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Session	Outline	

•  Introduc:on	to	(sta:c)	Random	Networks	
•  Erdös-Rényi	Networks	
•  Number	of	links:	Binomial/Poisson	DistribuHon	
•  Thresholds	
•  Giant	Components	
•  Average	Shortest	paths	

•  Growing	(dynamic)	Random	Networks	
•  Albert	Barabasi	Model	
•  WaNs	and	Strogatz	model		

•  Small	Worlds	in	real-life	networks	
•  Small	world	phenomenon:	Milgram’s	experiment	
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Number	of	links:	Binomial/Poisson	DistribuHon	
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Giant	Components	

Average	Shortest	paths	
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Introduc:on	

So	far	we	have	looked	at	how	we	measure	the	structure	of	networks	
and	at	methods	for	making	sense	of	the	network	data	we	get	from	our	
measurements.		
	
An	 obvious	 next	 quesHon	 to	 ask	 is,	 “If	 I	 know	 a	 network	 has	 some	
par1cular	 property,	 such	 as	 a	 par1cular	 degree	 distribu1on,	 what	
effect	will	that	have	on	the	wider	behavior	of	the	system?”	
	
In	 this	 lecture	 we	 consider	 models	 of	 the	 structure	 of	 networks,	
models	that	mimic	the	paNerns	of	connecHons	in	real	networks	in	an	
effort	to	understand	the	implicaHons	of	those	paNerns.	
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What	are	network	models	and	why	study	them?	

Informally,	a	network	model	is	a	process	(radomized	or	determinisHc)	
for	generaHng	a	graph	
	
Models	of	sta:c	graphs	

•  input:	a	set	of	parameters	Π,	and	the	size	of	the	graph	n	
•  output:	a	graph	G(Π,n)		

Models	of	evolving	graphs	
•  input:	a	set	of	parameters	Π,	and	an	iniHal	graph	G0	
•  output:	a	graph	Gt	for	each	Hme	t	
	

CreaHng	models	for	real-life	graphs	is	important	for	several	reasons	
•  Create	data	for	simula:ons	of	processes	on	networks	
•  IdenHfy	the	underlying	mechanisms	that	govern	the	network	generaHon	
•  Predict	the	evoluHon	of	networks	
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Types	of	network	models	

•  Random	graph	model	(Erdős	&	Rényi,	1959)	

•  Scale-free	model	(Barabasi	&	Alert,	1999)	

•  Small-world	model	(WaNs	&	Strogatz,	1998)	
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Erdös-Rényi	Networks	
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•  In	 graph	 theory,	 the	 Erdős–Rényi	 model	 is	 a	 model	 for	 generaHng	 random	 graphs	
named	ader	Paul	Erdős	and	Alfréd	Rényi,	who	first	introduced	it	in	1959	

•  The	noHon	behind	this	network	is	that	we	set	an	edge	between	each	pair	of	nodes	with	
equal	probability,	independently	of	the	other	edges.		



Erdös-Renyi:	simplest	network	model	

•  Assump:ons	
–  nodes	connect	at	random	
–  network	is	undirected	

•  Key	parameter	(besides	number	of	nodes	N)	:	p	or	M	
–  p	=	probability	that	any	two	nodes	share	and	edge	
–  M	=	total	number	of	edges	in	the	graph	

•  What	they	look	like:	
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	Degree	distribu:on	

•  	(N,p)-model:	For	each	potenHal	edge	we	flip	a	biased	coin	
•  with	probability	p	we	add	the	edge	
•  with	probability	(1-p)	we	don’t	
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•  What	is	the	probability	that	a	node	has	0,1,2,3…	edges?	
•  Probabili:es	sum	to	1	



How	many	edges	per	node?	

•  Each	node	has	(N	–	1)	tries	to	get	edges	
•  Each	try	is	a	success	with	probability	p	
•  The	binomial	distribuHon	gives	us	the	probability	that	a	node	has	

degree	k:	
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if	p	=	0.5	
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if	p	=	0.1	
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Approxima:ons	
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Poisson	distribu:on	
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What	insights	does	this	yield?		
No	hubs!	

You	don’t	expect	large	hubs	in	a	
random	network	



Proper:es	and	Thresholds	of	the	Poisson	Random	
Network		
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Poisson	p=.05,	50	nodes	

•  At	 the	 threshold	of	1/n	we	see	cycles	emerge,	and	we	also	see	 the	emergence	of	a	
“giant	component”,	which	is	a	unique	largest	component	which	contains	a	nontrivial	
fracHon	of	all	nodes.	



Emergence	of	the	giant	component	
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Why	just	one	giant	component?	

•  What	if	you	had	2,	how	long	could	they	be	sustained	as	the	
network	densifies?	
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Proper:es	and	Thresholds	of	the	Poisson	Random	
Network		
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Poisson	p=.10,	50	nodes	

•  The	giant	component	grows	in	size	unHl	the	threshold	of	log(n)/n	,	where	the	
network	becomes	connected.	



Average	shortest	path	

Defini:on:	How	many	hops	on	average	between	each	pair	of	nodes?	
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Friends	at	distance	m	
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Nm=zm 

Average shortest path mav 

•  Each of your friends has z = avg. degree friends besides you 
•  Ignoring loops, the number of people you have at distance m is zm 

mav  ~
log N 
log z 



What	this	means	in	prac:ce	

•  Erdös-Renyi	networks	can	grow	to	be	very	large	but	nodes	will	be	
just	a	few	hops	apart	
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Depar:ng	from	the	ER	model	

We	need	models	that	beNer	capture	the	characterisHcs	of	real	graphs	
•  degree	sequences	
•  clustering	coefficient	
•  short	paths	
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Power	Law	distribuHon	–	PreferenHal	
ANachment	-	Scale-free	model	

(Barabasi	&	Alert,	1999)	
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Two	ingredients	in	genera:ng	power-law	networks	

1.   nodes	appear	over	:me	(growth)	
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2.  nodes prefer to attach to 
nodes with many connections 
(preferential attachment, 
cumulative advantage) 



Scale-Free	(SF)	Networks:	Barabási–Albert	(BA)	Model	
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•  “Scale	free”	means	there	is	no	
single	characterizing	degree	in	the	
network	

•  Growth:		
–  starHng	with	a	small	number	(n0)	of	

nodes,	at	every	Hme	step,	we	add	a	
new	node	with	m(<=n0)	links	that	
connect	the	new	node	to	m	different	
nodes	already	present	in	the	system	

•  Preferen:al	adachment:		
–  When	choosing	the	nodes	to	which	

the	new	node	will	be	connected	to	
node	i	depends	on	its	degree	ki	



Scale-Free	(SF)	Networks:	Barabási–Albert	(BA)	Model	
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•  The	degree	of	scale-free	
networks	follows	power-
law	distribu:on	with	a	flat	
tail	for	large	k	

•  Truncated	power-law	
distribuHon	deviates	at	the	
tail	
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Scale-Free	(SF)	Networks:	Barabási–Albert	(BA)	Model	
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•  The	emergence	of	scale-free	
network	is	due	to	
–  Growth	effect:	new	nodes	are	added	to	

the	network		
–  Preferen:al	adachment	effect	(Rich-

get-richer	effect):	new	nodes	prefer	to	
aNach	to	“popular”	nodes	

•  The	emergence	of	truncated	SF	
network	is	caused	by	some	
constraints	on	the	maximum	
number	of	links	a	node	can	have	
such	as	(Amaral,	Scala	et	al.	2000)	
–  Aging	effect:	some	old	nodes	may	stop	

receiving	links	over	Hme	
–  Cost	effect:	as	maintaining	links	induces	

costs,	nodes	cannot	receive	an	
unlimited	number	of	links	



Varia:ons	of	the	BA	model	

•  Many	 variaHons	 have	 been	 considered	 some	 in	 order	 to	 address	
the	problems	with	the	vanilla	BA	model	
•  edge	rewiring,	appearance	and	disappearance	
•  fitness	parameters	
•  variable	mean	degree	
•  non-linear	preferenHal	aNachment	

§  surprisingly,	only	linear	preferenHal	aNachment	yields	power-law	graphs	
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Weaknesses	of	the	BA	model	

Technical	issues:	
•  It	is	not	directed	(not	good	as	a	model	for	the	Web)	and	when	directed	it	

gives	acyclic	graphs	
•  It	focuses	mainly	on	the	(in-)	degree	and	does	not	take	into	account	other	

parameters	(out-degree	distribuHon,	components,	clustering	coefficient)	
•  It	correlates	age	with	degree	which	is	not	always	the	case	

Academic	issues	
•  the	model	rediscovers	the	wheel	
•  preferenHal	aNachment	is	not	the	answer	to	every	power-law	
•  what	does	“scale-free”	mean	exactly?	

Yet,	it	was	a	breakthrough	in	the	network	research,	that	popularized	
the	area	
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Small	World	Phenomena	

WaNs	&	Strogatz,	1998	
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Introduc:on	

So	far	we	focused	on	obtaining	graphs	with	power-law	distribuHons	
on	the	degrees.	What	about	other	properHes?	

•  Clustering	coefficient:	real-life	networks	tend	to	have	high	clustering	
coefficient	

•  Short	paths:	real-life	networks	are	“small	worlds”	
•  this	property	is	easy	to	generate	

•  Can	we	combine	these	two	properHes?	

	
In	1998,	Duncan	WaNs	and	Steve	Strogatz	argued		that	such	a	model	
follows	naturally	from	a	combinaHon	of	homophily	and	weak	Hes.	
Homophily	creates	many	triangles,	while	the	weak	Hes	sHll	produce	
the	kind	of	widely	branching	structure	that	reaches	many	nodes	in	a	
few	steps.	
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Wads	and	Strogatz	model		
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•  Start	with	a	ring,	where	every	node	is	connected	to	the	next	k	
nodes	

•  With	probability	p,	rewire	every	edge	(or,	add	a	shortcut)	to	a	
uniformly	chosen	desHnaHon.	
–  GranoveNer,	“The	strength	of	weak	Hes”	

order randomness 

p = 0 p = 1 0 < p < 1 



Clustering	coefficient	and	ASP	as	rewiring	increases	
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10% of links rewired 1% of links rewired 

Source: Watts, D.J., Strogatz, S.H.(1998) Collective dynamics of 'small-world' networks. Nature 393:440-442. 



Comparison	with	“random	graph”	used	to	determine	whether	real-world	network	is	
“small	world”	

Network  size 

av. 
shortest 

path 
 

Shortest 
path in 
fitted 

random 
graph 

Clustering 
(averaged 

over vertices)  

Clustering in 
random graph  

Film actors  225,226 3.65 2.99 0.79 0.00027 

MEDLINE co-
authorship  1,520,251 4.6 4.91 0.56 1.8 x 10-4  

E.Coli 
substrate 

graph 
282 2.9 3.04 0.32 0.026 

C.Elegans  282 2.65 2.25 0.28 0.05 
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Now	let’s	look	at	some	real-world	examples:	distribu:ons	
differ	from	theore:cal	expecta:ons!	
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Examples	of	Growing	Random	Networks	

•  CitaHon	networks	
•  Web	
•  ScienHfic	networks	
•  SocieHes...	

36	

•  Each	date	a	new	node	is	born	
•  Forms	m	links	to	exisHng	nodes	
•  Each	node	is	chosen	with	equal	likelihood	

Growing	and	Uniformly	
Random	

Real	World	Examples	



Example	of	Expected	Degree	Distribu:on	
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•  S ta r t	 w i th	 m	 nodes	 fu l l y	
connected	

•  New	 node	 forms	 m	 links	 to	
exis1ng	nodes	

•  An	exisHng	node	has	a	probability	
m/t	 of	 gesng	 new	 link	 each	
period	

•  No	 l o n g e r	 b i n om i a l , 	 a s	
probabiliHes	vary	with	Hme	

A	dynamic	varia:on	on	the	Poisson	random	network	model	



Example	of	Expected	Degree	Distribu:on	
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Expected degree for node i born at m<i<t is: 
  

m + m/(i+1) + m/(i+2) +… + m/t 

Approx = m(1+log(t/i))   (harmonic numbers) 



Example	of	Expected	Degree	Distribu:on	
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Online	Ques:on	&	Answer	Forums	
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Replier	

Asker	

How	do	you	iden:fy	the	
experts	?	



Online	Ques:on	&	Answer	Forums	

•  ʻanswer	peopleʼ may	reply	to	thousands	of	others	

•  ʻques:on	peopleʼ are	also	uneven	in	the	number	of	repliers	to	their	posts,	but	to	a	lesser	extent	
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Real-world	degree	distribu:ons	
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•  Sexual	networks	

•  Great	variaHon	in		
contact	numbers	

	



Power-law	distribu:on	

•  linear	scale	
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•  log-log scale 

•  high skew (asymmetry) 
•  straight line on a log-log plot 
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Poisson	distribu:on	
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Milgram’s	experiment	
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		“Six	degrees	of	
separa:on”	

Instruc:ons:	
•  Given	 a	 target	 individual	 (stockbroker	 in	 Boston),	 pass	 the	 message	 to	 a	

person	you	correspond	with	who	is	“closest”	to	the	target.	

Outcome:		
•  20%	of	iniHated	chains	reached	target		
•  average	chain	length	=	6.5	



Milgram’s	experiment	repeated	
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E-mail	experiment		
Dodds,	Muhamad,	WaNs,		
Science	301	(2003)	

		
	
• 18	targets	
• 13	different	countries	
	
• 60,000+	parHcipants	
• 24,163	message	chains		
• 384	reached	their	targets	
• average	path	length	4.0	

Source:	NASA,	U.S.	Government;	hdp://visibleearth.nasa.gov/view_rec.php?id=2429	



Interpre:ng	Milgram’s	experiment	
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•  Is	6	is	a	surprising	number?	
•  In	the	1960s?	Today?	Why?	

•  If	social	networks	were	random…	?	
•  Pool	and	Kochen	(1978)	-	~500-1500	acquaintances/person	
•  ~	500	choices	1st		link	
•  ~	5002	=	250,000	potenHal	2nd	degree	neighbors	
•  ~	5003	=	125,000,000	potenHal	3rd		degree	neighbors	

•  If	networks	are	completely	cliquish?	
•  all	my	friends’	friends	are	my	friends	
•  what	would	happen?	

•  Is	6	an	accurate	number?	
•  What	bias	is	introduced	by	uncompleted	chains?	
•  Are	longer	or	shorter	chains	more	likely	to	be	completed?	



Three	and	a	half	degrees	of	separa:on	
Each	person	in	the	world	(at	least	among	the	1.59	billion	people	ac:ve	on	Facebook)	is	connected	to	
every	other	person	by	an	average	of	three	and	a	half	other	people.		
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Case	Study:	Facebook	Three	and	a	half	degrees	of	
separa:on	
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https://research.facebook.com/blog/three-and-a-half-degrees-of-separation/ 



Key	takeaways	

•  Radom	graphs	can	help	us	iden:fy	systema:c	phenomena	in	real-
life	networks	

•  Growing	networks	tend	to	create	hyper-connected	nodes	
•  Power-law	distribuHons	
•  The	phenomenon	of	PreferenHal	aNachment	

•  Real-life	networks	manage	to	combine	large	clustering	with	short	
distances	(small	worlds)	
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