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Outline	
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Network	proper9es	

•  Adjacency	matrices	

•  Paths,	shortest	paths	

•  Network	diameter		

Node	proper9es	

•  Degree	

•  Centrality	

•  Clustering	coefficient	



Network	properAes	
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Adjacency	matrices	
Paths,	shortest	paths	
Network	diameter		

	



Networks	as	Graphs	

Graph	G	=	(V,E)	
–  V	=	set	of	nodes	
–  E	=	set	of	edges	
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V = {1, 2, 3, 4, 5} 
E = {(1,2), (1,3), (2,3), (3,4), (4,5)} 
G = (V,E) 



Networks	as	graphs	
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An	undirected	graph	is	one	in	which	edges	
have	no	orienta)on.	The	edge	(a,	b)	is	

idenAcal	to	the	edge	(b,	a).	

a	directed	graph	is	a	graph,	or	set	of	nodes	
connected	by	edges,	where	the	edges	have	

a	direc)on	associated	with	them.	



Adjacency	matrix	

•  Represen9ng	 edges	 (who	 is	
adjacent	to	whom)	in	a	matrix	
–  Aij	=	1	if	node	i	has	an	edge	to	node	j	

			=	0	if	node	i	does	not	have	an	edge	
to	j	

–  Aii	=	0	unless	the	network	has	self-loops	

–  Aij	=	Aji	if	the	network	is	undirected,	
or	if	i	and	j	share	a	reciprocated	edge	
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Adjacency	matrix	example	
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4	5	

0	 0	 0	 0	 0	

0	 0	 1	 1	 0	

0	 1	 0	 1	 0	
0	 0	 0	 0	 1	

1	 1	 0	 0	 0	

A	=	



Walks,	Paths,	Cycles,	and	Geodesics	

•  Walk	 from	 i1	 to	 iK:	 a	 sequence	 of	 nodes	 (i1,i2,...	 iK)	 and	 a	

sequence	of	links	(i1i2,	i2i3,	...,	iK-1iK)	such	that	ik-1ik	in	E	for	each	k	

•  Path:	a	walk	(i1,i2,...	iK)	with	each	node	ik	is	disAnct	

•  Cycle:	a	walk	where	i1	=	ik	

•  Geodesic:	a	shortest	path	between	two	nodes	
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Network	Diameter	

•  Diameter	=	the	longest	shortest	path	in	the	network	
–  Represents	a	worst-case	scenario	in	network	size	
–  LeY	example	(undirected	network):	diameter=?	
–  Right	example	(directed	network):	diameter=?	
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Diameter	scenarios	
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Node	properAes	

11	

Degree	
Centrality	

Clustering	Coefficient	



Degree	of	Nodes	
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outdegree=2	

indegree=3	

degree=5	Degree:	number	of	edges	incident	on	a	node	

	
1.   Indegree	:	how	many	directed	edges	(arcs)	terminate	at	a	node	

2.   Outdegree:	how	many	directed	edges	(arcs)	originate	at	a	node	
	
	

Two	different	degree	types	in	directed	networks	



Node	degree	from	matrix	values	
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0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 0 0 0 1 

1 1 0 0 0 

A = 

example:	outdegree	for	node	3	is	2,	which	we	
obtain	by	summing	the	number	of	non-zero	
entries	in	the	3rd	row	

		

example:	the	indegree	for	node	3	is	1,	which	
we	obtain	by	summing	the	number	of	non-
zero	entries	in	the	3rd	column	
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Indegree	Outdegree	

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 0 0 0 1 

1 1 0 0 0 

A = 



Degree	distribu9on	
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•  Degree	distribu9on:	A	frequency	count	of	the	occurrence	of	each	degree	in	a	network	

•  Degree	distribuAons	are	far	from	normal	in	most	real-world	networks	(hubs)	

Degree	

fr
eq

ue
nc
y	Example:	In	the	figure	we	witness	

many	nodes	with	very	small	
degree	and	few	nodes	with	high	
degree,	implying	the	presence	of	a	
hub	or	fat	tail.	



Centrality	Measures	
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Centrality:	Captures	the	idea	of	how	central	a	node	is	in	the	network	

Can	be	categorized	into	four	main	types	

1.   Degree	Centrality:	Shows	how	connected	a	node	is		
2.   Betweenness	 Centrality:	 Shows	 how	 important	 a	 node	 is	 in	 terms	 of	 connecAng	 other	

nodes	

3.   Closeness	Centrality:	Shows	how	easily	a	node	can	reach	other	nodes	(i.e.	how	close	the	
node	is	to	the	center	of	the	network)	

4.   Eigenvector	 /	 Bonacich	 Centrality:	 Show	 how	 much	 a	 node	 is	 connected	 to	 other	

important	nodes	in	the	network.	
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In	each	of	the	following	networks,	X	has	higher	centrality	than	Y	
according	to	a	par9cular	measure	

Degree	 Betweenness	 Closeness	

Centrality	Measures:	An	example	
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Nodes	with	more	friends	are	more	important	

Assump9on:	the	connecAons	that	your	friends	have	don't	
mager,	it	is	what	they	can	do	directly	that	does	

Degree	Centrality	
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•  Divide	degree	by	the	maximum	possible	(N-1)	
•  Normalized	Degree	Centrality	ranges	from	0	to	1	
•  Allows	comparisons	between	networks	of	different	sizes	

Normaliza9on	of	Degree	Centrality	
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•  Using	Freeman’s	general	formula	for	centraliza9on	we	can	capture	the	inequality	of	
degree	between	the	nodes	of	the	network:	
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•  Centrality	refers	to	an	individual	node	but	there	is	a	need	to	
capture	the	inequality	in	the	distribu9on	of	centrali9es	
characterizing	the	en9re	network.	

maximum	degree	value	in	the	network	

Centraliza9on:	skew	in	distribu9on	
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Degree	centraliza9on	examples	
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In	what	ways	does	degree	fail	to	capture	centrality	in	the	
following	graphs?	

What	does	degree	not	capture?	
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Brokerage	not	captured	by	degree	!	



Betweenness	Centrality	

How	many	pairs	of	individuals	would	have	to	go	through	you	in	
order	to	reach	one	another	in	the	minimum	number	of	hops?	
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•  gjk	=	the	number	of	shortest	paths	connecAng	jk		
•  gjk(i)	=	the	number	that	actor	i	is	on.	

Usually	normalized	by:	

€ 

CB
' (i) = CB (i ) /[(n −1)(n − 2) /2]

number	of	pairs	of	verAces	
excluding	the	vertex	itself	

Betweenness	Centrality	
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Betweenness	on	toy	networks	

non-normalized	version	
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A	 B	 C	 E	D	

•  A	lies	between	no	two	other	verAces	
•  B	lies	between	A	and	3	other	verAces:	C,	D,	and	E	
•  C	lies	between	4	pairs	of	verAces	(A,D),(A,E),(B,D),(B,E)	

•  note	that	there	are	no	alternate	paths	for	these	pairs	to	take,	
so	C	gets	full	credit	



Betweenness	on	toy	networks	

non-normalized	version	
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Betweenness	on	toy	networks	

non-normalized	version	
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•  why	do	C	and	D	each	have	
betweenness	1?	

•  They	are	both	on	shortest	paths	
for	pairs	(A,E),	and	(B,E),	and	so	
must	share	credit:	

•  ½+½	=	1	



Betweenness	centrality	in	directed	networks	

•  We	now	consider	the	fracAon	of	all	directed	paths	between	
any	two	verAces	that	pass	through	a	node	
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Only	modificaAon:	when	normalizing,	we	have		
(N-1)*(N-2)	instead	of	(N-1)*(N-2)/2,	because	we	have	twice	as	
many	ordered	pairs	as	unordered	pairs	
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Betweenness	of	vertex	i	
paths	between	j	and	k	that	pass	through	i	

all	paths	between	j	and	k	
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Closeness	Centrality	

•  What	if	it’s	not	so	important	to	have	many	direct	friends?	
•  Or	be	“between”	others	
•  But	one	sAll	wants	to	be	in	the	“middle”	of	things,	not	too	far	from	the	center	
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Closeness	 is	 based	 on	 the	 length	 of	 the	 average	 shortest	 path	
between	a	node	and	all	other	nodes	in	the	network	

Closeness	Centrality	
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A	 B	 C	 E	D	

Closeness	Centrality	Toy	Example	

30	



Closeness	Centrality	Other	Examples	
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Directed	closeness	centrality	

•  Choose	a	direc9on	
–  in-closeness	(e.g.	presAge	in	citaAon	networks)	
–  out-closeness	

•  Usually	consider	only	verAces	from	which	the	node	
in	quesAon	can	be	reached	
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Eigenvector	centrality	

	How	central	you	are	depends	on	how	central	your	
neighbors	are	
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While	the	degree	for	node	A	in	
a	social	network	measures	how	
m a n y	 A e s 	 A	 h a s , 	 t h e	
eigenvector	 centrality	 of	 node	
A	 is	 measured	 based	 on	 how	
many	 )es	 A’s	 connec)ons	
have.		



Eigenvector	centrality	
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	How	central	you	are	depends	on	how	central	your	
neighbors	are	

The	centrality	score	c(i)	of	each	node	i	is	
proporAonal	to	its	neighbors’	scores	
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Aji	

Aki	

Ali	
C(i) = AjiC(j) + AkiC(k) + AliC(l)	



•   α	is	a	normalizaAon	constant			
•   β 	determines	how	important	the	centrality	of	your	neighbors	is	
•  A is	the	adjacency	matrix	(can	be	weighted)	

ji
j

ji Acc )()( ∑ += βαβ

Bonacich	eigenvector	centrality	
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•  The	Bonacich	Centrality	measure	is	also	based	on	the	premise	that	a	node’s	importance	
is	determined	by	how	important	its	neighbors	are.		

•  This	noAon	is	central	to	citaAon	rankings	and	things	like	Google	page	rankings.	



Bonacich	Power	Centrality:	adenua9on	factor	b	
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•  small	β	è	high	adenua9on	
•  only	your	immediate	friends	ma?er,	and	their	importance	is	factored	in	

only	a	bit	

•  high	β	è	low	adenua9on	
•  global	network	structure	ma?ers	(your	friends,	your	friends'	of	friends	

etc.)	

•  	β =	0	yields	simple	degree	centrality	

•  If	β	>	0,	nodes	have	higher	centrality	when	they	have	edges	to	
other	central	nodes.	

•  If	β	<	0,	nodes	have	higher	centrality	when	they	have	edges	to	
less	central	nodes.	



β =	.25	

β =	-.25	

Why	does	the	middle	node	have	lower	centrality	than	its	
neighbors	when	β	is	nega9ve?	

Bonacich	Power	Centrality:	examples	
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Example	Centrality	Measures	
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1	

4	 3	

Node	1	 Node	3	 Node	4	

Degree	 .33	 .50	 .33	

Betweeness	 .00	 .53	 .60	

Closeness	 .40	 .55	 .60	

Eigenvector	 .47	 .63	 .54	

Bonacich	β=1/3,	a=1	 9.4	 13	 11	

Bonacich	β=1/4,	a=1	 4.9	 6.8	 5.4	



(Local)	clustering	coefficient	for	a	node	is	the	probability	that	two	
randomly	selected	friends	of	a	node	are	friends	with	each	other	
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FracAon	of	the	friends	of	a	node	that	are	friends	with	each	other	(i.e.,	connected)	

Clustering	Coefficient	
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1/6	 1/2	

*	Ranges	from	0	to	1	

Clustering	Coefficient	
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