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Network Models:
Random Networks and Small-World Networks



Session Outline

* Introduction to (static) Random Networks

* Erdos-Rényi Networks
* Number of links: Binomial/Poisson Distribution

 Thresholds
* Giant Components
* Average Shortest paths
* Growing (dynamic) Random Networks

* Albert Barabasi Model
e Watts and Strogatz model

 Small Worlds in real-life networks
 Small world phenomenon: Milgram’s experiment
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So far we have looked at how we measure the structure of networks
and at methods for making sense of the network data we get from our
measurements.

An obvious next question to ask is, “If | know a network has some
particular property, such as a particular degree distribution, what
effect will that have on the wider behavior of the system?”

In this lecture we consider models of the structure of networks,
models that mimic the patterns of connections in real networks in an
effort to understand the implications of those patterns.



What are network models and why study them?

Informally, a network model is a process (radomized or deterministic)
for generating a graph

Models of static graphs
* input: a set of parameters 1, and the size of the graph n
e output: a graph G(M,n)
Models of evolving graphs
* input: a set of parameters I, and an initial graph G,
* output: a graph G, for each time t

Creating models for real-life graphs is important for several reasons

* Create data for simulations of processes on networks
* |dentify the underlying mechanisms that govern the network generation

 Predict the evolution of networks



Types of network models

 Random graph model (Erdés & Rényi, 1959)
e Scale-free model (Barabasi & Alert, 1999)

* Small-world model (Watts & Strogatz, 1998)



Erdos-Rényi Networks

* In graph theory, the Erd6s—Rényi model is a model for generating random graphs

named after Paul Erd6s and Alfréd Rényi, who first introduced it in 1959
* The notion behind this network is that we set an edge between each pair of nodes with

equal probability, independently of the other edges.
7



Erdos-Renyi: simplest network model

* Assumptions
— nodes connect at random
— network is undirected
* Key parameter (besides number of nodes N) : p or M
— p = probability that any two nodes share and edge
— M =total number of edges in the graph

*  What they look like:

after spring
layout




Degree distribution

 (N,p)-model: For each potential edge we flip a biased coin
* with probability p we add the edge
* with probability (1-p) we don’t

* What is the probability that a node has 0,1,2,3... edges?
* Probabilities sumto 1



How many edges per node?

 Each node has (N — 1) tries to get edges
* Each try is a success with probability p

* The binomial distribution gives us the probability that a node has
degree k:

N-1
B(N—l;k;p){ " jp"(l—p)"‘ o
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probability
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Approximations

D, = (n]; l)pk(l _ p)”‘l‘k Binomial
l limit p small

k -z
zZ e .
D, = Poisson
4
(k-2)? limit large n
1 B 2

pk - ol /272. © Normal
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Poisson distribution
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What insights does this yield? You don’t expect large hubs in a

No hubs! random network
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Properties and Thresholds of the Poisson Random

Network

* At the threshold of 1/n we see cycles emerge, and we also see the emergence of a
“giant component”, which is a unique largest component which contains a nontrivial
fraction of all nodes.
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Emergence of the giant component
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Why just one giant component?

 What if you had 2, how long could they be sustained as the
network densifies?

N eesssss——— | GC size || av.deg 4 S ticks: 3o|
num-nodes 80 38 2.78 g
create nodes ‘
add edges n‘ ]|On Lo i e Ll |
add one edge ‘ redo layout zl

layout options
11—

spring-cons... 0.2

repulsion-st... 5.0
===
spring-length 14
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The giant component grows in size until the threshold of log(n)/n, where the

network becomes connected.

Poisson p=.10, 50 nodes
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Average shortest path

Definition: How many hops on average between each pair of nodes?
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Friends at distance m

» Each of your friends has z = avg. degree friends besides you
« Ignoring loops, the number of people you have at distance m is z™

N, =zm

Average shortest path m,,

log N
M.~ ——

av

log z
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What this means in practice

* Erd6s-Renyi networks can grow to be very large but nodes will be
just a few hops apart
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Departing from the ER model

We need models that better capture the characteristics of real graphs
* degree sequences
* clustering coefficient
* short paths

22
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Power Law distribution — Preferential
Attachment - Scale-free model

(Barabasi & Alert, 1999)



Two ingredients in generating power-law networks

1. nodes appear over time (growth)

2. nodes prefer to attach to L) %/\@

nodes with many connections
(preferential attachment,
cumulative advantage)
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Scale-Free (SF) Networks: Barabasi—Albert (BA) Model

e “Scale free” means there is no
single characterizing degree in the

network
* Growth: v\ /
— starting with a small number (n,) of —
nodes, at every time step, we add a N\
new node with m(<=n,) links that S’{C
connect the new node to m different /Il\‘
nodes already present in the system -
. s \
* Preferential attachment: N 7

— When choosing the nodes to which
the new node will be connected to
node i depends on its degree k;
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Scale-Free (SF) Networks: Barabasi—Albert (BA) Model

0.12

* The degree of scale-free
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Scale-Free (SF) Networks: Barabasi—Albert (BA) Model

10 N
 The emergence of scale-free S 5
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Variations of the BA model

 Many variations have been considered some in order to address
the problems with the vanilla BA model
* edge rewiring, appearance and disappearance
* fitness parameters

e variable mean degree

* non-linear preferential attachment
= surprisingly, only linear preferential attachment yields power-law graphs
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Weaknesses of the BA model

Technical issues:

e [tis not directed (not good as a model for the Web) and when directed it
gives acyclic graphs

* |t focuses mainly on the (in-) degree and does not take into account other
parameters (out-degree distribution, components, clustering coefficient)

* [t correlates age with degree which is not always the case

Academic issues
* the model rediscovers the wheel
» preferential attachment is not the answer to every power-law
 what does “scale-free” mean exactly?

Yet, it was a breakthrough in the network research, that popularized
the area

29
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Small World Phenomena

Watts & Strogatz, 1998



So far we focused on obtaining graphs with power-law distributions
on the degrees. What about other properties?
* Clustering coefficient: real-life networks tend to have high clustering

coefficient
e Short paths: real-life networks are “small worlds”

* this property is easy to generate
* Can we combine these two properties?

In 1998, Duncan Watts and Steve Strogatz argued that such a model

follows naturally from a combination of homophily and weak ties.
Homophily creates many triangles, while the weak ties still produce
the kind of widely branching structure that reaches many nodes in a

few steps.
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Watts and Strogatz model

e Start with aring, where every node is connected to the next k
nodes

* With probability p, rewire every edge (or, add a shortcut) to a
uniformly chosen destination.

— Granovetter, “The strength of weak ties”

order randomness

p=0 O<p<1 p=1
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Clustering coefficient and ASP as rewiring increases
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Source: Watts, D.J., Strogatz, $.H.(1998) Collective dynamics of 'small-world' networks. Nature 393:440-442533



Comparison with “random graph” used to determine whether real-world network is

“small world”

. Shortest
T . shortest pf.c;:hclln Clusiering Clustering in
etwor Size path e (el random graph
random over vertices)
graph
Film actors 225,226 3.65 2.99 0.79 0.00027
MEDLINE co- 1 590 75 4.6 491 0.56 1.8x 10
authorship
E.Coli
substrate 282 2.9 3.04 0.32 0.026
graph
C.Elegans 282 2.65 2.25 0.28 0.05
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Now let’s look at some real-world examples: distributions

differ from theoretical expectations!
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Examples of Growing Random Networks

Real World Examples

e C(Citation networks
« Web

e Scientific networks
* Societies...

Growing and Uniformly
Random

* Each date a new node is born AR
* Forms m links to existing nodes -
* Each node is chosen with equal likelihood

36



Example of Expected Degree Distribution

A dynamic variation on the Poisson random network model

e Start with m nodes fully
connected

* New node forms m links to
existing nodes

* An existing node has a probability
m/t of getting new link each
period

* No longer binomial, as ;
probabilities vary with time *

37



Example of Expected Degree Distribution

Expected degree for node i born at m<i<t is:

m+ m/(i+1) + m/(i+2) +... + m/i

Approx = m(1+log(t/i)) (harmonic numbers)
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Example of Expected Degree Distribution

Degree time 100 140
Degree
120 120
100 - m=20 100
80 - 80 ~Degrees time
. 100
60 ~Degree time 60 ; 200
-+degrees time
40 100 .
40 -
20
20 -
0 |
0 50 100 0 ‘ Time
0 100 200
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Online Question & Answer Forums

How do you identify the
experts ?

@ Replier

@ Asker




Online Question & Answer Forums

« ‘answer people’ may reply to thousands of others

« “question people’ are also uneven in the number of repliers to their posts, but to a lesser extent
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Real-world degree distributions

 Sexual networks ol het. men

1.85[1.52-2.02]

 Great variationin & 107} 2.25[2.03-2.44] *s *
contact numbers ‘

K [sex parthers]
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Power-law distribution
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Poisson distribution
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Milgram’s experiment

Instructions:
 Given a target individual (stockbroker in Boston), pass the message to a
person you correspond with who is “closest” to the target.

Outcome:
 20% of initiated chains reached target
e average chain length =6.5

“Six degrees of
separation”

e Q

45



Milgram’s experiment repeated

E-mail experiment
Dodds, Muhamad, Watts,
Science 301 (2003)

*]18 targets
13 different countries

*60,000+ participants
*24,163 message chains
*384 reached their targets
eaverage path length 4.0

Source: NASA, U.S. Government; http://visibleearth.nasa.gov/view_rec.php?id=2429 16



Interpreting Milgram’s experiment

Is 6 is a surprising number?
* Inthe 1960s? Today? Why?

If social networks were random... ?
¢ Pool and Kochen (1978) - ~500-1500 acquaintances/person
« ~ 500 choices 1% link
- ~5002%= 250,000 potential 2"¥ degree neighbors
- ~5003%=125,000,000 potential 3 degree neighbors

If networks are completely cliquish?
« all my friends’ friends are my friends
« what would happen?

Is 6 an accurate number?
« What bias is introduced by uncompleted chains?
« Are longer or shorter chains more likely to be completed?
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Three and a half degrees of separation

Each person in the world (at least among the 1.59 billion people active on Facebook) is connected to
every other person by an average of three and a half other people.

Some Facebook employees

: Mark Zuckerberg
’ 3.17 degrees of separation
#\- sheryl Sandberg
Y 2.92 degrees of separation
The majority of the people on Facebook have averages between 2.9 and 4.2 degrees of separation. Figure 1
(below) shows the distribution of averages for each person.
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Figure 1. Estimated average degrees of separation between all people on Facebook. The average person is
connected to every other person by an average of 3.57 steps. The majority of people have an average between 3
and 4 steps.
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Case Study: Facebook Three and a half degrees of
separation

n Research at Facebook

https://research.facebook.com/blog/three-and-a-half-degrees-of-separation/
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Key takeaways

 Radom graphs can help us identify systematic phenomena in real-
life networks

* Growing networks tend to create hyper-connected nodes
 Power-law distributions
* The phenomenon of Preferential attachment

* Real-life networks manage to combine large clustering with short
distances (small worlds)
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