
Java Generics

 Added in Java in 2004 (1.5)

 Created to allow “a type or method to operate on objects of various

types while providing compile-time type safety”

 Generics are used in:

 Classes

 Interfaces

 Methods

 and Constructors

Why Generics?

 For many and important reasons!

 Including an example:

List list = new ArrayList();

list.add(new Integer(2));

list.add("a String");

//then we need casting

Integer integer = (Integer) list.get(0);

String string = (String) list.get(1);

Previous example using generics

List<String> strings = new ArrayList<String>();

strings.add("a String");

String aString = strings.get(0);

Generics Main Advantages

 Type-safety: We can hold only a single type of objects in generics. It

doesn’t allow to store other objects

 Type casting is not required: There is no need to typecast the object

 Compile-Time Checking: It is checked at compile time so problem will not

occur at runtime. Good programming strategy suggests it is far better to

handle the problem at compile time than runtime

Generics and interfaces

 In contrast to regular interfaces, to define a generic interface it is sufficient

to provide the type (or types) it should be parameterized with:

public interface GenericInterfaceOneType< T > {

void performAction(final T action);

}

 The interface may be parameterized with more than one type:

public interface GenericInterfaceSeveralTypes< T, R > {

R performAction(final T action);

}

Implementing a generic Interface

 Whenever any class wants to implement the interface, it has an option to
provide the exact type substitutions:

public class ClassImplementingGenericInterface

implements GenericInterfaceOneType< String > {

@Override

public void performAction(final String action) {

// Implementation here

}

}

Java Generic Methods

 Generic methods enable programmers to specify, with a single method

declaration, a set of related methods

 Rules:

 Generic method declarations have a type parameter section delimited by

angle brackets (< and >) that precedes the method's return type

 Each type parameter section contains one or more type parameters separated

by commas

 Type parameters can be used to declare the return type and also as

placeholders for the types of the arguments that are passed to the generic

method

 Type parameters can represent only reference types, not primitive types

Example 1/2 Generic Method

public static <T> void printArray(T[] array) {

System.out.println("Array with elements:");

for(T element : array) {

System.out.println(element);

}

}

Using the generic method

Integer[] intarray = {4,6,1,23,67,100};

printArray(intarray);

String[] stringarray = {"Helen","Paul","John","Peter"};

printArray(stringarray);

Example 2/2 Generic Method

public static <T> ArrayList<T> makeList(T[] arr){

ArrayList<T> newlist = new ArrayList<T>();

for(T t:arr){

newlist.add(t);

}

return newlist;

}

Using the generic method

Integer[] intarray = {4,6,1,23,67,100};

ArrayList<Integer> intarraylist = makeList(intarray);

intarraylist.add(15);

Important notes!

 If methods are declared (or defined) as part of generic interface or class, they
may (or may not) use the generic types of their owner

 They may define own generic types or mix them with the ones from their class
or interface declaration:

public class GenericMethods< T > {

public< R > R performAction(final T action) {

final R result = ...;

// Implementation here

return result;

}

}

 Class constructors are also considered to be kind of initialization methods, and
as such, may use the generic types declared by their class, declare own
generic types or just mix both

Commonly used

type parameter names

 E – Element (used extensively by the Java Collections Framework, for

example ArrayList, Set etc.)

 K – Key (Used in Map)

 N – Number

 T – Type

 V – Value (Used in Map)

Java Generic Classes

 The class name is followed by a type parameter section

 The type parameter section of a generic class can have one or more type

parameters separated by commas

 Type parameters can be used everywhere inside the class

 Type parameters can represent only reference types, not primitive types

Example Generic Class

public class GenClass<T> {

private T val;

public T get(){ return val;}

public void set (T t){

if (t.toString().length()==5)

val = t;

}

public void myprint (){

if (val!=null){

System.out.println("Val has value: "+val.toString());

}else {

System.out.println("Val has no value...");

}

}

}

Using the Generic Class

GenClass1<Integer> genc1 = new GenClass1<Integer>();

genc1.set(12345);

genc1.myprint();

Interesting notes!

 A class may pass (or may not) its generic type (or types) down to the
interfaces and parent classes, without providing the exact type instance:

public class GenericClassImplementingGenericInterface< T >

implements GenericInterfaceOneType< T > {

@Override

public void performAction(final T action) {

// Implementation here

}

}

Generics, Inheritance, and Subtypes

Correct subtyping

Example

interface PayloadList<E,P> extends List<E> {

void setPayload(int index, P val);

...

}

Bounded Type Parameters

 There may be times when you want to restrict the types that can be used

as type arguments in a parameterized type.

 For example, a method that operates on numbers might only want to

accept instances of Number or its subclasses. This is what bounded type

parameters are for.

 To declare a bounded type parameter, list the type parameter's name,

followed by the extends keyword, followed by its upper bound.

 Note that, in this context, extends is used in a general sense to mean

either "extends" (as in classes) or "implements" (as in interfaces).

 E.g. <U extends Number>

Example

public static <T> int countGreaterThan(T[] anArray, T elem) {

int count = 0;

for (T e : anArray)

if (e > elem) // compiler error

++count;

return count;

}

public static <T extends Comparable<T>> int
countGreaterThan(T[] anArray, T elem) {

int count = 0;

for (T e : anArray)

if (e.compareTo(elem) > 0)

++count;

return count;

}

Type Inference

 Type inference represents the Java compiler's ability to look at a method

invocation and its corresponding declaration to check and determine the

type argument(s).

 The inference algorithm checks the types of the arguments and, if

available, assigned type is returned.

 The inference algorithm tries to find a specific type which can fulfill all type

parameters

 Box<Integer> integerBox = new Box<>();

Multiple Bounds

 A type variable with multiple bounds is a subtype of all the types listed in

the bound

 If one of the bounds is a class, it must be specified first

 <T extends B1 & B2 & B3>

Upper Bounded Wildcards

 You can use an upper bounded wildcard to relax the restrictions on a

variable.

 For example, say you want to write a method that works on List<Integer>,

List<Double>, and List<Number>; you can achieve this by using an upper

bounded wildcard.

 To declare an upper-bounded wildcard, use the wildcard character ('?'),

followed by the extends keyword, followed by its upper bound.

 To write the method that works on lists of Number and the subtypes of

Number, such as Integer, Double, and Float, you would specify

List<? extends Number>

Lower Bounded Wildcards

 In a similar way, a lower bounded wildcard restricts the unknown type to

be a specific type or a super type of that type.

 A lower bounded wildcard is expressed using the wildcard character ('?'),

following by the super keyword, followed by its lower bound:

<? super A>

 You can specify an upper bound for a wildcard, or you can specify a

lower bound, but you cannot specify both

Wildcards and Subtyping

