

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

UNIVERSITY OF PIRAEUS

Graph Theory & Social Network Analysis

Outline

Network properties

- *Adjacency matrices*
- *Paths, shortest paths*
- *Network diameter*

Node properties

- *Degree*
- *Centrality*
- *Clustering coefficient*

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

UNIVERSITY OF PIRAEUS

Network properties

Adjacency matrices Paths, shortest paths Network diameter

Graph G = (V,E)

- $-V =$ set of nodes
- $E = set of edges$

Networks as graphs

An **undirected graph** is one in which edges have **no orientation.** The edge (a, b) is identical to the edge (b, a).

a directed graph is a graph, or set of nodes connected by edges, where the edges *have a* direction associated with them.

Adjacency matrix

- **Representing edges (who is** adjacent to whom) in a matrix
	- $-$ A_{ij} = 1 if node *i* has an edge to node *j* **= 0** if node *i* does not have an edge to j
	- A_{ii} = 0 unless the network has self-loops
	- $-$ **A**_{ii} = **A**_{ii} if the network is undirected, or if *i* and *j* share a reciprocated edge

Adjacency matrix example

Walks, Paths, Cycles, and Geodesics

• Walk from i to ik: a sequence of nodes (i_{1,}i_{2,...} ik) and a sequence of links (i₁i₂, i₂i₃, ..., i_{k-1}i_k) such that i_{k-1}i_k in E for each k

• **Path:** a walk (i_1, i_2, \ldots, i_k) with each node i_k is distinct

• **Cycle:** a walk where $i_1 = i_k$

• **Geodesic:** a shortest path between two nodes

Network Diameter

- Diameter = the *longest shortest path* in the network
	- $-$ Represents a worst-case scenario in network size
	- Left example (undirected network): diameter=?
	- Right example (directed network): diameter=?

Diameter scenarios

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

UNIVERSITY OF PIRAEUS

Node properties

Degree **Centrality** Clustering Coefficient

Degree of Nodes

Degree: number of edges incident on a node **abula container to the degree=5**

Two different degree types in directed networks

1. Indegree : how many directed edges (arcs) terminate at a node

2. Outdegree: how many directed edges (arcs) originate at a node

Node degree from matrix values

example: outdegree for node 3 is 2, which we obtain by summing the number of non-zero entries in the 3rd *row*

example: the indegree for node 3 is 1, which we obtain by summing the number of nonzero entries in the 3rd column

Degree distribution

- **Degree distribution**: A frequency count of the occurrence of each degree in a network
- Degree distributions are far from normal in most real-world networks (hubs)

Example: In the figure we witness many nodes with very small degree and few nodes with high degree, implying the presence of a **hub** or fat tail.

Centrality: Captures the idea of how central a node is in the network

Can be categorized into four main types

- **1. Degree Centrality:** Shows how connected a node is
- **2. Betweenness Centrality:** Shows how important a node is in terms of connecting other nodes
- **3. Closeness Centrality:** Shows how easily a node can reach other nodes (i.e. how close the node is to the center of the network)
- **4. Eigenvector / Bonacich Centrality:** Show how much a node is connected to other important nodes in the network.

In each of the following networks, X has higher centrality than Y according to a particular measure

Degree Centrality

Nodes with more friends are more important

Assumption: the connections that your friends have don't matter, it is what they can do directly that does

Normalization of Degree Centrality

- Divide degree by the maximum possible (N-1)
- Normalized Degree Centrality ranges from 0 to 1
- Allows comparisons between networks of different sizes

Centralization: skew in distribution

- **Centrality refers to an individual node but there is a need to** capture the inequality in the distribution of centralities characterizing the entire network.
- Using Freeman's general formula for **centralization** we can capture the inequality of degree between the nodes of the network:

Degree centralization examples

$$
C_D=0.167
$$

 $\overline{2}$

In what ways does degree fail to capture centrality in the following graphs?

Brokerage not captured by degree !

How many pairs of individuals would have to go through you in order to reach one another in the minimum number of hops?

X Y

Betweenness Centrality

$$
C_B(i) = \sum_{j < k} g_{jk}(i) / g_{jk}
$$
\n
$$
\cdot g_{jk} = \text{the number of shortest paths connecting } jk
$$
\n
$$
\cdot g_{jk}(i) = \text{the number that actor } i \text{ is on.}
$$

Usually normalized by:

$$
C'_{B}(i) = C_{B}(i) \sqrt{[(n-1)(n-2)/2]}
$$

number of pairs of vertices
excluding the vertex itself

Betweenness on toy networks

non-normalized version

- A lies between no two other vertices
- B lies between A and 3 other vertices: C, D, and E
- C lies between 4 pairs of vertices (A,D) , (A,E) , (B,D) , (B,E)
- note that there are no alternate paths for these pairs to take, so C gets full credit

non-normalized version

Betweenness on toy networks

non-normalized version

- why do C and D each have betweenness 1?
- They are both on shortest paths for pairs (A, E) , and (B, E) , and so must share credit:
	- $\frac{1}{2} + \frac{1}{2} = 1$

Betweenness centrality in directed networks

• We now consider the fraction of all directed paths between any two vertices that pass through a node

Only modification: when normalizing, we have $(N-1)*(N-2)$ instead of $(N-1)*(N-2)/2$, because we have twice as many ordered pairs as unordered pairs

$$
C'_{B}(i) = C_{B}(i)/[(N-1)(N-2)]
$$

Closeness Centrality

- What if it's not so important to have many direct friends?
- Or be "between" others
- But one still wants to be in the "middle" of things, not too far from the center

Closeness is based on the length of the average shortest path between a node and all other nodes in the network

Closeness Centrality:

$$
C_c(i) = \left[\sum_{j=1}^N d(i,j)\right]^{-1}
$$

Normalized Closeness Centrality

 $C_C^{\dagger}(i) = (C_C(i))/(N-1)$

Closeness Centrality Toy Example

$$
C_c^{\dagger}(A) = \left[\frac{\sum_{j=1}^{N} d(A,j)}{N-1} \right]^{-1} = \left[\frac{1+2+3+4}{4} \right]^{-1} = \left[\frac{10}{4} \right]^{-1} = 0.4
$$

Closeness Centrality Other Examples

Directed closeness centrality

- **Choose a direction**
	- $-$ **in-closeness** (e.g. prestige in citation networks)
	- **out-closeness**
- Usually consider only vertices from which the node in question can be reached

How central you are depends on how central your **neighbors** are

While the **degree** for node A in a social network measures how m any ties A has, the **eigenvector centrality** of node A is measured based on **how** *many ties A's connections have.*

Eigenvector centrality

How central you are depends on how central your **neighbors** are

The centrality score $c_{(i)}$ of each node i is proportional to its neighbors' scores

$$
C(i) = A_{ji}C(j) + A_{ki}C(k) + A_{li}C(l)
$$

Bonacich eigenvector centrality

• The **Bonacich Centrality** measure is also based on the premise that a node's importance is determined by *how important its neighbors* are.

$$
c_i(\beta) = \sum_j (\alpha + \beta c_j) A_{ji}
$$

- α is a normalization constant
- β determines how important the centrality of your neighbors is
- \cdot **A** is the adjacency matrix (can be weighted)
- This notion is central to citation rankings and things like Google page rankings.

Bonacich Power Centrality: attenuation factor b

small $\beta \rightarrow$ high attenuation

- only your immediate friends matter, and their importance is factored in *only a bit*
- high $\beta \rightarrow$ low attenuation
	- global network structure matters (your friends, your friends' of friends *etc.)*
- β = 0 yields simple degree centrality
- If β > 0, nodes have higher centrality when they have edges to other central nodes.
- If β < 0, nodes have higher centrality when they have edges to less central nodes.

Bonacich Power Centrality: examples

Why does the middle node have lower centrality than its neighbors when β is negative?

Example Centrality Measures

(Local) clustering coefficient for a node is the probability that two randomly selected friends of a node are friends with each other

Fraction of the friends of a node that are friends with each other (i.e., connected)

Clustering Coefficient

* Ranges from 0 to 1