

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

UNIVERSITY OF PIRAEUS

Graph Theory & Social Network Analysis

Outline

Network properties

- Adjacency matrices
- Paths, shortest paths
- Network diameter

Node properties

- Degree
- Centrality
- Clustering coefficient

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

UNIVERSITY OF PIRAEUS

Network properties

Adjacency matrices Paths, shortest paths Network diameter

Graph G = (V,E)

- V = set of nodes
- E = set of edges

Networks as graphs

Undirected

An **undirected graph** is one in which edges have *no orientation*. The edge (a, b) is identical to the edge (b, a). a directed graph is a graph, or set of nodes connected by edges, where the edges *have a direction associated with them.*

Adjacency matrix

- Representing edges (who is adjacent to whom) in a matrix
 - A_{ij} = 1 if node *i* has an edge to node *j* = 0 if node *i* does not have an edge to j
 - A_{ii} = 0 unless the network has self-loops
 - A_{ij} = A_{ji} if the network is undirected, or if *i* and *j* share a reciprocated edge

Adjacency matrix example

Walks, Paths, Cycles, and Geodesics

Walk from i₁ to i_κ: a sequence of nodes (i₁,i₂,... i_κ) and a sequence of links (i₁i₂, i₂i₃, ..., i_{κ-1}i_κ) such that i_{κ-1}i_κ in E for each k

• **Path:** a walk (i₁, i₂,... i_k) with each node i_k is distinct

• **Cycle:** a walk where $i_1 = i_k$

• **Geodesic:** a shortest path between two nodes

Network Diameter

- Diameter = the *longest shortest path* in the network
 - Represents a worst-case scenario in network size
 - Left example (undirected network): diameter=?
 - Right example (directed network): diameter=?

Diameter scenarios

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

UNIVERSITY OF PIRAEUS

Node properties

Degree Centrality Clustering Coefficient

Degree of Nodes

Degree: number of edges incident on a node

Two different degree types in directed networks

1. Indegree : how many directed edges (arcs) terminate at a node

2. Outdegree: how many directed edges (arcs) originate at a node

Node degree from matrix values

example: outdegree for node 3 is **2**, which we obtain by summing the number of non-zero entries in the 3rd row

example: the indegree for node 3 is **1**, which we obtain by summing the number of non-zero entries in the 3rd column

Degree distribution

- **Degree distribution**: A frequency count of the occurrence of each degree in a network
- Degree distributions are far from normal in most real-world networks (hubs)

Example: In the figure we witness many nodes with very small degree and few nodes with high degree, implying the presence of a *hub* or *fat tail*.

Centrality: Captures the idea of how central a node is in the network

Can be categorized into four main types

- **1. Degree Centrality:** Shows how connected a node is
- 2. Betweenness Centrality: Shows how important a node is in terms of connecting other nodes
- **3.** Closeness Centrality: Shows how easily a node can reach other nodes (i.e. how close the node is to the center of the network)
- **4. Eigenvector / Bonacich Centrality:** Show how much a node is connected to other important nodes in the network.

In each of the following networks, X has higher centrality than Y according to a particular measure

Degree Centrality

Nodes with more friends are more important

Assumption: the connections that your friends have don't matter, it is what they can do directly that does

Normalization of Degree Centrality

- Divide degree by the maximum possible (N-1)
- Normalized Degree Centrality ranges from 0 to 1
- Allows comparisons between networks of different sizes

Centralization: skew in distribution

- Centrality refers to an individual node but there is a need to capture the inequality in the distribution of centralities characterizing the entire network.
- Using Freeman's general formula for **centralization** we can capture the inequality of degree between the nodes of the network:

Degree centralization examples

20

In what ways does degree fail to capture centrality in the following graphs?

Brokerage not captured by degree !

How many pairs of individuals would have to go through you in order to reach one another in the minimum number of hops?

$\begin{array}{ccc} O & O & O & O \\ \mathbf{X} & \mathbf{Y} \end{array}$

Betweenness Centrality

$$C_B(i) = \sum_{j < k} g_{jk}(i) / g_{jk}$$

• g_{jk} = the number of shortest paths connecting *jk*
• $g_{jk}(i)$ = the number that actor *i* is on.

Usually normalized by:

$$C'_{B}(i) = C_{B}(i) / [(n-1)(n-2)/2]$$
number of pairs of vertices excluding the vertex itself

Betweenness on toy networks

non-normalized version

- A lies between no two other vertices
- B lies between A and 3 other vertices: C, D, and E
- C lies between 4 pairs of vertices (A,D),(A,E),(B,D),(B,E)
- note that there are no alternate paths for these pairs to take, so C gets full credit

non-normalized version

non-normalized version

- why do C and D each have betweenness 1?
- They are both on shortest paths for pairs (A,E), and (B,E), and so must share credit:
 - $\frac{1}{2} + \frac{1}{2} = 1$

Betweenness centrality in directed networks

• We now consider the fraction of all directed paths between any two vertices that pass through a node

Only modification: when normalizing, we have $(N-1)^*(N-2)$ instead of $(N-1)^*(N-2)/2$, because we have twice as many ordered pairs as unordered pairs

$$C'_{B}(i) = C_{B}(i)/[(N-1)(N-2)]$$

Closeness Centrality

- What if it's not so important to have many direct friends?
- Or be "between" others
- But one still wants to be in the "middle" of things, not too far from the center

Closeness is based on the length of the average shortest path between a node and all other nodes in the network

Closeness Centrality:

$$C_{c}(i) = \left[\sum_{j=1}^{N} d(i,j)\right]^{-1}$$

Normalized Closeness Centrality

$$C_{C}^{'}(i) = (C_{C}(i))/(N-1)$$

Closeness Centrality Toy Example

$$C_{c}'(A) = \left[\frac{\sum_{j=1}^{N} d(A, j)}{N-1}\right]^{-1} = \left[\frac{1+2+3+4}{4}\right]^{-1} = \left[\frac{10}{4}\right]^{-1} = 0.4$$

Closeness Centrality Other Examples

Directed closeness centrality

- Choose a direction
 - in-closeness (e.g. prestige in citation networks)
 - out-closeness
- Usually consider only vertices from which the node in question can be reached

How central you are depends on how central your neighbors are

While the **degree** for node A in a social network measures how many ties A has, the **eigenvector centrality** of node A is measured based on *how many ties A's connections have.*

How central you are depends on how central your neighbors are

The centrality score **c**(*i*) of each node i is proportional to its neighbors' scores

$$C_{(i)} = A_{ji}C_{(j)} + A_{ki}C_{(k)} + A_{li}C_{(l)}$$

Bonacich eigenvector centrality

• The **Bonacich Centrality** measure is also based on the premise that a node's importance is determined by *how important its neighbors* are.

$$c_i(\beta) = \sum_j (\alpha + \beta c_j) A_{ji}$$

- α is a normalization constant
- β determines how important the centrality of your neighbors is
- A is the adjacency matrix (can be weighted)
- This notion is central to citation rankings and things like Google page rankings.

Bonacich Power Centrality: attenuation factor b

• small $\beta \rightarrow$ high attenuation

- only your immediate friends matter, and their importance is factored in only a bit
- high $\beta \rightarrow$ low attenuation
 - global network structure matters (your friends, your friends' of friends etc.)
- $\beta = 0$ yields simple degree centrality
- If β > 0, nodes have higher centrality when they have edges to other central nodes.
- If β < 0, nodes have higher centrality when they have edges to less central nodes.

Bonacich Power Centrality: examples

Why does the middle node have lower centrality than its neighbors when β is negative?

Example Centrality Measures

	Node 1	Node 3	Node 4
Degree	.33	.50	.33
Betweeness	.00	.53	.60
Closeness	.40	.55	.60
Eigenvector	.47	.63	.54
Bonacich $\beta=1/3$, a=1	9.4	13	11
Bonacich $\beta=1/4$, a=1	4.9	6.8	5.4

(Local) clustering coefficient for a node is the probability that two randomly selected friends of a node are friends with each other

Fraction of the friends of a node that are friends with each other (i.e., connected)

Clustering Coefficient

* Ranges from 0 to 1