

Sarle, W. S., ed. 1997. Neural Network FAQ. URL: ftp://ftp.sas.com/pub/neural/FAQ.html.

Sarle, W. S. 1999. “How to Measure the Importance of Inputs?” URL:
ftp://ftp.sas.com/pub/neural/importance.html.

Sarle, W. S. 2000. (revised June 23) “How to measure importance of inputs?” Cary, N.C.
[http://mu.dmt.ibaraki.ac.jp/yanai/neu/faq/importance.html]

SAS Institute Inc. 2016. SAS® Enterprise Miner 14.2: High-Performance Procedures. Cary, NC: SAS
Institute Inc.

Scheffe, H. 1959. The Analysis of Variance. New York: Wiley.

SCHS: North Carolina State Center for Health Statistics. 2012. “Selected Statistics for 2000 and
1996-00.” Available at http://www.schs.state.nc.us/data/vital/volume1/2000/nc.html.

SCHS: North Carolina State Center for Health Statistics. 2003. “Selected Statistics for 2001 and
1997-2001.” Available at http://www.schs.state.nc.us/data/vital/volume1/2001/nc.html.

Schwarz, G. 1978. “Estimating the Dimension of a Model.” Annals of Statistics 6:461–464.

Seber, G. A. F. and C. J. Wild. 1989. Nonlinear Regression. New York: Wiley.

Shanno, D. F. 1970. “Conditioning of Quasi-Newton Methods for Function Estimation.” Mathematics
of Computation 24:647–656.

http://mu.dmt.ibaraki.ac.jp/yanai/neu/faq/importance.html
http://www.schs.state.nc.us/data/vital/volume1/2000/nc.html
http://www.schs.state.nc.us/data/vital/volume1/2001/nc.html

A-10 Appendix A References

Copyright © 2019, SAS Institute Inc., Cary, North Carolina, USA. ALL RIGHTS RESERVED.

Shannon, C. E. 1948. “A Mathematical Theory of Communication.” The Bell System Technical
Journal. 27:379–423.

Suykens, J., B. D. Moor, and J. Vandewalle. 2008. “Toward optical signal processing using photonic
reservoir computing.” Optics Express 16(15):11182–11192.

Tibshirani, R. and G. E. Hinton. 1995 “Coaching variables for regression and classification.”
Statistics and Computing 8:25–33.

Tsukimoto, H. 2000. “Extracting Rules from Trained Neural Networks.” IEEE Transactions
on Neural Networks. Vol. II, No. 2 (March).

Vapnik, V. N. 1995. The Nature of Statistical Learning. New York, NY: Springer.

Vapnik, V., S. Golowich, and A. Smola. 1997. “Support Vector Method for Function Approximation,
Regression Estimation, and Signal Processing.” In Advances in Neural Information Processing

System 9. 281-287. Also in Proceedings of the 1996 conference on Neural Information
Processing Systems. MIT Press.

Vracko, M. 2005. “Kohonen Artificial Neural Network and Counterpropagation Neural Network in
Molecular Toxicity Studies.” Current Computer-Aided Drug Design 1:73–78.

Wasserman, P. D. 1993. Advanced Methods in Neural Computing. New York: Van Nostrand
Reinhold.

Weigend, A. S. and N. A. Gershenfeld. 1994. Time Series Prediction: Forecasting the Future
and Understanding the Past. Reading, MA: Addison-Wesley.

Weiss, S. M. and C. A. Kulikowski. 1991. Computer Systems That Learn: Classification and
Prediction Methods from Statistics, Neural Nets, Machine Learning, and Expert Systems. San
Mateo, CA: Morgan Kaufmann.

Werbos, P. 1974. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences. Ph.D. Thesis. Harvard University.

Wold, H. 1966. “Estimation of Principal Components and Related Models by Iterative Least
Squares”. In Krishnaiaah, P.R. Multivariate Analysis. New York: Academic Press. 391–420.

Zahavi, J. and N. Levin. 1997. “Applying Neural Computing to Target Marketing.” Journal of Direct
Marketing 11:5–22.

Zhou, Z.-H. 2012. Ensemble Methods: Foundations and Algorithms . Boca Raton, FL: Chapman &
Hall/CRC.

	Course Outline
	Chapter 1 - Introduction
	1.1 Machine Learning in Business Decision Making
	Demonstration (1-22)

	1.2 Essentials of Supervised Prediction
	Demonstration (1-44)
	Demonstration (1-61)

	1.3 Introduction to SAS Viya

	Chapter 2 - Data Preparation
	2.1 Data Exploration
	Demonstration (2-8)
	Demonstration (2-13)
	Demonstration (2-19)

	2.2 Feature Extraction
	Demonstration (2-29)

	2.3 Input Transformations
	Demonstration (2-45)

	2.4 Feature Selection
	Demonstration (2-57)
	Demonstration (2-61)

	2.5 Variable Clustering (Self-Study)
	Demonstration (2-66)

	2.6 Best Practices
	Demonstration (2-74)

	2.7 Solutions
	Solutions to Student Activities (pg 2-78)

	Chapter 3 - Decision Trees and Ensembles of Trees
	3.1 Introduction
	Demonstration (3-5)

	3.2 Tree-Structure Models
	Demonstration (3-17)

	3.3 Recursive Partitioning
	Demonstration (3-40)

	3.4 Pruning
	Demonstration (3-50)
	Exercise (3-52)

	3.5 Ensembles of Trees
	Demonstration (3-63)
	Exercise (3-65)
	Demonstration (3-71)
	Exercise (3-74)

	3.6 Solutions
	Solution (3-75)
	Solutions to Student Activities (pg 3-80)
	Solution (3-82)

	Chapter 4 - Neural Networks
	4.1 Introduction
	Demonstration (4-15)

	4.2 Network Architecture
	Demonstration (4-27)

	4.3 Learning
	Demonstration (4-52)
	Exercise (4-54)

	4.4 Solutions
	Solution (4-55)
	Solutions to Student Activities (pg 4-57)

	Chapter 5 - Support Vector Machines and Additional Topics
	5.1 Large-Margin Linear Classifier
	Demonstration (5-10)

	5.2 Methods of Solution
	Demonstration (5-18)

	5.3 Nonlinear Classifier: Kernel Trick
	Demonstration (5-27)
	Exercise (5-36)

	5.4 Selecting Your Algorithm
	5.5 Additional Tools
	5.6 Solutions
	Solution (5-52)
	Solutions to Student Activities (pg 5-55)

	Chapter 6 - Model Assessment and Deployment
	6.1 Model Assessment and Comparison
	Demonstration (6-21)
	Demonstration (6-25)

	6.2 Model Deployment
	Demonstration (6-30)

	6.3 Solutions
	Solutions to Student Activities (pg 6-34)
	Solution (6-35)

	Appendix A - References
	A.1 References

	Demonstration, Exercise & Solution
	Chapter 1 Demonstration
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66

	Chapter 2 Demonstration
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-45
	2-46
	2-47
	2-48
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-66
	2-67
	2-68
	2-69
	2-74
	2-75
	2-76
	2-77

	Chapter 3 Demonstration
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-17
	3-18
	3-40
	3-50
	3-51
	3-63
	3-64
	3-71
	3-72
	3-73

	Chapter 3 Exercise
	3-52
	3-65
	3-74

	Chapter 3 Solution
	3-75
	3-76
	3-77
	3-78
	3-79
	3-82

	Chapter 4 Demonstration
	4-15
	4-16
	4-17
	4-18
	4-19
	4-27
	4-52
	4-53

	Chapter 4 Exercise
	4-54

	Chapter 4 Solution
	4-55
	4-56

	Chapter 5 Demonstration
	5-10
	5-11
	5-12
	5-13
	5-18
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32

	Chapter 5 Exercise
	5-36

	Chapter 5 Solution
	5-52
	5-53
	5-54

	Chapter 6 Demonstration
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-30
	6-31
	6-32

	Chapter 6 Solution
	6-35
	6-36

