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Network properties

* Adjacency matrices
* Paths, shortest paths

* Network diameter
Node properties

* Degree

e Centrality

» Clustering coefficient
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Network properties

Adjacency matrices
Paths, shortest paths
Network diameter



Networks as Graphs

Graph G = (V,E)

— V = set of nodes 2
— E =set of edges /Q\
T
/3
V = {11 2[ 3[ 4[ 5}
E={(1,2), (1,3), (23), 34), (45} ° *

G = (VE)



Networks as graphs

Undirected

An undirected graph is one in which edges
have no orientation. The edge (a, b) is
identical to the edge (b, a).

Directed

a directed graph is a graph, or set of nodes
connected by edges, where the edges have

a direction associated with them.



Adjacency matrix

* Representing edges (who is
adjacent to whom) in a matrix

— A;=1if node i has an edge to node j
=0 if node j does not have an edge
to |

— A;; = 0 unless the network has self-loops

— A; = A;; if the network is undirected,
or if i and j share a reciprocated edge




Adjacency matrix example

R O = O O

o o ©o ~» O

©c OO +—» = O



Walks, Paths, Cycles, and Geodesics

e Walk from i. to ik a sequence of nodes (iyi... ik) and a

sequence of links (iiz, i2is, ..., ik-1ix) such that i-icin E for each k
e Path: a walk (iy,iz,... ix) with each node i« is distinct
* Cycle: a walk where i: = i«

* Geodesic: a shortest path between two nodes



Network Diameter

 Diameter = the longest shortest path in the network
— Represents a worst-case scenario in network size
— Left example (undirected network): diameter="?
— Right example (directed network): diameter=?



Diameter scenarios

K levels has n = 2X+*1-1 nodes
so, K=log,(n+1) -1
diameter is 2K

diameter is either diameter is on order of
n/2 or (n-1)/2 2 log,(n+1)
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Node properties

Degree
Centrality
Clustering Coefficient



Degree of Nodes

Degree: number of edges incident on a node degree=5

Two different degree types in directed networks

N
1. Indegree . how many directed edges (arcs) terminate at a node q indegree=3

2. Outdegree: how many directed edges (arcs) originate at a node outdegree=2

N
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Node degree from matrix values

Outdegree

example: outdegree for node 3 is 2, which we
obtain by summing the number of non-zero
entries in the 3™ row

Indegree
r=-
(0 0010 0)
0 0,1'1 0
|
A= | o 1:011 0
|
0 0,010 1
1
L1 1100 0

r

example: the indegree for node 3 is 1, which
we obtain by summing the number of non-
zero entries in the 3rd column
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Degree distribution

Degree distribution: A frequency count of the occurrence of each degree in a network

Degree distributions are far from normal in most real-world networks (hubs)

35
Example: In the figure we witness

many nodes with very small
degree and few nodes with high
degree, implying the presence of a
hub or fat tail.

frequency

30 35 40

Degree



Centrality Measures

Centrality: Captures the idea of how central a node is in the network

Can be categorized into four main types

1. Degree Centrality: Shows how connected a node is

2. Betweenness Centrality: Shows how important a node is in terms of connecting other
nodes

3. Closeness Centrality: Shows how easily a node can reach other nodes (i.e. how close the
node is to the center of the network)

4. Eigenvector / Bonacich Centrality: Show how much a node is connected to other

important nodes in the network.
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Centrality Measures: An example

In each of the following networks, X has higher centrality than Y
according to a particular measure

X
X O—0O0—0O0—0—0
X Y Y
Y X

Degree Betweenness Closeness Neighbor based
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Degree Centrality

Nodes with more friends are more important

®

) ©

®

®

®

Assumption: the connections that your friends have don't
matter, it is what they can do directly that does
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Normalization of Degree Centrality

e Divide degree by the maximum possible (N-1)
 Normalized Degree Centrality ranges from 0 to 1
* Allows comparisons between networks of different sizes
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Centralization: skew in distribution

* Centrality refers to an individual node but there is a need to
capture the inequality in the distribution of centralities
characterizing the entire network.

Using Freeman’ s general formula for centralization we can capture the inequality of
degree between the nodes of the network:

maximum degree value in the network

fc (n)}c 0]

[((N-1)(N =2)]
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Degree centralization examples

®
®
@ ®
® @ @ @ ®
®
® C,=0.167
¢ =(5-1)+(5-1)+(5-1)J'r(5-1)+(5-1)+(5-5) 1o
©) @
OJORO
©) @

CD: 0167 20



What does degree not capture?

In what ways does degree fail to capture centrality in the
following graphs?

& © ® o0 ® ® O 0 o

Brokerage not captured by degree !
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Betweenness Centrality

How many pairs of individuals would have to go through you in
order to reach one another in the minimum number of hops?

x O
< O
O
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Betweenness Centrality

Cp(i) ="y g,(1)/ g,

Jj<k

* 8 =the number of shortest paths connecting jk
*  gjli) = the number that actor i is on.

Usually normalized by:

Cy (i) = Cy (i ) [(n -1)(n-2)/2]]

R
\

number of pairs of vertices
excluding the vertex itself
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Betweenness on toy networks

non-normalized version
© ® ® O ©
B C D

A E

 Alies between no two other vertices
 Blies between A and 3 other vertices: C, D, and E
« Clies between 4 pairs of vertices (A,D),(A,E),(B,D),(B,E)

* note that there are no alternate paths for these pairs to take,
so C gets full credit
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Betweenness on toy networks

non-normalized version

© ®
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Betweenness on toy networks

non-normalized version

®

C

 whydo Cand D each have
betweenness 17

* They are both on shortest paths
@ for pairs (A,E), and (B,E), and so
A B E must share credit:
 Ytl=1
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Betweenness centrality in directed networks

« We now consider the fraction of all directed paths between
any two vertices that pass through a node

I paths between j and k that pass through i I

/
T G,0) - Se0/e,

all paths between jand k

I Betweenness of vertex i I

Only modification: when normalizing, we have
(N-1)*(N-2) instead of (N-1)*(N-2)/2, because we have twice as
many ordered pairs as unordered pairs

C (i)=C_ ()/[(N-1)(N-2)]
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Closeness Centrality

e Whatifit s notsoimportant to have many direct friends?
* Orbe “between” others
« But one still wants to be in the “middle” of things, not too far from the center
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Closeness Centrality

Closeness is based on the length of the average shortest path
between a node and all other nodes in the network

Closeness Centrality:

-1

C. (i) =

N
> dG.j)
j=1
Normalized Closeness Centrality

Cc (i) = (C. (D) /(N =1)
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Closeness Centrality Toy Example

Ed(A,j)

C (A=
(A) N1

-1 -1
=[1+2+3+4] ={Q] _04
4 4
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Closeness Centrality Other Examples




Directed closeness centrality

 Choose a direction
— in-closeness (e.g. prestige in citation networks)
— out-closeness

e Usually consider only vertices from which the node
in question can be reached
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Eigenvector centrality

How central you are depends on how central your
neighbors are

While the degree for node A in

. a social network measures how
B

/" Degree:4 many ties A has, the
/ igenvector . .
[ Centeline 0091 eigenvector centrality of node
..*'A A is measured based on how
D Degree: 2 many ties A’s connections
-/ Centrality: 0.182
have.
b

\
\\
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Eigenvector centrality

How central you are depends on how central your
neighbors are

The centrality score ¢ of each node i is
proportional to its neighbors’ scores

Ciy=A;Ce +A,;Cap+A,;Ca)
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Bonacich eigenvector centrality

* The Bonacich Centrality measure is also based on the premise that a node’s importance
is determined by how important its neighbors are.

c.(p)= 2(0""/3)6]')14]1

* (@ is a normalization constant
* P determines how important the centrality of your neighbors is
* A is the adjacency matrix (can be weighted)

* This notion is central to citation rankings and things like Google page rankings.
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Bonacich Power Centrality: attenuation factor b

* small g = high attenuation
* only your immediate friends matter, and their importance is factored in
only a bit

* high 8 = low attenuation
* global network structure matters (your friends, your friends' of friends
etc.)

* B =0yields simple degree centrality

* If B >0, nodes have higher centrality when they have edges to
other central nodes.

* If B <0, nodes have higher centrality when they have edges to
less central nodes.
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Bonacich Power Centrality: examples

-5 @OOO @
-5 @OOO S

Why does the middle node have lower centrality than its
neighbors when f is negative?
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Example Centrality Measures

I T I T
33 .50 33

Degree

Betweeness .00 .53 .60
Closeness 40 .55 .60
Eigenvector 47 .63 .54
Bonacich B=1/3, a=1 9.4 13 11

Bonacich B=1/4, a=1 4.9 6.8 5.4
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Clustering Coefficient

(Local) clustering coefficient for a node is the probability that two
randomly selected friends of a node are friends with each other

_ 2|1ek
ki(ki —1)

ek € E,ui,u; € Ni, k size of Ni, Nineigborhood of u:

Ci

Fraction of the friends of a node that are friends with each other (i.e., connected)
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Clustering Coefficient

1/6

* Ranges from O to 1
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