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ABSTRACT Deep Learning (DL) algorithms based on artificial neural networks have achieved remarkable
success and are being extensively applied in a variety of application domains, ranging from image classifica-
tion, automatic driving, natural language processing to medical diagnosis, credit risk assessment, intrusion
detection. However, the privacy and security issues of DL have been revealed that the DLmodel can be stolen
or reverse engineered, sensitive training data can be inferred, even a recognizable face image of the victim can
be recovered. Besides, the recent works have found that the DL model is vulnerable to adversarial examples
perturbed by imperceptible noised, which can lead the DL model to predict wrongly with high confidence.
In this paper, we first briefly introduces the four types of attacks and privacy-preserving techniques in DL.
We then review and summarize the attack and defense methods associated with DL privacy and security
in recent years. To demonstrate that security threats really exist in the real world, we also reviewed the
adversarial attacks under the physical condition. Finally, we discuss current challenges and open problems
regarding privacy and security issues in DL.

INDEX TERMS Deep learning, DL privacy, DL security, model extraction attack, model inversion attack,
adversarial attack, poisoning attack, adversarial defense, privacy-preserving.

I. INTRODUCTION
Internet of Things (IoT) is a network of physical devices
embedded with sensors, software, and connectivity that can
communicate over the network with other interconnected
devices. With large numbers of IoT devices, a colossal
amount of data is generated for usage. Fueled by the vast
quantities of data, algorithmic breakthroughs, availability
of computational resources, Deep Learning (DL), is part
of a broader family of Machine Learning (ML), has been
extensively applied in various fields such as image classi-
fication [1], speech recognition [2], [3], facial recognition
[4], [5], medical diagnosis [6], credit risk assessment [7],
Artificial Intelligence (AI) game [8], [9]. While connected
sensors, found in everything from surveillance cameras to
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industrial plants to fitness trackers, collect troves of sensitive
data, has driven interest in DL, a significant portion of data
poses potential privacy and security questions [10]. On the
one hand, companies such as Google, Amazon, and Facebook
take advantage of the massive amounts of data collected from
their users and the vast computational power of GPU farms
to deploy DL on a large scale. If such data is a collection
of users’ private data, including online behaviors, private
images, interests, geographical positions, and more, com-
panies will have access to sensitive information that could
potentially be mishandled. Further, recent researches showed
that the adversary can duplicate the parameters/hyparameters
of the model deployed in the cloud to provide Machine
Learning as a Service (MLaaS). The intellectual property
of the DL model (e.g., parameters, architecture) and the
sensitive training datasets are referred to as DL privacy in
this paper. On the other hand, due to the defects of the DL
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model itself, the adversary can craft a sample to mislead
the DL model or lead the learner to train a bad model.
For example, the autopilot system recognizes the stop sign
collected from the sensor (images using the camera) as a limit
45 sign [11], the adversary also can manipulate the training
data by tampering with sensors to significantly decrease over-
all performance, cause targeted misclassification or insert
backdoors [12]–[14]. Therefore, the unique security chal-
lenges threaten the availability of DL models, especially in
security and safety critical applications, such as autonomous
driving, face recognition, intrusion detection. These security
threats are referred as to DL security in this paper. All in
all, the application of DL faces many privacy and security
challenges.

Currently, the privacy issues of DL have been revealed,
and various attacks have been proposed. The attacks that
invade the privacy of the model fall into two categories:
model extraction attack and model inversion attack. In model
extraction attacks, the adversary aims to duplicate the param-
eters/hyperparameters of the model that is deployed to pro-
vide cloud-based ML services [15], [16], which compromise
the ML algorithms confidentiality and intellectual property
of the service provider. In model inversion attacks, the adver-
sary aims to infer sensitive information by utilizing available
information. Shokri et al. [17] first proposed a membership
inference attack again ML models, which can infer whether a
sensitive record was used as a part of the training data when
the ML model is overfitted. Later, Long et al. [18] suggested
that even a well-generated model on training data also can be
attacked. Besides, there are a large number ofmodel inversion
attacks, which are deployed in various scenarios, their target
model, model learning approach, and assumptions are all dif-
ferent. A summary of the model inversion attack is provided
in Table 1. The security threats of DL can be categorized into
two types: adversarial attacks and poisoning attacks. In adver-
sarial attacks, Szegedy et al. [19] firstly pointed out that Deep
Neural Network (DNN) is vulnerable to adversarial attacks in
the form of perturbations that are invisible to the human visual
system by adding them to the original image. Such attacks can
make a neural network classifier output wrongly predictions
with high confidence, as shown in Figure 1. Since the con-
cept of adversarial examples was proposed, a large number
of adversarial attacks were discovered, which can be fur-
ther categorized into white-box attack and black-box attack,
as shown in Table 6. The adversarial attacks have evolved
from early white-box attack to black-box attack. In white-box
setting, the adversary has total knowledge of the target model,
such as model architecture, parameter, training data. Instead,
in black-box settings, the adversary has no knowledge of the
model, such as model architecture parameters, training data.
The adversary crafts an adversarial example by sending a
series of queries, which is more practical in real scenarios.
In poisoning attacks, the adversary aims to pollute the training
data by injecting malicious samples, modifying data such that
the learner train a bad classifier, which would misclassify
malicious samples or activities crafted by the adversary at

FIGURE 1. A demonstration of an adversarial sample [21]. The panda
image is recognized as a gibbon with high confidence by the classifier
after adding adversarial perturbations.

the testing stage. For example, Muñoz-González et al. [20]
crafted poisoning samples that look like real data points to
reduce the accuracy of the classifier.

To solve privacy and security issues in DL, a variety of
approaches have been proposed, as shown in Figure 2. There
are currently four mainstream technologies in the aspect of
DL privacy for privacy-preserving, namely differential pri-
vacy, homomorphic encryption, secure multi-party compu-
tation, and trusted execution environment. The differential
privacy aims to prevent the adversary from inferring whether
a particular instance was used to train the target model. The
homomorphic encryption and secure multi-party computa-
tion scheme focus on preserving the privacy of the training
and testing data. The trusted execution environment aims to
use hardware to create a secure and isolated environment to
protect training code and sensitive data. However, thesemeth-
ods significantly increase the computational overhead and
require customization for specific neural network models.
At present, there is still no universal approach to address DL
privacy issues. With respect to DL security, a large number
of defenses have been proposed to defend the adversarial
attack, which can be categorized into three categories: input
pre-processing, malware detection, and improving the robust-
ness of the model, as shown in Table 7. The purpose of
pre-processing aims to reduce the influence of immunity on
themodel, which is done by performing some operations such
as image transformation, randomization, denoising, which
usually do not require modification and retraining of the
model. The second category aims to improve the robustness
of the model by introducing regulation, adversarial training,
feature denoising, which requires modification and retraining
of the model. The third category aims to detect the adversarial
by introducing a detection mechanism before the input and
first layer of the model, including stateful detection, image
transformation detection, and adaptive denoising detection.
Although a variety of defensive mechanisms have been pro-
posed, to our best knowledge, there still is no defense method
that can completely defend against adversarial examples.
At present, adversarial training is considered to be the most
effective method to defend against adversarial examples. For
poisoning attacks, there are two typical methods to defend
against poisoning attacks. The first one is the outlier detection
mechanism, which removes outliers outside the applicable
set. The second one is to improve the robustness of the neural
network to resist the pollution of poisoning samples.

VOLUME 9, 2021 4567



X. Liu et al.: Privacy and Security Issues in Deep Learning: A Survey

FIGURE 2. An overview of attacks and defenses in DL. The top of the image describes the threat of the existing privacy and
security in DL. The middle part shows the lifecycle of DL, which involves two major phases (training phase, testing/inference
phase). The bottom of the image shows the defense methods at different stages of the DL lifecycle, where homomorphic
encryption, secure multi-party computation, and trusted execution environment can be used to preserve the DL privacy both at
training and testing phases.

A. MOTIVATION
Privacy and security issues in DL have been becoming a
hot topic in recent years. In this paper, we present a com-
prehensive survey on the privacy and security issues of
DL. To date, there are a few review and survey papers
associated with privacy and security in DL have been
published. Akhtar et al. [22] reviewed the adversarial exam-
ple attacks and defenses onDL in the field of computer vision.
Tanuwidjaja et al. [23] and Boulemtafes et al. [24] studied
several privacy-preserving techniques onDL.Yuan et al. [25]
presented a review on adversarial examples for DL, in which
they summarize the adversarial example generation meth-
ods and discuss the corresponding defense methods. The
above review works all focus on the adversarial attacks
or cryptographic primitives-based privacy-preserving tech-
niques. Liu et al. [26] analyzed security threats and defenses
on ML and provided a more comprehensive literature review
from a data driven view. Papernot et al. [27] systematically
studied the security and privacy of ML, but they don’t involve
many DL models that are widely used.

B. MAIN CONTRIBUTIONS
The differences between our paper and existing review are
summary as follows:

1) Instead of focusing on one phase and a few types of
attacks and defenses, all aspects of privacy and security
in DL are systematically reviewed in this paper. All
types of attacks and defenses are reviewed with respect
to the life cycle of DL (training phase, testing phase),
as shown in Figure 2.

2) According to the life cycle of the DL model, the adver-
sary types and goals of the DL model are introduced,
and four types of attacks regarding the privacy and
security of the DL are reviewed, including model
extraction attacks, model inversion attacks, adversarial
attacks, and poisoning attacks.

3) This paper not only reviews the privacy-preserving
technology based on cryptography in DL but also study
the privacy and intellectual property protection tech-
nology based on the trusted execution environment and
digital watermark.

4) This paper systematically reviews the privacy and secu-
rity defenses that are representative of DL in recent
years. This paper also compared the advantages and
disadvantages of these defenses and the analysis of
their effectiveness.

5) The current challenges and open problems regard-
ing privacy and security issues in DL are discussed,
including the deflect of current privacy-preserving
techniques, attacks in real-world, effective, and low
overhead defense methods.

The rest of this paper is organized as follows. In Section II,
we first discuss four types of attacks and introduce
the cryptography technologies for preserving privacy in
DL. In Section III, we detail the recent attack and
privacy-preserving techniques in DL. In Section IV,
we review the representative attack and defense method.
In Section V, we discussed future challenges and research
directions for security and privacy in DL. In Section VI,
we draw a conclusion.

II. PRELIMINARIES
In this section, we begin with an overview of attacks and
defenses in the DL. Then, we discuss the adversary’s capa-
bilities and four types of attacks based on the DL lifecycle.
Besides, we also briefly introduce the cryptographic tools
used to preserve the privacy of data in DL.

A. OVERVIEW OF ATTACKS AND DEFENSES
The DL life cycle can roughly fall into two phases (training
phase, testing/inference phase). Figure 2 shows the exist-
ing threats and defense strategies regarding privacy and
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security issues according to the DL life cycle. The privacy
threat of DL can be divided into two categories, model
extraction attack, and model inversion attack. There are four
mainstream defenses against them, namely, differential pri-
vacy, homomorphic encryption, secure multi-party computa-
tion, and trusted execution environment. Differential privacy
defends against model inversion attacks by injecting noise
during the training phase. Homomorphic encryption, secure
multi-party computing, and trusted execution environment
can be used to protect DL privacy during the training and
testing phases. The threat of DL security falls into two cat-
egories, adversarial attacks, and poisoning attacks. Adver-
sarial defenses are being developed along with three main
directions, pre-processing, malware detection, and improv-
ing model robustness. Pre-processing and malware detection
attempt to reduce the effect of the adversarial perturbation on
the classification or detect the adversarial examples during
the testing/inference phase. Improving the model’s robust-
ness aims to essentially enhance the DLmodel to resist adver-
sarial examples. The poisoning defenses attempt to filter out
the poisoning sample during the training phase.

B. ADVERSARIAL CAPABILITIES
1) TRAINING STAGE
• Data Injection. The adversary has no knowledge of
the target model and training data. The adversary only
injects poisoning samples into the training data to
change the distribution of the training data such that the
learner trains a bad model.

• Data Modification. The adversary has no knowledge
of the target model, but can directly access the training
data. The adversary attempts to pollute the training data
by modifying the training data before it is used for
training the target model.

• Logic Corruption. The adversary has complete knowl-
edge of the target model and can modify the learning
algorithm. This type of attack is tricky and is hard to
defend.

2) TESTING STAGE
• White-box. In white-box settings, the adversary has
complete knowledge of the target model, including
model architecture, model parameters, and training
data. The adversary only identifies the model’s vul-
nerability by utilizing available information, and then
launches an attack against the target model such as
adversarial attack (see Section II-C3), model extrac-
tion attack (see Section II-C1), model inversion attack
(see Section II-C2). Moreover, in adversarial attacks,
the adversary also has complete knowledge about the
defense mechanisms against adversarial attacks.

• Black-box. In black-box settings, the adversary
does not know the target model, including model
architecture, model parameters, and training data. The
adversaries only identify the model’s vulnerability by

utilizing knowledge about output responded from the
target model and then launched an attack against the
target model by sending a series of queries to the tar-
get model and observing corresponding outputs. Such
attacks include model extraction attack, model inversion
attack, and adversarial attack.

• Gray-box. In gray-box settings, the adversary has com-
plete knowledge of the target model, including model
architecture, model parameters, and training data. How-
ever, unlike the white-box setting, the adversary does
not know the defense mechanism against the adversarial
attack. The gray-box setting usually is used to evaluate
the defense against the adversarial attack.

C. ADVERSARIAL TYPES AND GOALS
1) MODEL EXTRACTION ATTACK
In model extraction attacks, the adversary aims to steal
parameters of the target model with black-box access to the
target model, which compromises the ML algorithm confi-
dentiality and intellectual property of the learner.

2) MODEL INVERSION ATTACK
In model inversion attacks, the adversary aims to utilize
model predictions to expose the privacy of sensitive records
that were used as part of the training set. For example,
Shokri et al. [17] proposed a membership inference attack
that can infer whether a given record was a part of the training
data.

3) ADVERSARIAL ATTACK
In adversarial attacks, the adversary aims to craft an adver-
sarial example by utilizing the knowledge about the target
model, which leads the target model to predict falsely with
high confidence. An adversarial sample is a kind of modified
image generated by adding imperceptible noise, which can
cause the classifier to make wrong predictions with high
confidence. Moreover, an adversarial sample crafted on one
model is likely to be effective for other models, which is
known as transferability. According to the goal of the adver-
sary, the adversarial attack falls into two categories:
• Non-targeted Attack. The adversary crafts adversarial
examples xadv to cause the target model f to misclassify
the input with high confidence, but does not require
the prediction to be specified class, that is, f (xadv) 6=
ytrue, where f (xadv) can be any class except the correct
class ytrue.

• Targeted Attack. The adversary crafts adversarial
examples xadv to cause the target model f to misclassify
the input with high confidence into a particular class t
specified by the adversary, that is, f (xadv) = t , where t
is not correct class ytrue.

4) POISONING ATTACK
In poisoning attacks, the adversary aims to poison the train-
ing data such that the learner train a bad classifier, which
would misclassify malicious sample or activities crafted by
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the adversary at the testing stage. The adversary could inject
malicious samples, modify data labels, and corruption in the
training data. Depending on the adversary’ goals, the poison-
ing attack falls into three categories:
• Accuracy Drop Attack. The adversary aims to disrupt
the training process by injecting malicious samples to
reduce the performance of the target model at the testing
stage.

• Target Misclassfication Attack. The adversary aims to
enforce test samples to be misclassified at the testing
stage.

• Backdoor Attack. The adversary aims to install a back-
door with a specific mark so that the target model has a
target output for that particular input.

D. CRYPTOGRAPHIC TOOLS
1) DIFFERENTIAL PRIVACY
The concept of Differential Privacy (DP) was proposed by
Dwork et al. [28] that aim to guarantee an algorithm to learn
statistical information of the population without disclosing
information about individuals.

A randomized mechanism M is considered to provide
ε-DP if, for all datasetsD andD′ that only differ on one record
and all subsets S of M , satisfy the following:

Pr[M (D) ∈ S] ≤ exp(ε) Pr
[
M

(
D′

)
∈ S

]
(1)

where ε is the privacy budget parameter that decides the
privacy level. The definition of the randomized mechanism
M usually is as follows:

M (D) = f (D)+ n (2)

where the randomized mechanismM takes a dataset as input
and add noise n to the original query response f (D). The noise
usually samples from the Gaussian distribution or Laplace
distribution. That is, even if an adversary knows the whole
datasetD except for a single record, he/she cannot infer much
about the unknown record from the outputM (D).

Due to the definition of ε-DP is strict, the (ε,δ)-DP were
introduced, which loosens the bound of the error by the
amount δ. The definition of (ε,δ)-DP is as follows:

Pr[M (D) ∈ S] ≤ exp(ε) Pr
[
M

(
D′

)
∈ S

]
+ δ (3)

where δ is a small real number, which also controls the
privacy budget like ε. The sensitivity 1f of the function f
characterize how much changing any one of the records in
the datasets causes the output of the function to change:

1f = max
∥∥f (D)− f (

D′
)∥∥

1 (4)

where ‖ · ‖1 denote the l1-norm and max function apply on
all datasets D and D′.

2) HOMOMORPHIC ENCRYPTION
The Homomorphic Encryption (HE) is a form of the encryp-
tion scheme that allows computation on ciphertexts, gener-
ating an encrypted result which, when decrypted, matches

the result of the operations as if they had performed on
the plaintext. The definition of encryption function Enc has
followed the equation:

Enc(a) ∗ Enc(b) = Enc(a ∗ b) (5)

where Enc: x → y is a HE scheme that map plaintext x to
ciphertext y. * is mathematical operation that can be per-
formed on plaintext and ciphertext.

The HE exists in partial and full forms. The partial
homomorphic systems only support certain operations on
encrypted data, typically additive [29]–[32] or multiplica-
tion [33], [34]. Since neural networks need to perform a
large number of additions and multiplications, The partial
homomorphic encryption systems (e.g, Paillier [29]) that sup-
port additive operations are better suitable for DL complex
computation than that, only support multiplication operation
(e.g., RSA [33], ElGamal [34]). The Fully Homomorphic
Encryption (FHE) system, which allows all operations on
encrypted data, was first proposed in 1978. Until 2009, Gen-
try et al. [35] first constructed a feasible FHE scheme using
lattice-based cryptography, which supports both addition and
multiplication operations on ciphertexts. Since then, several
FHE schemes were proposed [36]–[41]. Although theoret-
ically, FHE can perform all operations on encrypted data,
the actual scheme proposed now still has many limitations
when applied in DL, such as only support integer type data,
computational complexity (e.g., it requires 29.5s to run secure
integer multiplication computation with a standard PC [41]).
Therefore, the existing (fully) HE schemes still require a lot
of custom work for each DL model to be fitted to the HE
environment and improve the efficiency of computation.

3) SECURE MULTI-PARTY COMPUTATION
The problem of secure computation was first proposed by
Yao [42] in 1982, which is also known as the millionaire
problem: two rich men Alice and Bob met on the street, how
to compare who is richer without exposing their wealth.

Later, the millionaire problem was expanded by
Goldeich et al. [43] to become a very active research field
in modern cryptography, namely Secure Multi-party Com-
putation (SMC) whose purpose is to address the problem of
joint computing that preserves participant’s data privacy in a
flock of the non-trusted participant.

Formally, in SMC, for a given objective function f , a group
of participants, p1, p2, p3, . . . , pn, each participants his own
private data, d1, d2, d3, . . . , dn, respectively. Then, all partic-
ipants want to jointly compute f (d1, d2, d3, . . . , dn) on those
private data. At the end of computing, each participant has no
knowledge of other participant about their private data.

There are two kinds of secure multi-party computation:
secure Two-Party Computation (2PC) and secure Multi-Party
Computation (MPC), which are quite different in the pro-
tocols. Garbled Circuit (GC) [42] and Oblivious Transfer
(OT) [44] protocol are used in the 2PC. GC transforms a
function into a safe boolean circuit, and its input and output
are encrypted data, which can be decrypted by its decoding
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FIGURE 3. An overview of the model extracion attack and model inversion attack.

table. OT is used to transfer the information obviously. The
most protocol commonly used inMPC are secret sharing [45],
which divides an input from each participant into several parts
and distributes them to each participant. Each participant
calculates a given function together.

By its nature, SMC can be used to jointly train a global DL
model without revealing the data privacy of each participant,
which helps to break the island of information.

III. PRIVACY
In this section, we review and summarize the representa-
tive existing privacy threats (model extraction attack, model
inversion attack) in DL and privacy-preserving technologies,
including DP, HE, SMC, trusted execution environment.

A. ATTACKS
The attacks that invade privacy falls into two categories:
model extraction and model inversion attack, an overview
of model extraction and model inversion attack is shown
in Figure 3. The main difference between the two is that
the former focuses on the private information on the model
(e.g., model parameter, model architecture). The latter
focuses on the sensitive record of the training data.

1) MODEL EXTRACTION ATTACK
Tramer et al. [15] introduced a model extraction attack that
aims to duplicate the parameters of ML models deployed
to provide cloud-based ML services. The general idea is to
build model equations from the output obtained by sending
a plurality of queries. However, it cannot be extended to
some scenarios where the attacker does not have access to
the probabilities returned for each class and only effective for
specificMLmodels, such as decision tree, logistic regression,
neural network. To avoid overfitting on training data, the reg-
ulation term is usually used in ML algorithms, where the
hyperparameters are introduced to balance regulation terms
and loss function. Wang et al. [16] proposed hyperparameter
stealing attacks to steal the hyperparameter of the target
model. Because the goal of learning of the ML algorithm is
to achieve the minima of the objective function where the
gradient of the objective function is close to 0, therefore,
based on this observation, the adversary can establish several
linear equations by executing a large collection of queries.
Finally, the hyperparameters can be estimated by utilizing

linear least squares. They empirically demonstrated that their
attack could accurately steal hyperparameters with less than
10−4 error in regression algorithms.

As a countermeasure to possible intellectual property
thefts, watermarks for DNN has been developed that embed
watermarks into the DL model. Wang et al. [46] showed that
the watermarking scheme proposed by Uchida et al. [47]
increases the standard deviation of the distribution of the
weights as the embedded watermark length increases. Based
on this observation, they proposed an algorithm to detect
the presence of a watermarking and then remove the water-
marking by available knowledge. However, the removability
and overwriting of the watermarking are often considered
when embedding into DL models. Therefore, assuming that
the watermarking might not be removed, Hitaj et al. [48]
designed two novel evasion attacks that allow an adversary to
run an MLaaS with stole ML models and still go undetected
by the legitimate owners of those ML models.

2) MODEL INVERSION ATTACK
Shokri et al. [17] proposed a Membership Inference
Attack (MIA) again ML models. The adversary trains an
attack model to distinguish the difference between the target
model’s behavior on the sample for its trained sample and
its untrained sample. That is, the attack model is a clas-
sification model. To construct such an attack model under
a black-box setting, the author invented a new technique
called shadow training that builds multiple shadow models
to simulate the target model. Because the target model’s
data distribution is unknown, they utilize the input/output
pairs of the shadow model to train an attack model. The
experiments demonstrated that an adversary could success-
fully perform an MIA with black-box access to the tar-
get model. However, Long et al. [18] pointed out that MIA,
proposed by Shokri et al. [17], works effectively when the
model is highly overfitted on its training data. The predic-
tion (probability) of the overfitted model for the query on
the training sample is significantly different from the pre-
diction (probability) of other queries. In contrast, a well-
generalized model behaves similarly to training data and
test data. Therefore, not all data is vulnerable to member
inference attacks under well-generated models. To solve this
challenge, Long et al. [18] presented a Generalized Mem-
bership Inference Attack (GMIA) against a well-generalized
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model. The general idea behind this attack is to identify vul-
nerable target records that are vulnerable tomember inference
attacks to perform inference attacks.

The MIA proposed by Shokri et al. [17] depends on too
many assumptions, such as using multiple shadow models,
having the knowledge of the target model, and having a data
distribution same as the target model’s training data. Salem
et al. [49] relaxed these assumptions and proposed three
adversaries that are very broadly applicable at a low cost. The
first adversary utilizes only one shadowmodel instead ofmul-
tiple shadow models to mimic the target model. For the sec-
ond adversary, the adversary does not have direct access to
the training data of the target model and its architecture. The
third adversary has a minimal set of assumptions. It is not
necessary to build any shadow model and know the structure
of the target model, which is more practical in real-scenario.

Hitaj et al. [50] proposed an MIA to perform white-box
attacks in the context of collaborative DL models. They
constructed a generator and used it to form a Generative
Adversarial Network (GAN) [51]. After training, GAN can
generate synthetic data similar to the training data of the target
model. However, the limitation of this approach is that all
training data belonging to the same category are required to
be visually similar, so they cannot be distinguished under the
same distribution. Similarly, an MIA against collaborative
learning models was proposed by Melis et al. [52]. Collab-
orative learning is a learning technique in which two or more
participants jointly train a joint model by training locally and
periodically exchanging model updates, where each partic-
ipant has its training datasets. However, these updates can
leak unintended information about the training data of the
participants. In some non-numeric data scenarios such as
natural language processing, the embedding layer firstly is
used to transform the input into a low-dimensional vector
representation, where the update of the given matrix is only
related to whether the word appears in the batch. Therefore,
this character directly reveals whether the word appears in
the training batches and can be used to design a property
inference attack.

Hayes et al. [53] presented the first MIA on generative
models, which utilizes GAN [51] to infer whether a data
item was part of the training data by learning statistical
difference in distribution. Hayes et al. [53] observed that
the discriminator would place a higher confidence value on
samples that appeared in the training data when the target
model is highly overfitted. Based on this observation, they
proposed the white-box and black-box MIA. In white-box
settings, the adversary can directly utilize the discriminator
to infer whether a sample was used to train the model by
discriminating its output’s confidence. In black-box settings,
the adversary does not know the target model’s parameter,
thereby only locally train a GAN by using queries from the
target model. The experiments demonstrated that white-box
attacks are 100% successful at determining whether a data
record was used to train the target model, and the black-box
ones succeed with 80% accuracy.

Nasr et al. [54] noticed that a black-box attack might not
be effective against well-generalized DNN. The parameters
of the model are visible to curiosity adversaries in some sce-
narios. Therefore, Nasr et al. [54] proposed anMIA again DL
models under the white-box setting. Due to the distribution of
the model’s gradients between the sample in the training data
and not in the training data is likely to be distinguishable and
thereby can be exploited to performMIA, even though the DL
models are well-generated. They successfully launched MIA
against well-generalized federated learning models in many
scenarios, such as training and fine-tuning, updating models,
which showed that even a well-generated model on training
data can be attacked.

The model inversion attacks in DL discussed above are
deployed in various scenarios, their target model, model
learning approach, and assumptions are all different. To intu-
itively understand the differences between these attacks,
we compared those algorithms and provide a summary of the
MIA in Table 1.

B. DEFENSES
To date, a variety of different methods for protecting privacy
in DL have been proposed, which can roughly fall into four
categories: DP, HE, SMC, and trusted execution environment.
In this section, we review and summarize the representative
methods of preserving privacy, as shown in Table 2, 3, 4, 5.
For a comprehensive study, we also briefly describe another
privacy-preserving method in DL.

1) DIFFERENTIAL PRIVACY
Depending on where the noise is added, DP approaches
can be classified into three categories: gradient perturba-
tion, objective perturbation, and label perturbation, as shown
in Figure 4.

1) Gradient Perturbation. The gradient perturbation is
done by injecting noise to the gradients of the parame-
ters during the training stage.

2) Objective Perturbation. The objective perturbation is
done by injecting noise to the objective function and
solving a precise solution to the new problem.

3) Label Perturbation. The label perturbation is done
by injecting noise to the label during the knowledge
transfer process of the teacher-student network.

a: GRADIENT PERTURBATION
Abadi et al. [55] proposed a Differentially Private Stochastic
Gradient Descent (DPSGD) algorithm that can train DNN
with non-convex objectives. The main idea is to inject noise
into the gradient at each step of the stochastic gradient
descent process. Besides, Abadi et al. [55] developed a
stronger accounting method called moment accountant to
obtain the tail bound. The moment accountant utilizes the
moments bound combined with Markov inequality to track
the cumulative privacy loss, which provides tighter privacy
loss analysis than composition theorems [56]. Xie et al. [57]
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TABLE 1. A summary of membership inference attacks. X means the adversary needs the information while empty indicates the information is not
necessary. The attack strength (higher for more stars) is based on the impression of the reviewed paper.

FIGURE 4. An overview of DP framework.

presented a Differentially Private Generative Adversarial
Network (DPGAN) that guarantees (ε, θ)-DP by perturbing
the gradient of the discriminator during the training proce-
dure. According to the post-processing theory [58], the out-
put of the differentially private discriminator will not invade
privacy, which means that the generator is also differen-
tially private. Acs et al. [59] designed a novel Differentially
Private Generative Model (DPGM) that rely on a mixture
of k generative neural networks, such as restricted Boltz-
mann Machines [60] and variational Autoencoders [61]. The
dataset is clustered by utilizing the differential private kernel
k-means [62], and then each cluster is assigned to k generative
neural networks. Finally, the DP-SGD [55] is used to train
k generative neural networks, and these generative neural
networks can generate synthetic high-dimensional data while
keeping provable privacy.

b: OBJECTIVE PERTURBATION
Phan et al. [63] introduced a Deep Private Autoencoder
(DPA) that enforce ε-DP by perturbing the objective func-
tions of the traditional deep auto-encoder. Phan et al. [64]
proposed the Private Convolutional Deep Belief Network
(PCDBN) to enforce ε-DP perturbing the polynomial forms
that approximate the non-linear objective function by utilized
the Chebyshev expansion in convolutional deep belief net-
work. Phan et al. [65] proposedAdaptive LaplaceMechanism
(AdLM), a novel mechanism to guarantee DP in DNN. This
approach not only adaptively adds noise from the input

features to the model output, but also easily extends to var-
ious differential DNN. Unlike gradient perturbation, which
accumulate privacy loss as training progresses, the privacy
loss due to objective perturbation is determined at the time
the objective function is built and is independent of epoch.

c: LABEL PERTURBATION
Papernot et al. [66] demonstrated a privacy-preserving
approach, PrivateAggregation of Teacher Ensembles (PATE),
which transfers the knowledge of an ensemble of ‘‘teacher’’
models to a ‘‘student’’ model. An ensemble of teachers
models learns on disjoint subsets of the sensitive data, and
then a student model is trained on public data labeled using
the ensemble of teacher model. Because the student model
cannot directly access the sensitive data and the differential
private noise is injected into the aggregation process, and,
thereby, the privacy of the sensitive data is protected. Besides,
the moment accountant [55] is introduced to trace the
cumulated privacy budget in the learning process. However,
the performance of PATE is evaluated on simple classification
tasks (e.g., MNIST [67]). Later, Papernot et al. [68] proposed
a new aggregation mechanism that successfully extends the
PATE to the large scale learning task. Besides, it is empiri-
cally shown that the improved PATE guarantees tighter DP
and has higher utility than the original PATE. Furthermore,
The PATE was applied to construct the differential private
GAN framework [69]. Because the discriminator is differ-
ential privacy, so is the generator trained with discriminator
[58]. The disadvantage of this method is that it requires addi-
tional training of a teacher model to teach the student model.

2) HOMOMORPHIC ENCRYPTION
In DL, the HE is mainly used to protect testing inputs and
results and train neural network models. The main adverse
effects of applyingHE are the reduction of efficiency, the high
computation cost of the ciphertext, and the sharp increase in
the amount of data after encryption.

Xie et al. [70] theoretically demonstrated that the activation
function of the neural network can be approximated by a
polynomial, therefore, inferencing over encrypted data can be
practical. Subsequently, Gilad et al. [71] presented a method,
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TABLE 2. A summary of DP techniques.

TABLE 3. A summary of HE techniques.

TABLE 4. A summary of SMC techniques.

TABLE 5. A summary of trusted execution environment techniques. The performance (higher runtime for more ?) is based on the impression of the
reviewed paper.

CryptoNets, that can perform inference on encrypted data,
which utilizes leveled HE scheme proposed by Bos et al. [72]
to perform privacy-preserving inference on a pre-trained
Convolutional Neural Network (CNN) model. However,
the derivative function of the activation function using

the square function approximation is unbounded, which
will lead to strange phenomena when training the network
on encrypted data, especially for deeper neural networks.
Therefore, it is not suitable for a deeper neural network.
Chabanne et al. [73] improved CryptoNets by combining the
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polynomial approximation with batch normalization [74].
Hesamifard et al. [75] presented CryptoDL, a new approx-
imation method for activation functions (such as ReLU,
Sigmoid, and Tanh) commonly used on CNN. This method
has low-degree polynomials, which significantly improve the
computational efficiency. Compared with CryptoNets [71],
the CryptoDL not only has a lower communication overhead,
but is also independent of the dataset. However, their method
is based on a batch operation, so the same efficiency for single
and batch instance prediction.

Because HE schemes applied in the neural network sig-
nificantly increase complexity when the depth of the neural
network increases. Bourse et al. [76] and Sanyal et al. [77]
attempted to improve the efficiency of HE used in the neural
network. Bourse et al. [76] proposed FHE-DiNN, a linear
complexity framework for FHE evaluation of neural network.
FHE-DiNN leverage bootstrapping technique [78] to reach
strictly linear complexity in the depth of the neural network.
Sanyal et al. [77] noted that the FHE scheme proposed
by Chillotti et al. [78] only supports operations on binary
data, which can be utilized to compute all of the opera-
tions of the binary neural network (BNN) [79]. Therefore,
Sanyal et al. [77] design Tricks to Accelerate (encrypted)
Prediction As a Service (TAPAS), which speeds up binary
operation in BNN. The experiments showed that TAPAS
drastically shortens the time of the evaluation step.

3) SECURE MULTI-PARTY COMPUTATION
There are twomain application scenarios for SMC inDL. The
first scenario is that a data holder does not want to expose
all the training data to a server to train/infer the DL model.
He/She hopes to distribute the training/testing data tomultiple
servers, and train/infer the DL model together. Each server
will not understand the training/testing data of other servers.
The second scenario is that multiple data holders want to
jointly train a shared DL model on aggregate training data
while keeping the privacy of their training data.

Shokri et al. [81] implemented a practical system for col-
laborative DL, which enabled multiple participants to jointly
learn neural network models based on their inputs without
sharing those inputs and sacrificing the accuracy of models.
The participants train their local model, after each round
of local training, they asynchronously selectively share their
gradients they computed for some of the parameters. How-
ever, Ano et al. [80] pointed out that even a small portion
of gradients stored on cloud servers also could be utilized to
extract local data. Hence, Ano et al. [80] used the additive
HE scheme to protect privacy against an honest-but-curious
parameter server, but it increases the communication over-
heads between the learning participants and the cloud server.

Mohasse et al. [82] proposed SecureML, a novel and
efficient protocol for privacy-preserving ML. They imple-
mented the first privacy-preserving system for training neural
networks in multiparty computation settings using OT, secret
sharing, and Yao’ GC protocol. However, the disadvantage of
this scheme is that only a simple neural network can (without

any convolutional layer) be implemented. Liu et al. [83] pro-
posed a framework, MiniONN, that transforms an existing
neural network to an oblivious neural network and supports
privacy-preserving predictions with reasonable efficiency.
They used GC to approximate all nonlinear activation func-
tions. Their experiment demonstrated that MiniONN outper-
forms SecureML [82] and Cryptonets [71] in terms of latency
and message size. Rouhani et al. [84] presented DeepSe-
cure, a scalable privacy-preserving framework for DL, which
jointly compute DL inference over their private data between
distributed client and cloud servers. They used Yao’ GC [42]
and OT protocol to preserve the privacy of the client data
during the data transfer process and provided a security proof
of DeepSecure in the honest-but-curious adversary model.

The major bottleneck of GC is the huge communication
cost. Juvekar et al. [85] and Wagh et al. [86] attempted to
improve SecureML. Juvekar et al. [85] pointed out that HE is
suitable for calculating linear functions, while GC is suitable
for non-linear functions such as ReLU, MaxPool. Therefore,
Juvekar et al. [85] made optimal use of HE and GC to achieve
large computational and communication gains, that is, using
a simple linear size circuit to compute non-linear functions
and using HE to compute linear function. Wagh et al. [86]
developed SecureNN, a novel three-party or four-party secure
computation protocols, which are more communication effi-
cient for non-linear activation functions. The overall execu-
tion time of this method is 3.68X faster than Gazelle proposed
by Juvekar et al. [85] in the inference phase.

4) TRUSTED EXECUTION ENVIRONMENT
The Trusted Execution Environment (TEE) is an independent
operating environment of the main processor that provides
a secure execution environment for authorized and trusted
applications. In addition, the TEE ensures the integrity and
confidentiality of the data and codes loaded inside, and pro-
vides access control to the resources of the trusted applica-
tion. As a result, there are some solutions that utilize TEE to
tackle privacy and security issues in DL [87].

Ohrimenko et al. [88] proposed a privacy-preserving sys-
tem for multi-party ML on an untrusted platform, which is
based on Software Guard Extensions (SGX) [89] that is a
set of x86 instructions used to protected memory regions
called enclaves, whose contents are unable to be accessed
by any process outside the enclave itself, including higher
privilege levels process. Each participant uploads their train-
ing model and encrypted training data and then verifies
whether their training code is executed in enclaves. After
remote attestation was successful, the participant uploads
their encryption key to decrypt their training data to train a
shared model. Hunt et al. [90] developed a system, Chiron,
where the data holders can collaboratively train anMLmodel
on MLaaS while keeping their training data private. The
source code is executed in a Ryoan [91] sandbox that pro-
vides a distributed sandbox that leverages hardware enclaves
(e.g., SGX), without revealing the training code. The Chiron
improves the efficiency of training by launching multiple
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enclaves, each enclaves running a part of the training data.
However, the Chiron only allows the data owner to query
a trained model via a simple interface when the training is
finished. Therefore, the Chiron is not suitable for data owners
who want to provide MLaaS.

Hynes et al. [92] developed Myelin, a privacy-preserving
framework for DL, which supports both privacy-preserving
during the training and testing phases. The Myelin uti-
lizes TVM compiler [93] to compile a given model into
a TVM-generated library that only includes the numerical
operations needed for this model. After the compilation is
complete, data owners can deploy an SGX [89] enclave
and load the compiled library into the enclave to train the
model without revealing their training data. Gu et al. [94]
presented Deepenclave, a privacy-preserving system for DL
inference using SGX [89]. The general idea of Deepenclave is
to partition a given DNN model into FrontNet and BackNet.
The FrontNet is located in a trusted environment, the Back-
Net is located in an untrusted environment and therefore
protected by SGX [89]. The user’s encrypted input is fed
into the FrontNet, which is stored in a trusted environment.
The intermediate output of the FrontNet inside the enclave
is computed. Once computing is finished, the intermediate
output is delivered to BackNet to compute the final output.
Zeiler et al. [95] indicated that the shadow layers of DNN
respond to low-level information of the input, such as edges,
corners, whereas deep layers represent more abstract infor-
mation associated with the final output. Since the first few
layers of the DNN operate in a TEE, the privacy of the input
sensitive information is guaranteed, but the final output of the
model is plaintext.

The TEE uses hardware and software protection to iso-
late sensitive computing from untrusted software stacks
and resolve the integrity and privacy of outsourced
ML computing. However, these isolation guarantees also
pay a considerable price for performance. Therefore,
Tramer et al. [96] explored a pragmatic solution to improve
the execution efficiency of DNN in TEE, which is based
on the effective outsourcing scheme of matrix multiplica-
tion. They proposed a framework called Slalom, which uses
Freivalds’s algorithm [97] to verify the correctness of the
linear operator. It encrypts the input through a pre-calculated
blinding factor to protect privacy, ensuring that the DNN
execution part is safely outsourced from TEE to a co-located,
untrusted but faster device, such as GPUs. Hanzlik et al. [98]
proposed MLCapsule, a system that can safely execute ML
algorithms in offline deployed clients. Because the data is
stored locally, and the protocol is transparent, the user’s data
security is guaranteed. The ML model is protected by TEE,
MLCapsule calculates the ML model through the enclave in
TEE. At the same time, the encrypted information sent by
the service provider can only be decrypted by the enclave.
To realize this method, the author proposed to encapsulate
the standard ML layer in the MLCapsule layer and execute
it in TEE. These MLCapsule layers can decrypt the network
weights sent by the service provider, and through the layer-

by-layermerge, to achieve large-scale network encapsulation.
MLCapsule can also integrate advanced defense mechanisms
against attacks on ML models, and the computational cost is
meager.

5) MISCELLANEOUS DEFENSE
Tramer et al. [15] and Lee et al. [99] suggested that the
efficiency of the model extraction attack can be decreased
by omitting the confidence value or adding smart noise to
the predicted probabilities. However, Juuti et al. [100] shown
that model extraction is effective, even omitting prediction
probabilities. Juuti et al. [100] proposed PRADA, a detection
mechanism of model extraction attacks, to detect malware
attack process by analyzing the distribution of user’s queries
when the adversary launch attack. Zhang et al. [101] pre-
sented a privacy-preserving approach that solves a regular-
ized empirical risk minimization in distributed ML while
providing α(t)-DP for the final trained output. Hamm et al.
[102] proposed a method to train a global differential private
classifier by transferring the knowledge of the local classifier.
Because the global classifier cannot directly access the sen-
sitive training data, the ε-DP is provided. Long et al. [103]
proposed a measuring mechanism, Differential Training Pri-
vacy (DTP), to estimate whether there is a risk of privacy
leakage when the classifier is released. Although several
approaches have been proposed to preserve privacy, it is
not understood the correction, implementation, and privacy
guarantee of these methods. Carlini et al. [104] explored the
effectiveness of DP schemes against attacks. Rahman [105]
and Jayaraman [106] attempted to analysis privacy cost of
DP implementations. The difference is that Rahman et al.
[105] evaluate not only DP but also its relaxed variants. Jia
et al. [107] proposed MemGuard with formal utility loss
guarantess against MIA under the black-box setting, which
randomly inject noise to the confdence score predicted by the
target classifer for query data sample.

Motivated by digital watermarking, researchers embed
watermarking into DNN to protect the intellectual property
of deep neural networks. After embedding watermarks to
DNN models, once the models are stolen, the ownership
can be verified by extracting watermarks from those mod-
els. Uchida et al. [47] first proposed a framework to embed
watermarks into the parameters of DNN models via param-
eter regularizer during the training phase. Its disadvantage is
that extracting the watermark from the model is needed to
access all parameters of the model, which is impractical in
real scenarios. Later, Zhang et al. [108] proposed a verifi-
cation framework that can quickly verify the ownership of
remotely deployed MLaaS with only given black-box access
to themodel. There are also several methods for the black-box
watermark that target the zero bit (see reference [109]–[111]
for details).

IV. SECURITY
In this section, we review and summarize the representative
adversarial attacks and poisoning attacks in recent literature,
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TABLE 6. An overview of adversarial attacks. The perturbation norm lp is used to make adversarial examples imperceptible. The attack strength (higher
for more ?) is based on the impression of the reviewed literature.

as well as defense strategies against adversarial attacks and
poisoning attacks.

A. ADVERSARIAL ATTACKS
An overview of adversarial attacks is shown in Figure 5.
Since the concept of the adversarial examples was pro-
posed by Szegedy et al. [19], the researcher proposed sev-
eral adversarial attack algorithms in recent literature. Due
to high activity in this research direction, more attacks are
likely to emerge in the future. Therefore, in this section,
we discuss the representative white-box attack and black-box.
Besides, we also provide a summary of the adversarial attack
in Table 6.

FIGURE 5. An overview of adversarial attacks.

1) WHITE-BOX
a: L-BFGS
Szegedy et al. [21] first demonstrated that the neural network
is vulnerable to adversarial examples crafted by adding a
small perturbation to benign input. The perturbation is imper-
ceptible to the human visual system and can lead the model
to predict wrongly with high confidence. The adversarial
examples generated by solving the following equation:

min
δ
||δ||p s.t. f (x + δ) = t, x + δ ∈ [0, 1]m (6)

As this is a hard problem, the authors turned the above
equation into a convex optimization objective by using
box-constrained L-BFGS algorithm [112]:

min
δ

c · |δ| + J (x + δ, t) s.t. x + δ ∈ [0, 1]m (7)

where x represents the original image; J is the loss function
of the model (e.g., cross-entropy); c is a hyperparameter, that
is, the algorithm uses a linear search to find a constant that
can produce the smallest distance adversarial sample; t is
target label that is different from correct label y; δ means a
perturbation.

b: FAST GRADIENT SIGN METHOD
Szegedy et al. [19] deemed that the existence of adversarial
samples is caused by the nonlinearity and overfitting of neural
network models. However, Goodfellow et al. [21] demon-
strated that even a simple linear model is vulnerable to adver-
sarial samples. They proposed the first Fast Gradient Sign
Method (FGSM), an untargeted attack algorithm. Formally,
the formulation of FGSM is as follows:

η = ε sign(∇xJ (x, ytrue)) (8)

where ∇xJ (x, ytrue) indicates the gradient of the adversar-
ial loss J (x, ytrue), sign(·) means the gradient direction.
The adversarial perturbation η denotes the one-step gradient
direction against the adversarial loss J (x, ytrue), and ε con-
trols the magnitude of the perturbation.

c: BASIC ITERATIVE METHOD/PROJECTED GRADIENT
DESCENT
Kurakin et al. [113] extended the FGSMattack algorithm [21]
with multiple small-step iterations and proposed Basic Iter-
ative Method (BIM). In each iteration, they clip the pixel
values to ensure that they are all in the ε-neighbourhood of
the original image:

xadv0 = x,

xadvN+1 = Clipx,ε{xadvN + α sign(∇xJ (x, ytrue))}. (9)

Later, Mary et al. [114] extended the iterative attack pro-
posed in [113] by iteratively applying Projected Gradient
Descent (PGD) to search for a perturbation that can approx-
imate the p-norm ball around an input. In [114], the authors
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proposed robust adversarial training which is based on opti-
mizing the aforementioned saddle point formulation and uses
PGD as a reliable first-order adversary.

d: JACOBIAN BASED SALIENCY MAP ATTACK
While most of the attacks focus on the `2 or `∞ norms,
Papernot et al. [115] proposed Jacobian based Saliency Map
Attack (JSMA), which uses the `0 norm to control the pertur-
bation on a few pixels in the image, rather than on the whole
image. In this attack, Papernot et. al. used the Jacobian matrix
to compute the forward derivative of the DNN:

∇F(x) =
∂F(x)
∂x
=

[
∂Fj(x)
∂xi

]
i∈1..Min, j∈1..Mout

(10)

where Min represents the number of input layers, and Mout
represents the number of output layers. Then calculate the
corresponding adversarial saliency map S through the for-
ward derivative, and select the input feature x [i] correspond-
ing to the higher S

(
x, ytarget

)
[i] in the adversarial saliency

map as the perturbation points. The algorithm sequentially
selects the most efficient pixels in the adversarial saliency
map and modifies these perturbation points until the maxi-
mum number of pixels allowed to change in the adversarial
image is reached or the fooling succeeds.

e: C&W ATTACK
To demonstrate that defensive distillation [116] does not
significantly increase the robustness of neural networks,
Carlini and Wagner [117] proposed an optimization-based
adversarial attack (C&W attack), which makes the perturba-
tions imperceptible by restricting their `0, `2 and `∞ norm,
its core formulation is as follows:

min
δ
‖δ‖p + c · f (x + δ) (11)

where δ denotes the adversarial perturbation, corresponding
to the difference between the original image and the adver-
sarial sample. The smaller the part, the less likely it is to be
detected. And in their implementations, they used a modified
binary search to choose the constant c. This f (·) denotes the
objective function. They provide seven candidate functions.
One of the practical functions in their experiments is as
follows:

f
(
x ′

)
= max

(
max

{
Z

(
x ′

)
i : i 6= t

}
− Z

(
x ′

)
t ,−k

)
(12)

where Z (·) denotes the softmax function of the model, k is a
constant to control the confidence with the misclassification.
This kind of attack is now used as a benchmark for many
adversarial defense methods.

f: DEEPFOOL ATTACK
Moosavi-Dezfooli et al. [118] proposed a classifier-based
linearized iterative adversarial attack (Deepfool), which gen-
erates a minimal adversarial perturbation sufficient to change
the classification label. In the binary classification problem,
the original image x iteratively advances in the direction

perpendicular to the boundary of the classifier model f (x).
At each step, the perturbations are accumulated to form the
final perturbation to the image. However, most neural net-
works are highly non-linear, so the problem extends from
two-class tomulti-class. Themulti-classification problem can
be regarded as a collection of multiple binary classification
problems, that is, finding the minimum distance between the
original sample and the boundary of the convex region where
it is located, and approaching the classification boundary
through multiple iterations, making the attack successful.

g: UNIVERSAL ADVERSARIAL PERTURBATIONS
Unlike previous attack methods, such as FGSM [21], Deep-
fool [118], which fool neural networkswith a single perturbed
image, Moosavi-Dezfooli et al. [119] proposed Universal
Adversarial Perturbation attack (UAP) to find a universal
perturbation that can be applied to all samples in the training
data to fool the network. The algorithm is to find the universal
perturbation δ that satisfies the following constraint:

Px∼µ(k̂(x + δ) 6= k̂(x)) ≥ 1− η s.t. ‖δ‖p ≤ ε, (13)

where µ denotes a distribution of images in Rd and k̂ define
a classification function that outputs an estimated label k̂ (x)
for each image x ∈ Rd . The hyperparameter ε limits the
magnitude of the universal perturbation δ, and η quantifies
the fooling rate for all images x ∼ µ.
The algorithm gradually builds a universal perturbation

through an iterative approach. In each iteration, the algo-
rithm uses the DeepFool attack [118] to sequentially push all
the images in the distribution µ to their respective decision
boundaries, and project the updated disturbance to the `p ball
of radius ε. The experiments show that only 4% of image
perturbation can achieve 80% fool accuracy.

h: OBFUSCATED GRADIENT ATTACK
Many defenses rely on obfuscated gradients [120]–[122],
which make it difficult for an attacker to obtain an effec-
tive gradient and defend against iterative optimization-based
attacks. This phenomenon is considered to provide a false
sense of security and leads to improper evaluation of adver-
sarial defenses. Athalye et al. [123] found that defenses rely-
ing on this phenomenon can be circumvented. The authors
identify three types of obfuscated gradients: 1) shattered
gradients are non-existent or incorrect gradients, either inten-
tionally caused by non-differentiable manipulations or unin-
tentionally caused by numerical instability. 2) stochastic
gradients depend on test-time randomness. 3) vanish/explode
gradients in very deep calculations leading to unusable
gradients. Correspondingly, Athalye et al. introduced three
techniques to overcome the obfuscated gradients caused
by these phenomenons: 1) using Backward Pass Differen-
tiable Approximation (BPDA) to address shattered gradients.
2) applying Expectation Over Transformation (EOT) [124]
to compute gradients of randomized defenses. 3) resolv-
ing vanishing/explosive gradients by re-parameterization
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and optimizing on the space where the gradients do not
explode/vanishing.

2) BLACK-BOX
a: ONE PIXEL ATTACK
Su et al. [125] proposed one pixel attack based on the differ-
ential evolution algorithm [126]–[128], which is an extreme
adversarial attack method, and only changing one pixel can
make the network model misclassified. The algorithm iter-
atively modifies a single pixel and generates a sub-image,
compares it with the parent image, and retains the sub-image
with the best attack effect according to the selection criteria
to achieve the adversarial attack. One pixel attack can be
achieved bymodifying a few different pixels, such as modify-
ing 1, 3, or 5 pixels, and the success rates are 73.8%, 82.0%,
and 87.3%, respectively.

b: EOT ATTACK
Previous works have shown that under image transformations
in the real world [129], [130], such as the change of angle
and viewpoint, the adversarial examples generated by these
standard techniques (e.g., FGSM [21]) fail to maintain their
adversarial properties [131], [132]. To address this issue,
Athalye et al. [124] proposed the EOT attack algorithm. The
core formula is as follows:

argmax
x ′

EtvT [logP(yt |t(x ′))− λ‖LAB(t(x ′))− LAB(t(x))‖2]

(14)

where x ′ denotes adversarial sample; x denotes original
image; LAB [133] denotes a color space, and the `2 distance
in this color space is the perceived distance; T denotes image
transformation distribution.

The basic idea of the algorithm is to transform the distribu-
tion T that can model perceptual distortions, such as random
rotation, transformation, or noise. EOT can not only simulate
simple transformations, but also performs operations such as
the three-dimensional rendering of textures.

c: ZEROTH ORDER OPTIMIZATION
Inspired by the C&W algorithm [117], Chen et al. [134]
proposed the Zeroth Order Optimization (ZOO) method,
which performs a black box attack against the target DNN
by sending a lot of queries and observing responding output
confidence values. ZOO uses zeroth-order optimization to
approximate the network gradient while using dimensionality
reduction, hierarchical attack, and importance sampling tech-
niques to improve attack efficiency. The optimization scheme
of the ZOO is consistent with the C&W algorithm, but the
difference is that it is a black-box attack and cannot obtain
the model gradient. ZOO uses the symmetric difference quo-
tient [135] to compute the approximate gradient and the
Hessian matrix. On the premise of obtaining the gradient and
the Hessian matrix, the optimal perturbation is generated by
the Stochastic coordinate descent method and using ADAM
method [136] to improve the convergence efficiency.

d: AUTOENCODER-BASED ZEROTH ORDER OPTIMIZATION
METHOD
Tu et al. [137] proposed a generic query-efficient black-
box framework, called Autoencoder-based Zeroth Order
Optimization Method (AutoZOOM), which can efficiently
generate adversarial samples under the black-box setting.
AutoZOOM leverages an adaptive stochastic gradient esti-
mation strategy to stabilize the number of queries and the
amount of perturbation, and simultaneously, train the auto-
matic encoder offline with the unlabeled data, thereby speed-
ing up the generation of adversarial samples. Compared with
standard ZOO [134], AutoZOOM can reduce the number of
queries while keeping attack effective and adversarial sample
visual quality.

e: BOUNDARY ATTACK
Brendel et al. [138] pointed out that most methods used
to generate adversarial perturbations rely either on detailed
model information (gradient-based attacks) or on confi-
dence scores such as class probabilities (score-based attacks).
However, the network model information required for the
attack cannot be obtained in a real scenario, and neither of
these two methods is suitable for a real scenario. Therefore,
Brendel et al. [138] proposed boundary attack, which only
depend on class label. The algorithm starts with an already
adversarial sample and then walks randomly along the deci-
sion boundary: 1) keeping in the adversarial area. 2) reduc-
ing the distance to the target image. Finally, the adversarial
samples are iteratively generated.

f: BIASED BOUNDARY ATTACK
The boundary attack [138] uses an unbiased samplingmethod
that sample perturbation candidates from amulti-dimensional
normal distribution. Although this method is flexible, it is
not efficient for robust models to craft adversarial examples.
Brunner et al. [139] redefined the boundary attack as a biased
sampling framework to improve attack efficiency. The three
biases are as followed:
1) Low Frequency Perturbations. Since the pertur-

bations generated by typical attack methods are
high-frequency perturbations, most of the defense
methods also defend against high-frequency per-
turbations. Based on this observation, they used
low-frequency Perlin noise [140] to bypass the detec-
tion mechanism.

2) Regional Masking. They used the regional mask to
update the areas where the difference between the
sample and the original image is significant, and not
update the extremely similar parts, thereby, effectively
reducing the search space.

3) Gradients from Surrogate Models. The adversarial
samples are transferability. That is, the gradient of
the surrogate model is also helpful for attacking the
target model. Therefore, they used the gradient of the
surrogate model to guide the update direction of the
boundary attack, which improves the attack efficiency.
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To a certain extent, the above improvements improve the
efficiency of the algorithm. However, the gradient of the sur-
rogate model relies on the transferability of the model. Later,
Chen et al. [141] further improved the boundary attack by
utilizing Monte Carlo estimation to determine the direction
of the gradient, which does not rely on the transferability of
the model.

B. ADVERSARIAL EXAMPLES IN REAL WORLD
The adversarial attacks mentioned above are mostly in
experimental settings. However, there have been a number of
adversarial samples that have been applied in real-life appli-
cations such as road sign, objection detection, face recogni-
tion. In this section, we will present some real-life adversarial
samples.

1) ROAD SIGN
Based on previous attack algorithms [117], [142],
Evtimov et al. [11] proposed a general attack algorithm
(robust physical perturbation) for generating visually adver-
sarial perturbations with robustness under different physi-
cal conditions (e.g., distance, angle, distortion). The robust
physical perturbations successfully deceive the road sign
recognition system in a real driving environment. To con-
firm that robust physical perturbations are generalizable,
they affixed graffiti generated with robust physical pertur-
bations to a microwave oven and successfully mislead the
Inception-v3 classifier [143] to recognize the microwave
oven as a mobile phone. Lu et al [144] conducted experiments
on a sample of physical confrontations between road sign
images and detectors and showed that YOLO [145] and
Faster-RCNN [146] and other detectors are not currently
spoofed by the attack proposed by Evtimov et al. [11].
However, Eykholt et al. [147] claimed to be able to generate
a small sticker to spoof the YOLO detector [40] and also
to spoof the Faster-RCNN [146]. Chen et al. [148] further
used the EOT technique [124], [149] to make the attack
more robust and successfully mislead the Faster-RCNN
detector [146].

2) OBJECTION DETECTION
Thys et al. [150] proposed a dynamic person target detection
attack method based on the YOLO (You Only Look Once,
You Only Look Once) [145] model. As shown in Figure 6,
they successfully bypassed the detection model detection by
optimizing the image to generate an adversarial patch and
placing it in the center of the human body. They divided
the optimized target loss function into three parts, namely,
Lnps, Ltv and Lobj. Lnps indicates whether the color of the
current patch can be applied to real life; Ltv reflects the
smoothness of the image; and Lobj is the maximum target
detection confidence level in the image. During the optimiza-
tion process, the neural network model parameters were kept
constant and only the adversarial patches were changed. And
after each modified patch is rotated, scaled, and other basic

FIGURE 6. An example of objection detection [150].

transformations, it is applied to the dataset image again to
improve the robustness of the adversarial patch so that it can
successfully mislead the detection model.

3) CYBER SECURITY
Papernot et al [151] proposed a realistic adversarial sample
attack on cyberspace, training an agent model on a synthetic
dataset for generating adversarial samples and launching
an attack against the remotely hosted neural networks of
MetaMind, Amazon and Google. The results showed that
the model’s misclassification rates were 84.24%, 96.19%,
and 88.94%, respectively. Similarly, Liu et al [142] also
exploit the transferability of adversarial samples to carry out
attacks, the basic idea of which is to generate an adversarial
sample capable of making multiple models misclassified at
the same time, which is used to carry out transfer attacks.
This approach enabled a black-box attack on a large dataset
ImageNet [8], and successfully attacked Clarifai, a commer-
cial company providing state-of-the-art image classification
services at the time.

In contrast to transfer attacks, Li et al. [152] improved
on single-pixel and boundary attacks, respectively. Based
on the single-pixel attack [125], it improves efficiency by
gradually increasing the number of pixel modifications and
incorporating the idea of semantic segmentation. In contrast,
semantic segmentation and greedy ideas are introduced in the
boundary attack [138] to improve efficiency. Li et al. [152]
also conducted black-box attacks on computer vision-related
services (e.g., image classification, object recognition, and
illegal image detection) provided by five major cloud service
providers, Amazon, Microsoft, Google, Baidu, and Alibaba,
respectively, with a success rate of almost 100%.

4) FACE RECOGNITION
Sharif et al. [153] developed a systematic method of attacking
against face recognition systems by simply adding a pair of
eyeglass frames to make the face recognition system recog-
nize errors. Zhou et al. [154] studied an interesting example
of a real-world adversarial attack and found that infrared light
can also be used to interfere with face recognition systems.
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An attacker can install an LED light on the brim of a hat
and use it to shine on the face to produce a purple light that
is invisible to the human eye, but it can be captured by the
camera sensor to evade detection by the facial recognition
system.

C. ADVERSARIAL DEFENSES
Several defenses against adversarial attacks were proposed
in recent studies, which grew along with three main direc-
tions: pre-processing, improving the model robustness, and
malware detection, as shown in Figure 7.
1) Pre-processing. Pre-processing attempts to reduce the

impact of the adversarial perturbation by performing
some operation (e.g., denoising, randomization, recon-
struction, scaling) on the input image. This defense
mechanism is deployed before input and the first layer
of the model, which usually requires no modifica-
tion to the model and can be directly extended to the
pre-trained model.

2) Improving the Robustness of the Model. Improv-
ing the robustness of the model aims to enhance the
model’s ability to resist adversarial samples by modify-
ing themodel architecture, training algorithms, regular-
ization. The retraining and adversarial training usually
entail significant computational overhead.

3) Malware Detection. Malware detection is deployed
between input and the first layer of the model to detect
the input to determine whether the input is an adver-
sarial sample. The corresponding measures would be
taken immediately to block this attack process if the
user input is a malicious sample.

In this section, we describe these defense stragies from the
three direction mentioned above.

1) PRE-PROCESSING
a: RANDOMIZATION
Wang et al. [155] proposed a novel adversarial defense
approach that prevents adversaries from constructing
impactful adversarial samples by randomly nullifying
features within samples, which makes a DNN model
non-deterministic and significantly reduce the effectiveness
of this adversarial perturbation. Prakash et al. [156] proposed
a method termed as pixel deflection to defend against adver-
sarial examples, which consists of two parts: redistributing
pixel values and wavelet-based denoising. The pixel deflec-
tion first makes full use of CNN’s resistance to the natural
noise by randomly replacing some pixels with randomly
selected pixels from a small neighborhood. Then, the thresh-
olding process in the wavelet domain is taken to effectively
soften the corruption caused by redistributing pixels and some
of the adversarial changes. The experiments demonstrated
that combining these techniques can effectively reduce the
impact of adversarial perturbation on the classifiers. Sim-
ilarly, Ho et al. [157] proposed Pixel Redrawn (PR) as a
defense against the adversarial examples, which redraws
every pixel value of training images into a different pixel

value. First, a prediction model is trained to generate a
prediction image, and the range of the value of the image
pixel value is divided into sections. The original image is
fed into the prediction model to obtain a prediction image,
and the interval of each pixel value of the prediction image
is obtained. Then the random value in the interval is used
to replace the pixel value of the original image. Finally,
the modified image is fed into the classifier. Experimental
results on several benchmark datasets [67], [158], [159]
showed that the PR method not only relieves overfitting but
it also boosts the robustness of the neural network.

b: IMAGE TRANSFORMATION
Dziugaite et al. [160] first demonstrated that the JPEG com-
pression could reduce the classification errors caused by the
adversarial examples generated by FGSM algorithm [21].
However, the defense effect of JPEG compression decreases
with the increase in the magnitude of the perturbation.
Das et al. [161] further studied that an important capability
of JPEG compression is that it can remove high-frequency
signal components inside the square blocks of the image,
which is equivalent to selectively blur the image, which
can eliminate adversarial perturbation on the image. There-
fore, Das et al. [161] proposed a JPEG compression pre-
processing module that can be quickly built on a trained
network model to protect a model from multiple types of
adversarial attacks. However, Guo et al. [129] found that
total variance minimization [162] and image quilting [163]
are stronger defense than deterministic denoising procedures
(e.g., JPEG compression [160], bit depth reduction [164],
non-local means [165]). Based on simple image transfor-
mations, Raff et al. [166] proposed to combinate a series of
simple defenses (e.g, bit depth reduction [164], JPEG com-
pression [160], wavelet denoising [167], mean filtering [168],
non-local mean [165]) to build a strong defensemechanism to
resist adversarial samples, and obfuscated gradient was taken
into account [123]. The basic intuition is to stochastically
select several transforms from a large number of random
transforms, and apply each transform in a random order
before the image is fed into the network. The method is also
robust in large-scale datasets [169].

c: DENOISING NETWORK
The traditional denoising encoder [170] is a popular denois-
ing model, but it cannot completely remove adversarial per-
turbations. To address this problem, Liao et al. [171] designed
a High-level representation Guided Denoiser (HGD) as a
defense against adversarial examples, which usedU-net [172]
as the denoising network model. The U-net [172] network
model differs from traditional autoencoders in two ways. The
first is that the denoising network does not use pixel-level
construction loss function, but use the difference between
top-level outputs of the target model induced by original
and adversarial examples as the loss function. The sec-
ond difference is that network learns adversarial perturba-
tions rather than constructing the entire image. However,
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FIGURE 7. An overview of the adversarial defense.

Athalye et al. [173] pointed out that the HGD method cannot
effectively prevent white-box attacks.

d: GAN-BASED DEFENSE
Samangouei et al. [122] proposed a defensive framework
based on GAN [51]. The main idea is to train an adversarial
generation network using the original dataset, and utilize the
generator’s expression to reconstruct a clean image that is
similar to the original image but does not contain adversar-
ial perturbations. An overview of the defense framework is
shown in Figure 8. An adversarial example is reconstructed
by the adversarial generative network, a reconstructed image
similar to the original image is obtained, and the recon-
structed image is fed into the target network model for clas-
sification. The introduction of random seeds makes the entire
network model difficult to attack. However, this method can-
not effectively prevent white-box attacks on the CIFAR-10
dataset [159], andAthalye et al. [123] used BPDA technology
to attack this defense mechanism on the MNIST dataset [67].
However, the success rate was only 48%.

Likewise, based on bidirectional generative adversarial
networks [174], [175], Bao et al. [176] proposed a novel
defense approach, Featured Bidirectional Generative Adver-
sarial Network (FBGAN), which can learn the latent semantic
features of the image that is unchanged after the image is per-
turbed. After the bidirectional mapping, the adversarial data
can be reconstructed to denoised data by extracting semantic
features, which can be fed into any pre-trained classifier.
The experiments showed that the FBGAN is effective for
any pre-trained classifier under the white-box and gray-box
attack.

e: IMAGE SUPER-RESOLUTION
Mustafa et al. [177] hypothesized that a generated-well
image super-resolution model is enough to project the off-
the-manifold adversarial samples into the natural image
manifold. Therefore, Mustafa et al. [177] proposed a defense
mechanism, deep image restoration networks, to defend
against a wide range of recently proposed adversarial attacks.
First, the adversarial perturbation is suppressed by wavelet
domain filtering [178]. Second, the image super-resolution
model [179] was used to enhance the visual quality
of the image. Their method can easily complement the

existing defense mechanism without retraining the model
while improving the classification accuracy. The disadvan-
tage is that it depends on the expressive power of the
super-resolution model.

2) IMPROVING THE MODEL ROBUSTNESS
a: ADVERSARAL TRAINING
Goodfellow et al. [21] firstly proposed adversarial training
to enhance the robustness of the model, Kurakin et al. [113]
used the batch normalization [74] method and successfully
extended it to the Inception-v3model [143] and the ImageNet
dataset [1]. However, its disadvantage is that it can only
defend against single step attacks [21], and it can not defend
against iterative attacks [114]. Chang et al. [180] proposed
a training method based on dual adversarial samples, which
can resist both single-step adversarial samples and itera-
tive adversarial samples. Much adversarial training can only
defend against specific adversarial attacks [21], [181], [182].
Madry et al. [114] proposed PGD attack for adversarial train-
ing. However, Madry et al. [114] only conducted adversarial
training on the MNIST [67] and CIFAR-10 datasets [159].
Subsequently, Kannan et al. [183] successfully extended it
to the ImageNet dataset [1]. They formed a pair of similar
samples, and the degree of similarity of the model output of
the paired samples is used as part of the loss function. Their
method is robust on the ImageNet dataset [1] and exceeds
the best performing integrated adversarial training method at
that time [184]. Adversarial training is currently considered
to be the most effective method to defend against adversarial
samples. Its main disadvantage is that it is computationally
expensive, and the improvement of adversarial training is still
in progress.

b: REGULATION
The neural network model cannot learn the robust features,
and slight changes in the image cause the classifier to decide
wrongly. To address this problem, Liu et al. [185] proposed
a feature prioritization model based on non-linear attention
modules and L2 feature regularization to make model clas-
sification depend on robust features. The attention module
encourages the model to rely heavily on the robust fea-
tures by assigning larger weights to them while suppress-
ing non-robust features. The L2 regularizer prompts the
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FIGURE 8. An overview of Defense-Gan framework [122].

extraction of similar essential features of the original image
and the adversarial examples, effectively ignoring the added
perturbations.

c: FEATURE DENOISING
Xie et al. [186] suggested that adversarial perturbations are
amplified layer by layer in the network, resulting in a large
amount of noise in the network’s feature map. The features
of the natural image mainly focus on the semantic features
in the image, and the features of the adversarial examples are
also activated in the semantically irrelevant areas. Therefore,
Xie et al. [186] developed a new network architecture that
improves the model robustness by performing feature denois-
ing. Although the denoising module cannot improve the clas-
sification accuracy in the original dataset, the combination
of the denoising module and adversarial training can signifi-
cantly improve the robustness of the model under white-box
and black-box attacks. In Competition onAdversarial Attacks
and Defenses (CAAD) 2018, Their method still achieved a
classification accuracy of 50.6% against 48 unknown attacks.

d: CONVOLUTIONAL SPARSE CODING
Based on convolutional sparse coding [187], [188],
Sun et al. [189] proposed a novel defense method, which
projects adversarial examples into a stratified low-
dimensional quasi-natural image space, where the adversarial
examples are similar to the natural image without adversarial
perturbations. In the training phase, they introduced a novel
Sparse Transformation Layer (STL) between the input and
the first layer of the neural network to efficiently project
images into quasi-natural image space and train the classi-
fication model with the image projected to the quasi-natural
space. In the testing phase, the image that projects the original
input to quasi-natural space is fed into the classification
model. Compared with other adversarial defense methods for
unknown attacks, Their method is more robust in terms of the
size of adversarial perturbations, various image resolutions,
and dataset size.

e: BLOCKING THE TRANSFERABILITY
The adversarial samples crafted by particular networkmodels
are likely to mislead other classifiers with different architec-
tures or trained with different training data, which is known as
transferability. To address this problem, Hosseini et al. [190]
proposed an empty label approach to defending against adver-
sarial sample transfer attacks under the black-box settings.

The main idea is to add a NULL label to the output class
and train the classifier to project the adversarial into the
NULL label. The advantage of their method is the ability to
classify the adversarial example into theNULL classes, rather
than other error classes, effectively preventing the transfer
problem of the adversarial samples, while also maintaining
the accuracy of the model.

3) MALWARE DETECTION
a: STATEFUL DETECTION
Up to date, the defenses against white-box adversarial exam-
ples have proven difficult to achieve, and white-box attacks
are not practical in real-world scenarios. The ML services
provided by cloud platforms are generally based on queries.
Therefore, Chen et al. [191] firstly proposed a black-box
defense method based on stateful detection. Compared with
the stateless defense currently researched, their method
enhances the capabilities of the defender. An overview of
the defense framework is shown in Figure 9. First, to com-
press the storage of user query records, similar encoding
is used for compression encoding. Then, the user’s query
input is compared with previous records, and the distance
d is calculated using the k nearest neighbor algorithm. If d
is less than the threshold value, the user is considered to
be performing a malicious attack. Under black-box attacks
NES [192] and border attacks [138] setting, the experimental
analysis showed that query-based black-box attacks usually
require hundreds of thousands to millions of queries, which
could easily trigger their defense mechanisms. Even if the
defense mechanism is not triggered, the storage services
required for the attack will consume many resources. The
disadvantage of stateful detection methods is that it cannot
defend against transfer attacks that do not require any query.
However, this method can combine with adversarial training
to defend against transfer attacks, which can compensate for
the deficiency of stateful detection and make it perform better
in the case of black-box attacks.

b: IMAGE TRANSFORMATION
Tian et al. [193] showed that adversarial samples are usu-
ally susceptible to image transformations, such as rotating
and shifting, but the natural image is usually immune to
these transformations. Based on this observation, they pro-
posed a novel adversarial example detection mechanism that
can effectively detect the adversarial attack. First, a set of
transformation operations is performed on an input image
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FIGURE 9. An overview of stateful detection framework [191].

to generate multiple transformed images. Then, the classifi-
cation results of these transformed images are fed into the
classifier to train a classifier that predicts whether the input
image had been perturbed by an adversary or not. To defend
against more complex white-box attacks, they also intro-
duced randomness during the transformation process. The
experiments showed that the detection rate of the adversarial
samples crafted by the C&W [117] algorithm reaches 99%,
and the detection rate of their method reaches more than 70%
under white-box attacks setting. This approach is relatively
simple, requiring only a simple transformation of the input
image, however, the angle of transformation often affects
the performance of the defense and may fail in the face of
stronger adversarial attacks [123].

c: ADAPTIVE DENOISING
The traditional denoising has a significant effect on large
noise. However, in the case of small noise, denoising can also
make the image blurred, resulting in low classification perfor-
mance. To address this problem, Liang et al. [194] introduced
two typical image processing techniques: scalar quantiza-
tion and smoothing spatial filter, to reduce the impact of
adversarial perturbation on the classifier. The cross-entropy
is employed as a metric to implement an adaptive noise
reduction for different kinds of images. They first utilize
cross-entropy to adaptively quantize the interval size and then
determine whether spatial smoothing filtering is required.
A classifier, respectively, classifies the denoised image and
the original image. If the prediction of the classifier on
the denoised image and the original image is consistent,
the original image is considered to be a normal sample. Other-
wise, it is considered to be an adversarial example. However,
their method works poorly against attacks that modify only a
fraction of the image pixels.

D. POISONING ATTACKS
An overview of poisoning attacks is shown in Figure 10.
The adversary can reduce the performance of the model or
manipulate the prediction of the model by injecting malicious

samples into the model training data during the training
phase. A large number of poisoning attacks were used in DL,
which can be divided into three categories: accuracy drop
attack, targeted misclassification attack, and backdoor attack.
A summary of poisoning attacks and corresponding defense
strategies is provided in Table 9.

FIGURE 10. An overview of poisoning attacks.

1) ACCURACY DROP ATTACK
Muñoz-González et al. [197] proposed a novel poisoning
attack based on gradient-based optimization, which targets a
wider class of ML algorithms, such as DL architectures. The
algorithm calculates the gradient by back propagation while
reversing the underlying learning process, it traces the param-
eters executed during the learning and updates the entire
sequence. The algorithm only requires the learning algorithm
to update its parameters in a smooth manner during training
(for example, gradient descent) to track these changes back-
ward properly. They also demonstrated that attacks designed
for specific learning algorithms are still effective for different
learning algorithms.

The attacks that create poisoning samples based on
back-gradient optimization is computationally intensive and
inefficient. Inspired by GAN [49], Yang et al. [198] proposed
a general method to accelerate the generation of poisoning
data using generators and discriminators. The autoencoder
is used as the generator in GAN to generate poisoned data.
The target model is treated as a discriminator in GAN, which
receives the poisoned data, calculates the loss, and then sends
the calculated gradient back to the generator. The experiments
showed that this algorithm has more than 230 times higher
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TABLE 7. A summary of adversarial defense. The defense strength evaluates how powerful a defense is against different adversarial attacks (stronger for
more ?), (?) means a defense was broken.

computational efficiency than the direct gradient poisoning
algorithm.

Similarity, Muñoz-González et al. [20] proposed to use
GAN to generate poisoning samples that look like real data
points, but it leads to reducing the accuracy of the classifier
when it is used in training. They proposed a model called
pGAN, which mainly consists of three parts: generator, dis-
criminator, and target classifier. The purpose of the generator
is to generate poisoning points to maximize the error of the
target classifier, but minimize the ability of the discriminator
to distinguish the poisoning points from the original data
points. The purpose of the classifier is to minimize some of
the loss functions evaluated on the training data that contains
a small portion of poisoning points. The generator is utilized
to maximize the convex combination of the discriminator and
the classifier’s loss on the poisoning data points to ensure that
the model has a mechanism to control the detectability of the
generated poisoning points. The aggressiveness of the attack
can be controlled by the parameters of the weighted sum of
the two losses. The pGAN can be utilized for system testing
of ML classifiers at different risk levels by controlling the
trade-off between effectiveness and detectability of attacks.

2) TARGETED MISCLASSIFICATION ATTACK
The concept of targeted misclassification attack was first
proposed by Koh and Liang [199]. DL system performs well
in various applications, but, DL models are extremely poor in
interpretability. Therefore, Koh and Liang [199] attempted to
use a classic influence function from robust statistics [200] to
explain the prediction of the black-box model. The influence
functions track the prediction of the model to identify the
training points that are most relevant to a given prediction.
The adversary observes the changes predicted by the model
through up weighting a training point and perturbing a train-
ing input and leverage Euclidean distance to find the training
point most relevant to the test point. A poisoning sample is
iteratively generated by modifying the influence of the train-
ing point on the test point. Later, Shafahi et al. [201] proposed
a new poisoning attack, clean-label attack, which generates
poisoned instances via feature collisions. The clean-label
attacks can control the behavior of the classifier on a specific
test instance while keeping the performance of the entire
classifier. Besides, the adversary is not required to have the
ability to control the label of the training data. Compared
with the poisoning attack proposed by Koh and Liang [199],
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TABLE 8. An overview of poisoning attacks. The attack strength (higher for more stars) is based on the impression of the reviewed paper.

the clean-label attack has better performance on the same
dog-vs-fish classification task. Under the end-to-end training
scenario, only 50 poisoned instances are needed to achieve
an attack success rate of 60%. Furthermore, Zhu et al. [12]
proposed transferable clean-label poisoning attacks under the
black box model through the convex polytope strategy, which
has a higher attack success rate than feature collisions [201]
in the black-box model. The adversary has no knowledge of
the parameter of the target model but has knowledge of the
similar training data as the target model. Then, the adversary
can train a substitute model on this training data and opti-
mizes a novel objective that makes the poisons form a convex
polytope to wrap the target image. In this way, a linear clas-
sifier that is overfitted on the poisoning dataset can classify
the target image into the same class as the poisoning data.

3) BACKDOOR ATTACK
Due to the expensive cost of training models, several users
outsource the training process to the cloud servers or rely
on pre-trained models and then fine-tune specific tasks.
Gu et al. [13] proposed BadNet, a maliciously trained back-
door network, which performs well in the training and verifi-
cation phases, but can mislead specific data during the testing
phase. The adversary selects a backdoor trigger composed of
pixels and related color intensity, which can be of any shape,
such as square. The algorithm assumes that the adversary can
control the entire training process (e.g., parameters, learning
rate) and then use the poisoning training data to construct
a backdoor network sensitive to specific backdoor triggers.
The backdoor triggers lead the neural network to misclassify
the backdoor data into the target label specified by the adver-
sary. The experiments showed that a backdoor network could
attack the network model trained on the MNIST datasets [67]
with a success rate of over 99% without affecting the per-
formance of the neural network. Liu et al. [14] proposed a
trojaning attack that does not depend on the original training
data. The trojaning attack takes the existing model and target
prediction output as input, andmodifies themodel to generate

a small part of the input data, called the trojan trigger. Any
valid input with a trojan trigger of the model will cause
the mutated model to output a specific prediction category.
The trojaning attack is implemented in three steps: 1) trojan
trigger generation. The trojan trigger is a special input that
triggers the behavior of the trojan neural network to be mis-
behaving. 2) training data generation. As the trojaning attack
has no knowledge of the original training data, it is necessary
to derive a set of training data to retrain the model. 3) retrain-
ing model. Due to the retraining of the entire model is very
expensive, they used the trigger and the reverse-engineered
images to retrain a part of the model.

Chen et al. [202] proposed targeted backdoor attacks that
can be applied to very weak threat models: 1) the adversary
has no knowledge of the target model. 2) the adversary can
inject a small portion sample into the training data. 3) the
backdoor key is hard to be noticed by human visual system.
The attack strategy is divided into two steps. First, a poisoning
sample is generated and added to the training data. Then,
a sample backdoor is created to make the neural network mis-
classify the sample as the target label. The previous backdoor
attacks [13], [14], [202] mainly focused on the establishment
of triggers. Furthermore, Li et al. [203] focused on how to
make triggers invisible and proposed an invisible backdoor
attack, which makes the backdoor attacks hardly perceptible
for the human vision system, while ensuring that the neural
network can still recognize backdoor triggers. They used
the Perceptual Adversarial Similarity Score (PASS) to define
people’s ability to recognize triggers and used `2 and `0
regularization to hide the trigger in the entire image, making
the trigger less obvious.

E. POISONING DEFENSES
1) DEFENSE AGAINST ACCURACY DROP/TARGETED
MISCLASSIFICATION ATTACK
For the almost infinite possible attack space, it is impossible
to draw conclusions based on experience alone, whether the
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defense against the known attack set can defend against future
attacks. Therefore, Steinhardt et al. [204] proposed a frame-
work to solve this problem by removing outliers and keeping
them out of the feasible set. For binary classification, a nat-
ural defense strategy is to find the centroids of positive and
negative classes and remove points that are too far from the
corresponding centroids. There are two ways to implement
it. The sphere defense removes points outside the radius of
sphere, and the slab defense, which first projects points onto
a straight line between the centroids and then discards points
that are too far away from the straight line.

The so-called ‘‘optimal’’ attacks choose poisoning sam-
ples to maximize the damage to target models [205]–[207].
However, such attacks usually only focus on the learning
algorithm while ignoring the data preprocessing step. Base
on this observation, Paudice et al. [208] proposed a defense
strategy based on data pre-filtering with outlier detection to
mitigate the effects of optimal poisoning attacks. The method
uses distance-based anomaly detection to detect poisoned
samples using a small number of trusted data points. They
split a small fraction of trusted data D into different cate-
gories, i.e.,D+ andD−. Then, these curated data were used to
train a distance-based outlier detector for each category. Next,
the Empirical Cumulative Distribution Function (ECDF) was
used to calculate the outlier detection threshold based on the
outliers score. Finally, these samples were filtered by the
threshold to get clean datasets to retrain the model.

2) DEFENSE AGAINST BACKDOOR ATTACKS
Liu et al. [209] proposed a ‘‘fine-pruning’’ method, that is,
a method combining pruning and fine-tuning. The pruning
defense resists backdoor behavior by removing neurons that
are dormant for clean inputs in the backdoor network. For
pruning defense, they developed a stronger pruning-aware
attack, which evades pruning defense by focusing clean and
backdoor behavior on the same set of neurons. In order to
defend against stronger pruning-aware attack, they proposed
a fine-tuning defense strategy, which locally retrains the net-
work on clean training data, However, since the accuracy
of the backdoored DNN on clean input does not depend on
the weight of the backdoor neurons, the defense effect of
fine-tuning defense is not significant. Finally, by combining
the advantages of pruning and fine-tuning, they putted for-
ward the method of fine-pruning. The idea behind fine-tuning
first prunes the DNN returned by the attacker and then
fine-tuning the pruned network. In some cases, this method
can even reduce the success rate of backdoor attacks to 0%.

Chen et al. [210] hypothesized that the features acti-
vated by the activation function between standard and back-
door samples are different from the neural network. Hence,
Chen et al. [210] proposed an Activation Clustering (AC)
method to detect poisoning training samples. The ACmethod
analyzes the activations of the last hidden layer of the neural
network to determine whether the input is poisoned. The
AC method is also the first method to detect poisoning
data for inserting backdoors and repair models that do not

require verified and trusted datasets. They have shown that
the effectiveness of the AC method at detecting and repairing
backdoors. In addition, the experiment also demonstrated that
the AC method is robust to multimodal classes and complex
poisoning schemes.

V. FUTURE RESEARCH WORK
A. DL PRIVACY
1) LIGHTWEIGHT PRIVACY-PRESERVING TECHNIQUES
The recent work has proposed several regarding the
privacy-preserving DL technique to protect the privacy of
sensitive data. However, there is still a lot of work to do before
it is applied in practical application. The biggest deflect of
privacy-preserving DL techniques are computation cost. Due
to the non-linear operation of DL, the computation cost is
enormous, which seriously reduces the availability of the
DL. An important challenge regarding privacy-preservingDL
techniques is to decrease the overhead of privacy-preserving.

2) INTELLECTUAL PROPERTY PROTECTION OF DL MODEL
A well-performing ML model requires massive amounts of
training data, a large amount of hardware resources, and a
lot of time for parameter tuning. Therefore, the labeled train-
ing dataset, model architecture, and model parameters have
been considered as a commercial intellectual property and
therefore need to be protected. Currently, there are only a few
works of intellectual property protection for watermark-based
machine learningmodels [47], [108], [109], and the effective-
ness is still difficult to secure. For neural network models,
a more effective and secure intellectual property protection
method is still to be solved.

3) GENERIC PRIVACY-PRESERVING TECHNIQUES
Most current privacy-preserving technologies can only make
privacy predictions during the testing phase, and only a
few solutions can be trained on encrypted data. Moreover,
the inference privacy-preserving models are trained on the
unencrypted data on unencrypted typical models, and then,
the trained weights and biases are applied to different models
in which the activation function is replaced with a simple
activation function, such as a square function. Differences
between the trained and inferred models typically result in
a high degree of degradation in performance of the model.
Therefore, the current privacy-preserving techniques still
require a lot of custom work for each DL model. A general
privacy-preserving framework is a challenge to be solved in
the future.

B. DL SECURITY
1) ADVERSARIAL EXAMPLES IN REAL WORLD
The adversarial examples was first proposed for the image
classification task [19], but recent works have found
adversarial for cyberspace attack [151], [152], stop sign
recognition [211], objection detection [150], [212], semantic
segmentation [213], [214], face recognition [153], authorship
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TABLE 9. An overview of poisoning defenses. The defense strength (higher for more stars) is based on the impression of the reviewed paper.

recognition [215]. Although there are already adversarial
samples for different application scenarios, there is still a
large gap with the application scenarios in the real world.
For example, the adversarial example is sensitive to phys-
ical environments such as light, angle, transformation. The
robust adversarial examples against real physical environ-
ments raised the interest of a large number of researchers.

2) ROBUSTNESS ADVERSARIAL EXAMPLES
The adversarial attacks have evolved from gradient-based
attacks [21], [114] to decision-based attacks [192], [216],
and the amount of information required for their attacks has
gradually decreased and has been successfully applied to real
scenarios. The algorithm for generating adversarial samples
has made great progress in recent years, but there are still
many deficiencies and limitations. For example, there are too
many queries and the attacks are not stable enough on dif-
ferent application scenarios. In the future, the more efficient,
smaller disturbance, and stable black box attack algorithms
are still the focus of research.

3) DEFENSES AGAINST ADVERSARIAL EXAMPLES
As mentioned in this paper, the majority of defense strategies
are only effective against specific known attacks and are
not well generalized in unknown attacks. To the best of our
knowledge, there is still no defensive method against adver-
sarial examples that can completely defend against white-box
attacks. Adversarial training is considered to be the most
effective method of defending against adversarial attacks, but
it has the drawback of huge computational overhead. In short,
how to train a robust model with negligible overhead remains
a hot topic for future research.

4) SYSTEMATIC EVALUATION ADVERSARIAL DEFENSES
Adaptive adversary have (rightfully) become the de facto
standard for evaluating adversarial defenses. However,
Tramer et al. [217] showed that the evaluation of adaptive
adversary in many published papers is incomplete or flawed.
How to properly perform an adaptive attack assessment
against adversarial instance defenses is particularly impor-
tant. A system evaluation criterion and metrics for defense
mechanisms is still a problem to be solved.

5) WHY ARE THE REASONS FOR THE PRESENCE OF
ADVERSARIAL EXAMPLES?
Why are DL models so vulnerable to adversarial samples?
There is some discussion in the current research, but there

is still a lack of consensus. Ilyas et al. [218] pointed out
that models trained on the same dataset tend to learn similar
non-robust features, which accounts for the transferability
of adversarial examples. However, why DL model tend to
learn non-robust features and how to make them learn robust
features is still an open question.

VI. SUMMARY
DL has been extensively applied in a variety of application
domains such as speech recognition, medical diagnosis, but
the recent security and privacy issues of DL have raised
concerns of the researcher. One of the keys to the rise of
DL is to rely on the vast quantities of data, which is also
accompanied by the risk of privacy leakage. In this paper,
we first describe the potential risks of DL and then reviewed
the two types of attack: model extraction attack and model
inversion attack in DL and four typical defense technolo-
gies for protecting the data privacy of user: DP, HE, SMC,
and TEE. We then investigated two types of attacks: adver-
sarial attacks and poisoning attacks. In adversarial attacks,
we reviewed the representative black box and white box
attack in recent studies, and reviewed the adversarial attacks
under the physical condition. Regarding the defense methods
of security, we describe the defense approach from three
aspects: pre-processing, improving model robustness, and
malware detection. Finally, the unresolved problems and the
direction of future work are discussed.
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