3511 cb00:13be3 30:119 575 103:1095

Tutorial: IPv6 Basics

Marco Hogewoning RIPE NCC Trainer

ENOG3, May 2012

IANA IPv4 Pool

IPv4 Exhaustion Phases

"Run Out Fairly"

- Gradually reduced the allocation and assignment period from the original 24 months to:
 - January 2010: 12 months
 - -July 2010: 9 months
 - -January 2011: 6 months
 - -July 2011: 3 months

50% has to be in use at half the period

Allocations From the Final /8

- When the RIPE NCC reaches the final /8:
 - Every member can get a /22 (1024 addresses)
 - Only if they already have IPv6 addresses
 - Only when there is justified need

- Current policy does not allow for PI assignments
 - Policy proposal 2012-04 under discussion
 - Intends to allow for PI assignments

IPv4 Address Transfers

- Transfers allowed between RIPE NCC Members
 - Only if they are not in use
 - Receiver can prove he needs them
 - Minimum size is a /21

- Inter RIR transfers are being discussed
 - policy proposals 2012-02 and 2012-03
 - Change the allocation period back to 24 months
 - Allow transfers to and from the RIPE NCC region

RIPE NCC IPv4 Pool

21 May 2012

Sustaining Growth

- IPv4 will not be able to sustain the growth of the Internet:
 - More people online every year
 - Multiple devices per person
 - The Internet of Things
- The world needs an alternative

P1.00112.60 :cb00:13be3 5-19F2:80:119 1:2209:00:30 :095:1095 51."

IPv6

Internet Protocol Version 6

- Developed by the IETF in the early nineties
- Became a standard in 1995
- Uses 128 bit addresses

- Instead of IPv4's 32 bits

- IPv4 and IPv6 are not compatible
 - They can't talk to each other without help

340282366920938463463374607431768211456 (4294967296)

- Addresses are written down using hexadecimal:
 -0123456789abcdef
- Grouped in 8 blocks of 4 digits
- Separated by colons

2001:0db8:3042:0002:5a55:caff:fef6:bdbf

- Addresses can be shortened
 - Leading zeroes can be removed
 - Multiple sequences of "0000" can be removed, replacing them with a double colon "::"

- Addresses can be shortened
 - Leading zeroes can be removed
 - Multiple sequences of "0000" can be removed, replacing them with a double colon "::"

2001:0db8:0000:0000:5a55:0302:fef6:0012

- Addresses can be shortened
 - Leading zeroes can be removed
 - Multiple sequences of "0000" can be removed, replacing them with a double colon "::"

2001:0db8:0000:0000:5a55:0302:fef6:0012

2001:db8:0:0:5a55:302:fef6:12

- Addresses can be shortened
 - Leading zeroes can be removed
 - Multiple sequences of "0000" can be removed, replacing them with a double colon "::"

2001:0db8:0000:0000:5a55:0302:fef6:0012

2001:db8:0:0:5a55:302:fef6:12

2001:db8::5a55:302:fef6:12

- Subnets follow CIDR rules:
 - A subnet boundary can be anywhere
 - Subnet mask is noted with a "/", e.g. /64

- The standard says every subnet must be a /64
 - Defines the host part of the address to be 64 bits
 - Exception is /127 for point-to-point on routers

IPv6 Subnetting

2001:0DB8:0000:0000:0000:0000:0000:0000

64 bits interface ID

Contact Training Services: ts@ripe.net Follow us on Twitter: www.twitter.com/TrainingRIPENCC

www.ripe.net

085110014 :cb00:13be3 5-19F2:80:119 1:2209:00:80 :095:1095

Getting IPv6 Addresses

IPv6 Address Distribution

Provider Aggregatable IPv6

- To receive an IPv6 Allocation
 - Be a member of the RIPE NCC
 - Have a plan to deploy IPv6

- Minimum allocation size is /32
 - More if you can prove you have the customers

Customer Assignments

- Every "end site" can be assigned up to a /48 without prior approval of the RIPE NCC
 - -That is 65536 subnets per site
 - If you need more, ask for approval first
 - Or make a sub-assignment

- Assignments for your own infrastructure
 - -/48 per Point of Presence
 - One additional /48 for the core network

Provider Independent Assignments

- Pl addresses also possible in IPv6
 - Must have a contract with an LIR
 - Minimum assignment size is a /48
 - More if there is justified need

- No sub-assignments are allowed
 - Not even a single address for the connection
 - If you have customers, you can not use PI for them

Registration in the RIPE Database

 All sub-allocations and assignments must be registered to make them valid

- Large numbers of assignments can be grouped
 - Status "AGGREGATED-BY-LIR"
 - Indicates multiple assignments
 - Size indicated by "assignment-size"

Grouping Assignments

inet6num: netname: descr: descr: country: admin-c: tech-c: status: assignment-size: mnt-by: notify: changed: source:

2001:db8:1000::/36 **My-ASSIGNMENTS Represents multiple customers Colocation services** NL **BN649-RIPE BN649-RIPE AGGREGATED-BY-LIR** 48 **ISP-MNT** noc@example.net noc@example.net 20110218 RIPE

41.00112.60 5000:13be3 5-19F2:80:119 1:2209:00:00 :095:1095

Creating an Addressing Plan

Aggregation vs Conservation

- In IPv4 you can only get the addresses you need
 - Number of machines is what counts
 - Multiple small assignments are common
 - Administrative ease is not allowed

- IPv6 takes a different approach
 - Number of machines is no longer important
 - Aggregation gets a much bigger role

Count the Number of Subnets

- Every subnet has to be a /64
 - -Number of hosts becomes irrelevant (2^64)

- Keep some room for growth
 - -We can't predict the future
 - A single subnet probably is not enough
 - -You can assign up to a /48 if needed

Making Customer Assignments

- Don't be too conservative
- Assign a generous amount of subnets
- /56 is a popular size for residential
 - Allows for 256 subnets
 - Future proof
- Business customers often get a /48

• You don't want to renumber later on

Administrative Ease

- If possible assign on 4 bit boundaries
 - Matches a hexadecimal digit
 - Easier to read and remember
 - Aligns with reverse DNS zones

- Possibly follow the structure of the network or organisation
 - Can aid in access control and troubleshooting

"Smart" Addresses Example

- Assume you got 2001:db8:1234::/48
- In your subnet 2001:0db8:1234:XYZZ::/64
 - -X can represent a location, i.e. "north building"
 - -Y can represent a function, i.e. "workstations"
 - -ZZ can represent the specific subnet (number)

2001:0db8:1234:1316::/64 could mean:
 South building, printers, area 16 (accounting)

Need Help Making a Plan?

- Surfnet, the Dutch NREN, prepared a document
 - How to divide your /48 on a site?
- Available in English on our website

https://www.ripe.net/lir-services/training/material/IPv6-for-LIRs-Training-Course/IPv6_addr_plan4.pdf

41.00112.60 :cb00:13be3 5-19F2:80:119 1:2209:00:80 :095:1095 51."

Deploying IPv6

Deploying IPv6

IPv4 and IPv6 are not compatible by design
 Allows to deploy IPv6 without breaking things

 To communicate freely a computer needs both an IPv4 and IPv6 address

-This is known as "Dual Stack"

- It is all about adding IPv6 to your network
 - IPv4 will remain as well for now

IPv6 on the LAN

- Configuration can happen automatically:
 - Discovering your default gateway
 - Assigning yourself an address
 - Get a DNS resolver address

- All based on ICMPv6
 - -Uses multicast

Stateless Address Autoconfiguration

- Host will automatically start looking for a router
- Response will contain:
 - Router's address
 - One or more link prefixes
 - SLAAC allowed yes/no

Link Prefix

- MTU

You can use DHCPv6 to get additional info
 DNS Resolver addresses

- Alternatively you can also use it to handout IPv6 addresses:
 - Controlled by the network operator
 - Switch of SLAAC in the router advertisements

Privacy Concerns

- SLAAC uses a modified mac address
- Makes it possible to trace a device
- Can be a security risk as well

- RFC 4941 "Privacy Extensions":
 - -Use random 64 bit number for the host part
 - Change the number regularly

Security Considerations

- Everybody can claim to be a router
 - -Use RA Guard to filter unauthorised RAs (RFC 6105)
 - SEND under development as alternative (RFC 3971)

- Leaking route advertisements
 - Cisco switches on RA by default
 - -Windows, OS X and others will default accept
 - A machine can easily get IPv6 unnoticed

- Works the same as IPv4
 - AAAA record for IPv6 addresses
- Host can request both A and AAAA records
 - -When Dual Stacked (IPv4 and IPv6)
 - Use the one that performs best

Always advertise both IPv4 and IPv6
 Do not make a decision based on who asks

- RIPE NCC delegates on allocation or assignment
- Example prefix 2001:db8::/32

- RIPE NCC delegates on allocation or assignment
- Example prefix 2001:db8::/32

2001:db8

- RIPE NCC delegates on allocation or assignment
- Example prefix 2001:db8::/32

2001:0db8

- RIPE NCC delegates on allocation or assignment
- Example prefix 2001:db8::/32

2001:0db8

8.b.d.0.1.0.0.2.ip6.arpa

- RIPE NCC delegates on allocation or assignment
- Example prefix 2001:db8::/32

2001:0db8

8.b.d.0.1.0.0.2.ip6.arpa

2001:db8:3042:2:5a55:caff:fef6:bdbf

- RIPE NCC delegates on allocation or assignment
- Example prefix 2001:db8::/32

2001:0db8

8.b.d.0.1.0.0.2.ip6.arpa

2001:db8:3042:2:5a55:caff:fef6:bdbf

f.b.d.b.6.f.e.f.f.a.c.5.5.a.5.2.0.0.0.2.4.0.3.8.b.d.0.1.0.0.2 PTR host.example.org

IPv6 Domain Object

domain:		4.6.0.0.c.7.6.0.1.0.0.2.ip6.arpa
descr:		RIPE Meetings
admin-c:		JDR-RIPE
tech-c:		<u>OPS4-RIPE</u>
zone-c:	i	<u>OPS4-RIPE</u>
nserver:		<pre>server.ripemtg.ripe.net</pre>
nserver:		<pre>sec1.authdns.ripe.net</pre>
mnt-by:		<u>RIPE-NCC-MNT</u>
mnt-lower:		<u>RIPE-NCC-MNT</u>
changed:		bit-bucket@ripe.net 20091002
source:		RIPE

085110014 5000:13be3 5-19F2:80:119 1:2209:00:80 :095:1095

Making the Plan

Make Sure You Have a Plan

- In the near future you need IPv6
- Take a phased approach:
 - Make an inventory of what you need
 - -When purchasing add demand for IPv6 support
 - Identify which elements need replacing
 - Plan every step and test it before deploying

No longer depend on IPv4 alone

- The Internet is no longer equal to IPv4
 - Make sure there is feature parity

- Don't make IPv6 a product
 - It is Internet connectivity you are selling

Spent money now to save it later

IPv6 Act Now!

(but take it slowly)

085110014 5000:13be3 5-19F2:80:119 1:2209:00:80 :095:1095

More Information

RIPE NCC IPv6 Training Course

- Open to all members free of charge
- One day course in which you learn:
 - How to create a deployment plan for your organisation
 - How to make an addressing plan
 - How to make assignments
 - How to deploy alternative transitioning techniques

See <u>http://www.ripe.net/lir-services/training</u>

Ripe-501Document

- "Requirements for IPv6 in ICT Equipment"
- Best Current Practice describing what to ask for when requesting IPv6 Support
- Useful for tenders and RFPs

- Originated in the Slovenian Government
 Adopted by various others (Germany, Sweden)
- Will be updated soon now

• Originally it was very hard to get IPv6 ready CPE

Things have changed quite a bit
 Lot of vendors produce IPv6 ready CPE

- Working on an updated version
 - -Will ask vendors for the latest status

IPv6 Act Now

- Dedicated website about IPv6 Deployment
 - http://www.ipv6actnow.org

- ipv6actnow@ripe.net
 - One contact point for IPv6 matters
 - Feedback, suggestions and comments

- RIPE IPv6 Working Group
 - -<u>http://www.ripe.net/ripe/groups/wg/ipv6</u>
- Cluenet mailing list
 - http://lists.cluenet.de/mailman/listinfo/ipv6-ops
- ARIN IPv6 Wiki
 - http://www.getipv6.info/index.php
- ENOG mailing list
 - http://www.enog.org/mailing-list/

tuitter

@TrainingRIPENCC

Questions?

