—4

(ANTIKEIMENOSTPEDHS

POrPAMMATIEMOS
=) JAVA
-

:) DR. EFTHIMIOS ALEPIS

Java - _

JAVA STATISTICS

O TIOBE Programming Community Index
Source: www.tiobe.com
30
25 \A A
== Java
-
20 I - A m : N —r
V == Python
- Y . ' » -
g \ U WM 5l
5 VAW, . ol A 35
'g b v “ JavaScript
&

= Per|
=== Visual Basic .NET
“ Ruby

J -
INTRODUCTION (WHY JAVA?))

&/ [m.,.,te:\ oo ;ﬂ Q

s -
= J\}fﬂ%/{ =

Why Java

It naturally appeared in the world of
Internet

portable, secure, dynamic, ...
It can be used at all levels of our
application

It supports wide range of network
standards

v IS QUITE SECURED

Uses Runtime Environment
of Operating System

Uses Runtime Environment
of its own

IS QUITE SECURED

NO EXPLICIT POINTER
JAVA PROGRAMS RUN INSIDE VIRTUAL MACHINE SANDBOX

CLASSLOADER: ADDS SECURITY BY SEPARATING THE PACKAGE FOR THE CLASSES OF THE
LOCAL FILE SYSTEM FROM THOSE THAT ARE IMPORTED FROM NETWORK SOURCES.

BYTECODE VERIFIER: CHECKS THE CODE FRAGMENTS FOR ILLEGAL CODE THAT CAN VIOLATE
ACCESS RIGHT TO OBJECTS.

SECURITY MANAGER: DETERMINES WHAT RESOURCES A CLASS CAN ACCESS SUCH AS
READING AND WRITING TO THE LOCAL DISK.

Platform-

independent

C++ is platform-dependent.

Java is platform-independent.

Mainly used for

C++ is mainly used for system programming.

Java is mainly used for application programming. It is widely used in window, web-

based, enterprise and mobile applications.

Goto C++ supports goto statement. Java doesn't support goto statement.

Multiple C++ supports multiple inheritance. Java doesn't support multiple inheritance through class. It can be achieved by

inheritance interfaces in java.

Operator C++ supports operator overloading. Java doesn't support operator overloading.

Overloading

Pointers C++ supports pointers. You can write pointer Java supports pointer internally. But you can't write the pointer program in java. It
program in C++. means java has restricted pointer support in java.

Compiler and C++ uses compiler only. Java uses compiler and interpreter both.

Interpreter

Call by Value and
Call by reference

C++ supports both call
reference.

by wvalue and call by

Java supports call by value only. There is no call by reference in java.

Structure and

Union

C++ supports structures and unions.

Java doesn't support structures and unions.

Thread Support

C++ doesn't have built-in support for threads. It
relies on third-party libraries for thread support.

Java has built-in thread support.

Documentation
comment

C++ doesn't support documentation comment.

Java supports documentation comment (/*¥ ... ®/) to create documentation for java
source code.

Virtual Keyword

C++ supports virtual keyword so that we can decide
whether or not override a function.

Java has no virtual keyword. We can override all non-static methods by default. In
other words, non-static methods are virtual by default.

unsigned right
shift »»>

C++ doesn't support >>> operator.

Java supports unsigned right shift >>> operator that fills zero at the top for the
negative numbers. For positive numbers, it works same like >> operator.

Inheritance Tree

C++ creates a new inheritance tree always.

Java uses single inheritance tree always because all classes are the child of Object

class in java. Object class is the root of inheritance tree in java.

/ % -/
“~— Java EE: Past & Present Cloud

Flexible
W/ Ease of Java EE 7

Development ‘Ej?Bvli EE 6
ite
Web Java EE 5 | Restful Ws
_ Ease of Web Beans
Services Development Extensibility
Annotations

J2EE 1.4 g EJB3.0

Web Services, [l Persistence API

Multi-tenancy
Elasticity
JSON

HTMLS

Web sockets

; Robustness ELCEELEEE EASVELE
Enterprise Deployment, Updated
Java J2EE 1.3 B Async. Web Services
Platform CMP, Connector

Connector
Architecture

Java EE 6

J2EE 1.2

Servlet, JSP,
EJB, JMS

Web Profile

JPE
Project

8]

\ =

@

\ — 4

J2SE 8 ' J
JDK 1.1 J25E 5.0(1.5) Lambda expression
Inner classes, Threads Generics, Auto Boxing Stream API
Anonymous classes J2SE 1.3 Enhanced for loop for each loop New Date and Time API
Java Beans Jar Indexing Scanner and Formatter Repeating Annotaion
Tokens.Operators Hot Spot JVM Static import Parallel Array Sorting
and Expression IND Interface Metadata(Annotations) Optional
Intemationalization Java Sound API Enumeration MNashom
First Release Jdbe Debugging Architecture Varargs, Oracle buys Sun Pipelines and streams
1995 1997 2000 2004 2010
1996 1998 2002 2006 2011
JDK 1.0 J2SE 1.2 J2SE 1.4 J2SE 6 J2SE 7
Collection framework Regular expression Jdbc 4.0 API String in switch statement
JIT compiler Assertions Scripting Language Support Try catch improvement
Java Plug-in Logging API Pluggable Annotaion Simplified variable argument
Swing graphical API Xml Processing Integrated web service Underscore in numeric literals
Scrollable result sets Chamed Exception Java Compiler API Gl Garbage collector
Java web Start Anmnotation Based SQL Queries Type interence
IPv6 support Xml Digital Signature Diamond syntax
Jdbc 3.0 AP1 Java I/o Enhancements Automatic null handling
Non-Blocking 1/O Security Features and Enhancement Catching Multiple Exception type in
File Channel single catch block
Linked Hashmap

JDBC 3.0 API

Byte code Verifier

Java Runtime System

JVM

!

Native OS

=0Urce
_.-.

Compller

Bytecode
-

Dislk

Bytemdi

Mative 05

_.Native _ode

Java Runtime
Environment

Bytecode
Verifier

'

Class
Loader

Y

Just-In-Tims
Compller

Windows

JavaFile Classfile
e e Mac/ UNIX

-

Interpreter Interpreter Interpreter

A/
Frogam
e b

PC-Compatible ' ! Power Macintosh
YWindows MT sun Lltra Salaris Systern 8

N/

\ -/

"’ Java
Language
Multipl T
ultiple e ——— e W eeme—mt———
Inheri tF-):nce -al low w_| iterfacis\:\y f eatﬁs —»__Multithreaded "o
Qi iows
i I — \- y L e,
lnl‘.SeLnigtaence ~4-al low w—_ Classes)-O—\mplements < Dlstmbuted e
@ E Real-Time
g e / Portab| hand behavior
Method ¢ Overloading C_Porta e >
overloading W, — — il
al '°'”57_ implements N
does : uses AR MO
ouoeprelroaatdoirng C ey Dynamic Evecution
al low memory on
management Common GUI di fferent such
Memory i latforms e
access handles classes P
-ﬂ___,—i_\ﬁ
_ Interpreted :> Common FTP HTTP
preventing - code primitive such
data types as Sockais
d executed *
overridin compose Xecute - ‘
2 of by such Dialog Unix Macintosh ~/
l as class
ca::ed l - * MS-Hindows
e Java 32-bit I|EEE
* bytecodes runtime||?54 floating
Wild system | [point number| :
pointers ()
e \

Tﬁ'ﬁﬂ- java |jm¢ujnvﬂmﬁpl jar | javap 1 JPDA m:mm:
intl RMI IDL Deploy Monitoring Troubleshoot Scripting JVM TI

JDK, JRE AND JVM

A SPECIFICATION THAT PROVIDES RUNTIME ENVIRONMENT IN WHICH JAVA BYTECODE CAN BE
EXECUTED

JVMS ARE AVAILABLE FOR MANY HARDWARE AND SOFTWARE PLATFORMS
JVMS ARE PLATFORM DEPENDENT BECAUSE CONFIGURATION OF EACH OS DIFFERS

JVM MAIN TASKS:
* LOAD CODE
* VERIFY CODE
* EXECUTE CODE
* PROVIDE RUNTIME ENVIRONMENT

Development
‘toolse.g.

| otherfiles

\ =

</

-

* LOCAL VARIABLES
* INSTANCE VARIABLES

* STATIC VARIABLES

TYPES OF JAVA VARIABLES

class A{

int data=10;//instance variable
static int m=20;//static variable
void method(){

int n=30;//local variable

¥
}//end of class

N

o JAVA DATA TYPES

.uht?'fﬁgﬁé

BB gy [String
Boolean Numeric * Array

Floating-point

¥ ¥

boolean char byte short int long float double

PRIMITIVE TYPES VS OBJECTS 1/2

SOME SPECIFIC OBJECTS “WRAP” PRIMITIVE TYPES

PRIMITIVE TYPES SERVE ONLY ONE PURPOSE, CONTAINING PURE, SIMPLE
VALUES OF A KIND

FOR A VARIABLE OF A PRIMITIVE TYPE, THE VALUE OF THE VARIABLE IS STORED
IN THE MEMORY LOCATION ASSIGNED TO THE VARIABLE

A VARIABLE OF A CLASS TYPE ONLY STORES THE MEMORY ADDRESS OF WHERE
THE OBJECT IS LOCATED — NOT THE VALUES INSIDE THE OBJECT

YN N/ pe

PRIMITIVE TYPES VS OBJECTS 2/2

* A BIG DIFFERENCE BETWEEN A PRIMITIVE TYPE AND A CLASS TYPE IS THAT AN

OBJECT OF A CLASS TYPE, LIKE AN OBJECT OF THE CLASS STRING, CAN BE OF ANY
SIZE

* A COMMON MISTAKE IS USING A == B INSTEAD OF A.EQUALS(B). PEOPLE ARE
USED TO DOING A == B WITH PRIMITIVES SO IT'S EASILY DONE WHEN YOU'RE
USING THE OBJECT WRAPPERS

boolean char

long float double

2 METHODS OF OBJECT SUPERCLASS

* PROTECTED OBJECT CLONE() THROWS CLONENOTSUPPORTEDEXCEPTION
CREATES AND RETURNS A COPY OF THIS OBJECT.

* PUBLIC BOOLEAN EQUALS(OBJECT OBJ)
INDICATES WHETHER SOME OTHER OBJECT IS "EQUAL TO" THIS ONE.

* PROTECTED VOID FINALIZE() THROWS THROWABLE

CALLED BY THE GARBAGE COLLECTOR ON AN OBJECT WHEN GARBAGE COLLECTION DETERMINES THAT THERE ARE NO
MORE REFERENCES TO THE OBJECT

* PUBLIC FINAL CLASS GETCLASS()
RETURNS THE RUNTIME CLASS OF AN OBJECT.
* PUBLIC INT HASHCODE()
RETURNS A HASH CODE VALUE FOR THE OBJECT.
* PUBLIC STRING TOSTRING()
RETURNS A STRING REPRESENTATION OF THE OBJECT

AUTOBOXING AND UNBOXING

AUTOBOXING AND UNBOXING IS INTRODUCED IN JAVA 1.5

AUTOBOXING IS THE AUTOMATIC CONVERSION THAT THE JAVA COMPILER MAKES
BETWEEN THE PRIMITIVE TYPES AND THEIR CORRESPONDING OBJECT WRAPPER
CLASSES

FOR EXAMPLE — CONVERSION OF INT TO INTEGER, LONG TO LONG, DOUBLE TO
DOUBLE

UNBOXING IS THE REVERSE PROCESS OF AUTOBOXING. AUTOMATICALLY CONVERTING
AN OBJECT OF A WRAPPER CLASS TO ITS CORRESPONDING PRIMITIVE TYPE

e \J - .

Primitive type
boolean

byte

char

float

ink

long

- short

double

Wrapper class
Boolean

Byte
Character
Float

Integer

Long

Short

Double

Autoboxing

Unboxing

DATA CONVERSION (CASTING)

* DATA CONVERSION (CASTING) CAN HAPPEN BETWEEN TWO PRIMITIVE TYPES

* THERE ARE TWO KINDS OF CASTING:

* IMPLICIT: CASTING OPERATION IS NOT REQUIRED; THE MAGNITUDE OF THE
NUMERIC VALUE IS ALWAYS PRESERVED. HOWEVER, PRECISION MAY BE LOST WHEN
CONVERTING FROM INTEGER TO FLOATING POINT TYPES

* EXPLICIT: CASTING OPERATION REQUIRED; THE MAGNITUDE OF THE NUMERIC VALUE
MAY NOT BE PRESERVED

v *WIDENING CASTING(IMPLICIT)

byte —short —int —long — float — double

widening

-

WIDENING: AUTOMATIC TYPE CONVERSION

* AUTOMATIC TYPE CASTING TAKES PLACE WHEN:
* THE TWO TYPES ARE COMPATIBLE
* THE TARGET TYPE IS LARGER THAN THE SOURCE TYPE

< o

NARROWING CASTING(EXPLICITLY DONE)

double— float—long—: int—short—byte

%

Narrowing

LETS TEST PRIMITIVE TYPE VS OBJECT!

class PrimitiveTesterl {
public static void main(Stringl[]l args) {
long startTimel = System.nanoTime () ; (;/
Long suml = 0L; // uses Long, not long
for(long 1 = 0; i1 <= Integer.MAX VALUE; 1i++) {
é suml += 1i;

SystemJout.println(suml);

long endTimel = System.nanoTime () ;
long durationl = endTimel - startTimel;

Svstem.out .println{durationl) ;

long startTime2 = System.nanoTime () ;

long sum2 = 0L; // uses long, not Long

= for(long i = 0; i <= Integer.MAX VALUE; i++) {
i sum?2 += 1;

System.out.println(sumZ);

long endTime2 = System.nanoTime () ;

long duration?2 = endTime2 - startTime2;

System.out.println(duration?2) ;

public class name: Primitive Tester1

class Primitive Tester1 {
public static void main(String[] args) {
long start Time 1 = System.nano Time();
Long sum1 = OL; // uses Long, not long
forfong i = 0:i <= Integer. MAX_VALUE: i++) {

sum1 +=i;

}
System.out printin{sum1);
long endTime 1 = System nano Time():

System.out printin(duration1);

long start Time2 = System nano Time();
long sum2 = OL; // uses long, not Long
forflongi = 0; i <= Integer MAX_VALUE; i++) {

sum2 +=i;

L e ot D P, B

long duration1 = endTime1 - stat Time 1;

2305843008139952128
7277654528

2305843008133952128
1182254350

public class name: Primitive Tester2 E

long duration1 = endTime 1 - start Time 1, - 2305843008139952128 ey
double durationseconds1 = {double)duration1 / 7.261346117 seconds
1000000000.0; 2305843008139352128
o : 1.184631026 seconds

long sum2 = ll..ﬂusulmg Long

forflong i = 0;i <= Integer. MAX_VALUE; i++) {
sum2 +=i;}

System out printin(sum2);

