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Preface

These are the notes for the course Math 302 - Mathematics of Permutations Puzzles. The aim of the course
is to provide an introduction to group theory for students in the mathematics minor program. Group theory
is a very powerful branch of mathematics, but is often difficult for one to enter into due to its very abstract
nature. Puzzles like Rubik’s cube can provide concrete models for some of these abstractions.

The header of each page contains an image which takes you right back to the table of contents.

A number of online resources are available on the website accompanying these notes [10]:

http://www.sfu.ca/ jtmulhol/math302/

No project such as this can be free from errors and incompleteness. I will be grateful to everyone who points
out any typos, incorrect statements, or sends any other suggestion on how to improve this manuscript.

Jamie Mulholland
Simon Fraser University
j mulholland@sfu.ca
June 4, 2013
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Lecture 1

Permutation Puzzles

1.1 Introduction

Imagine a mixed up Rubik’s CubeTM (for example see Figure 1.1a), or better yet, mix up your own cube.
As you begin to try to solve the cube you should notice a few things. Solving a single face (i.e. getting
all 9 pieces of the same colour onto the same face) isn’t that difficult. There seems to be enough room to
move things around. Continuing in this manner, you then begin to solve the next layer. You’ll soon notice
that certain moves will undo your previous work. If you twist a face that contains some pieces that you
had previously put in their correct place, then these pieces now move out of place. And this is where the
puzzle becomes challenging. It seems the more pieces that are in the correct place, the harder it is to move
the remaining ones into place. This is known as the end-game of the Rubik’s Cube, and solving the puzzle
requires a thorough understanding of this part of the puzzle.

(a) A mixed up Rubik’s
Cube

(b) An end-game for
Rubik’s Cube. Only the
bottom layer remains
to be solved.

Figure 1.1: A mixed up Rubik’s Cube and end-game.

Rubik’s Cube is probably one of the most well known puzzles to date. It is estimated that over 350 million
have been sold since it’s creation by Ernö Rubik around 1980. What has made it so popular is not certain.
Perhaps it looks seemingly innocent, then once a few sides have been twisted, and the colours begin to
mix, the path back home is not so easy to see. The more you twist it the further you seem to be taken away
from the solution. Perhaps it is that the number of ways to mix up the cube seems endless. Or perhaps
to others, it doesn’t seem endless at all. Despite the reasons for its appeal, it has become one of the most
popular puzzles in history.

It is rare to find a puzzle, or toy, that has captured the imagination of millions, is accessible to all age

1



LECTURE 1 PERMUTATION PUZZLES 2

levels, is challenging, yet satisfying, and is so mathematically rich. The Rubik’s Cube is one such puzzle.
Others examples include the 15-puzzle, TopSpin, Hungarian Rings, and Lights Out.

What do we mean by mathematically rich? Well it turns out that one area of mathematics that has had
an impact on all areas of science, and has even popped up in art, is the area called group theory. Of-
ten referred to as the language of symmetry, group theory has led to many new discoveries in theoretical
physics, chemistry, and mathematics itself. It underlies the techniques in cryptography (sending private
information over public channels), and coding theory (digital communications, digital storage and retrieval
of information). It is no surprise that a mathematical theory developed to understand symmetry so ade-
quately describes the Rubik’s Cube, however, for us, we are more interested in the opposite. We will use
Rubik’s Cube, and these various other puzzles, to provide us a window into group theory. But most of all,
we plan to have a lot of fun doing it.

Our goal in this course is to uncover some pretty fascinating mathematics while playing with puzzles.
We will not be too concerned with solving the puzzles, though strategies for solution will fall out of our
investigations, but instead we want to see how we can model these puzzles mathematically and see what
the mathematics has to tell us about the puzzles. In this sense we want to understand these puzzles.

This is the theme for all these puzzles. There is a certain stage in solving the puzzle where a simple
strategy, and trial and error, can’t get you any further. This is typically referred to as the end-game for the
puzzle. For Rubik’s Cube the end-game occurs when two layers are solved, and the last layer remains (see
Figure 13.1c).

It is understanding the end-game of these puzzles that mathematics becomes such a useful tool.

1.2 A Collection of Puzzles

We begin by briefly describing the puzzles we will be investigating in this course. One thing to observe is
that all puzzles have a common theme: the pieces of the puzzle are rearranged, and the goal is to return
the pieces to their proper (original) arrangement.

1.2.1 A basic game, let’s call it Swap

Imagine a set of objects laid out in front of you and ordered in some way. This puzzle can be played with
any number of objects, but the more objects that are used the more challenging it becomes.

It doesn’t matter what the objects are, they could all be different, or some could be the same. For starters
we will just use 5 distinct objects, and for simplicity we will just take the objects to be the numbers 1, 2, 3,
4, and 5. Figure 1.3 shows the objects laid out in front of us:

Figure 1.2: Solved state of Swap with 5 objects.

This arrangement, where the numbers appear in order from left to right, is called the home position or
solved state. Since, as we’ll see shortly, we will be moving the numbers around the boxes so it will be nice
to have a little reminder of whose home is whose. We do this by putting a little number in the top left
corner of each box.

Figure 1.3: Solved state of Swap with 5 objects with the boxes labeled.
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The way this puzzle is played is first the numbers are randomly arranged in the boxes. Then using only
legal moves, one tries to move the numbers back to their home positions (i.e. return the puzzle to its solved
state).

What are the legal moves? This is where different version of the puzzle can be created. For now, let us
simply say there is one type of legal move called a swap, and it consists of picking any two boxes and
swapping the contents (the numbers in large font).

Example 1.1: Consider the starting position shown in Figure 1.4. Our goal is to return the numbers to
the solved state using only legal moves. Notice that objects 2 and 4 are in the correct positions (correct

Figure 1.4: Staring position for Example 1.1.

boxes). This is where the little numbers in the top left corners come in handy. As for the numbers 1, 3 and
5, we need to move these to their correct positions. Since the legal moves consist of swapping the contents
of two boxes at a time, we’ll focus first on getting 5 into it’s correct position. To do this we swap the contents
of boxes 3 and 5, since object 5 is in box 3.

Now 2, 4 and 5 are in the correct positions. Lastly we swap the contents of boxes 1 and 3 and solve the
puzzle.

� 1

This is a pretty basic puzzle, but it is good to have this as our starter puzzle. In a certain sense, as we’ll
soon see, every puzzle we will investigate will just be some variation of Swap. Either we will increase the
number of objects, or we will change the legal moves. We now consider some possible variations of the
puzzle.

Variations of Swap: There are many ways to vary this puzzle. One way is to increase the number of
objects that are used. Here we used 5, but we could use 10, 20, 48, or any number we wish.

Another way to vary the puzzle is to choose a different collection of legal moves. Our legal moves consisted
of swapping the contents of two boxes. Instead we could have stated that legal moves only consist of
swapping the contents of box 1 and any other box. If this was the case then the solution in Example 1.1
would be illegal, since it started by swapping the contents of boxes 3 and 5, which is a move that doesn’t
involve box 1.

Exercise 1.1: Beginning with the starting position in Figure 1.4, solve the puzzle using only legal moves
of the form: the contents of any box can only be swapped with box 1. In other words, any swap must involve
box 1.

1The black square symbol � is used to indicate the example is finished. Later, when we prove theorems, lemmas, etc. we will use
a hollow square � to denote the end of a proof.
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We could also extend the notion of a legal move beyond ”swaps”. For instance we could restrict ourselves
to use only moves of the form: pick three boxes and cycle the contents either to the right (clockwise) or to the
left (counterclockwise).

For example, consider 6 objects in Figure 1.5, we could cycle the contents of boxes 2, 3 and 5 to the left
(other boxes are shaded to allow us to focus on what is changing).

Figure 1.5: Legal move variation: 3-cycle to the left.

Exercise 1.2: Beginning with the starting position in Figure 1.4, solve the puzzle using only legal moves
consisting of 3-cycles: pick three boxes and cycle the contents either to the right (clockwise) or to the left
(counterclockwise).

We can now describe the puzzle Swap, including all possible variations.

Rules of Swap (n objects):

Let T be a set of n objects, and suppose the objects have been ordered in some way. For example, the objects
can be the numbers 1 to n and the ordering could be their natural ordering from smallest to largest written
from left to right. When the objects are in their proper order, we say they are in their home positions and
the puzzle is in the solved state. LetM be a collection of legal moves.

(a) Puzzle Start: Randomly arrange the numbers 1 through n from left to right.

(b) Puzzle Play: Using only legal moves (i.e. moves inM), return the puzzle to the solved state.

Stated here in its most general form we’ll see that most Rubik’s Cube-like puzzles are just variations of
Swap. Of course, this connection with Swap doesn’t make the Rubik’s Cube any easier to solve, at least not
yet, but it will provide us a way to investigate and understand the cube and other puzzles.

1.2.2 The 15-Puzzle

The 15-puzzle consists of a 4× 4 grid with numbered tiles from 1 to 15 placed in the grid. The space where
the 16 tile would go is left empty. See Figure 1.6a.

(a) The 15-Puzzle in the
solved state

(b) A random arrange-
ment of the 15-Puzzle.

(c) Obtained from 1.6b by
moving the tile in box 7
(tile number 9) to box 6.

Figure 1.6: The 15 Puzzle
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The little numbers in the top left corner of each box are not present on any of the manufactured puzzles,
nor are they present on the software versions of the puzzle. But these little numbers proved to be so handy
in reminding us where each tiles home position is in Swap that we’ll use them here to.

The object of this puzzle is to randomly arrange the tiles on the grid, and then through a sequence of legal
moves which consist of sliding a tile into the empty space (which results in the empty space moving around
the board), one tries to return all tiles to their home positions.

Most currently manufactured versions of the puzzle consist of a tongue-and-groove design which allows
the pieces to slide around but doesn’t allow them to be removed. However, the original versions of the
puzzle (manufactured in the 1880’s) consisted of removable wooden pieces. This little difference in the
construction has significant impact on the solvability of the puzzle. This puzzle started a craze that swept
across the nation, and across the world, from January to April of 1880. All the fuss was centred around the
fact that after randomly putting the wooden blocks back into the box, solving the puzzle seemed to take
you to one of two places: either you solved it completely, or you got every number in its correct position
except the 14 and 15 were switched (see Figure 1.7). In the case when the last two tiles were switched it
seemed the puzzle wasn’t solvable. Cash rewards of $1000 were offered for a solution, and one dentist even
offered a set of teeth to the person who could produce a sequence of moves swapping the 14 and 15 tiles.

Figure 1.7: The 13-15-14 Problem. Can the puzzle be solved by starting from this position?

We will investigate whether this arrangement of the puzzle is solvable, as well as come up with a strategy
for solving the puzzle in general.

Software: This puzzle is widely available as a free download for various operating system (mac/ win/
linux/ ios/ android). Most versions have some sort of picture as the background, instead of the numbers 1
through 15. To find out more see [10].

1.2.3 The Oval Track Puzzle (or TopSpinTM)

The TopSpin puzzle was manufactured by Binary Arts (now called ThinkFun). It was invented by Ferdi-
nand Lammertink, and patented on 3 Oct 1989, US 4,871,173. The puzzle consists of 20 numbered round
pieces in one long looped track (see Figure 1.8). You can slide all the pieces around the loop. There is also
a turntable in the loop (this is the purple circle which contains disks 1 through 4 in Figure 1.8), which can
rotate any four adjacent pieces so that they will be in reverse order. This swaps two adjacent pieces and
the two pieces on either side of them. The aim of this puzzle is to mix up the ordering of the pieces, and
then place the pieces back in numerical order (as shown in Figure 1.8).

This puzzle became a North American classic with over a million copies sold. Nowadays the most common
place to find this puzzle in its physical form is on ebay.

Variations of Oval Track: The name Oval Track has been given to a more general version of the puzzle,
one that is updated for the digital era. By considering virtual versions of the puzzle one can disregard the
mechanical constraints imposed by physical construction, this opens up a whole new world of possibilities
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Figure 1.8: The TopSpin Puzzle in its solved state.

for the turntable move. For example, Figure 1.9 shows two variations of the puzzle. The turntable move
in the original TopSpin puzzle is now replaced with the move indicated by the purple dashed lines. The
new turntable move for the puzzle in Figure 1.9a moves the disk in spot 4 to spot 3, the disk in spot 3 to
spot 2, the disk in spot 2 to spot 1, and takes the disk in spot 1 to spot 4. Another version of the turntable
move involving 6 disks is given in Figure 1.9b. Variations of this puzzle are now limited only by your
imagination.

(a) One variation of the turntable move (b) Another variation of the turntable
move

Figure 1.9: Variations on the Oval Track Puzzle

As usual, it will be convenient to indicate the home positions of the disks. We put little numbers around
the track indicating the number of the disk that should be in that position in the solved puzzle. See Figure
1.10.

Figure 1.10: The TopSpin Puzzle with home positions labeled, and move notation.

Oval Track Notation: A clockwise rotation of numbers around the track, where each number moves
one space, is denoted by R. A counterclockwise rotation is denoted by R−1. A rotation of the turntable is
(in general, an application of the follow the arrows move) is denoted by T . Figure 1.10 provides a visual
summary of this notation.



LECTURE 1 PERMUTATION PUZZLES 7

Software: To find a virtual version of this puzzle see [10].

1.2.4 Hungarian Rings

The Hungarian Rings puzzle consists of two intersecting rings made up of a number of coloured balls. The
rings of balls intersect at two places, so they share two of the balls. Each ring of balls can be rotated, so
the balls can be mixed. The aim is to mix up the balls, and then place the balls back together so the colour
form a continuous sequence (as show in Figure 1.11).

There are 38 balls of four colours: two colours have 9 balls (yellow and blue) and two colours have 10 balls
(black, red). There are 4 balls between the intersections of the rings.

In the Rubik’s Cubic Compendium [page 212], there is a picture of the Hungarian Rings and the following
text by David Singmaster:

Closer to Rubik’s Magic Cube are ’interlocking cycle’ puzzles where several rings of pieces cross
each other. Endre Pap, a Hungarian engineer, invented a flat version with two rings which was
marketed as the Hungarian Rings. The idea was not entirely new, as there is an 1893 patent
for it.

The patent that Singmaster is referring to is US 507,215 by William Churchill, filed on May 28 1891,
granted on October 24, 1893. For a copy of the patent see Jaap’s Puzzle Page [13].

Figure 1.11: Hungarian Rings in its solved state. (manufactured 1982)

To study this puzzle we will temporarily ignore colours, and instead assign a number to each ball. See
Figure 1.12b. We’ll also indicate the home position of each ball by putting little numbers along the outside
of the track. In effect we will study the puzzle of rearranging the numbers 1 through 38 on the two rings.
In some sense this is a more difficult puzzle than the colour version of the puzzle simply because in the
colour version there are really only 4 distinct balls, whereas in the number version there are 38 distinct
balls and each one has only one home position. However, as we’ll see, the added complexity inherited by
using numbers as labels, rather than colours, is manageable, and the benefits gained in understanding the
puzzle are numerous.

Hungarian Rings Notation: A clockwise rotation of the balls in the right-hand ring, where each ball
moves one space around the track, is denoted by R, a counterclockwise rotation is denoted by R−1. A
clockwise rotation of the balls in the left-hand ring, where each ball moves one space around the track,
is denoted by L, a counterclockwise rotation is denoted by L−1. Figure 1.12 provides a visual summary of
this notation.

Software: To find a virtual version of this puzzle see [10].
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(a) Hungarian Rings with home positions la-
beled by numbers.

(b) Hungarian Rings with numbers instead of
colours.

Figure 1.12: Hungarian Rings with disks labeled by numbers

1.2.5 Rubik’s Cube

Rubik’s Cube is probably the most well known mechanical puzzle. It was invented by Ernő Rubik in
Hungary around 1974, and the patent was filed 30 January 1975, HU 170062. Eventually it was produced
and marketed by Ideal Toys in the early 1980s. It is quite possibly the most popular toy to have ever been
manufactured, and many copycat cubes were made. It is estimated that there have been over 350 million
cubes manufactured since 1980, and it is still being manufactured today.

Rubik’s Cube is a cube which is built from smaller cubes where there are 3 cubes along an edge, i.e. a
3 × 3 × 3 cube. The 9 pieces on each face can rotate, which rearranges the small cubes at that face. The
six sides of the puzzle are coloured, so every corner piece shows three colours, every edge piece shows two
colours, and every face centre only one. See Figure 1.13.

(a) View of front (red), right (yellow)
and up (blue) faces.

(b) View of back (orange), left (white)
and down (green) faces.

Figure 1.13: The 3×3×3 Rubik’s Cube with classic colouring scheme: blue opposite green, red opposite orange, white
opposite yellow.

Turning a face does not change the face centres so these can be considered already solved. (This is because
twisting the face centres is not a visible change of pattern. However, if there was an image rather than
a solid colour on the face then this would not be the case anymore.) The other pieces have to be placed
correctly around the centres. This is a particularly important observation because it implies the following:

The colour of the centre piece of any face defines the only colour to which that face of the cube
can be restored.

Cube Terminology & Notation: When playing with the cube the pieces begin to move all around. Since
there are so many moving parts of the cube, it will be convenient to have some terminology to describe each
piece, and its placement in the cube. It will also be convenient to have some notation for basic movements
to aid in communication with one another. Of course, a good choice of notation can bring mathematics into
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the picture as well, as we will soon see. The notation we use was first introduced by David Singmaster in
the early 1980’s, and is the most popular notation in use today.

Fix an orientation of the cube in space. We may label the 6 sides as f , b, r, l, u, d for front, back, right, left,
up, and down.

Figure 1.14: Labeling sides of Rubik’s Cube by f, b, r, l, u, d.

The cube is made up of 26 smaller cubes called cubies. These are the ones that are visible, there actually
isn’t a 27th cube in the middle, but instead a mechanism that allows things to twist and turn. The cube has
6 sides, or faces, each of which has 3 · 3 = 9 facets. Think of a facet as the position a little coloured sticker
can occupy. There are 54 facets in total for the 3× 3× 3 Rubik’s Cube. The cubes split up into three types:
centre cubies (having only one sticker), edge cubies (having two stickers), corner cubies (having three
stickers). See Figure 1.15.

(a) 6 centre cubies and
mechanism

(b) 12 edge cubies (c) 8 corner cubies

Figure 1.15: A disassembled Rubik’s Cube showing the cubies.

Each face of the cube is made up of a slice of 9 cubies that share a facet with the face. The face, along with
all of the 9 cubies in the slice, can be rotated by 90 degrees clockwise (viewing the the face straight-on). We
denote this move by an uppercase letter of the name of the face. For example, F denote the move which
rotates the front face by 90 degrees clockwise. See Table 1.1 for a complete description of cube moves and
notation.

We call the space that a cubie can occupy a cubicle. As the pieces move around, the cubies move from
cubicle to cubicle, and the coloured stickers move from facet to facet. In order to solve the puzzle each cubie
must get restored to its original cubicle, we call this its home location, and each coloured sticker must
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notation pictorial description of basic move
(Singmaster) (view from front) (clockwise/counterclockwise refers to viewing the face straight-on)

F , F−1 F = quarter turn of front face in the clockwise direction.
F−1= quarter turn of front face in the counterclockwise direction.

B , B−1 B = quarter turn of back face in the clockwise direction.
B−1= quarter turn of back face in the counterclockwise direction.

R , R−1 R = quarter turn of right face in the clockwise direction.
R−1= quarter turn of right face in the counterclockwise direction.

L , L−1 L = quarter turn of left face in the clockwise direction.
L−1= quarter turn of left face in the counterclockwise direction.

U , U−1 U = quarter turn of up face in the clockwise direction.
U−1= quarter turn of up face in the counterclockwise direction.

D , D−1 D = quarter turn of down face in the clockwise direction.
D−1= quarter turn of down face in the counterclockwise direction.

F 2, B2, R2, L2, U2, D2 denote the corresponding half-turn of the face.
Since a clockwise half-turn is equivalent to a counterclockwise half-turn then

F 2 = F−2, B2 = B−2, R2 = R−2, L2 = L−2, U2 = U−2, D2 = D−2

Table 1.1: Summary of cube move notation

get restored to its original facet, we call this the cubies home orientation. Once all cubies are in their
home positions and home orientations the puzzle will be solved.

Table 1.2 summarizes the terminology introduced here.

Terminology Definition or Abbreviation

cubies The small cube pieces which make up the whole cube.

sticker A colored face of a cubie.

cubicles The spaces occupied by the cubies.

facets The faces of a cubicle, or space occupied by a sticker.

types of cubies: A corner cubie has three facets.
corner, edge, and centre: An edge cubie has two facets.

A centre cubie has one facet

home location - of a cubie The cubicle to which a cubie should be restored.

home position - of a cubie The orientation in the home location to which a cubie should
be restored.

positional names Up (u) Down (d) Right (r) Left (l)
for cube faces Front (f ) Back (b)

Notation for cubicles Lower case initials. For example, uf denotes the Up-Front
- shown in italics edge cubicle, dbl denotes the Down-Back-Left cubicle.

Notation for cubies Upper case initials. For example, URF denotes the cubie
- shown in italics whose home position is in the the Up-Right-Front corner (i.e.

cubicle ufr).

Table 1.2: Summary of terminology and notation
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Since the center facets are fixed by the basic moves there are only 54 − 6 = 48 facets that move. If we
label the facets as in Figure 1.16 then we see that each basic move corresponds to a rearrangement, or
permutation of the numbers 1 through 48. In this way we see that the Rubik’s Cube is much like the puzzle
Swap, in the sense that we have a set of 48 numbers and a set of legal movesM (the 6 basic cube moves)
which allow us to rearrange these numbers in some way.

Figure 1.16: Facet labeling on the 3× 3× 3 Rubik’s Cube.

Variations of Rubik’s Cube: The Rubik’s Cube is the puzzle that started the whole twisty puzzle craze.
Since its invention hundreds of different types of twisty puzzle of all shapes and sizes have been designed.
Puzzles of this type are often called Rubik’s Cube-like puzzles, or twisty puzzles, or permutation puzzles.
Figure 1.17 gives some examples.

(a) Pocket Cube
4 × 4 × 4

(b) Rubik’s Revenge
4 × 4 × 4

(c) Professor’s Cube
5 × 5 × 5

(d) V-Cube 6 × 6 × 6 (e) V-Cube 7 × 7 × 7

Figure 1.17: n× n× n Cubes
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1.3 Which brings us to the Definition of a Permutation Puzzle

The 15-Puzzle, Oval Track puzzle, Hungarian Rings and Rubik’s Cube are all variations of the same theme.
Each one consisted of pieces that were rearranged, or permuted, in some way, and the goal is to try to
restore the pieces to their original positions. The legal moves that one is allowed to use is forced by the
design or construction of the puzzle. Puzzles of this type known as permutation puzzles. Since these type
of puzzles are the main focus of this course, we shall give a precise definition for this term.

A one person game is a sequence of moves following certain rules which satisfy:

• there are finitely many moves at each stage,

• there is a finite sequence of moves which yields a solution,

• there are no “chance” or “random” moves (such as rolling a dice to determine what to do next),

• there is complete information about each move,

• each move depends only on the present position, not on the existence or non-existence of a certain
previous move (such as chess, where castling is made illegal if the king has been moved previously).

A permutation puzzle is a one person game (solitaire) with a finite set T = {1, 2, . . . , n} of puzzle pieces
satisfying the following four properties:

(a) For some n > 1 depending only on the puzzle’s construction, each move of the puzzle corresponds to
a unique permutation of the numbers in T,

(b) If the permutation of T in (a) corresponds to more than one puzzle move then the two positions
reached by those two respective moves must be indistinguishable,

(c) Each move, say M , must be ”invertible” in the sense that there must exist another move, say M−1,
which restores the puzzle to the position it was at before M was performed, In this sense, we must
be able to “undo” moves.

(d) If M1 is a move corresponding to a permutation τ1 of T and if M2 is a move corresponding to a
permutation τ2 of T then M1 ·M2, which denotes the move M1 followed by the move M2 (notice the
order the moves are applied is from left to right), is either

• not a legal move, or

• corresponds to the permutation τ1τ2.

Notation: We will always write successive puzzle moves from left to right, as we did in step (d) above.

1.4 Exercises

1. Get your own Rubik’s Cube. Whether you buy or borrow, make sure you have access to a Rubik’s
Cube while working through this book. If you don’t know where to buy one, then check the course
website, some suggestions are posted.
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2. Get familiar with Rubik’s Cube, and all the other puzzles we have just discussed. The website accom-
panying this book has links to virtual versions of the puzzles: http://www.sfu.ca/ jtmulhol/math302/.
Download your own copy of the ones that are available, and bookmark the ones that are “online only”
versions. Play with these puzzles. Don’t worry if you can’t solve them, this will come. But for now
just get familiar with the puzzles, and the movements of the pieces.

3. Solve the Swap puzzle given in Figure 1.18, using the original set of legal move: swap the contents of
any two boxes.

Figure 1.18: Swap position for Exercises 3, 4, 5.

4. Solve the Swap puzzle in Figure 1.18, using only legal moves of the form: the contents of any box can
only be swapped with box 1.

5. Can you solve the Swap puzzle given in Figure 1.18, using only legal moves consisting of 3-cycles:
pick three boxes and cycle the contents either to the right (clockwise) or to the left (counterclockwise)?

6. Consider the starting arrangement of tiles for the Swap puzzle in Figure 1.19.

(a) Solve the puzzle using only legal moves of the form: the contents of any box can only be swapped
with box 1.

(b) Solve the puzzle using only legal moves consisting of 3-cycles: pick three boxes and cycle the
contents either to the right (clockwise) or to the left (counterclockwise).

(c) Solve the puzzle using only legal moves consisting of pairs of swaps: pick four boxes, swap the
contents of two boxes, and swap the contents of the other two boxes.

Figure 1.19: Swap position for Exercise 6.

7. Can you solve the Swap puzzle given in Figure 1.18, using only legal moves consisting of pairs of
swaps: pick four boxes, swap the contents of two boxes, and swap the contents of the other two boxes?

8. Verify that each of the puzzles we’ve encountered: Swap, 15-Puzzle, Oval Track, Hungarian Rings and
Rubik’s Cube, are permutation puzzles. That is, show that the definition of the term “permutation
puzzle” is satisfied by these puzzles.

http://www.sfu.ca/~jtmulhol/math302/
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Lecture 2

A Bit of Set Theory

2.1 Introduction

Rubik’s Cube is made up a number of different pieces: corner cubies, edge cubies, and center cubies (see
Lecture 1 for definitions of these terms). Each collection of these pieces forms a set. In order to understand
how these pieces move around we need to understand how the cube moves F,B,R,L, U,D act on these
sets. In this lecture we recall some basic terminology and notation from set theory which will form the
foundation for our mathematical investigations into Rubik’s Cube and other puzzles.

2.2 Sets and Subsets

A set is a well-defined collection of objects. The objects of the set are called elements, and are said to be
members of, or belonging to, the set.

By well-defined we mean that for any element we wish to consider, we are able to determine, under some
scrutiny, whether or not it is a member of the set.

Typically we will use capital letters, such asA, B, C, . . . to represent sets and lower case letters to represent
elements. For a set A we write x ∈ A if x is an element of A, and y 6∈ A if y is not an element in A.

Sets are usually defined in one of two ways:

(a) Listing all of its elements in braces: A = {a, b, c, . . .}. For example A = {1, 2, 3, 4, 5} is the set of
integers from 1 to 5. Therefore, 3 ∈ A, but 6 6∈ A.

(b) Using set-builder notation: A = {x | x has property P}. For example we could define the previous
set A as {x | x is an integer and 1 ≤ x ≤ 5}. The vertical bar “ | ” is read “such that” . The symbols
{x | . . .} are read “the set of all x such that . . . ”. Some authors use a colon “:” instead of “ | ”, so we
could also write A = {x : x has property P}.

Some basic sets of numbers we should be familiar with are:

• Z = the set of integers = {. . . ,−2,−1, 0, 1, 2, 3, . . .},

• N = the set of nonnegative integers or natural numbers = {0, 1, 2, 3, . . .} = {x ∈ Z | x ≥ 0},

• Z+ = the set of positive integers = {1, 2, 3, . . .} = {x ∈ Z | x > 0},

15
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• Q = the set of rational numbers =
{ a
b

∣∣∣ a, b ∈ Z, b 6= 0
}

,

• Q+ = the set of positive rational numbers = {x ∈ Q |x > 0},

• R is the set of real numbers.

• [n] = {1, 2, . . . , n} = the set of integers from 1 to n, where n ∈ Z+.

Let A and B be sets. If all the elements of A also belong to B then we say A is a subset of B and we write
A ⊂ B. For example, Z+ ⊂ Z since every positive integer is itself an integer, but Q 6⊂ Z, since there are
rational numbers that are not integers, for example 1

2 .

Two sets A and B are said to be equal, and we write A = B, if A ⊂ B and B ⊂ A.

If a set has a finite number of elements then we say it is a finite set. Otherwise it is an infinite set. For
any finite set A, |A| denotes the number of elements in A and is called the cardinality, or size, of A. For
example, |[n]| = n, whereas Z in an infinite set.

The empty set, or null set, is the set that contains no elements. The empty set is denoted by ∅, or {}, and
has that property that |∅| = 0.

Let A and B be two sets. The set of all elements belonging to either A or B is denoted A ∪B and is called
the union of A and B. The set of all elements belonging to both A and B is denoted A ∩B and is called
the intersection of A and B. The set of all elements not belonging to A is denoted Ac or sometimes by A,
and is called the complement of A. 1 The set of all elements in A that are not in B is denoted A−B and
is called the difference of A with B. We sometimes refer to this as A take away B.

The Cartesian product of A and B is the set of all ordered pairs (x, y) where x ∈ A and y ∈ B and is
denoted by A×B.

The following summarizes the different operations we have on sets:

A ∪B = {x | x ∈ A or x ∈ B},
A ∩B = {x | x ∈ A and x ∈ B},

Ac = A = {x | x 6∈ A},
A−B = {x | x ∈ A and x 6∈ B} = A ∩Bc

A×B = {(x, y) | x ∈ A and y ∈ B}.

We call two sets disjoint if they have no element in common: A and B are disjoint if A ∩B = ∅.

2.3 Laws of Set Theory

Some of the major laws that govern set theory are the following.

For any sets A, B, and C taken from a universe U

1In defining the complement we need to specify the elements we are considering. That is, we need to consider A as a subset of
some larger set. To see why, just think about what could be meant by Zc? Does this mean all elements in Q not in Z, or all elements
in R not in Z, or something else entirely. The larger set to which we consider A as a subset will be called the universe or universe of
discourse denoted by U . It will be clear, given the context, as to what universe we are working in. What this means though is that we
should really write Ac = {x | x ∈ U and 6∈ A}.
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1) (Ac)c = A Law of Double Negation
2) (A ∪B)c = Ac ∩Bc DeMorgan’s Laws

(A ∩B)c = Ac ∪Bc
3) A ∪B = B ∪A Commutative Laws

A ∩B = B ∩A
4) A ∪ (B ∪ C) = (A ∪B) ∪ C Associative Laws

A ∩ (B ∩ C) = (A ∩B) ∩ C
5) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) Distributive Laws

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
6) A ∪A = A Idempotent Laws

A ∩A = A
7) A ∪ ∅ = A Identity Laws

A ∩ U = A
8) A ∪Ac = U Inverse Laws

A ∩Ac = ∅
9) A ∪ U = A Domination Laws

A ∩ ∅ = ∅
10) A ∪ (A ∩B) = A Absorbtion Laws

A ∩ (A ∪B) = A

These set theoretic laws are similar to the arithmetic properties of the real numbers, where “∪” plays the
role of “+”, and “∩” plays the role of “×”. However, there are several differences.

We will prove the first part of the Distributive Law, and leave the proof of all others to the reader. See
Exercise 8 and 9 for the second part of the Distributive Law and DeMorgan’s Law. Also see Exercise 10
where the reader is asked to provide proofs for the remaining laws of set theory.

Proof: Let x ∈ U . Then

x ∈ A ∪ (B ∩ C) ⇔ x ∈ A or x ∈ B ∩ C
⇔ x ∈ A or x is in both B and C
⇔ x ∈ A ∪B and x ∈ A ∪ C
⇔ x ∈ (A ∪B) ∩ (A ∪ C)

This completes the proof. �

We also state a result about the cardinality of a disjoint union of sets.

Theorem 2.1: Let A1, A2, . . . , An be disjoint finite sets. Then

|A1 ∪ · · · ∪An| = |A1|+ · · ·+ |An|.

Proof: In the case of two sets (i.e. n = 2), let A and B be two disjoint finite sets and write A =
{a1, a2, . . . , ak} and B = {b1, b2, . . . , b`}. Since A and B are disjoint then

A ∪B = {a1, a2, . . . , ak, b1, b2, . . . , b`}

and so |A ∪B| = k + ` = |A|+ |B|. The general case follows by mathematical induction. �
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2.4 Examples Using Sage

Example 2.1: In this example we show how to define a set, and compute cardinalities, unions, intersec-
tions, differences and cartesian products using Sage.

Sage
sage: S1=Set([1,2,3,4,5]);
sage: S2=Set([3,4,5,6,7]);
sage: S1;S2;
{1, 2, 3, 4, 5}
{3, 4, 5, 6, 7}
sage: S1.cardinality()
5
sage: S1.union(S2)
{1, 2, 3, 4, 5, 6, 7}
sage: S1.intersection(S2)
{3, 4, 5}
sage: S1.difference(S2)
{1,2}
sage: S2.difference(S1)
{6,7}
sage: CartesianProduct(S1, S2)
Cartesian product of {1, 2, 3, 4, 5}, {3, 4, 5, 6, 7}
sage: CartesianProduct(S1,S2).list()
[[1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [2, 3], [2, 4], [2, 5], [2, 6],
[2, 7], [3, 3], [3, 4], [3, 5], [3, 6], [3, 7], [4, 3], [4, 4], [4, 5],
[4, 6], [4, 7], [5, 3], [5, 4], [5, 5], [5, 6], [5, 7]]
sage: CartesianProduct(S1,S2).cardinality()
25
sage: 2 in S1
True
sage: 1 in S2
False

Example 2.2: Sage has a number of commonly used sets already built in: Z, N, Q, R. The commands are
ZZ, NN, QQ, and RR, respectively.

Sage
sage: ZZ
Integer Ring
sage: 1 in ZZ
True
sage: 1/2 in ZZ
False
sage: 0 in NN
True
sage: -1 in NN
False

Example 2.3: We can build a set by using properties in Sage. Here we use Python’s modulo operator %:
a%b returns the remainder of a when divided by b.

Sage
sage: Set(x for x in range(0,10) if x%2==0)
{0, 2, 4, 6, 8}
sage: Set(x for x in range(0,10) if x%2==1)
{1, 3, 9, 5, 7}
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Example 2.4: The is_prime() function returns True if the input is a prime integer, and False if not.
Such functions are called boolean valued functions. We can use boolean valued function to create
subsets as this example shows.

Sage
sage: is_prime(29)
True
sage: is_prime(4)
False
sage: Set(x for x in range(0,10) if is_prime(x))
{2, 3, 5, 7}
sage: Set(x for x in range(0,1000) if is_prime(x)).cardinality()
168

The last computation shows there are 168 prime numbers less than 1000.

We can also use the filter() command in Python. You can get more information on filter() by typing
filter? at the Sage prompt.

Sage
sage: S=Set(1..20) #constructs a set of all integers from 1 to 20
sage: filter(is_prime,S)
[2, 3, 5, 7, 11, 13, 17, 19]

2.5 Exercises

1. Which of the following sets are equal?

(a) {1, 2, 3} (b) {2, 3, 1, 3} (c) {3, 2, 1, 1, 2} (d) {1, 3, 3, 2, 1, 3}

2. Let A = {1, {1}, {2}}. Which of the following statements are true?

(a) 1 ∈ A
(b) {1} ∈ A

(c) {1} ⊂ A
(d) {{1}} ⊂ A

(e) {2} ∈ A
(f) {2} ⊂ A

(g) {{2}} ⊂ A
(h) {1, 2} ⊂ A

3. Determine all the elements of the following sets.

(a) {1 + (−1)n | n ∈ N}
(b) {n ∈ N | n ≤ 20 and n is divisible by 3}
(c) {n ∈ N | n ≤ 20, n is prime, and 2n+ 1 is divisible by 3}

4. Determine the cardinality of the following sets.

(a) The set of all cubies of the Rubik’s Cube which have a blue facet.
(b) The set of all corner cubies of the Rubik’s Cube which have a blue facet.

5. Consider the set A = {1, 2, 3, 4, 5}.

(a) How many subsets of cardinality 1 does A have?
(b) How many subsets of cardinality 2 does A have?
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(c) How many subsets does A have in total?
(Hint: don’t forget the empty subset, and the set A itself, when counting subsets.)

6. For U = [10], let A = {1, 2, 3, 4, 5}, B = {1, 2, 4, 8} and C = {1, 2, 3, 5, 7}. Determine each of the
following.

(a) (A ∪B) ∩ C
(b) (A ∪B)− C
(c) Ac ∩Bc

(d) |A ∪B|

7. Verify your answers to question 6 by using Sage.

8. Prove the second Distributive Law stated in Section 2.3.

9. Prove DeMorgan’s laws stated in Section 2.3.

10. Prove all the remaining laws of set theory that are stated in Section 2.3.



Lecture 3

Permutations

The puzzles we have encountered so far all have a common theme: the pieces can be mixed up, and the goal
is to restore the pieces back to some proper order. In this lecture we will introduce some terminology and
notation for talking about rearrangements of objects. In particular, we give the definition of a permutation,
which is the main object we will use to study puzzles. We’ll also discuss permutation multiplication,
inverses, and order.

3.1 Permutation: Preliminary Definition

In mathematics, the notion of permutation is used with several slightly different meanings, all related to
the act of permuting (rearranging in an ordered fashion) objects or values. Informally, a permutation of a
set of objects is an arrangement of those objects into a particular order.

Example 3.1: There are six permutations of the objects in the set {♣,♦,♥}, namely [♣,♦,♥], [♣,♥,♦],
[♦,♣,♥], [♦,♥,♣], [♥,♣,♦], and [♥,♦,♣].

Notation: Curly braces {, } denote sets, i.e. the order that elements are listed doesn’t matter. Square
braces [, ] denote lists, i.e. the order that elements appear does matter. So as sets {1, 2, 3} = {2, 1, 3} but as
lists [1, 2, 3] 6= [2, 1, 3].

Sage
sage: Set([1,2,3])==Set([2,1,3])
True
sage: [1,2,3]==[2,1,3]
False

Example 3.2: There are 5040 ways to arrange the seven books in the Harry Potter series on your book-
shelf. If we let 1 denote Volume 1: Philosopher’s Stone, 2 denote Volume 2: Chamber of Secrets, etc.
then, for example, two possible permutaions are [1, 3, 5, 7, 2, 4, 6] and [5, 2, 1, 3, 7, 4, 6]. Of course, out of all
these possible permutations the most likely way to place them on the bookshelf is in numerical order:
[1, 2, 3, 4, 5, 6, 7].

To determine the number of permutations we imagine 7 empty slots on the bookshelf which we are about
to fill. There are 7 ways to pick a book and place it in slot 1. For each of these choices, there are now 6

21
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possible ways to fill slot 2, then 5 possible ways to fill slot 3, etc. So the total number of ways to fill the 7
slots is: 7 · 6 · 5 · 4 · 3 · 2 · 1 = 7! = 5040.

Sage
sage: factorial(7)
5040

Example 3.3: In the game of Swap on 5 objects the empty puzzle board is shown in Figure 3.1a.

(a) The empty Swap board (b) A random arrangement of
Swap.

Figure 3.1: Game of Swap

The puzzle board is filled by laying out the tiles numbered 1 through 5 in the boxes. For example, one
such puzzle position is shown in Figure 3.1b. Each puzzle position corresponds to a permutation of the set
[5] = {1, 2, 3, 4, 5}. There are 5! = 120 permutations of [5], and so there are 120 different possible positions
in the game of Swap. Only one of which is the solved state.

Example 3.4: The fifteen puzzle with no tiles in the boxes is shown in Figure 3.2a.

(a) The empty 15-Puzzle
board

(b) A random arrange-
ment of the 15-Puzzle.

Figure 3.2: The 15 Puzzle

The puzzle is started by placing the 15 tiles anywhere on the board. For example, one such puzzle position
is shown in Figure 3.2b. This corresponds to a permutation of the set [16] = {1, 2, . . . , 16}, where we imagine
the blank space as being the 16th tile. There are 16! = 20, 922, 789, 888, 000 permutations of [16], and so there
are 16! different ways to lay the tiles on the board. As for which positions are actually solvable, this is one
of the key questions we will investigate later.

We can use Sage to generate permutations of a list, for example [1, 2, 3].

Sage
sage: terms=[1,2,3];
sage: Permutations(terms)
Permutations of the set [1, 2, 3]
sage: Permutations(terms).list();
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
sage: number_of_permutations(terms)
6
sage: factorial(3)
6
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Sometimes when listing permutations of a set we will omit the square braces. For example the 6 permuta-
tions of [1, 2, 3] can be listed as: 123, 132, 213, 231, 312, 321.

We can also list permutations of a multi-set, that is a set with more than one element repeated. Though,
to define a multi-set we would actually need to use a list.

Example 3.5: Two permutations of the multi-set [a, a, b, b, b] are [b, a, b, a, b] and [b, b, a, a, b]. There are
5!

2! · 3!
= 10 permutations in total. (Since there are 5! ways to arrange 5 objects, but 2 of the objects are

identical, and so are the other 3.)

Sage
sage: var(’a,b’);
sage: terms=[a,a,b,b,b];
sage: Permutations(terms)
Permutations of the multi-set [a, a, b, b, b]
sage: Permutations(terms).list();
[[a, a, b, b, b], [a, b, a, b, b], [a, b, b, a, b], [a, b, b, b, a], [b,
a, a, b, b], [b, a, b, a, b], [b, a, b, b, a], [b, b, a, a, b], [b, b,
a, b, a], [b, b, b, a, a]]
sage: number_of_permutations(terms)
10
sage: factorial(5)/(factorial(2)*factorial(3))
10

3.2 Permutation: Mathematical Definition

It will be convenient for us to have a slightly more mathematical definition of a permutation. Before we give
this formal definition however it is best to start by recalling the notion of a function, and the properties:
one-to-one, and onto.

3.2.1 Functions

Definition 3.1: A function, or mapping, f from a (nonempty) set A to a (nonempty) set B is a rule
that associates each element a ∈ A to exactly one element b ∈ B.

Notation & Terminology: We write f : A → B to denote a function named f from set A to set B. A is
called the domain of f and B the codomain . If f sends a to b then we write f(a) = b, or f : a 7→ b. We
also say b is the image of a under f . The subset of B consisting of all images f(a), for a ∈ A, is called the
range of f , and is written:

f(A) = {f(a) | a ∈ A} ⊂ B.

See Figure 3.3 for a pictorial representation of these ideas.

Definition 3.2: A function f : A→ B is called one-to-one, or injective, if each element ofB appears
at most once as the image of an element of A.
A function f : A → B is called onto, or surjective, if f(A) = B. That is, if each element of B is the
image of at least one element of A.
A function that is both injective and surjective is called bijective .
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Figure 3.3: The way to visualize a function f , domain A, codomain B and range (shaded region).

3.2.2 Permutations

We are now ready to give the definition of a permutation.

Definition 3.3: A permutation of a set A is a function α : A → A that is bijective (i.e. both one-to-
one and onto).

Our goal is to understand how the pieces of a puzzle move around, so we typically represent each piece by
a number, that is by an element of [n] = {1, 2, 3, . . . , n}. A rearrangement of the pieces then corresponds to
a bijection from [n]→ [n], in other words a permutation as defined above.

Unlike in calculus, where most functions are defined on infinite sets and given by formulas, permutations
of finite sets are usually given by simply listing where each value goes.

For example, we can define a permutation α of the set {1, 2, 3} by stating:

α(1) = 2, α(2) = 1, α(3) = 3.

In Sage we can use the Permutation() command to construct a permutation. Here we define the per-
mutation by the list of images [α(1), α(2), . . .].

Sage
sage: a=Permutation([2,1,3]); a
[2,1,3]
sage: a(1)
2
sage: a(2)
1

A slightly more convenient way to represent this permutation is by:

α↔
(

1 2 3
2 1 3

)
where the top row are the element of [3] = {1, 2, 3} and the bottom row are the corresponding images under
α. This is known as array notation for a permutation.

Here is an example of how to use matrices in Sage to display a permutation in array form. One way is to
use the matrix() command, where the syntax is
matrix( [ <list for row 1> , <list for row 2> ] ).
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Sage
sage: a=Permutation([2,1,3])
sage: matrix([[1,2,3],[a(i) for i in [1,2,3]]]);
[1 2 3]
[2 1 3]

A more visual representation is by means of an arrow diagram. The arrows point from x to α(x).

α

s s s

s s s

1 2 3

2 1 3

@
@
@
@
@
@R

�
�

�
�
�
�	 ?

Array Notation: In general, we may define a permutation α : [n]→ [n] by a 2× n array:

α↔
(

1 2 ... n
α(1) α(2) ... α(n)

)
.

Since α is bijective the second row would just be a rearrangement of the numbers in the top row.

Example 3.6:

(a) The identity permutation, denoted by ε, or I, is the permutation that does nothing:

ε↔
(

1 2 ... n
1 2 ... n

)
.

It may not seem obvious why we would want to consider the “do nothing” permutation, but we will
consider this permutation quite a bit. As an analogy, think about 0, this is a symbol which represents
“nothing” but yet appears almost everywhere in mathematics.

(b) An n-cycle is a permutation which cyclically permutes the values. For example,(
1 2 3 ... n− 1 n
2 3 4 ... n 1

)
.

We could also visualize this with an arrow diagram:

Every number moves to the right and the last one, n, cycles around back to 1.
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3.3 Composing Permutations

We now look at how to combine two permutations in order to produce a third one. The method we use is
called composition, or we’ll sometimes refer to it as multiplication. This will be precisely the tool we will
need in order to understand how two puzzle moves combine together to give a third.

Let α and β be two permutations of [n]. Recall that this means α, β : [n] → [n] are both injective and
surjective. We wish to define a new function α ◦ β : [n]→ [n], called the permutation composition. In order
to define a function on [n] we just need to specify how it maps the elements. For k ∈ [n] we’ll define (α◦β)(k)
to be the result of first applying α, then applying β to the result. In other words,

(α ◦ β)(k) = β(α(k)), for k ∈ [n].

This new function is again a permutation. To see why we just need to observe that it is a bijection.

Injective: Suppose (α ◦ β)(k) = (α ◦ β)(`) for some k, ` ∈ [n], then β(α(k)) = β(α(`)) implies α(k) = α(`),
since β is one-to-one. It follows that k = ` since α is one-to-one. Therefore, α ◦ β is one-to-one.

Surjective: Consider any m ∈ [n]. Let ` ∈ [n] such that β(`) = m, and let k ∈ [n] such that α(k) = `. Both `
and k exist since α and β are onto. It follows that (α ◦ β)(k) = β(α(k)) = m. Therefore, α ◦ β is onto. This
verifies that α ◦ β is a permutation.

This way of combining permutations will essentially underline everything we do in this course so we should
make this a formal definition. We will also drop the symbol ◦ to simplify writing.

Definition 3.4: Let α, β : [n]→ [n] be two permutations. The permutation composition, or prod-
uct, of α and β is denoted by αβ : [n]→ [n] is the permutation defined by:

αβ : [n] → [n] → [n]
k 7−→ α(k) 7−→ β(α(k))

The identity permutation ε, defined in Example 3.6a has the property that εα = αε = α for any permuta-
tion α.

Important: Notice that the composition is opposite to the way functions were combined in calculus. In
calculus, and in most branches of mathematics, there is a long standing tradition that variables are to
appear to the right of the function: f(x). The composition, (f ◦ g)(x) is then read from right-to-left: f(g(x)).
So why are we defining the composition of permutations as left-to-right, and going against long standing
mathematical tradition? Imagine you were asked to apply the move sequence RF−1 to a Rubik’s Cube.
What move would you do first, R or F−1? Popular convention is to read from left-to-right and apply R first,
then F−1. For example, this is how you are reading the words on the page right now, from left-to-right.
This is precisely the convention we are using to combine permutations, we combine them from left-to-right.

Example 3.7: (a) Let α =

(
1 2 3 4 5
5 3 1 4 2

)
and β =

(
1 2 3 4 5
5 3 2 1 4

)
. Then

αβ =

(
1 2 3 4 5
5 3 1 4 2

)(
1 2 3 4 5
5 3 2 1 4

)
=

(
1 2 3 4 5
4 2 5 1 3

)
.

? ?

?
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On the right we have 4 under 1, since αβ(1) = β(α(1)) = β(5) = 4, so αβ sends 1 to 4. This is
illustrated by following the arrows above. Notice the movement is from left-to-right, which is our
chosen convention for composing two permutation. The other values are determined in a similar
fashion.

We can use Sage to multiply permutations.
Sage

sage: a=Permutation([5,3,1,4,2]); a
[5, 3, 1, 4, 2]
sage: b=Permutation([5,3,2,1,4]); b
[5,3,2,1,4]
sage: a*b
[4, 2, 5, 1, 3]

We can also use the arrow diagram representation for permutations to give us more visual insight
into how permutations are composed:

If we compose α and β in the other order, we find

βα =

(
1 2 3 4 5
5 3 2 1 4

)(
1 2 3 4 5
5 3 1 4 2

)
=

(
1 2 3 4 5
2 1 3 5 4

)
.

This shows that permutation composition is not commutative in general. That is, we typically have
αβ 6= βα.

Sage
sage: b*a
[2, 1, 3, 5, 4]
sage: a*b==b*a
False

(b) Let α =

(
1 2 3 4 5 6 7 8
3 2 7 8 1 4 5 6

)
and β =

(
1 2 3 4 5 6 7 8
5 2 1 6 7 8 3 4

)
. Then

αβ =

(
1 2 3 4 5 6 7 8
3 2 7 8 1 4 5 6

)(
1 2 3 4 5 6 7 8
5 2 1 6 7 8 3 4

)
=

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
= ε.

Therefore αβ is the identity permutation. Permutations with the property that their product is ε are
called inverse permutations, since one permutation is undoing the rearrangement the other one
performed.

(c) For any permutation α we can take the product of α with itself: αα, we write this as α2. In general
we write the product of α with itself n-times, αα · · ·α, as αn.

Suppose α =

(
1 2 3 4 5
3 4 1 5 2

)
, then the powers of α are:

α2 = αα =

(
1 2 3 4 5
1 5 3 2 4

)
, α3 = αα2 =

(
1 2 3 4 5
3 2 1 4 5

)
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α4 = αα3 =

(
1 2 3 4 5
1 4 3 5 2

)
, α5 = αα4 =

(
1 2 3 4 5
3 5 1 2 4

)
α6 = αα5 =

(
1 2 3 4 5
1 2 3 4 5

)
.

Check these products yourself. We see that α6 is the identity permutation. This raises the question:
Can we always multiply a permutation to itself a finite number of times and end up with the identity
permutation?

From the previous example two questions are raised:

(i) For any permutation α, must there exist a permutation β such that αβ = ε?

(ii) For any permutation α, must there exist a positive integer n such that αn = ε?

If we think about a permutation as a move on one of our puzzles, say Rubik’s Cube, then these questions
are equivalent to asking: (i) When a move is applied, can it then be undone by another move? (ii) Applying
the same move over and over again, will you eventually get back to where you started?

Phrased in this way, it may seem obvious that the answer is yes in both cases. For example, if the move F
was applied (clockwise quarter turn of the front face), then the move F−1 undoes it (counterclockwise turn
of the front face). Try this on your Rubik’s Cube. Moreover, for the move F , applying it 4 times in a row
takes you back to where you started. This means F 4 is the identity, or do-nothing move. If the answer to
the questions above is now obvious then you already have a working understanding of inverses and orders.

We’ll discuss these topics in a little more detail over the next few sections. But first let’s play with the cube
a little more.

Exercise 3.1: Consider Rubik’s Cube and the legal moves F , B, R, L, U , D, F−1, B−1, R−1, L−1, U−1,
D−1, and all successive combinations of these moves.

Recall a move sequence is read as follows: F−1U2 means first twist the front face a quarter turn in the
counterclockwise direction, then turn the up face a half turn in the clockwise direction.

(a) What is the inverse of the move sequence F−1U2? That is, if you apply move sequence F−1U2, then
what is the sequence of moves which will undo this?

(b) How many times does the move sequence U2R2 need to be applied in order to get you back to where
you started? (Play with your cube to figure this out, and try not to lose count as you’re twisting faces.)

Answer on page 37

3.4 Associativity of Permutation Composition

When adding and multiplying real numbers we don’t need to worry about what to do first. For example,
in the expression 2 · 3 · 4 we get the same result if we multiply 2 and 3 first, then multiply the result by 4:
(2 · 3) · 4 = 6 · 4 = 24, as we get if we multiply 3 and 4 first, then multiply by 2: 2 · (3 · 4) = 2 · 12 = 24. This
property of multiplication is called associativity, and it is written: (ab)c = a(bc) for all a, b, c ∈ R.

What associativity means is that we can write the product of three (or more) numbers without having to
use grouping brackets: abc. Since no matter which product you take first it will not affect the result.

The same is true for addition of real numbers: (a+ b) + c = a+ (b+ c). This means we can write a+ b+ c
without any confusion about which sum to perform first.
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A fundamental question to ask is: Is permutation composition associative? That is, must we have (αβ)γ =
α(βγ)?

The answer is yes, permutation composition is associative. Lucky for us, this means we don’t have to
use group brackets when writing long chains of products. The reason it is associative is simply because
permutations are functions, and function composition is associative. To see why, consider permutations
α, β, γ : [n]→ [n]. For any k ∈ [n],

((αβ)γ)(k) = γ((αβ(k)) = γ(β(α(k))

and
(α(βγ))(k) = (βγ)(α(k)) = γ(β(α(k)),

which are the same. 1 So (αβ)γ = α(βγ).

This means we can write αβγ for the product of these three permutations and there is no confusion about
what product we should do first. The result won’t change.

Example 3.8: Let α =

(
1 2 3 4 5
5 3 1 4 2

)
, β =

(
1 2 3 4 5
5 3 2 1 4

)
, and γ =

(
1 2 3 4 5
2 1 4 3 5

)
. Then

(αβ)γ =

[(
1 2 3 4 5
5 3 1 4 2

)(
1 2 3 4 5
5 3 2 1 4

)](
1 2 3 4 5
2 1 4 3 5

)
=

[(
1 2 3 4 5
4 2 5 1 3

)](
1 2 3 4 5
2 1 4 3 5

)
=

(
1 2 3 4 5
3 1 5 2 4

)
and

α(βγ) =

(
1 2 3 4 5
5 3 1 4 2

)[(
1 2 3 4 5
5 3 2 1 4

)(
1 2 3 4 5
2 1 4 3 5

)]
=

(
1 2 3 4 5
5 3 1 4 2

)[(
1 2 3 4 5
5 4 1 2 3

)]
=

(
1 2 3 4 5
3 1 5 2 4

)
It shouldn’t come as a surprise that we get the same result for (αβ)γ and α(βγ). This is what associativity
means. We write this product as αβγ.

3.5 Inverses of Permutations

In Example 3.7(b) we saw two permutations α and β such that αβ = ε. We will call permutations with the
property that their product is the identity, inverses. Let’s look at this example a little more closely.

The permutations under consideration are:

α =

(
1 2 3 4 5 6 7 8
3 2 7 8 1 4 5 6

)
and β =

(
1 2 3 4 5 6 7 8
5 2 1 6 7 8 3 4

)
.

We can represent α by an arrow diagram. Each blue arrow represents the mapping defined by the per-
mutation α. If we replace each blue arrow with a red arrow pointing in the opposite direction then we get
an arrow diagram representing β (follow arrows from bottom row to top row). In this sense, the inverse
permutation is obtained by “reversing the arrows”.

1Our convention is to compose permutations from left to right, see Definition 3.4.
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We can do the same experiment with the array form of β. Let’s flip β over, that is, we’ll switch the top and
bottom rows: (

5 2 1 6 7 8 3 4
1 2 3 4 5 6 7 8

)
,

then let’s put the top row in increasing order, while keeping all the columns in tact:(
1 2 3 4 5 6 7 8
3 2 7 8 1 4 5 6

)
.

This precisely α! Should we be surprised this happened? What is really going on here?

To see what is going on, let’s recall that the notation means the number in the top row maps to the number
directly beneath it in the bottom row. For instance, α maps 1 to 3. If β is to be the inverse of α then it must
undo what α does. In particular, it must map 3 back to 1. This means 3 must appear above 1 in the array
from of β. Let’s say this again: if 1 is above 3 in α, then 3 is above 1 in β.

The same is true for every number. In general, we have if k is above m in α (i.e. α(k) = m) then m is above
k in β (i.e. β(m) = k). This explains exactly what we observed when we flipped β.

Now suppose, we start with a permutation, say σ =

(
1 2 3 4
3 2 4 1

)
and we flip the rows, and reorder

the first row so it is increasing order, while keeping the columns in tact: γ =

(
1 2 3 4
4 2 1 3

)
. Is this a

permutation? Well, each number from 1 to 4 appears in the second row, so it is surjective, and no number
appears more than once, so it is injective. Therefore, yes, it is a permutation. And by the observation
above, it is the inverse of σ, that is, σγ = ε.

We can also use the arrow diagram to see this visually. γ was constructed by “reversing the arrows” of σ,
so clearly γ is a bijection, and it is the inverse of σ, since it just undoes what σ is doing.

These observations tell us two things: every permutation has an inverse, and the inverse is unique. More-
over, we have a straightforward way to construct an inverse to a permutation given in array or arrow
form.

This result is so important that we state it as a theorem. We’ll also give a formal proof of the theorem,
which captures the essence of our discussion above in just a few lines.

Theorem 3.1: For any permutation α : [n]→ [n], there exists a unique permutation β : [n]→ [n] such
that αβ = βα = ε.
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Proof: Let α be a permutation, define a new function β : [n]→ [n] as follows:

β(m) = k ⇐⇒ α(k) = m

for k,m ∈ [n]. Since α is bijective, for any m such a k exists and is unique so β is well defined. It follows
that (αβ)(k) = β(α(k)) = β(m) = k and (βα)(m) = α(β(m)) = α(k) = m. This proves the theorem. �

Definition 3.5: For any permutation α the unique permutation β such that αβ = βα = ε is called
the inverse of α and is denoted by α−1.

Example 3.9: Find the inverse of each of the following permutations. Verify it is the inverse by computing
the product and showing it is the identity permutation.

(a) α =

(
1 2 3 4 5
3 1 2 5 4

)
(b) β =

(
1 2 3 4
3 4 1 2

)

(a) The inverse of α can be obtained by reading the array form from the bottom row to the top row. For
example, 1 in the bottom row must map to the number above it, which is 2. Similarly for the other numbers,

so α−1 =

(
1 2 3 4 5
2 3 1 5 4

)
.

Sage has a built-in inverese() command.

Sage
sage: a=Permutation([3,1,2,5,4])
sage: a.inverse()
[2, 3, 1, 5, 4]

(b) Similar to (a), we read the array form of β from bottom-to-top to get the array form of β−1: β−1 =(
1 2 3 4
3 4 1 2

)
. Notice this is just β itself. Therefore β is its own inverse.

Sage
sage: b=Permutation([3,4,1,2])
sage: b.inverse()
[3, 4, 1, 2]

3.5.1 Inverse of a Product

Apply the move sequence RU to your Rubik’s Cube. Now undo this move sequence. That is, return the cube
to the state it was in before you apply RU . It is very likely you just applied the move sequence U−1R−1. If
you did, then you have a working understanding of how to find the inverse of a product.

As another example, in the morning you get dressed you put on your socks then your shoes, but when you
come home at night and get undressed you takes off your shoes then your socks. The order in which things
are undone is opposite to which they were done.

If these two example seem obvious, it is because they in fact are. But even obvious things can be stated as
theorems, which are just convenient summaries of observations for later use.
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Theorem 3.2: For two permutations α and β,

(αβ)−1 = β−1α−1.

In general, the inverse of a product of permutations is the product of the inverses in the reverse order:

(α1α2 · · ·αk)−1 = α−1k · · ·α
−1
2 α−11 .

Proof: Taking the product, and using associativity of permutation multiplication,

(αβ)(β−1α−1) = αββ−1α−1

= αεα−1

= αα−1

= ε

Therefore, β−1α−1 is the inverse of αβ. A similar argument proves the general statement. �

3.5.2 Cancellation Property

An important property of the real numbers that we use all the time is the ability to cancel the same (non-
zero) factor on both sides of an equation. For example if 2x = 6 then 2x = 2 · 3 and we cancel the 2’s to get
x = 3. The reason we could “cancel” the 2′s is simply because we could multiply both sides of the equation
by the inverse of 2, namely 1/2. That is (1/2)(2x) = (1/2)(2 · 3), which means [(1/2)2]x = [(1/2)2]3 (note the
use of associativity of multiplication here), and so x = 3.

Luckily, this familiar property also holds for permutations.

Lemma 3.3 (Cancellation Property): If α, β, γ ∈ Sn where αβ = αγ then β = γ.
Similarly, if βα = γα then β = γ.

Proof: Multiplying both sides of αβ = αγ on the left by α−1 we get

α−1(αβ) = α−1(αγ).

By associativity

(α−1α)β = (α−1α)γ.

and so

εβ = εγ,

which means β = γ.

A similar argument shows the right cancellation property as well. �

As a consequence of the cancellation property the identity permutation is the only permutation that when
multiplied by another permutation leaves it unchanged. That is, it has the property that αε = α for any
α ∈ Sn. To see this, suppose β is a permutation with this property too, that is αβ = α for some α. Then
αβ = αε, and by cancellation of α we have β = ε.
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3.6 The Symmetric Group Sn

The set of all permutations of the set [n] is called the symmetric group of degree n, and is denoted by Sn.
In other words,

Sn = {α | α is a permutation of [n]}.

We’ve already seen that elements of Sn can be written in the form(
1 2 3 . . . n

α(1) α(2) α(3) . . . α(n)

)
.

It is straightforward to compute the cardinality of the set Sn. There are n choices for α(1). Once α(1)
has been chosen, there are n − 1 possibilities for α(2) (since α is injective we must have α(1) 6= α(2)).
Once α(2) has been chosen there are n − 2 choices for α(3). Continuing in this way we see that there are
n · (n− 1) · (n− 2) · · · 3 · 2 · 1 = n! possible choices for α(1) to α(n). Each choice gives a different permutation.
Therefore |Sn| = n!.

Let’s summarize what we know so far about Sn.

• Sn, the symmetric group of degree n, is the set of all permutation of [n] = {1, 2, . . . , n}.

• |Sn| = n!

• Two elements α, β ∈ Sn can be composed (multiplied) to give another element αβ ∈ Sn.2

• The identity permutation is ε =

(
1 2 ... n
1 2 ... n

)
. It has the property that εα = εα = α for all α ∈ Sn.

• Every α ∈ Sn has an inverse denoted by α−1. The defining property of an inverse is αα−1 = α−1α = ε.

• (α1α2 · · ·αk)−1 = α−1k · · ·α
−1
2 α−11 .

• Permutation composition (multiplication) is associative: α(βγ) = (αβ)γ.

• Permutation composition (multiplication) is not necessarily commutative.

• Cancellation Property: αβ = αγ implies β = γ, and βα = γα implies β = γ.

3.7 Rules for Exponents

When we describe moves on Rubik’s Cube we’ll write things like: RB2R−1. Exponents are serving two
purposes here: (i) they represent inverse moves, R−1 is the inverse of R, (ii) they represent repetition of
moves, B2 is the move B repeated twice.

If we follow the move sequenceRU−2B2R−1DU−2 with the move U then the complete move sequence would
be

RU−2B2R−1DU−2U.

But certainly, U−2U simplifies to U−1, since a counterclockwise half turn U−1 followed by a clockwise
quarter turn U is equivalent to a counterclockwise quarter turn. This means the complete move sequence
is equivalent to

RU−1B2R−1DU−1.

2the convention of these notes is to compose permutations from left-to-right,
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We write this as (RU−2B2R−1DU−2)U = RU−2B2R−1DU−1.

This notation translates nicely to composition of permutations.

If α ∈ Sn and m is a positive integer then αm denotes the product of α with itself m-times. That is,
αm = αα · · ·α.

We define negative exponents by the rule α−m = (α−1)m, where m is any positive integer.

We define the zero exponent by α0 = ε, where ε is the identity permutation.

An important observation is that some of the familiar “rules of exponents” apply to the composition of
permutations. Specifically, for any two integers m and k and for any α ∈ Sn, we have

(a) αmαk = αm+k

(b) (αm)k = αmk

This follows precisely from the fact that we are defining an exponent to represent repeated composition.

One property that you may be familiar with from multiplication of real numbers is: (ab)m = ambm. This is
not true for permutations: if α, β ∈ Sn and m ∈ Z then in general (αβ)m is not equal to αmβm.

For real numbers this property relies on the fact that multiplication of real numbers is commutative. We’ve
already seen this is not the case for permutations under composition.

However, we do have the following result.

Lemma 3.4: If α, β ∈ Sn commute with each other, that is αβ = βα, then for all integers m, (αβ)m =
αmβm.

Proof: When m = 0 or 1 the result is trivial. Let’s now consider the case when m ≥ 2. We will use
mathematical induction on m to prove the result. Starting with the base case m = 2 we see that

(αβ)2 = (αβ)(αβ) = α(βα)β by associativity,
= α(αβ)β since α and β commute,

= α2β2.

Therefore the statement of the lemma holds for m = 2. For the inductive hypothesis we assume the result
holds for m = k and prove it must then hold for m = k + 1.

(αβ)k+1 = (αβ)(αβ)k

= (αβ)(αkβk) by the induction hypothesis,

= α(βαk)βk by associativity,

= α(αkβ)βk since α and β commute,

= αk+1βk+1 by associativity.

Therefore, by mathematical induction, the result follows for all m ≥ 2. Combined with our initial observa-
tions we see that the statement of the lemma holds for all m ≥ 0.

For the case when m is negative, first notice that if α and β commute then so do α−1 and β−1. To see this
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just take inverses of each side of the equation αβ = βα. Now if m = −k where k is a positive integer then

(αβ)m = ((αβ)−1)k by definition of a negative exponent,

= (β−1α−1)k

= (α−1β−1)k since α−1 and β−1 commute

= (α−1)k(β−1)k by the lemma applied to α−1, β−1 and k > 0,

= α−kβ−k = αmβm.

This proves the lemma.

�

3.8 Order of a Permutation

The order of a permutation α ∈ Sn is the smallest positive integer m such that αm = ε.

In Example 3.7 we saw that for α =

(
1 2 3 4 5
3 4 1 5 2

)
the smallest m for which αm = ε is 6. We say α

has order 6, and we write ord(α) = 6.

As another example, β =

(
1 2 3
2 1 3

)
is an element in S3 of order 2, since β 6= ε, but β2 = ε.

Must every permutation have a finite order? The next theorem answers this question.

Theorem 3.5: For any α ∈ Sn there exists a positive number m for which αm = ε. The smallest such
m is the order of α, denoted ord(α).

Proof: Consider the set of all powers of α, {αk : k ∈ Z+}. Since this is a subset of the finite set Sn it must
also be finite. This means all the powers of α cannot be distinct, so there must be k, ` such that αk = α`

where k > ` > 0. Now multiplying α−` to the left of both sides (i.e. cancelling α`) we get:

α−`αk = α−`α`

and so
αk−` = ε.

This proves the theorem. �

We can now describe precisely which integers m have the property that αm = ε.

Theorem 3.6: Let α be a permutation. If αm = ε then ord(α) divides m.

Proof: Let n = ord(α), and suppose αm = ε. By the division algorithm (Theorem B.1 in Appendix B) there
exist integers q and 0 ≤ r < m such that m = qn+ r. In other words, n goes into m q-times, with r left over.
Therefore

ε = αm = αqn+r = (αn)qαr = εqαr = αr.

Since r is smaller than the order of α this is only possible if r = 0. Hence n divides m. �
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Exercise 3.2: Let

α =

(
1 2 3 4 5
5 2 1 4 3

)
, β =

(
1 2 3 4 5
5 4 1 2 3

)
, γ =

(
1 2 3 4 5
2 4 1 3 5

)
.

Determine the order of (a) α (b) β (c) β−1 (d) γ (e) α−1γα.

Answer on page 37

Exercise 3.3: Consider Rubik’s Cube. Determine the orders of each of the following moves by physically
doing the move successively on the cube. It is best to start with your cube in the solved state so you can
easily recognize when you’ve returned to that state.

(a) R

(b) R2L2U2

(c) U2R

(d) UR

Answer on page 37

If you stuck with it long enough, and didn’t lose count, you would find that UR has order 105. That means
you would have to apply UR a total of 105 times (or a total of 210 quarter face turns) before you get back to
where you started.

One of our goals will be to thoroughly understand orders of move sequences: specifically how to compute
the order of a move sequence without having to physically manipulate the cube.

For example, the move sequence RU2D−1BD−1 has order 1260. We’ll soon see how to compute this rather
quickly using Sage.

3.9 Exercises

1. Show that a function from a finite set A to itself is one-to-one if and only if it is onto. Is this true
when A is infinite?

2. Suppose A and B are finite sets and |A| > |B|. Is there an injective function f : A→ B? Explain.

3. For α =

(
1 2 3 4
3 1 2 4

)
, β =

(
1 2 3 4
4 3 1 2

)
, and γ =

(
1 2 3 4
2 1 4 3

)
verify that α(βγ) = (αβ)γ.

This provides some experimental evidence for the associative law.

4. Consider the following permutations

α =

(
1 2 3 4 5 6 7 8
3 4 6 7 1 5 8 2

)
, β =

(
1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1

)
,

γ =

(
1 2 3 4 5 6 7 8
5 4 6 7 1 3 2 8

)
.

Determine each of the following.
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(a) αβ
(b) αγβ
(c) β−1

(d) (γβ)−1

(e) β−1γ−1

(f) α−1γα

(g) ord(α)

(h) ord(β)

(i) ord(α−1γα)

5. Find the inverse of each of the following permutations. Verify the product you found actually is the
inverse by computing the product and showing it is the identity permutation.

(a) α =

(
1 2 3 4
3 4 2 1

)
(b) β =

(
1 2 3 4 5 6 7 8
4 1 5 7 3 8 2 6

)

6. For α =

(
1 2 3 4 5
5 1 2 3 4

)
explain how you know α2011 6= ε, without actually computing all 2011

powers of α.

7. Show that an n-cycle
(

1 2 3 ... n
n 1 2 ... n− 1

)
has order n.

8. Show that for any α ∈ Sn, ord(α) = ord(α−1).

9. There is always something that doesn’t commute. Show that if n ≥ 3, then for every element α
in Sn, if α is not the identity permutation ε then there is some other permutation β in Sn with which
α does not commute: αβ 6= βα.

10. For any permutations α and β and any integer n show that (α−1βα)n = α−1βnα.

11. For α, β ∈ Sn show that if (αβ)2 = α2β2 then α commutes with β: that is, αβ = βα.

12. Show that if αβγβ−1α = αβσβ−1α then γ = σ.

13. Show that the number of elements α in Sn such that α3 = ε is odd. In other words, show the set
{α ∈ Sn | α3 = ε} has odd cardinality.

Answers to in-chapter exercises:

Exercise 3.1: (a) U−2F which could also be written as U2F since U2 and U−2 are equivalent moves. (b) 6

Exercise 3.2: (a) 3 (b) 6 (c) 6 (d) 4 (e) 4

Exercise 3.3: (a) 4 (b) 4 (c) 30 (d) 105
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Lecture 4

Permutations: Cycle Notation

In this section we introduce a simple, yet extremely powerful, notation for permutations: cycle form. We’ll
revisit the concepts of products (composition), order, and inverses, and see how our new notation simplifies
calculations.

4.1 Permutations: Cycle Notation

Consider the 5-cycle permutation α defined as follows:

α(1) = 2, α(2) = 3, α(3) = 4, α(4) = 5, α(5) = 1.

The array form of α is shown in Figure 4.1a, and the arrow diagram is shown in Figure 4.1b.

α =

(
1 2 3 4 5
2 3 4 5 1

)
(a) array form

(b) arrow form (c) cycle-arrow form
α = (1, 2, 3, 4, 5)

(d) cycle form

Figure 4.1: Different representations for a 5-cycle.

Another diagram which provides a visual representation of the structure of the permutation is shown in
Figure 4.1c, it is called the cycle-arrow form. In this diagram all the information for α is still present. For
example, to determine α(3) look at the diagram and find 3, then see where the arrow takes it. In this case
it takes 3 to 4, so α(3) = 4.

There are a few nice things about cycle-arrow form: (1) it displays visually the cycle structure (i.e. we can
see the 5 numbers cycling around in a circular fashion, which is why we called it a 5-cycle), and (2) it uses
only one set of numbered dots, making the diagram more compact than our original arrow form.

39
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Though mathematically satisfactory, the cycle-arrow form is cumbersome to draw. However, leaving out
the arrows we can simply write the 5-cycle as:

α = (1, 2, 3, 4, 5)

This represents that fact that α maps each number to the next one in the list, and maps 5 back around to
the start of the list, which is 1. This representation is shown in Figure 4.1d and it is called cycle form.

All representations in Figure 4.1 have their own benefits, but it is this cycle form that is the most compact,
and this will be the form we primarily use in this book.

When working with cycle form, α = (1, 2, 3, 4, 5), you should read it as follows:

“1 goes to 2, 2 goes to 3, 3 goes to 4, 4 goes to 5, and 5 goes to 1.”

We don’t need to start at 1 when writing down the cycle form. If we started at 3, for instance, and con-
structed the list of numbers we visit by traveling around Figure 4.1c then we get (3, 4, 5, 1, 2). This is
another perfectly acceptable representation of α: reading this cycle notation as described above will tell us
exactly how α acts as a function. In particular, we can represent α by any of the equivalent cycle forms:

α = (1, 2, 3, 4, 5) = (2, 3, 4, 5, 1) = (3, 4, 5, 1, 2) = (4, 5, 1, 2, 3) = (5, 1, 2, 3, 4).

Despite this notation allowing for non-unique representations of permutations, there is an easy fix. Just
write the cycle so that the first number is the smallest number in the cycle. In this case we would then
write α = (1, 2, 3, 4, 5) since 1 is the smallest number in this cycle.

Let’s look at another permutation: β =

(
1 2 3 4 5 6 7 8
3 2 7 8 1 4 5 6

)
. The cycle arrow form is:

This reveals so much about the permutation, especially when you imagine taking powers of it: βn. For
instance, 1,3,5,7 only get permuted amongst themselves, so there is no k such that βk(1) = 4. Also, since a
4-cycle has order 4, then β4 would leave 1,3,5,7 untouched: β4(x) = x when x = 1, 3, 5, 7. This means β4 is
a 3-cycle: β4 = (4, 8, 6).

To construct the cycle form of β we look at the arrow form above and notice that 1 goes to 3, 3 goes to 7, 7
goes to 5 and 5 goes back to 1. This can simply be written as (1, 3, 7, 5). Similarly, 2 goes to 2 so we write
this as (2), and the 4, 6, 8 triangle can be written as (4, 8, 6). Therefore, the cycle form of β is

β = (1, 3, 7, 5)(2)(4, 8, 6).

This is a compact way to represent the permutation β, and we haven’t lost any information. For example,
we can use the cycle form to determine β(3) by noticing in (1, 3, 7, 5)(2)(4, 8, 6) the number 3 is followed by
7, so β(3) = 7. Similarly, β(5) = 1 since from 5 we wrap around in the cycle and get back to 1.

If we make one further convention: to leave off any number that gets mapped to itself, then β can be written
in an even more compact form:

β = (1, 3, 7, 5)(4, 8, 6).

With this convention, any number not present in the cycle form is assumed to map back to itself.

Recall a permutation of the form (a1, a2, . . . , am) is called an m- cycle. We would say β is the product of a
3-cycle and a 4-cycle.
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Example 4.1: To determine the cycle form of the permutation

α =

(
1 2 3 4 5 6 7 8 9 10
5 1 6 8 4 10 7 2 9 3

)
start with the smallest number in the set, in this case it is 1. Since α(1) = 5 we begin the cycle by writing

(1, 5, . . .) . . . .

Next, 5 maps to 4, so we continue building the cycle

(1, 5, 4, . . .) . . . .

Continuing in this way we construct (1, 5, 4, 8, 2, . . .) . . ., and since 2 maps back to 1 then we close off the
cycle:

(1, 5, 4, 8, 2) . . . .

Next, we pick the smallest number that doesn’t appear in any previously constructed cycle. This is the
number 3 in this case. We now repeat what we just did and construct the cycle involving 3:

(1, 5, 4, 8, 2)(3, 6, 10) . . . .

We now pick the smallest number that doesn’t appear in any previously constructed cycle, which is 7, and
construct the cycle to which it belongs. In this case 7 just maps to itself:

(1, 5, 4, 8, 2)(3, 6, 10)(7) . . . .

Finally, the only number remaining is 9 and it maps back to itself so the cycle for of α is

(1, 5, 4, 8, 2)(3, 6, 10)(7)(9)

which simplifies to
α = (1, 5, 4, 8, 2)(3, 6, 10)

since our convention is to omit 1-cycles. Therefore, α is the product of a 3-cycle and a 5-cycle.

Exercise 4.1: Converting from array to cycle form. Convert the permutation given in array form(
1 2 3 4
3 4 1 2

)
to cycle form.

Answer on page 49

Exercise 4.2: Converting from cycle to array form. For the permutation given in cycle form by
(1, 3, 5, 2)(4, 7) ∈ S8, express it in array form.

Answer on page 49

4.2 Products of Permutations: Revisited

It is not efficient to convert permutations from cycle form to array from, then compose the permutations
in array form, only to convert back to cycle form. Instead, we will work entirely with the cycle form but we
do so by thinking of their representation in array form.
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For example, consider the permutations α = (1, 5, 2, 3) and β = (1, 5, 4)(2, 3) in S5. What is the cycle form of
αβ? Of course, we could just stick the two permutations together, end-to-end, and write

αβ = (1, 5, 2, 3)(1, 5, 4)(2, 3)

but it will be more convenient to express the permutation in disjoint cycle form, that is where the various
cycles have no numbers in common.

We determine the cycle form of αβ by determining exactly how it maps each number, beginning with 1.
Keep in mind that permutation composition is done from left-to-right, and each cycle that does not contain
a number fixes that number. We have that (1, 5, 2, 3) sends 1 to 5, (1, 5, 4) sends 5 to 4, and (2, 3) fixes 4. So
the effect of αβ is it sends 1 to 4.

Thus we begin writing the disjoint cycle form as αβ = (1, 4, . . .) . . . .

Repeating this process with 4, we have, cycle-by-cycle, left-to-right,

4
(1,5,2,3)−−−−−→ 4

(1,5,4)−−−−→ 1
(2,3)−−−→ 1,

so that αβ(4) = 1, and the cycle form is now αβ = (1, 4) . . . .

Next we pick the smallest number that is not in any previously constructed cycle, this would be 2. Repeat-
ing this process with 2, cycle-by-cycle, left-to-right,

2
(1,5,2,3)−−−−−→ 3

(1,5,4)−−−−→ 3
(2,3)−−−→ 2,

so that αβ(2) = 2, and the cycle for is now αβ = (1, 4)(2) . . . .

Continuing in this way we find that αβ = (1, 4)(2)(3, 5) = (1, 4)(3, 5).

The important thing to keep in mind when multiplying cycles is to keep moving from one cycle to the next
from left-to-right.

Example 4.2: Let α = (1, 4, 6, 3, 7)(2, 8) and β = (2, 5, 3)(4, 7, 8, 1) be permutations in S8. Then

αβ = (1, 4, 6, 3, 7)(2, 8)(2, 5, 3)(4, 7, 8, 1) = (1, 7, 4, 6, 2)(3, 8, 5)

and
βα = (2, 5, 3)(4, 7, 8, 1)(1, 4, 6, 3, 7)(2, 8) = (1, 6, 3, 8, 4)(2, 5, 7).

Check this yourself. To start off, consider what happens to 1 under αβ:

1
(1,4,6,3,7)−−−−−−→ 4

(2,8)−−−→ 4
(2,5,3)−−−−→ 4

(4,7,8,1)−−−−−→ 7,

so (αβ)(1) = 7.

4.3 Properties of Cycle Form

Two basic properties of permutations are: (a) every permutation can be written as a product of
disjoint cycles, and (b) disjoint cycles commute.
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The first property was implicit in our discussion of how to construct the cycle form of a permutation. In
particular, when we finished constructing a cycle, the first thing we did was look for a number that did not
appear in a previously constructed cycle. This guarantees that our cycles will be disjoint.

The second property: disjoint cycles commute, is also fairly straightforward consequence of the disjoint
cycle notation. For example, consider the disjoint cycles α = (1, 3, 2) and β = (4, 5). When multiplying
these cycles it doesn’t matter which order the product is taken: αβ = (1, 3, 2)(4, 5) = (4, 5)(1, 3, 2) = βα.

Both of these products represent the same permutation:
(

1 2 3 4 5
3 1 2 5 4

)
. As a former student of mine

once said, it is kind of like two games of musical chairs going on in two different rooms, neither one has any
influence on the other.

Even though this property is straightforward, it is very important, so we will state it as a theorem.

Theorem 4.1 (Disjoint Permutations Commute): If α, β ∈ Sn and have no numbers in [n] that
are moved by both α and β then αβ = βα. In other words, if the disjoint cycle form of α has no number
in common with the disjoint cycle form of β then α and β commute.

For a more physical example of disjoint cycles commuting consider the moves R and L of Rubik’s cube.
These moves are disjoint in the sense that their is no common piece that is moved by both R and L. Notice
that RL and LR result in exactly the same position of the cube, so in this sense RL = LR, and so R and L
commute.

4.4 Order of a Permutation: Revisited

Recall the order of a permutation α ∈ Sn is the smallest positive integer m such that αm = ε. (See
Section 3.8.) To determine the order of a given permutation our only technique so far was to just continue
computing powers until we hit the identity. This is a very inefficient way to compute the order.

The disjoint cycle form has the enormous advantage of allowing us to “eyeball” the order of a permutation.

For example the 5-cycle (1, 2, 3, 4, 5) has order 5. In general, an m-cycle has order m. (You are asked to show
this in Exercise 9, and were also asked this in Lecture 3 Exercise 7.) The order of a product of disjoint
cycles is given by the next theorem.

Theorem 4.2 (Order of a Permutation): The order of a permutation written in disjoint cycle form
is the least common multiple of the lengths of the cycles.

Before we prove this theorem let’s see why it should be true. Consider the permutation β = (1, 3, 7, 5)(4, 8, 6),
which is the product of a cycle of length 3 and a cycle of length 4. The arrow diagram is as follows.

We want to determine the smallest power k so that βk is the identity. Every application of β moves the
numbers around the square (4-cycle) one position, so in order to have numbers return to their original
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position β must be applied 4, or a multiple of 4, times. This means 4 | k. 1 Similarly, considering the
triangle (3-cycle) β would need to be applied a multiple of 3 times to move numbers back to their original
positions. This means 3 | k. Since we require both 3 and 4 to divide k, and we want k to be as small as
possible, this means k is the least common multiple of 3 and 4, that is ord(β) = k = lcm(3, 4) = 12. Sure
enough, if we check we find β12 = ε.

An algebraic way to see β12 = ε is as follows:

β12 = [(1, 3, 7, 5)(4, 8, 6)]12 = (1, 3, 7, 5)12(4, 8, 6)12 = [(1, 3, 7, 5)4]3[(4, 8, 6)3]4 = ε3ε4 = ε.

Here we used the fact that an m-cycle has order m, and (σ1σ2)k = σk1σ
k
2 , for disjoint cycles σ1 and σ2 (recall

that disjoint cycles commute by Theorem 4.1).

This is precisely the idea that we use to give a general proof of the theorem.

Proof: (Theorem 4.2)

One cycle: As we noted above, a cycle of length m has order m. (See Exercise 9.)

Two disjoint cycles: Now suppose α and β are disjoint cycles of lengths a and b. Let k be the least
common multiple of a and b, that is, k is the smallest positive integer which is divisible by both a and b.
Since α and β commute then (αβ)k = αkβk = ε (here we used Lemma 3.4 and that fact that a|k implies
αk = ε and b|k implies βk = ε). It follows from Theorem 3.6 that the order of αβ, call it t, divides k. We
now wish to show t = k. From ε = (αβ)t = αtβt it follows that α−t = βt. However, α and β have no symbol
in common, and since raising a cycle to a power does not introduce new symbols, α−t and βt also have no
symbol in common. Since α−t = βt and have no common symbols then they both must be the identity:
α−t = βt = ε. If follows from Theorem 3.6 that t is divisible by a and b. This means that k = lcm(a, b) must
also divide t. Therefore t = k, as desired.

More than two disjoint cycle: The general case involving more than two cycles is handled in an analo-
gous way. �

Example 4.3: (a) The order of α = (1, 3, 4)(2, 5) is lcm(3, 2) = 6. Observe that

α6 = [(1, 3, 4)(2, 5)]6 = (1, 3, 4)6(2, 5)6 = ε.

(b) The permutation β = (1, 7, 4, 10, 3)(2, 5, 6, 9)(8, 11) has order lcm(5, 4, 2) = 20. Notice how quickly
we were able to compute this order. If we tried to do it by successively computing powers of β we
would need to compute 20 powers, and this assumes we didn’t make any mistakes in the tedious
calculations. This shows the power of Theorem 4.2.

Exercise 4.3: Find the order of each of the following permutations:
(a) (1, 3) (b) (1, 5, 2, 3) (c) (1, 5, 3, 7)(2, 6, 8)

Answer on page 49

4.5 Inverse of a Permutation: Revisited

Every permutation can be written as a product of disjoint cycles: α = σ1σ2 · · ·σk. We have already seen
that the inverse of a product is the product of the inverses in the reverse order, so

α−1 = σ−1k · · ·σ
−1
2 σ−11 .

This means, in order to determine α−1 directly from its cycle form we just need to know how to find the
inverse of a cycle.

1For integers, the vertical bar | means “divides”, so a | b is read “a divides b” and means b = ak for some integer k. (Appendix B)
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Consider the 5-cycle α = (1, 2, 3, 4, 5). We’d like to come up with a simple method for determining the
inverse α−1 directly from the cycle form, and without having to change representation to array form, or
arrow form.

We know that if α is in array form: α =

(
1 2 3 4 5
2 3 4 5 1

)
then it is straightforward to write down

the inverse: α−1 =

(
1 2 3 4 5
5 1 2 3 1

)
. Expressing this in cycle form we have α−1 = (1, 5, 4, 3, 2). An

alternative way to write this cycle is (5, 4, 3, 2, 1). This gives us a very simple method for computing an
inverse of a cycle: just write the cycle backwards!

α−1 = (1, 2, 3, 4, 5)−1 = (5, 4, 3, 2, 1) = (1, 5, 4, 3, 2)

The last equality follows from our convention that we start the cycle with the smallest number in the cycle.
Figure 4.2 shows the various representation of α and α−1.

α =

(
1 2 3 4 5
2 3 4 5 1

)
(a) array form

(b) arrow form for α (c) cycle-arrow form
for α

α = (1, 2, 3, 4, 5)

(d) cycle form for α

α−1 =

(
1 2 3 4 5
5 1 2 3 4

)
(e) array form

(f) arrow form for α−1 (g) cycle-arrow form
for α−1

α−1 = (1, 5, 4, 3, 2)

(h) cycle form for α−1

Figure 4.2: Different representations for α and α−1.

To make sure we nail this down, consider another example. The inverse of the permutation β = (1, 5, 3)(2, 4)
is β−1 = (2, 4)−1(1, 5, 3)−1 = (4, 2)(3, 5, 1) = (2, 4)(1, 3, 5).

To summarize:

To get from the cycle form of α to the cycle form of α−1, just write the representation for α down
in the reverse order.

This means, reverse the order in which the numbers are written in each individual cycle, as well as reverse
the order in which the cycles are written. Of course, this last step isn’t necessary if the cycles are disjoint,
since disjoint cycles commute (Theorem 4.1).

Example 4.4: (a) The inverse of the permutation α = (1, 6, 3, 4, 5) is α−1 = (5, 4, 3, 6, 1) = (1, 5, 4, 3, 6).

(b) The inverse of a 2-cycle is itself. For example, (1, 2)−1 = (2, 1) = (1, 2).
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(c) The inverse of the permutation β = (1, 4, 3, 5)(3, 7, 6)(2, 5, 7, 3, 1)(6, 4)(2, 3, 5, 4)(4, 5, 3) is

β−1 = [(1, 4, 3, 5)(3, 7, 6)(2, 5, 7, 3, 1)(6, 4)(2, 3, 5, 4)(4, 5, 3)]−1

= (4, 5, 3)−1(2, 3, 5, 4)−1(6, 4)−1(2, 5, 7, 3, 1)−1(3, 7, 6)−1(1, 4, 3, 5)−1

= (4, 3, 5)(2, 4, 5, 3)(6, 4)(2, 1, 3, 7, 5)(3, 6, 7)(1, 5, 3, 4)

Since β−1 is not in disjoint cycle form (due to the fact that β itself was not), then we should probably
put it in this form.

β−1 = (1, 6)(2, 7, 3, 4, 5).

Exercise 4.4: Let α = (1, 2)(4, 5) and β = (1, 6, 5, 3, 2). Compute (a) α−1, (b) β−1, (c) (βα)−1.

Answer on page 49

4.6 Summary of Permutations

Let’s continue with our summary of what we know about Sn.

• Sn, the symmetric group of degree n, is the set of all permutation of [n] = {1, 2, . . . , n}:

Sn = {α | α : [n]→ [n] and α is a bijection }.

• |Sn| = n!

• Two elements α, β ∈ Sn can be composed (multiplied) to give another element αβ ∈ Sn.2

• The identity permutation ε = (1)(2)(3) · · · (n) has the property that εα = εα = α for all α ∈ Sn. If we
follow our convention of omitting 1-cycles, then when writing the cycle form for ε we cannot omit all
of them! In this case, we usually write just one 1-cycle. For example, ε = (1).

• Every α ∈ Sn has an inverse denoted by α−1. The defining property of an inverse is αα−1 = α−1α = ε.

• Inverse of a product: (α1α2 · · ·αk)−1 = α−1k · · ·α
−1
2 α−11 .

• Inverse of an m-cycle: (a1, a2, . . . , am−1, am)−1 = (am, am−1, . . . , a2, a1).

• Permutation composition (multiplication) is associative: (αβ)γ = α(βγ) = αβγ.

• Permutation composition (multiplication) is not necessarily commutative. However, disjoint permu-
tations commute.

• Cancellation Property: αβ = αγ implies β = γ, and βα = γα implies β = γ.

• For every α ∈ Sn there is a smallest number m, called the order of α, denoted by ord(α), such that
αm = ε. If a permutation is written in disjoint cycle form then ord(α) is the least common multiple of
the lengths of the cycles.

• We’ve seen 5 ways to represent a permutation: (1) listing out all the values, (2) array form, (3) arrow
form, (4) cycle-arrow form, and (5) cycle form. We will most frequently use cycle form since it is not
only the most compact form, it also allows for easy calculations of products, inverses, and orders. We
will see very soon that there are many more benefits to this notation.

2The convention of these notes is to compose permutations from left-to-right,
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4.7 Working with Permutations in Sage

Sage uses disjoint cycle notation for permutations, and permutation composition occurs left-to-right, which
agrees with our convention. There are two ways to write the permutation α = (13)(254):
1. As a text string (include quotes): ”(1,3)(2,5,4)”
2. As a list of tuples: [(1,3), (2,5,4)]

Sage
sage: S5=SymmetricGroup(5) # symmetric group on 5 objects, and names it S5
sage: a=S5("(2,3)(1,4)") # constructs the permutation (2,3)(1,4) in S5
sage: b=S5("") # constructs the identity permutation in S5
sage: c=S5("(2,5,3)") # constructs the 3-cycle (2,5,3) in S5
sage: print a, b, c,
(1,4)(2,3)
()
(2,5,3)
sage: a*c # compose permutations by using multiplication sign
(1,4)(3,5)
sage: c.inverse() # computes inverse
(2,3,5)
sage: c.order() # computes order
3

Try these examples in Sage, then change the examples and see what happens. Don’t be afraid to experi-
ment, this is how you learn. You won’t break anything (at least it is unlikely you will).

4.8 Exercises

1. Converting from array to cycle notation. Convert each of the following permutations given in
array form to cycle form

(a)
(

1 2 3 4
2 4 3 1

)
(b)

(
1 2 3 4 5 6 7 8 9 10
8 5 4 7 1 3 6 2 10 9

)
(c)

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10 11 9 4 8 15 5 2 7 3 6 1 12 13 14

)
2. Converting from cycle to array notation. For each of the following permutation in S8 convert

from cycle form to array form.

(a) (1, 5, 2)(3, 4)(7, 8) (b) (1, 7, 4, 6)(3, 5, 8) (c) (1, 2)

3. Reducing cycle notation to disjoint cycles.
When multiplying permutations we will most likely end up with a product of cycles which are not
necessarily disjoint, and our goal will be to find a representation in disjoint cycle form. To practice
this, write the following permutations in disjoint cycle form.

(a) α = (1, 4, 3, 5)(3, 7, 6)(2, 5, 7, 3, 1)(6, 4)(2, 3, 5, 4)(4, 5, 3)

(b) β = (1, 2, 3)(1, 4, 5)(1, 6, 7)(1, 8, 9)
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(c) γ = (9, 3, 5, 6)(4, 5, 2, 3, 7)(3, 7, 8, 2)(1, 4)(7, 4)

4. Products and inverses of permutations.
Consider the following permutations in S10:

α = (1, 5, 2, 7)(3, 4)(8, 10, 9), β = (1, 10, 9, 7, 6, 5, 2, 4, 8),

γ = (1, 2, 3, 4)(6, 10, 8, 7, 9), δ = (1, 5, 8, 4)(2, 9, 10, 7)(3, 6).

Compute the disjoint cycle form of each of the following:

(a) αβ
(b) βδ

(c) γα
(d) δ4

(e) αγδ
(f) α−1

(g) δ−1β−1

(h) (αδ)−1

5. For each of the permutations below, determine its order.

(a) σ = (3, 7, 4)

(b) α = (1, 5, 8, 4)(2, 9, 10, 7)(3, 6)

(c) β = (2, 6, 8, 3, 10, 9, 7, 4)

(d) γ =

(
1 2 3 4 5 6 7
2 7 1 5 4 3 6

)
(e) δ =

(
1 2 3 4 5 6 7 8 9 10
2 3 4 1 5 10 9 7 6 8

)
6. For each of the permutations below, express the inverse in disjoint cycle form.

(a) α = (1, 5, 8, 4)(2, 9, 10, 7)(3, 6)

(b) β = (2, 6, 8, 3, 10, 9, 7, 4)

(c) γ =

(
1 2 3 4 5 6 7
2 7 1 5 4 3 6

)
(d) δ =

(
1 2 3 4 5 6 7 8 9 10
2 3 4 1 5 10 9 7 6 8

)
7. Let α = (1, 3, 6)(2, 4) and β = (1, 4, 5, 2). Compute each of the following.

(a) α−1 (b) β−1 (c) αβ (d) βα

8. Let α = (1, 2)(4, 5) and β = (1, 6, 5, 3, 2). Compute β−1αβ.

9. Show that the order of a m-cycle (a1, a2, . . . , am) is m.

10. What is the order of a pair of disjoint cycles of length 5 and 3? 4 and 6? 22 and 18?

11. What is the order of the product of three disjoint cycles of lengths 3, 5, and 7? 6, 12 and 26?

12. Show S5 contains no element of order 7.

13. What is the maximum order of any element in S10?

14. Let α, β ∈ Sn, show that α and β−1αβ have the same order.

15. Let β = (1, 3, 5, 7, 9, 8, 6)(2, 4, 10). What is the smallest positive integer n for which βn = β−7?

16. Let α = (1, 7, 4, 5, 9)(3, 8)(10, 6, 2). If αm is a 5-cycle, what can you say about m?

17. In S3, find permutations α and β so that ord(α) = 2, ord(β) = 2, and ord(αβ) = 3.

18. Find permutations α and β so that ord(α) = 3, ord(β) = 3, and ord(αβ) = 5.

19. (a) If α ∈ Sn has order k, show that α−1 = αk−1.
(b) Use part (a) to find α11 for α = (1, 3, 6, 2)(4, 7, 5).

20. How many permutations of order 5 are there in S6?

21. Suppose α is a 10 cycle. For which integers i between 2 and 10 is αi also a 10-cycle?

22. Splicing and dicing cycles.3 What happens to the cycle structure of a permutation α when you
3This exercise is from J. Kiltinen’s book Oval Track and Other Permutation Puzzles.
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follow α by a transposition? The answer is you either splice two of the cycles of α into one bigger
cycle, you cut one of the cycles of α into two smaller cycles, you extend one cycle by on element, or
you add a new transposition to the cycle structure. Verify the special cases of this statement below,
and then make an argument that the claim follows in general from these special cases.

(a) If α = (a1, a2, . . . , ar)(b1, b2, . . . , bs) where these two cycles are disjoint, then

α(a1, b1) = (a1, . . . , ar, b1, . . . , bs).

(b) If β = (a1, a2, . . . , ar) and 1 ≤ i < j ≤ r, then

β(ai, aj) = (a1, . . . , ai−1, aj , aj+1, . . . , ar)(ai, ai+1, . . . , aj−1).

(c) If γ = (a1, a2, . . . , ar) and b 6= ai for all i, then

γ(a1, b) = (a1, a2, . . . , ar, b).

(d) If δ = (a1, a2, . . . , ar) and if (b1, b2) is disjoint from δ, then

δ(b1, b2) = (a1, a2, . . . , ar)(b1, b2).

Answers to in-chapter exercises:

Exercise 4.1: (1, 3)(2, 4)

Exercise 4.2:
(

1 2 3 4 5 6 7 8
3 1 5 7 2 6 4 8

)
Exercise 4.3: (a) 2 (b) 4 (c) 12

Exercise 4.4: (a) (1, 2)(4, 5) (b) (1, 2, 3, 5, 6) (c) (1, 3, 5, 4, 6)
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Lecture 5

From Puzzles To Permutations

5.1 Introduction

The puzzles we have encountered so far all have a common theme: the pieces can be mixed up, and the
goal is to restore the pieces back to some proper order. In other words, the pieces are permuted. We have
already introduced, from a mathematical viewpoint, the notion of a permutation: A permutation of a set A
is defined to be a bijection α : A→ A. We will now see how to represent a puzzle by a permutation.

There are two types of permutations associated with a puzzle:

(a) the permutation describing the puzzles current position,

(b) the permutation corresponding to a move sequence applied to the puzzle.

Note that the second one can really be thought of as a special case of the first. This is because the permu-
tation we assign to a move sequence is just the one which represents the puzzle position after the move is
applied to the solved state.

In this section we discuss how to write down these permutations for the standard set of puzzles we are
studying. If we are thoughtful in how we do this, then the permutation describing the puzzles position is a
composition of the permutations corresponding to the puzzle moves which takes the puzzle from the solved
state to that position. That is, multiplying the permutations corresponding to the moves, should give us
the permutation of the resulting position.

The way we do this will be the same for all puzzles where both the moving pieces and home positions have
been labelled by numbers in [n].

Definition 5.1 (Puzzle Position→ Permutation): For a given position (scrambling) of the puzzle,
the permutation corresponding to this position is α : Sn → Sn where

α(i) = j if the piece labelled i is in the position labelled j.

This permutation describes precisely how the pieces in the home (or solved) state configuration were moved
to produce the current configuration.

51
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Definition 5.2 (Puzzle Move → Permutation): For a given move sequence applied to the puzzle,
the permutation corresponding to this move sequence is β : Sn → Sn where

β(i) = j if the piece in position labelled i moved to position labelled j.

These definitions show how to construct the function αwhich corresponds to a position/move, but we should
really say a few words about why this function is actually a permutation. That is, we want to observe α
is one-to-one and onto. To see this, notice in any scrambling of the pieces no position has more than one
piece occupying it, in other words, distinct pieces have gone into distinct positions. This means α is a
one-to-one map from [n] to [n], which is then necessarily onto. This observation suggests why α is indeed a
permutation.

Theorem 5.1 (Multiplying Moves): Let α be the permutation corresponding to the current position
of the puzzle, and β1, β2, . . .βk be a move sequence applied to the puzzle which results in a final position
γ. Then

αβ1β2 · · ·βk = γ.

Proof: To see why this is true, consider any piece of the puzzle, say the piece labelled `. Then, before the
move sequence is applied, the piece ` starts in position x0 = α(`). As the moves are applied one-by-one the
` piece moves to position x1, then to position x2, and so on, until it finally ends up in position xk, where

x1 = β1(x0) = β1(α(`)) = (αβ1)(`)

x2 = β2(x1) = β2((αβ1)(`)) = (αβ1β2)(`)

...
xk = βk(xk−1) = βk((αβ1β2 · · ·βk−1)(`)) = (αβ1β2 · · ·βk)(`)

Therefore, γ(`) = xk = (αβ1β2 · · ·βk)(`) for every ` ∈ [n], and so γ = αβ1β2 · · ·βk. This proves the theorem.
�

Over the next few sections we will look at each puzzle individually.

5.2 Swap

Each arrangement of the numbers in the Swap Puzzle, say with n numbers, is a permutation of the set
[n] = {1, 2, 3, . . . , n}. For example, consider the following position of Swap with 6 numbers.

The permutation α : [6]→ [6] we associate to this position is determined as follows. Since tile number 1 is
in box number 3, then α(1) = 3. Since tile 2 is in box 4, then α(2) = 4. Continuing in this fashion we find α
maps numbers 1 through 8 as follows.

α =

(
1 2 3 4 5 6
3 4 5 1 6 2

)
or in cycle form α = (1, 3, 5, 6, 2, 4).
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Consider the move obtained by swapping the tiles in boxes 1 and 4. What permutation should we use to
represent this move? If we think of applying this move to the solved state of the puzzle, for example:

then we can represent this move by the permutation β corresponding to the position it leaves the puzzle
in: β = (1, 4).

Now imagine the puzzle was not in the solved state, and we were applying the 1, 4 swap. For example, we
apply the move as follows:

How should we assign a permutation to this move? Well, the simplest way is to say it is just the same
move as above, ignoring the actually objects in the boxes. All that matters is that the contents of box 1
and box 4 were switched. The permutation should then only depend on the boxes involved and how the
contents move between boxes, but is shouldn’t depend on what exactly is in the boxes. This is the essence
of Definition 5.2.

From now on, when we wish to describe a move, we can just state it by giving the corresponding permu-
tation. For example, the permutation (3, 7) represents the move of switching the contents of boxes 3 and
7.

Example 5.1: Consider the following sequence of moves in Swap.

The first move consists of swapping the contents of boxes 2 and 5 so it corresponds to the permutation
α1 = (2, 5). The second move consists of swapping the contents of boxes 2 and 4 so it corresponds to the
permutation α2 = (2, 4). The product α1α2 = (2, 5)(2, 4) = (2, 5, 4), which is the permutation representing
the move sequence as a whole, is precisely the permutation corresponding to the final position.

Example 5.2: Apply the move sequence τ1 = (3, 5), τ2 = (1, 2), τ3 = (2, 5), τ4 = (1, 4) to the game of Swap
with 6 objects, and draw the final position of the game board, assuming you began with it in the solved
state.

The move sequence corresponds to the single maneuver: α = τ1τ2τ3τ4 = (3, 5)(1, 2)(2, 5)(1, 4) = (1, 5, 3, 2, 4),
(Theorem 5.1 ) which means the resulting game board position is as follows.

We could have also applied the move sequences one-by-one to achieve the same result (here we simply
write the numbered tiles, as they appear on the game board, separated by vertical bars | ):

1|2|3|4|5|6 τ1=(3,5)−−−−−→ 1|2|5|4|3|6 τ2=(1,2)−−−−−→ 2|1|5|4|3|6 τ3=(2,5)−−−−−→ 2|3|5|4|1|6 τ4=(1,4)−−−−−→ 4|3|5|2|1|6

Example 5.3: Write the permutation α = (1, 5, 3, 7)(4, 8, 6) as a product of 2-cycles. (Hint: Solve the
corresponding Swap puzzle.)

The permutation α corresponds to the position
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which we will simply write as 7|2|5|6|1|8|3|4. To solve the puzzle from this state we may do the following:

α⇒ 7|2|5|6|1|8|3|4 τ1=(1,5)−−−−−→ 1|2|5|6|7|8|3|4 τ2=(3,7)−−−−−→ 1|2|3|6|7|8|5|4 τ3=(4,8)−−−−−→ 1|2|3|4|7|8|5|6
τ4=(5,7)−−−−−→ 1|2|3|4|5|8|7|6 τ5=(6,8)−−−−−→ 1|2|3|4|5|6|7|8⇒ ε.

This means ατ1τ2τ3τ4τ5 = ε, or α = τ−15 τ−14 τ−13 τ−12 τ−11 . Therefore, we have found a decomposition of α into
2-cycles:

α = (1, 5, 3, 7)(4, 8, 6) = (6, 8)(5, 7)(4, 8)(3, 7)(1, 5).

5.3 15-Puzzle

Imagine the tiles in the 15 puzzle mixed-up. Consider Figure 5.1c for example. Each tile was moved from
some numbered box (its home box) to some other numbered box: for example the tile in box 1 moved to box
10, but the tile in box 5 stayed in box 5. Here we think of the empty space as tile number 16, which we will
often call the “empty tile”.

(a) (b) (c)

Figure 5.1: The 15 Puzzle

We can write down the permutations describing each of the positions in 5.1 by using Definition 5.1.

(a) This puzzle is in the solved state, so no tiles have been moved. This corresponds to the identity
permutation ε. The array form of this permutation is

ε =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

)
.

(b) In this puzzle the tiles in boxes 14 and 15 were switched. This corresponds to the permutation (14, 15).
The array form of this permutation is(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 15 14 16

)
.

(c) Tile 1 is now in box 10, so 1 7→ 10 for this permutation. Tile 10 is in box 8, so 10 7→ 8. Continuing in this
fashion we construct the cycle form of the corresponding permutation: (1, 10, 8, 12)(2, 3)(4, 14)(6, 15, 16)(7, 11, 13, 9),
where we omitted the 1-cycle (5). The array form of this permutation is(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10 3 2 14 5 15 11 12 7 8 13 1 9 4 16 6

)
.
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By the construction of the 15-Puzzle a legal move consists of swapping a tile with the empty tile, provided
it is adjacent to the empty tile. This means legal moves are 2-cycles, and move sequences are products of
2-cycles.

Example 5.4: Consider the following sequence of moves in the 15-Puzzle.

The first move consists of moving the empty space from box 9 to 10 so it corresponds to the permutation
τ1 = (9, 10). The second move consists of moving the empty space form box 10 to 6 so it corresponds to the
permutation τ2 = (10, 6).

The first position is given by α = (1, 4)(2, 3)(9, 16)(15, 10)(11, 14)(12, 13), the last position is
β = (1, 4)(2, 3)(6, 10, 15, 9, 16)(11, 14)(12, 13), and we have

ατ1τ2 = (1, 4)(2, 3)(9, 16)(15, 10)(11, 14)(12, 13)(9, 10)(10, 6)

= (1, 4)(2, 3)(6, 10, 15, 9, 16)(11, 14)(12, 13)

= β.

This provides an illustration of Theorem 5.1.

5.4 Oval Track Puzzle

Since there are 20 moving disks on the Oval Track puzzle (Figure 5.2), each position/move can be described
as a permutation of [20] = {1, 2, . . . , 20}.

Figure 5.2: The Oval Track Puzzle.

Recall from Lecture 1, the basic legal moves of the oval track puzzle are R, R−1, and T. Where R denotes
a clockwise rotation of numbers around the track, moving each number one space, R−1denotes a counter-
clockwise rotation of the numbers around the track, and T denotes a rotation of the turntable. See Figure
5.3.

The permutation corresponding to the legal moves R, R−1, and T are as follows:

R = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)
R−1 = (1, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)
T = (1, 4)(2, 3)
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Note that T−1 = T . This is due to the fact that spinning the turntable in either direction achieves the
same result.

(a) R= (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)

(b) T = (1, 4)(2, 3)

Figure 5.3: Basic Moves R and T of Oval Track.

Example 5.5: Express, in cycle form, the permutations describing each of the positions in Figure 5.4.

(a) (b)

Figure 5.4: Oval Track scramblings for Example 5.5.

(a) Disk 1 is in slot 4, disk 4 is in slot 6, disk 6 is in slot 5, disk 5 is in slot 2, disk 2 is in slot 3, and disk
3 is in slot 1. All other disks are still in their home positions, so the corresponding permutation is
(1, 4, 6, 5, 2, 3).

(b) Similar to part (a) we just follow where each disk ended up. The corresponding permutation is
(1, 5, 13)(4, 17, 7, 20, 6).

Example 5.6: Apply each of the following move sequences to the solved-state Oval Track puzzle and draw
the resulting configuration of the disks on the puzzle.
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(a) RTR−1

(b) R−4TR2TR−1

(a) If you have a physical puzzle, or one of the virtual ones linked to from the course website, then you
can actually perform the move sequence and attain the resulting configuration. We can also do this
using the permutation representations of the move sequence:

RTR−1 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)(1, 4)(2, 3)R−1

= (1, 3)(4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)R−1

= (1, 3)(4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)

(1, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)

= (1, 2)(3, 20)

The resulting position is drawn below.

(b) Multiplying two 20-cycles and a 4-cycle in part (a) was not technically difficult, it was just tedious.
This product R−4TR2TR−1 would be very tedious, and the actual calculation wouldn’t be too enlight-
ening. No mathematician would actually do the calculation by hand. In fact, most would not have
done part (a) by hand either. It is really just the end result we are interested in, so we should do what
any normal person would do, have a computer do the calculation. We’ll use Sage to do this.

Sage
sage: S20=SymmetricGroup(20)
sage: R=S20("(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)")
sage: T=S20("(1,4)(2,3)")
sage: Rˆ(-4)*T*Rˆ(2)*T*Rˆ(-1)
(1,18,15,12,9,6,4,2,19,16,13,10,7,20,17,14,11,8)

Later on we will discuss in detail the commands used above, and what each line of code does (you may
be able to figure this out for yourself). For now, we have our answer to the question, R−4TR2TR−1

corresponds to the permutation returned by Sage and the puzzle looks like this



LECTURE 5 FROM PUZZLES TO PERMUTATIONS 58

5.5 Hungarian Rings

There are 38 moving disks in the the (numbered) Hungarian Rings puzzle (Figure 5.5), so each posi-
tion/move can be described as a permutation of [38] = {1, 2, . . . , 38}.

Figure 5.5: Hungarian Rings - numbered version.

Recall from Lecture 1, the basic legal moves of the Hungarian Rings puzzle are R, R−1, L, and L−1, where
R denotes a clockwise rotation of numbers around the right-hand ring (each number moves one space),
R−1denotes a counterclockwise rotation of the numbers around the right-hand ring, L denotes a clockwise
rotation of numbers around the left-hand ring, and L−1denotes a counterclockwise rotation of the numbers
around the left-hand ring.

The permutation corresponding to each of the legal moves R and L are:

R = (1, 38, 37, 36, 35, 6, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21)
L = (1, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)

R−1and L−1correspond to the inverses of these permutations.

Example 5.7: Express, in cycle form, the permutations describing each of the positions in Figure 5.6.

(a) (b)

Figure 5.6: Hungarian Rings scramblings.

(a) We simply follow where each disk has been moved. The corresponding permutation is (1, 36, 4, 38).

(b) Following where each disk has been moved, the corresponding permutation is (3, 37, 30, 11)(20, 21).

Example 5.8: For each of the following move sequences, which were applied to the solved-state Hungarian
Rings puzzle, draw the resulting configuration of the disks on the puzzle.

(a) R−1LR
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(b) L5R5L−5R−5

(a) If you have a physical puzzle, or one of the virtual ones linked to from the course website, then you
can actually perform the move sequence and attain the resulting configuration. We can also do this
using the permutation representations of the move sequence, by multiplying the permutations. We’ll
use Sage to do the computations.

Sage
sage: S38=SymmetricGroup(38)
sage: L=S38("(1,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2)")
sage: R=S38("(1,38,37,36,35,6,34,33,32,31,30,29,28,27,26,25,24,23,22,21)")
sage: Rˆ(-1)*L*R
(2,38,20,19,18,17,16,15,14,13,12,11,10,9,8,7,34,5,4,3)

The resulting position is drawn below.

(b) Again, we’ll use Sage to do the desired calculation.

Sage
sage: Lˆ5*Rˆ5*Lˆ(-5)*Rˆ(-5)
(1,25)(6,11)

The resulting position is drawn below.

5.6 Rubik’s Cube

To keep track of how the pieces of the cube move around, and to be able to describe movements and
positions by permutations, we label each of the facets with numbers. For the 2 × 2 × 2 cube there are 24
facets, whereas for the 3× 3× 3 cube there are 54, but only 48 actually move. The 6 centres can be thought
of as remaining fixed (though they can rotate, but this is only noticeable if the sticker has an image on it).
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Figure 5.7: Facet labeling on the Pocket cube.

(a) Labeling on Up (blue),
Right (yellow), Front (red)
faces

(b) Labeling on Down
(green), Back (orange),
Left (white) faces

Figure 5.8: The labeling of the facets of the Pocket Cube.

5.6.1 2× 2× 2 Cube

We label the facets of the Pocket Cube as shown in Figure 5.7. Figure 5.8 shows the labeling on an actual
cube.

We associate permutations to positions and moves in the usual way (Definitions 5.1 and 5.2). The basic
moves of the Rubik’s Cube are R, L, U, D, F, B, and their inverses. Each one denotes a clockwise quarter
turn of the corresponding face. See Lecture 1 for a thorough discussion of this notation.

The permutation corresponding to each of the basic moves of the Pocket Cube are:

R = (13, 14, 16, 15)(10, 2, 19, 22)(12, 4, 17, 24)
L = (5, 6, 8, 7)(3, 11, 23, 18)(1, 9, 21, 20)
U = (1, 2, 4, 3)(9, 5, 17, 13)(10, 6, 18, 14)
D = (21, 22, 24, 23)(11, 15, 19, 7)(12, 16, 20, 8)
F = (9, 10, 12, 11)(3, 13, 22, 8)(4, 15, 21, 6)
B = (17, 18, 20, 19)(1, 7, 24, 14)(2, 5, 23, 16)

R−1, L−1, U−1, D−1, F−1, D−1correspond to the inverses of these permutations.
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5.6.2 3× 3× 3 Cube

As we described in Lecture 1, we label the facets of the Rubik’s Cube as shown Figure 5.9. Figure 5.10
shows the labeling on an actual cube.

Figure 5.9: Facet labeling on the Rubik’s cube.

(a) Labeling on Up, Right,
Front faces

(b) Labeling on Down, Back,
Left faces

Figure 5.10: The labeling of the facets of Rubik’s Cube.

The permutation corresponding to each of the basic moves of the Rubik’s Cube are:

R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
D = (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39)(16, 24, 32, 40)
F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)

R−1, L−1, U−1, D−1, F−1, D−1correspond to the inverses of these permutations.

Uncovering the secrets of the cube will involve playing around with these permutations, and our play-
ground will be Sage . Here is how we can input the permutations for the Rubik’s Cube into Sage.

Sage
sage: S48=SymmetricGroup(48)
sage: R=S48("(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)")
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sage: L=S48("(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)")
sage: U=S48("(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)")
sage: D=S48("(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)")
sage: F=S48("(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)")
sage: B=S48("(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)")

We could then, for instance, see what the move sequence RU does to the cube.

Sage
sage: R*U
(1,3,38,43,11,35,27,32,30,17,9,33,48,24,6)(2,5,36,45,21,7,4)(8,25,19) \
(10,34,26,29,31,28,18)

We can easily “eyeball” the order of this permutation, it is lcm(15, 7, 3) = 105. This gives us a glimpse into
the kind of questions we can easily answer through computation.

Also, since RU consists of a 15-cycle, a 3-cycle and two 7-cycles, raising it to the power of 15 would get rid
of the 15- and 3-cycles, and would leave us with some 7-cycles.

Sage
sage: (R*U)ˆ15
(2,5,36,45,21,7,4)(10,34,26,29,31,28,18)

This means we can move fewer pieces by taking powers of some move sequences. We’ll later how this is an
effective strategy for solving these puzzles.

5.7 Exercises

1. Swap Puzzle arrangements into cycle notation. For each of the following scramblings of the
tiles in Swap, express them as permutations in Sn using cycle notation.

(a)

(b)

(c)

(d)

(e)

2. Swap Puzzle arrangements from cycle notation. For each of the following permutations, given
in cycle form, draw the corresponding scrambling of the tiles on the Swap puzzle.

(a) (1, 5, 3, 8)(2, 4, 7)

(b) (3, 7, 4, 10, 6, 5, 8)

(c) (1, 12)(2, 11)(3, 10)(5, 6, 7)
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3. Swap Puzzle arrangements and moves in cycle notation. In each part (a) - (c) below, a sequence
of moves has been applied to a scrambling of the tiles in Swap. Do the following:
(i) Express the starting position α as a permutation in cycle notation.
(ii) Express each move τi as a 2-cycle.
(iii) Express the whole move sequence as a permutation in cycle notation.
(iv) Express the final position β as a permutation in cycle notation and show that ατ1 · · · τn = β.

(a)

(b) 5|4|2|8|1|3|6|7 τ1−→ 5|2|4|8|1|3|6|7 τ2−→ 8|2|4|5|1|3|6|7 τ3−→ 1|2|4|5|8|3|6|7 τ4−→ 1|2|4|5|8|6|3|7

(c) 5|10|4|1|6|7|2|3|8|9 τ1−→ 5|10|4|1|7|6|2|3|8|9 τ2−→ 1|10|4|5|7|6|2|3|8|9 τ3−→ 1|9|4|5|7|6|2|3|8|10
τ4−→ 1|9|4|7|5|6|2|3|8|10

τ5−→ 1|2|4|7|5|6|9|3|8|10

4. Swap Puzzle move sequence in cycle notation. For each move sequence α given below, express
it as a permutation in cycle form.

(a)

(b)

5. Decomposing a permutation into 2-cycles. Write the permutation α = (1, 2, 3) as a product of
2-cycles. (Hint: Solve the corresponding Swap puzzle.)

6. Decomposing a permutation into 2-cycles. Write the permutation α = (1, 2, 8, 3, 7)(4, 5, 6) as a
product of 2-cycles. (Hint: Solve the corresponding Swap puzzle.)

7. Decomposing a permutation into 3-cycles. Write the permutation α = (1, 2)(3, 4) as a product of
3-cycles. (Hint: Solve the corresponding Swap puzzle, under the variation where the legal moves are
now 3-cycles.)

8. Decomposing a permutation into 3-cycles. Write the permutation α = (1, 2, 8, 3, 7)(4, 5, 6) as a
product of 3-cycles. (Hint: Solve the corresponding Swap puzzle, under the variation where the legal
moves are now 3-cycles.)

9. 15-Puzzle arrangements into cycle notation. Express each of the following scramblings of the
15-puzzle as a permutation in cycle form.

(a) (b) (c)

10. 15-Puzzle arrangements from cycle notation. For each of the following permutations, given in
cycle form, draw the corresponding scrambling of the tiles on the 15 puzzle.

(a) (6, 7, 11, 10)

(b) (1, 5, 3, 10, 15, 2, 14, 12, 11, 6, 7, 4)(9, 16)

(c) (2, 10, 13, 5)(1, 3)(7, 8, 9)
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11. 15-Puzzle move sequence in cycle notation. For the move sequence α given below, express it as
a permutation in cycle form.

12. 15-Puzzle arrangements and moves in cycle notation. In each part (a) - (c) below, a sequence of
moves has been applied to a scrambling of the tiles in the 15-Puzzle. Do the following:
(i) Express the starting position α as a permutation in cycle notation.
(ii) Express each move τi as a 2-cycle.
(iii) Express the whole move sequence as a permutation in cycle notation.
(iv) Express the final position β as a permutation in cycle notation and show that ατ1 · · · τn = β.

(a)

(b)

13. Oval Track Puzzle arrangements into cycle notation. Express, in cycle form, the permutation
describing each of the positions of the Oval Track puzzle drawn below.
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(a) (b)

14. Oval Track Puzzle move sequence in cycle notation. Express the move sequence α given in the
diagram below as a permutation in cycle notation.

15. For each of the following move sequences, which are applied to the solved-state Oval Track puzzle,
draw the resulting configuration of the disks on the puzzle.

(a) T 2

(b) R19

(c) R−1TR

(d) TR−1TR

16. Hungarian Rings arrangements into cycle notation. Express, in cycle form, the permutation
describing each of the positions of the Hungarian Rings puzzle drawn below.

(a) (b)

17. Hungarian Rings move sequence in cycle notation. Express the move sequence α given in the
diagram below as a permutation in cycle notation.
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18. For each of the following move sequences, which are applied to the solved-state Hungarian Rings
puzzle, draw the resulting configuration of the disks on the puzzle.

(a) R2

(b) RL
(c) L5R5L−5R−6LR6L5R−5L−5R−1L−1R (use Sage to compute this)

19. Rubik’s Cube arrangements into cycle notation. Express, in cycle form, the permutation cor-
responding to the position of the Rubik’s Cube where the cubies have been moved and positioned as
follows:

• the UR cubie is in the bu cubicle (recall this means the U face of the UR cubie is in the B face of
the bu cubicle)

• the UB cubie is in the lu cubicle
• the UL cubie is in the ur cubicle.

(Look back at Lecture 1 where the terms “cubie” and “cubicle” are discussed.)



Lecture 6

Permutations: Products of 2-Cycles

To solve a permutation puzzle one must determine how the permutation representing the current position
of the pieces can be decomposed into permutations representing the legal moves. It is this “decomposition
problem” that will be the focus of our attention in many lectures to come.

In this lecture we will show every permutation can be decomposed as a product of 2-cycles. We will also
see how this is connected to the solvability of the Swap puzzle.

It is standard terminology to refer to a 2-cycle as a transposition . So the title of this lecture could also
be Permutations: Products of Transpositions.

6.1 Introduction

Consider the permutation α = (1, 3, 5)(2, 4, 7, 6, 8). We would like to show it can be written as a product to
2-cycles.

To this permutation we consider the corresponding scramble of the Swap puzzle on 8 objects.

To solve the puzzle recall the objective is to restore all numbered tiles to their home positions where the
only legal moves are to swap tiles from any two boxes (i.e. a 2-cycle). One possible play is as follows.

67
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The dotted arrows indicate the two tile that are about to be swapped.

The permutations corresponding to the moves are:

τ1 = (1, 3), τ2 = (2, 4), τ3 = (3, 5), τ4 = (4, 7), τ5 = (6, 8), τ6 = (7, 8)

and so the game-play corresponds to the composition: ατ1τ2τ3τ4τ5τ6 = ε. It follows that

α = τ−16 τ−15 τ−14 τ−13 τ−12 τ−11 (6.1)
= (7, 8)(6, 8)(4, 7)(3, 5)(2, 4)(1, 3) (6.2)

This is precisely what we wanted, α is written as a product of 2-cycles.

Exercise 6.1: Write the permutation β = (1, 5, 3, 4, 2) as a product of 2-cycles. Do this by using β as the
starting scramble of the Swap puzzle, then solving the puzzle and keeping track of your moves as 2-cycles.

Answer on page 70

6.2 Product of 2-Cycles

There doesn’t seem to be anything special about the particular permutation α that we used in the last
example. Our strategy was to just move the numbers, one at a time, to their home positions, and we chose
to do this in increasing order, though we could have done it an any order we wanted.

This means we should be able to write any permutation as a product of 2-cycles. This is such an important
observation that will state it as a theorem (a complete proof is given below).

Theorem 6.1 (Product of 2-Cycles): Every permutation in Sn, n > 1, can be expressed as a product
of 2-cycles.

Playing with the Swap puzzle showed us intuitively why the theorem is true, it also gave us a method for
finding such a decomposition into 2-cycles. As quick as it was to find a decomposition, we will require a
much quicker method: a way to “eyeball” the decomposition. Having to draw a Swap game each time we
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want to compute a decomposition into 2-cycles would be too time consuming. So how can we do this even
more quickly?

Well, consider a 5-cycle: β = (1, 5, 3, 4, 2). By direct computation we can check

(1, 5, 3, 4, 2) = (1, 5)(1, 3)(1, 4)(1, 2).

Check the product for yourself!

In general we have the following “quick” method for decomposing cycles.

Decomposition of a k-cycle into 2-cycles:
A k-cycle (a1, a2, a3, . . . , ak−1, ak) in Sn can be decomposed into 2-cycles as follows:

(a1, a2, a3, . . . , ak−1, ak) = (a1, a2)(a1, a3) · · · (a1, ak−1)(a1, ak)

Using this method of decomposing k-cycles we can easily decompose any permutation by first writing the
permutation as a product of disjoint cycles, and then decomposing each cycle into 2-cycles. For example,
consider α = (1, 3, 5)(2, 4, 7, 6, 8) again:

α = (1, 3, 5)(2, 4, 7, 6, 8) = (1, 3)(1, 5)(2, 4)(2, 7)(2, 6)(2, 8).

We now give a formal proof of Theorem 6.1.

Proof: First note that the identity can be expressed as (1, 2)(1, 2), and so it is a product of 2-cycles. (This
is why we needed n > 1 in the statement of the theorem.) Now consider any permutation α ∈ Sn. We
already know we can write α as a product of disjoint cycles:

α = (a1, a2, . . . , ar)(b1, b2, . . . , bs) · · · (c1, c2, . . . , ct)

and each cycle can be decomposed into 2-cycles as we observed above:

α = (a1, a2)(a1, a3) · · · (a1, ar)(b1, b2)(b1, b3) · · · (b1, bs) · · · (c1, c2)(c1, c3) · · · (c1, ct).

This completes the proof. �

6.3 Solvability of Swap

A permutation α is obtainable as a puzzle position of Swap if and only if it can be expressed as a product
of legal moves (2-cycles):

α = τ−1k · · · τ
−1
2 τ−11 .

See Equation 6.1 for example. In other words, if α is the current position then the moves required to solve
the puzzle are τ1, τ2, . . . , τk.

Since every permutation is a product of 2-cycles (Theorem 6.1), then as a consequence we have the follow-
ing:

Corollary 6.2: The Swap puzzle, where the legal moves consist of swapping contents of any two boxes,
is solvable from any configuration. In other words, all permutations in Sn can be obtained in the Swap
puzzle on n-objects.
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This is the first in a series of solvability results we wish to obtain for all the puzzles.

Notice, the result only applies to Swap when the legal moves are swapping contents of any two boxes. We
could consider other variations of Swap, for example:

Variation 1: Legal moves consist of swapping the contents of any other box with the object in box 1.

For this variation, a permutation α is obtainable as a position if and only if it can be written as a product
of 2-cycles of the form: (1, a) for a ∈ [n]. See Exercises 4 and 5.

Variation 2: Legal moves consist of picking any 3 boxes and cycling their contents either to the left or
right (i.e. 3-cycles).

For this variation, a permutation α is obtainable as a position if and only if it can be written as a product
of 3-cycles. See Exercises 6 and 7.

6.4 Exercises

1. For the permutation α = (1, 8, 4)(2, 3, 7)(5, 6) write it as a product of 2-cycles, first by: (1) Thinking of
it as a scrambling of the Swap puzzle, and solving the puzzle as we did in the example in section 6.1,
then by (2) Using the method developed in Section 6.2. Which method was the quickest to use?

2. Write the 3-cycle (1, 2, 3) as a product of two 2-cycles.

3. For each of the following permutations, in cycle form, write it as a product of 2-cycles.

(a) (1, 6, 4, 3)

(b) (2, 4, 7)(3, 9, 5, 8)

(c) (1, 9, 4, 5)(3, 11, 4)(6, 7)

(d) (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)

4. Using only the legal moves in Variation 1 of Swap described in Section 6.3, solve the puzzle with
initial scrambling α = (1, 3, 5)(2, 4, 7, 6, 8).

5. Show for Variation 1 of Swap described in Section 6.3 that every permutation in Sn is obtainable as
a puzzle position. This is equivalent to showing that every permutation in Sn can be written as a
product of 2-cycle of the form (1, a) where a ∈ [n]. (Hint: First show every cycle can be written as a
product of such transpositions.)

6. Consider only the legal moves in Variation 2 of Swap described in Section 6.3. Determine which of
the following scramblings are solvable.
(a) α = (1, 3, 5)(2, 4, 7, 6, 8)
(b) β = (1, 6, 2)(3, 4, 8)(5, 7)
(Hint: Play the game of Swap with these configurations and see if you can solve it.)

7. Discover a solvability condition for Variation 2 of Swap described in Section 6.3. That is, determine
the conditions a permutation α must satisfy in order for it to be obtainable as a puzzle configuration.
(Given the current tools we have developed so far, this still may be a difficult problem. We’ll soon
develop the tools needed to completely solve this problem. However, for now see if you can discover a
solvability condition.)

Answers to in-chapter exercises:

Exercise 6.1: There are many correct answers to this question. One possible product is (4, 5)(3, 4)(2, 5)(1, 5).
Another one is (1, 5)(1, 3)(1, 4)(1, 2).



Lecture 7

Permutations: The Parity Theorem

In this lecture we introduce one of the most important theorems about permutations: The Parity Theo-
rem.

We already know every permutation can be expressed using 2-cycles. We now explore the question of how
many 2-cycles are needed.

7.1 Introduction

In Lecture 6 we saw that the permutation α = (1, 3, 5)(2, 4, 7, 6, 8) can be written as a product of 2-cycles in
two different ways:

α = (7, 8)(6, 8)(4, 7)(3, 5)(2, 4)(1, 3)

= (1, 3)(1, 5)(2, 4)(2, 7)(2, 6)(2, 8).

The first decomposition we obtained by considering the permutation as an initial scrambling of the tiles
of Swap, then solving the puzzle by restoring each tiles to its home position in increasing order, beginning
with tile 1. The second decomposition was obtained using our “quick” method for decomposing permuta-
tions. There are many more possible decompositions of α, here are two more:

α = (1, 6)(6, 7)(1, 4)(1, 7)(2, 8)(4, 8)(1, 5)(3, 5)

= (1, 3)(1, 2)(1, 4)(1, 2)(1, 5)(1, 2)(1, 7)(1, 6)(1, 8)(1, 2)

The number of 2 cycles used in the decompositions are not always the same. In the four decompositions we
have, two use 6 , one uses 8, and one uses 10. Even though the number of 2-cycles isn’t constant, it always
seems to be of the same parity, in this case it is even.

This observation is true in general. Before we state the general result we first better explain the term
parity. We say for an integer m that its parity is even if m is a multiply of 2. If m is not a multiple of 2
then its parity is odd. Perhaps the term “parity” is not familiar, but certainly the distinction between an
odd number and an even number is. Much in the same way that integers come in one of two types, based
on parity: odd or even, permutations also come in one of two types, based on the parity of a permutation.
This is what the next theorem says.
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Theorem 7.1 (The Parity Theorem): If a permutation α can be expressed as a product of an even
number of 2-cycles, then every decomposition of α into 2-cycles must have and even number. On the
other hand, if α can be expressed as a product of an odd number of 2-cycles, then every decomposition
of α into 2-cycles must have an odd number. In symbols, if

α = τ1τ2 · · · τr = σ1σ2 · · ·σs

where the τi’s and σi’s are 2-cycles, then r and s are both even or both odd.

We will give two different proofs of this theorem in the next few sections. But for now lets look at some of
the consequences of this theorem.

The Parity Theorem tells us that we can define what we mean by the parity of a permutation. If we
decompose it as a product of 2-cycles in any way, then the parity of the number of 2-cycles that we used is
either odd or even, and this is the parity we assign to the permutation. Here is the formal definition.

Definition 7.1 (Even and Odd Permutation): A permutation that can be expressed as a product
of an even number of 2-cycles is called an even permutation. A permutation that can be expressed
as a product of an odd number of 2-cycles is called an odd permutation.

This definition of parity may not seem to exciting, but just wait. This will allow us to answer important
question about the puzzle, and sometimes allow us to abandon quests that are impossible.

Definition 7.2 (Sign of a Permutation): The sign of a permutation α is defined to be 1 if α is even,
or −1 if α is odd.

sign(α) =

{
1 if α is an even permutation,
−1 if α is an odd permutation.

Parity of the Identity:
The identity permutation ε is an even permutation.

This follows from ε = (1, 2)(1, 2), which is a decomposition into and even number of 2-cycles.
Sage

sage: S5=SymmetricGroup(5)
sage: a=S5("()") #the identity permutation in cycle form.
sage: a.sign()
1

It is useful to be aware of the parity of cycles.

Parity of a Cycle:
An m-cycle, (a1, a2, . . . , am) is an even permutation if m is odd, and it is an odd permutation if m is even.
(Confusing, I know.)

This follows from the fact that an m-=cycle can be expressed as a product of m− 1 transpositions:

(a1, a2, . . . , am) = (a1, a2)(a1, a3) · · · (a1, am).
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If m is even then m− 1 is odd, and vice-versa. This is why the parity of the permutation is opposite to the
parity of the length of the cycle.

Sage
sage: S5=SymmetricGroup(5)
sage: a=S6("(1,2,3,4)")
sage: a.sign()
-1
sage: b=S5("(1,2,3,4,5)")
sage: b.sign()
1

Example 7.1: Determine whether the following permutations are odd or even.

(a) (1, 5, 11, 6, 7, 3) (b) (1, 4, 12)(3, 8, 5, 9)(7, 10)

(a) This is a 6-cycle and therefore an odd permutation since it can be written as a product of 5 transposi-
tions:

(1, 5, 11, 6, 7, 3) = (1, 5)(1, 11)(1, 6)(1, 7)(1, 3).

Sage
sage: S11=SymmetricGroup(11);
sage: a=S11("(1,5,11,6,7,3)");
sage: a.sign()
-1

(b) Writing each cycle as a product of transpositions we have:

(1, 4, 12)(3, 8, 5, 9)(7, 10) = (1, 4)(1, 12)(3, 8)(3, 5)(3, 9)(7, 10).

Since (1, 4, 12)(3, 8, 5, 9)(7, 10) can be written as the product of 6 transpositions, it follows that it is even.

Sage
sage: S12=SymmetricGroup(12);
sage: b=S12("(1,4,12)(3,8,5,9)(7,10)");
sage: b.sign()
1

7.2 Variation of Swap

in Lecture 6 we considered the following variation on the legal moves of Swap.

Variation: Legal move is to pick any 3 boxes and cycle their contents either to the left or right.

For this variation, a permutation corresponding to a scrambling of the tiles is solvable if and only if it
can be expressed as a product of 3-cycles (i.e. the legal moves). Since 3-cycles are even permutations,
and products of even permutations are even (see Exercise 5) then any product of 3-cycles must be an even
permutation. This means an odd permutation of Swap is not solvable under this variation of the legal
moves.

For example, the scrambling
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is not solvable. This corresponds to the permutation α = (1, 3, 5, 4, 7, 6, 8, 2) which is an odd permutation.

Note what happened here. By simply observing that α is an odd permutation we immediately knew to
abandon any quest to solve the puzzle. To do otherwise would be pointless. This provides a glimpse into
how we will be using the Parity Theorem to investigate the solvability of puzzles.

7.3 Proof of the Parity Theorem

In this section we provide a two different proofs of the Parity Theorem. However, rather than proving the
Parity Theorem directly we will prove another result (Claim 7.2), from which the Parity Theorem follows.
While reading this section, keep in mind we cannot assume that the Parity Theorem is true (yet), since
this is what we are trying to prove.

Consider the following Claim.
Claim 7.1: Any expression for the identity permutation ε as a product of transpositions uses an even number
of them. That is, if

ε = τ1τ2 · · · τm
where the τi’s are transpositions, then m is an even integer.

Before considering why this is true, let’s see how the Parity Theorem is a consequence of this claim. Sup-
pose τ1τ2 · · · τr and σ1σ2 · · ·σs are two decompositions of a permutation α into 2-cycles. Then

ε = αα−1 = (τ1τ2 · · · τr)(σ1σ2 · · ·σs)−1 = τ1τ2 · · · τrσ−1s · · ·σ−12 σ−11

is a decomposition of ε into r + s transpositions. If Claim 7.1 is true, then r + s must be even, from which
it follows that r and s have the same parity. Therefore the Parity Theorem 7.1 is true.

Therefore, in order to prove the Parity Theorem it is sufficient to prove Claim 7.1. But how do we know
Claim 7.1 is true? Well, one way is to prove that:
Claim 7.2: If there is an expression τ1τ2 · · · τm for the identity permutation ε that uses m transpositions,
then there is an expression for ε that uses m− 2 transpositions.

Again, before considering why Claim 7.2 is true, let’s see how we can use it to prove Claim 7.1. Let’s
assume to the contrary that it was possible to have an expression τ1τ2 · · · τm for ε where m is odd. Then,
assuming Claim 7.2 is true, we could get an expression using m − 2 transpositions (which is still an odd
number of transpositions). We could keep applying Claim 7.2, reducing the number of transpositions by 2
each time, until we end up with an expression for ε using only one transposition. But this is impossible
since a single transposition is not equal to the identity (the two numbers in the cycle would not be fixed by
the permutation). The fact that we get something impossible from the assumption that an expression for
ε exists that uses an odd number of transpositions forces us to conclude that Claim 7.1 is true.

To summarize we have

Claim 7.2⇒ Claim 7.1⇒ Theorem 7.1

So it suffices to prove Claim 7.2. This is the proof will focus on here. We will provide two completely differ-
ent proofs, one will be algebraic in nature and will involve playing around with the cycle decomposition of
permutations (this is the classic proof), the other will be a little more tactile and has a game-like feel to it
(this proof is due John O. Kiltinen).

7.3.1 Proof 1 of Claim 7.2

The rough idea of what we will do is: first we will pick the right-most occurrence of any number appearing
in decomposition into transpositions. Then we will push this number to the left through the transpositions,
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while transforming the transpositions at the same time, until we eventually get two transpositions that
cancel.

Before giving a formal proof let’s look at an example. The product of the following 12 transpositions is the
identity. Check for yourself!

ε = (1, 2)(1, 3)(1, 4)(1, 6)(1, 5)(3, 4)(3, 5)(2, 5)(2, 3)(1, 5)(2, 6)(2, 4) (7.1)

We will transform this product to a product of only 10 transpositions, which still represents the identity.
Choose a number appearing in any transpositions. We’ll choose 3. Find the right-most transposition
containing this number. In this case it would be the transposition (2, 3) (the ninth one in the list). We
now want to push 3 to the left, so in this product we replace (2, 5)(2, 3) with the equivalent permutation
(3, 5)(2, 5) (Check for yourself that (2, 5)(2, 3) = (3, 5)(2, 5).):

ε = (1, 2)(1, 3)(1, 4)(1, 6)(1, 5)(3, 4)(3, 5)(3, 5)(2, 5)(1, 5)(2, 6)(2, 4).

Now we can replace (3, 5)(3, 5) with ε:

ε = (1, 2)(1, 3)(1, 4)(1, 6)(1, 5)(3, 4)(2, 5)(1, 5)(2, 6)(2, 4),

which is an expression using 2 fewer transpositions than we started with.

Sometime it may take a few more steps, for example if we decided to use 5 instead of 3, we would have
proceeded as follows: Find the right-most transposition containing this number in Equation (7.1). In this
case it would be the transposition (1, 5). We now want to push 5 to the left, so in this product we replace
(2, 3)(1, 5) with the equivalent permutation (1, 5)(2, 3), since disjoint cycle commute.

ε = (1, 2)(1, 3)(1, 4)(1, 6)(1, 5)(3, 4)(3, 5)(2, 5)(1, 5)(2, 3)(2, 6)(2, 4)

Next replace (2, 5)(1, 5) with (1, 5)(1, 2):

ε = (1, 2)(1, 3)(1, 4)(1, 6)(1, 5)(3, 4)(3, 5)(1, 5)(1, 2)(2, 3)(2, 6)(2, 4),

then replace (3, 5)(1, 5) with (1, 5)(1, 3)

ε = (1, 2)(1, 3)(1, 4)(1, 6)(1, 5)(3, 4)(1, 5)(1, 3)(1, 2)(2, 3)(2, 6)(2, 4).

Since (3, 4) and (1, 5) commute, the two (1, 5)’s would cancel and we get:

ε = (1, 2)(1, 3)(1, 4)(1, 6)(3, 4)(1, 3)(1, 2)(2, 3)(2, 6)(2, 4),

which is an expression using 2 fewer transpositions than we started with.

With these two examples behind us, we now give the formal proof.

Proof of Claim 7.2:
Choose a number a that appears in the transposition τm. Since (i, j) = (j, i) for any transposition (i, j), the
product τm−1τm can be expressed in one of the following ways as shown on the left:

(a, b)(a, b) = ε

(a, c)(a, b) = (a, b)(b, c)

(c, d)(a, b) = (a, b)(c, d)

(b, c)(a, b) = (a, c)(c, b)

If the first case occurs we may delete τm−1τm in the original product and obtain a product for ε using m− 2
transpositions. In the other three cases we replace the form τm−1τm with what appears on the right to
obtain a new product of m transpositions that is still the identity, but where the right-most occurrence of
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a has now moved one 2-cycle to the left. We now repeat the process, where at each stage either we cancel
two 2-cycles (and we’re done), or we form a new product where a has moved another 2-cycle to the left. This
process must terminate with a product of (m−2) transpositions equal to the identity, because otherwise we
have a product of m transpositions equal to the identity in which the only occurrence of a is in the left-most
2-cycle, and such a product does not fix a whereas the identity does. �

This completes the proof of Claim 7.2, and therefore the proof of the Parity Theorem too.

7.3.2 Proof 2 of Claim 7.2

We now present a more tactile proof of Claim 7.2 which is due to John O. Kiltinen (see [9]).

Let’s reinterpret what the claim says in terms of the Swap puzzle. Suppose that you start with the Swap
puzzle as the identity permutation. Now imagine you do some swaps at random, not paying particular
attention to what you are doing. After doing this for a while, you then decide to put everything back in
its proper place. In other words you produce a sequence of transpositions that equals ε. If you count the
number of total transpositions you used, this number will be even. Try this a few times for yourself. This
is precisely what Claim 7.1 says.

Now imagine your friend shows you a sequence of transpositions that they used to produce ε. Is it possible
for you to best your friend and produce another such sequence that uses two few transpositions? Claim 7.2
says the answer is yes, and what we’ll do here is describe a method to produce the shorter sequence, which
can be done in real-time.

Let’s call your friend Alice. Imagine two copies of Swap stacked on top of each other, the top is Alice’s
set and the bottom is yours. We’ll colour Alice’s tiles green and yours blue, just to make it clear whose is
whose.

As Alice applies her transpositions, we will match/modify her moves, but in the end we will use two fewer.
Here is how we’ll do that.

Let’s call box containing the tile she touches first the First Box. We will call the tile that Alice takes from
the First Box Alice’s First Green Tile, and call the box to which it went the Tagged Box. We will call the
corresponding blue tile, Our First Blue Tile. To aid our memory, let us put markers into these boxes. The
marker we place in the First Box (shaded background) will remain throughout the process, but the one in
the Tagged Box (solid square in lower right corner) may move, depending on what Alice does.

After Alice makes her first move, we will not make a move of our own. This is the first transposition we
omit, the second one is essentially the one she does when she needs to undo this move. Instead of matching
her first move, we simply put markers on the boxes. From this point on, however, we will make a move in
such a way that the following four conditions are always satisfied, up until she returns Alice’s First Green
Tile to the First Box, at that point we will just mirror her moves until she finishes.

Conditions to be satisfied after every turn up until she returns Alice’s First Green Tile to the
First Box:

(i) Alice’s First Green Tile is always in the Tagged Box.

(ii) Our First Blue Tile is always at home in the First Box.

(iii) Whatever green tile number that Alice has in the First Box, we have the blue tile with that number
in the Tagged Box.
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(iv) All boxes other than the Tagged Box and the First Box contain green tiles and blue tiles with the
same numbers.

Let’s get our hands dirty and do an example. It may look a little confusing at first, but the idea is really
straightforward. Suppose Alice’s move sequence is

(3, 7)(4, 5)(1, 3)(2, 7)(3, 8)(1, 5)(2, 6)(3, 7)(2, 6)(2, 3)(1, 4)(1, 5)(1, 7)(1, 8).

The means Alice’s first move is (3, 7), and so the First Box is box 3 (shaded background), Alice’s First Green
Tile is tile 3, and the Tagged Box is box 7 (square box in bottom right corner). So after her first move, we
don’t make a move, and we have.

Alice’s next move is (4, 5). Since she doesn’t touch tiles in either the First Box or the Tagged box then
conditions (i)-(iv) will remain satisfied if we do the same move: τ1 = (4, 5).

Alice’s next move is (1, 3), and since this involves the First Box we move the contents of the Tagged Box
instead, to satisfy condition (iii): τ2 = (1, 7).

Alice’s next move is (2, 7), and since this involves the Tagged Box 7 we move the Tagged Box marker as
well as the tile, to satisfy condition (i). We also perform the same move on the blue tiles: τ3 = (2, 7).

Alice’s next move is (3, 8), and so we swap the blue tiles in the Tagged Box 2 and box 8. This will keep
conditions (i)-(iv) satisfied. τ4 = (2, 8).

Alice’s next move is (1, 5) mirror this move: τ5 = (1, 5).
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Alice’s next move is (2, 6) and we mirror it: τ6 = (2, 6), while at the same time be move the tag to box 6.

Alice’s next move is (3, 7) and we do τ7 = (6, 7).

Alice’s next move is (2, 6) and we mirror it τ8 = (2, 6), while at the same time be move the tag to box 2.

Alice’s next move is (2, 3), and since this involves both the First Box and the Tagged Box this the the other
transposition that we skip.

Now both the green and blue tiles are in the same positions so we mirror the remaining moves Alice does:
τ9 = (1, 4), τ10 = (1, 5), τ11 = (1, 7), τ12 = (1, 8). We have now produced as sequence permutations which is
the identity:

ε =

12∏
i=1

τi = (4, 5)(1, 7)(2, 7)(2, 8)(1, 5)(2, 6)(6, 7)(2, 6)(1, 4)(1, 5)(1, 7)(1, 8),

but uses 2 fewer permutations than Alice used.

This example illustrates the procedure, but how can we be sure it works in general. That is, how do we
know there is always a move that we can do which keeps conditions (i)-(iv) satisfied. Well, the following
rules provide us with these moves.

Rules to follow to ensure conditions (i)-(iv) are satisfied:

(a) If Alice does a transposition on her green tiles between boxes other that the First Box or the Tagged
Box, then we do the same transposition on our blue tiles.
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(b) If Alice does a transposition on her green tiles between the First Box and a box other than the Tagged
Box, then we respond with a transposition on our blue tiles between the Tagged Box and the other
box, not the First, that she used.

(c) If Alice does a transposition on her green tiles between the Tagged Box and a box other than the First
Box, then we respond with a transposition on our blue tiles between the same two boxes. However,
we also move the tag so that this other box now becomes the Tagged Box.

(d) If Alice does a transposition on her green tiles between the Tagged Box and the First Box, then we
do not do this one.

(e) Once Alice has done a transposition of the type described in (d), which she must, then for every
transposition of hers thereafter, we do the same transposition.

If we follow these rules when playing Alice, then we can be certain that conditions (i)-(iv) remain satisfied
up until she moves Alice’s First Green Tile back to the First Box. She must eventually have to make such a
move since Alice’s First Green Tile must return home (since the permutation is the identity) and the home
position is precisely the First Box. Since we omit the first move and the move where she returns Alice’s
First Green Tile to the First Box, we have effectively reduced her sequence of transpositions by 2 moves.
Thus completing the proof or Claim 7.2.

This may seem like a rather long-winded proof of Claim 7.2, and in fact it is. But this approach is designed
to build on the tactile experience that you have developed from playing with the Swap puzzle and other
permutation puzzles.

7.4 Exercises

1. Determine whether the following permutations are odd or even.

(a) (1, 3, 2)

(b) (1, 3, 5, 7, 9)

(c) (1, 6, 4, 3)

(d) (2, 4, 7)(3, 9, 5, 8)

(e) (1, 9, 4, 5)(3, 11, 4)(6, 7)

(f) (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)

2. Determine whether the following permutations are odd or even.

(a) α =

(
1 2 3 4 5 6 7 8
3 2 7 8 1 4 5 6

)
(b) β =

(
1 2 3 4 5 6 7 8
5 2 1 6 7 8 3 4

)
3. The parity of 15-puzzle scrambles. For each of the following arrangements of the 15-puzzle de-

termine the parity of the corresponding permutation.

(a) (b)
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4. The parity of some Oval Track end-game scrambles. For each of the end-game arrangements
of the Oval Track puzzle variations, determine its parity.

(a) (b)

(c) (d)

5. Show each of the following.

(a) The product of two even permutations is an even permutation.

(b) The product of two odd permutations is an even permutation.

(c) The product of one even permutation and one odd permutation is an odd permutation.

6. In Definition 7.2 we defined the sign of an even permutation to be +1 and an odd permutation to
be −1. Draw and analogy between the result of multiplying two permutations and the result of
multiplying their corresponding signs: +1 and −1.
(Hint: Use the results of the previous exercise.)

7. If α is even, prove that α−1 is even. If α is odd, prove that α−1 is odd.

8. Let α, β ∈ Sn. Prove that α−1β−1αβ is and even permutation.

9. Let α, β ∈ Sn. Prove that α and β−1αβ have the same parity.

10. Show that exactly half of the permutations in Sn are even.

11. Show that a permutation with odd order must be an even permutation.

12. Give and example of an even permutation with even order. Also give an example of an odd permuta-
tion with even order.

13. Transposition on a Variation of Oval Track. Consider a variation of the Oval Track puzzle where
there are now 21 disks instead of 20. The diagram below shows a configuration in which the tiles in
positions 1 and 3 have been swapped. Show it is impossible to solve this configuration.
(Hint: use Exercise 5.)
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14. For the 3× 3× 3 Rubik’s cube, show each of the following.

(a) It is impossible to find a move sequence that swaps exactly two edge cubies of the Rubik’s cube,
while leaving every other cubie in its home location.

(b) It is impossible to find a move sequence that flips exactly one edge cubie of the Rubik’s cube,
while leaving every other edge cubie in its home position (that is, in its home location and with
proper orientation).

(c) It is impossible to find a move sequence that swaps exactly two corner cubies of the Rubik’s cube,
while leaving every other cubie in its home location.

15. The least number of transpositions to express a permutation. Let α ∈ Sn with disjoint cycle
form α = σ1σ2 · · ·σr, where σi is a ki-cycle and they are arranged in such a way that k1 ≤ k2 ≤ · · · ≤ kr.
In this situation we say α has cycle structure (k1, k2, . . . , kr). If we express each cycle as a product
of transpositions then we get an expression for α that uses k − r transpositions, where k =

∑r
i=1 ki.

Show that this is the fewest transpositions that there can be in any expression for α in terms of
transpositions.
(See the paper [8] by J.O. Kiltinen for one proof.)
(Hint: A modification of the ideas used in “Proof 1” of Claim 7.2 may be useful. Note, this gives an
optimal method for solving the Swap puzzle.)
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Lecture 8

Permutations: An and 3-Cycles

In this lecture we focus our attention on the set of even permutations, An, and show every even permuta-
tion can be written as a product of 3-cycles.

8.1 Swap Variation: A Challenge

Consider the following variation of Swap:

Variation: Legal move is to pick any 3 boxes and cycle their contents either to the left or right.

Using only these legal moves, try the following challenges.

Challenge 1: Solve the following puzzle:

Challenge 2: Solve the following puzzle:

8.2 The Alternating Group An

In Lecture 6 we discovered there are two types of permutations: even and odd. We will denote the set of
all even permutations by An, and the set of all odd permutations by On. Since every permutation is
either odd or even, and no permutation is both, it follows that

Sn = An ∪On, where An ∩On = ∅.

There is one difference between these two sets which will be important for us, and this has to do with how
each of the sets behaves under composition.
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The set An of even permutations is closed under composition, closed under taking inverses,
and contains the identity. The set On of odd permutations is closed under taking inverses, but
definitely not closed under composition, nor does it contain the identity. In fact, the composition
of an two permutations in On is always in An.

When we say that An (or, in general, any subset of B of Sn) is closed under composition, we mean that
for any α, β ∈ An (or in B) the composition αβ ∈ An (in B). Similarly, by closed under taking inverses
we mean that for any α ∈ An (or in B) the inverse permutation α−1 is also in An (in B)

Let’s check why our statements about An and On are true. The product of any two even permutations
is another even permutation so An is closed under composition. The identity permutation is even and
therefore in An. For any permutation α ∈ An, it’s inverse α−1 is also even, since once way to express
α−1 as a product of transpositions is to just write the ones expressing α in reverse order. So if an even
number were used to express α then an even number can be used to express α−1. Similarly, if β ∈ On then
β−1 ∈ On. The product of two odd permutations gives a permutation that can be expressed in terms of an
odd + odd = even number of transpositions, and therefore is an even permutation.

This distinction between An and On will makes An a much more important object to study. Why? Well, to
answer this we go back to the properties of Sn.

In Lecture 3, we defined the set of all permutations to be the Symmetric Group, Sn. We listed various
properties this set has, but most notably it has the following four properties regarding composition:

(a) Closure. The product of two elements α, β ∈ Sn is another element αβ ∈ Sn.1

(b) Associativity. Permutation composition is associative: α(βγ) = (αβ)γ.

(c) Identity. The identity (or “do nothing”) permutation ε is in Sn. It has the property that εα = αε = α
for all α ∈ Sn.

(d) Inverses. Every α ∈ Sn has an inverse in Sn denoted by α−1. The defining property of an inverse is
αα−1 = α−1α = ε.

If we look back at all the computations we’ve done with permutations we see that we are making extensive
use of these properties, whether we are conscious of it or not. For example, the cancellation property:
αβ = αγ implies β = γ, and βα = γα implies β = γ, is a direct consequence of these four properties. Look
back at the proof of it in Lecture 3. This means that any set of objects, equipped with an operation that
combines two to produce a third, and the operation satisfies these four properties, also has the cancellation
property. For example, R under the operation of addition, +, satisfies these four properties (identity is 0), so
it must also have the cancellation property. The set of invertible 2×2 matrices, under matrix multiplication,
satisfies these four properties, so it must also have the cancellation property. In a sense, we have described
the “important” properties of Sn.

A set A that comes equipped with an operation to combine pairs of elements (add/multiply/compose) such
thatA is closed under the operation, the operation is associative, there is an identity inA, and inverses exist
in A, is called a group. Our explorations into permutations puzzles will essentially consist of considering
the set of all legal move sequences, call this set M , and noticing that this set is a subset of Sn which is also
a group. (Composition of legal moves is a legal move, composition is associative, there is a “do-nothing”
move, and for each move there is an way to “undo” it.) Therefore to each permutation puzzle we can
associate a group M of legal move sequences. The question is then: Are we able to understand the group
M? In order to do this, we’ll need to build up our stock of examples of groups.

What we’ve shown above is that An is a group, whereas On is not. On fails to contain the identity, nor is
it closed under composition. An is an important family of groups, and in particular A5 has great historical
significance. The letter “A” in its name comes from the word “alternating”, which reflects some properties
that were important when these groups were first studied.

1Our convention is to compose permutations from left-to-right,
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Definition 8.1 (Alternating Group of Degree n): The set of even permutations of Sn is denoted
by An, and is called the alternating group of degree n:

An = {α ∈ Sn : α is an even permutation}

We will sometimes refer to An as the set of even permutations. As a first step in investigating An, lets show
it contains exactly half the elements of Sn.

Theorem 8.1 (Cardinality of An): |An| = |On| =
n!

2
, for n ≥ 2.

Proof: To see this we will pair up all the even permutations α with odd permutations (1, 2)α, to observe
there are equal numbers of each.

Consider the set of all elements in Sn of the form (1, 2)α where α ∈ An, and denote this set by (1, 2)An:

(1, 2)An = {(1, 2)α : α ∈ An}

Observe that (1, 2)An ⊂ On, since extending an even permutation by a transposition is an odd permutation.
On the other hand, for β ∈ On we have (1, 2)β ∈ An and so β = (1, 2)(1, 2)β ∈ (1, 2)An. Since β was just any
element of On this means, On ⊂ (1, 2)An. It follows that On = (1, 2)An.

Next we note that (1, 2)An and An have exactly the same number of elements. To see this, we just observe
that the function φ : An → (1, 2)An defined by φ(α) = (1, 2)α is a bijection. (See Exercise 12.)

Therefore |An| = |On| and |An|+ |On| = |Sn|. Since |Sn| = n! it follows that An = On = n!
2 . �

Example 8.1: List the elements of A4.

These are the permutations in S4 which are even. The most straightforward way to list elements is to do
it in disjoint cycle form, so we’ll begin with the identity:

ε.

Next, we list elements involving cycles of length at most 2. And since we want even permutations we don’t
included single transpositions:

(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3).

Next we can list 3-cycles:

(1, 2, 3), (1, 3, 2), (1, 2, 4), (1, 4, 2), (1, 3, 4), (1, 4, 3), (2, 3, 4), (2, 4, 3).

This is all the elements of A4, and there are 12 as predicted by Theorem 8.1.

8.3 Products of 3-cycles

The fact that every permutation in Sn can be expresses as a product of 2-cycles, is something we have used
quite a bit. There is a similar result for the even permutations An and 3-cycles.

Theorem 8.2: Every permutation in An, for n ≥ 3, can be expressed as a product of 3 cycles.
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Proof: Suppose α is an even permutation, then we can express it as the product of an even number of
2-cycles:

α = τ1τ2 · · · τ2k−1τ2k.
We’ll group together adjacent pairs of 2-cycles as follows:

α = (τ1τ2)(τ3τ4) · · · (τ2k−1τ2k).

It suffices to show that a product of two transpositions can either be dropped from the expression or be
expressed as a product of 3-cycles, without changing the the value of the expression.

Each product τiτi+1 can be expressed in one of the following ways as shown on the left, depending on
whether the transpositions move two things in common, one thing in common, of nothing in common:

(a, b)(a, b) = ε

(a, b)(a, c) = (a, b, c)

(a, b)(c, d) = (a, b, c)(a, d, c)

If the first case occurs we may delete τiτi+1 in the original product. In the other two cases we replace τiτi+1

with what appears on the right to obtain a new product of 3-cycles. �

Example 8.2: Express the even permutation α = (1, 6, 4)(2, 3, 7, 8)(9, 10) as a product of 3-cycles.

To do this the first thing we do is express it as a product of transpositions:

α = (1, 6)(1, 4)(2, 3)(2, 7)(2, 8)(9, 10)

Then we group adjacent transpositions and express each in terms of 3-cycles.

(1, 6)(1, 4) = (1, 6, 4)

(2, 3)(2, 7) = (2, 3, 7)

(2, 8)(9, 10) = (2, 8, 9)(2, 10, 9)

It may seem mysterious how we obtained the last one. The following simple game of Swap shows how we
can express (2, 8)(9, 10) as the product of two 3-cycles.

In general, this is precisely the result we used in the proof of the theorem. The way we came up with it
there was to look at a simple game of Swap on four objects a|b|c|d. To swap a with b and c with d we can
first cycle abc to the right: c|a|b|d. Then we can cycle objects in positions acd to the left: b|a|d|c.

Now we can put everything back together to get:

α = (1, 6, 4)(2, 3, 7)(2, 8, 9)(2, 10, 9).
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8.4 Variations of Swap: Revisited

Let’s go back to the variation of Swap in Section 8.1.

Variation: Legal move is to pick any 3 boxes and cycle their contents either to the left or right.

For example, suppose the puzzle started in the following position:

The corresponding permutation is α = (1, 4, 5, 11, 3, 9)(2, 12, 6)(8, 10).

We can solve the puzzle as follows. In each line the shaded boxes represent our choice of 3 boxes, and the
arrow on the right indicates which direction the contents are being moved. We also summarize the move
by writing the corresponding 3-cycle above the arrow.

In term of permutations this move sequence tells us:

α(2, 8, 10)(2, 8, 6)(1, 2, 12)(1, 2, 9)(1, 3, 11)(1, 5, 4) = ε

or in other words,

α = [(2, 8, 10)(2, 8, 6)(1, 2, 12)(1, 2, 9)(1, 3, 11)(1, 5, 4)]−1

= (1, 4, 5)(1, 11, 3)(1, 9, 2)(1, 12, 2)(2, 6, 8)(2, 10, 8).

That is, considering α as a starting position for this variation of Swap, solving the puzzle is equivalent to
expressing α as a product of 3-cycles. Since we know only even permutations are expressible as products
of 3-cycles this give us a very simple solvability condition for this variation of Swap.

Corollary 8.3 (Solvability of Swap Variation): The Swap puzzle, where the legal moves consist
of 3-cycles on any three boxes, is solvable only when the starting position is an even permutation. In
other words, only even permutations can be obtained in this variation of Swap.

To see this solvability condition in action, consider the following scramble of Swap.
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Try solving it using only 3-cycles.

You would very quickly realize it is a difficult task. It is possible to get all but two numbers back into their
home positions. In fact, this position corresponds to the permutation (1, 4, 3, 5, 6, 2) which is a 6-cycle, and
therefore an odd permutation. Therefore, by Theorem 8.3 no matter how long we play with the puzzle it
we don’t have a hope of solving it. It is simply impossible!

Looking back at Section 8.1 we see that the permutation in Challenge 1 is (1, 6, 4)(2, 3, 7, 8)(9, 10) which is
even and therefore solvable, whereas the permutation in Challenge 2 is (9, 10) which is odd, and therefore
not solvable. Just knowing Challenge 1 is solvable doesn’t actually answer the question, we were asked
to solve the puzzle. This is equivalent to expressing (1, 6, 4)(2, 3, 7, 8)(9, 10) as a product of 3-cycles, which
we’ve already done in Example 8.2. There we found (1, 6, 4)(2, 3, 7, 8)(9, 10) = (1, 6, 4)(2, 3, 7)(2, 8, 9)(2, 10, 9).
So applying the inverse of this permutation: (2, 9, 10)(2, 9, 8)(2, 7, 3)(1, 4, 6) will solve the puzzle. On the
other hand, knowing the puzzle in Challenge 2 is not solvable means we can abandon playing with it,
since it is impossible to solve.

8.5 Exercises

1. Given an example of an element in A7 which contains a 4-cycle. Give an example of an element in
A10 which contains at least one 3-cycle, and at least one 4-cycle.

2. Demonstrate the truth of Theorem 8.2 by expressing these even permutations as products of 3-cycles.

(a) α = (1, 2)(1, 3)

(b) β = (1, 2)(3, 4)

(c) γ = (1, 2, 3, 4, 5, 6)(3, 4, 5)(2, 5)(1, 4)(5, 2)

(d) δ = (1, 2)(2, 3)(4, 5)(1, 3)(6, 7)(6, 8)(9, 10)(11, 12)

(e) σ = (1, 2, 3, 4)(2, 3, 4, 5)(4, 5, 6, 7)(8, 9)

3. Expressing odd permutations in terms of 3-cycles and one transposition.
(a) Show that all odd permutations in Sn can be expressed using exactly one transposition together
with zero or more 3-cycles.
(b) Demonstrate the truth of this claim by expressing these odd permutations with a single transpo-
sition and 3-cycles.

(i) α = (1, 2, 3, 4, 5, 6)

(ii) β = (1, 2, 3, 4)(5, 6, 7)(8, 9, 10)

(iii) γ = (2, 5, 3, 7, 6)(3, 5, 8, 4)(6, 8, 2, 1, 9)

4. Using the solvability condition for the variation of Swap we considered in this section (Corollary 8.3),
determine whether each of the following scrambles are solvable. For the ones that are solvable, find
a sequence of moves that solve the puzzle.

(a)

(b)
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(c)

(d)

5. What are the possible orders for permutations in A6? What about A7?

6. Show that A5 contains no element of order 15.

7. What is the maximum order of any element in A10?

8. Compute the order of each permutation in A4. What arithmetic relationship do these orders have
with he cardinality of A4.

9. How many elements of order 5 are there in A6.

10. How many elements of order 4 are there in A6.

11. Show that A5 has 24 elements of order 5, 20 elements of order 3, and 15 elements of order 2.

12. Show that the function φ : An → (1, 2)An defined by φ(α) = (1, 2)α is a bijection. (This result is used
in the proof of Theorem 8.1.)

13. Let B ⊂ Sn be a set of permutations such that

• B is closed under multiplication (i.e. if α, β ∈ B then so is αβ), and
• An ⊂ B, and
• B contains an odd permutation γ.

Show that B = Sn. In words this says that a set of permutations B that is closed under multipli-
cation and contains every even permutation and at least one odd permutation must contain every
permutation.

14. Products of 4-cycles? 5-cycles? All permutations in Sn are expressible using transpositions, and
all permutations in An are expressible using 3-cycles, provided n ≥ 3. Stating this another way, this
says that you get all permutations by taking all possible products of 2-cycles, and similarly you get
all the even permutations by taking all possible products of 3-cycles. What do you get when you take
all possible products of 4-cycles? Or 5-cycles? Or k-cycles? Explore this question and see what you
can discover. Note of course that we must assume n ≥ k before we can talk about k-cycles in Sn.
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Lecture 9

Mastering the 15-Puzzle

We now have enough theory developed to give a full analysis of the 15-puzzle. We will present a solvability
criteria which will allow us to easily see whether a given scrambling of the puzzle is solvable. We will also
sketch a strategy for solving the puzzle.

9.1 Solvability Criteria

Determining the solvability of a scrambling of the tiles on the 15-puzzle is a simple task as we will see.
Let’s first consider the case where a scrambling places the empty space back into its original box (box 16).
This means the corresponding permutation α fixes 16: α(16) = 16. We can think of such a permutation as
an element of S15. (Just think about the disjoint cycle form, 16 doesn’t appear since it is mapped back to
itself.)

Figure 9.1 shows three different configurations of the 15-puzzle corresponding to permutations in S15. The
permutations are written below each puzzle. We’d like to be able to quickly determine which configurations
are solvable.

(a) (b) (c)

Figure 9.1: Which of the positions are solvable?

The next theorem says any rearrangement of tiles in the 15-puzzle starting from the solved-state configu-
ration which brings the empty space back to its original position must be an even permutation of the other
15 pieces. Moreover, it says that every even permutation of the 15 tiles can be obtained as a position on the
15-puzzle.
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Theorem 9.1 (Solvability Criteria for 15-Puzzle - Part 1): A permutation α of the 15-puzzle
which fixes 16, is solvable if and only if it is even: i.e. α ∈ A15.

It follows that the number of solvable positions of the 15-Puzzle, where the empty space is in its home
position, is

|A15| =
15!

2
= 653, 837, 184, 000.

We immediately conclude from this theorem that the puzzles in Figures 9.1a and 9.1c are not solvable since
the permutations are odd, whereas the puzzle in Figure 9.1b is solvable since the permutation is even.

We will provide a proof of this theorem in Section 9.2.

What about the case when the scrambling does not place the empty space back in box 16? We’ll see that
simply knowing the parity of the permutation and the position of the empty space is enough to determine
solvability. But first it will be handy to talk about the parity of a box.

Colour the 15-puzzle like a checker board as in Figure 9.2. We will call the shaded boxes even and the
white boxes odd, since if the empty space is in a shaded box it takes an even number of moves to bring
it to box 16, similarly if it is in a white box it takes an odd number of moves. Under this definition boxes
1, 3, 6, 8, 9, 11, 14, 16 are even, whereas the other boxes are odd.

Figure 9.2: Parity of box: Define the shaded boxes to be even and the white boxes to be odd.

With this concept of odd and even boxes now defined, we can state the general solvability criteria for the
15-puzzle.

Theorem 9.2 (Solvability Criteria for 15-Puzzle - Part 2): A permutation of the 15-puzzle is
solvable if and only if the parity of the permutation is the same as the parity of the location of the
empty space.

As a consequence of this theorem when the empty space is in one particular box, there are

|A15| =
15!

2
= 653, 837, 184, 000

possible positions of the tiles. Since there are 16 different places to put the empty space, there is a total of

16

(
15!

2

)
=

16!

2
= 10, 461, 394, 944, 000

possible ways to rearrange the tiles on the board so that the puzzle is solvable. This means, of all 16! ways
to arrange the tiles in the boxes, exactly half are solvable!
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When the puzzle craze hit the world in the early 1880’s people noticed that when they randomly placed
the tiles in the box, the puzzle was solvable roughly half the time. This now explains why!

As an example, the permutation corresponding to the scrambling in Figure 9.3 is

(1, 10, 11, 7, 6)(2, 3, 4, 8, 12, 16, 5)(13, 15)

which is odd (check this yourself), and the parity of the location of the empty space is odd, therefore the
puzzle is solvable by the solvability criteria: Theorem 9.2.

Figure 9.3: Is this position solvable?

9.2 Proof of Solvability Criteria

We will prove Theorem 9.1 and then show that Theorem 9.2 is a direct consequence of it.

Proof of Theorem 9.1: There are two directions we need to prove: (i) a solvable configuration is an
even permutation, and (ii) every even permutation is a solvable configuration. The proof of (i) is very
straightforward, but the proof of (ii) requires us to use the fact that even permutations can be expressed
using 3-cycles.

(i) Suppose we have a solvable rearrangement of the 15 tiles, where the empty space is in its home position
(box 16). Let α ∈ S15 be the corresponding permutation. Since puzzle moves consist of transpositions -
the empty space is swapped with an adjacent tile - then let τ1, τ2, . . . , τk be the moves (i.e. transpositions)
which solve the puzzle (i.e. takes α to the identity permutation ε). As usual, this means α = τk . . . τ2τ1.
Since the empty space moves around the puzzle and then eventually returns home, the number of moves
must be even. To see why this is true, refer to Figure 9.2, the empty space must start in shaded box 16,
and after each move it alternates the colour of the box it is in, and so if it returns to a shaded box it must
have moved an even number of times. This means k is even, and so α is expressible as a product of an even
number of transpositions. Therefore α is even.

(ii) We wish to show every even permutation of the 15 tiles is obtainable through puzzle moves, starting
from the solved-state. We will do this by showing we can obtain any 3-cycle of the tiles. This is enough
to prove the theorem since any even permutation is expressible as a product of 3-cycles, and if we can
produce any 3-cycle then we can produce any product of them, through sequential moves, and therefore we
can produce any even permutation.

We begin by observing we can produce the 3-cycle σ = (11, 12, 15), by focussing on the bottom right corner
of the puzzle:

The sequence of moves is: (12, 16)(11, 12)(11, 15)(15, 16)
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Now that we have one 3-cycle σ, we will show that we can use σ to construct any other 3-cycle we want.
From a solved puzzle, pick any tile, say i ∈ [15]. Move tiles 12 and 11 to boxes 16 and 12, respectively, by
the move sequence α = (12, 16)(11, 12):

Then using one of the two tours in Figure 9.4 we can move tile i to box 15, without disturbing the contents
of boxes 12 and 16. Call this move sequence β.

(a) (b)

Figure 9.4: Tours for producing 3-cycles.

Applying α−1 then moves 11 and 12 back into their home positions. This puts the puzzle in the middle
position in the following diagram, where the x’s indicate these numbers may have moved around.

Applying the 3-cycle σ then moves tiles i, 11, and 12 around as indicated in the diagram. Now, we apply
the inverse move sequence (αβα−1)−1 = αβ−1α−1 and this takes everything back to where it was, except
i stays in box 11, 11 stays in box 12, and 12 goes to box i. Therefore, we have created the 3-cycle (11, 12, i),
where i is any other tile we wish.

Let’s summarize what we did:
(1) we chose some tile i,
(2) temporarily hide tiles 11 and 12 in boxes 12 and 16,
(3) used one of the tours in Figure 9.4 to bring tile i to box 15, and this didn’t disturb tiles 11 and 12 hidden
in boxes 12 and 16
(4) moved 11 and 12 back out to their original positions
(5) applied the 3-cycle σ = (11, 12, 15)
(6) then reversed all the steps (4) to (2), thus taking everything home except 11,12, and i have been cycled.

Here is an example (near the end we think of i as being 5 for concreteness).
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So we now can construct any 3-cycle of the form (11, 12, i), for any i 6= 11, 12.

Since (11, 12, k)(11, 12, j) = (11, j)(12, k) we are able to put any tiles (j and k) in boxes 11 and 12, while
leaving everything else in place. Moreover,

(11, j)(12, k)(11, 12, i)(11, j)(12, k) = (i, j, k),

where i 6= j 6= k and i, j, k 6∈ {11, 12}. Therefore, we can produce any possible 3-cycle.

This completes the proof. �

The proof of the general solvability condition is a simple consequence of this specific case.

Proof of Theorem 9.2: Let α be the current permutation of the 15-puzzle. Move the empty space to box
16, then the new arrangement corresponds to the permutation

α∗ = ατ1τ2 · · · τk

where τ1, τ2, . . . , τk were the transpositions used to move the empty space to box 16. Since the empty space
is now in box 16 then, by Theorem 9.1, α∗ is solvable if and only if it is an even permutation.

Let’s think about when α∗ is even. This really follows from the way we defined the parities of the boxes.

If the empty space was in an odd box, then it would have taken an odd number of transpositions to move it
to box 16. That is, k would be odd. On the other hand, if the empty space was in an even box then k would
be even, since it would have taken an even number of transpositions to move it to box 16. In either case, k
is equal to the parity of the box the empty space was in. This is precisely the reason we defined the parity
of a box as we did.
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Now, putting it all together, α is solvable if and only if α∗ = ατ1τ2 · · · τk is even, which is equivalent to α
and k having the same parity, which is equivalent to α and the location of the empty space having the same
parity. This completes the proof. �

9.3 Strategy for Solution

Of course, in proving Theorem 9.1 we’ve essentially presented a strategy for solution. First move the empty
space into box 16, then the resulting permutation is even, so we may express it as a product of 3-cycles. In
practice, our typical method for doing this is first to express it as a product of transpositions, then group
pairs of transpositions and express them as a 3-cycle or pair of 3-cycles. We can now use the technique
outlined in Section 9.2 to produce each 3-cycle, one-by-one, by moving the desired tiles into the 11, 12, 15
boxes, performing the 3-cycle (11, 12, 15), then moving everything back again.

Though theoretically possible, and a perfectly sound way to prove the theorem, this makes for a completely
inelegant way to solve the puzzle. Not to mention you would need to remember, or write down, the move
sequence αβα−1 since you would need to apply the inverse. This move sequence could be very long. Instead
we’ll look for a more efficient solution, and one that doesn’t require remembering any previously made
moves.

Some hints to get you started:

Hint 1: Solve the puzzle by setting the tiles in their proper places, one-by-one, in numerical order. At some
stages, it may be necessary to temporarily disturb placed pieces, but they shouldn’t have too move to far
out of place.

If you haven’t tried this already, do so now.

Hint 2: There are some tricky parts. For instance if 1, 2, 3 are all in place, but 4 is not, it will be necessary
to disturb the previously placed pieces in order to get 4 in its proper place. Instead, before placing 3, join
it with 4 to form a chain and bring the two of them into place together. Forming chains of tiles is a useful
strategy.

If you haven’t tried this already, do so now.

Hint 3: Getting the final few pieces in the proper places is of course tricky. But at this stage, making use
of 3-cycles, as in the proof above, may be useful. After all, if you can use mathematics to shed some light
on what to do, then do it!

Most of all, just have some fun. Try some strategies of your own, if they are useful, then write them down
so you won’t forget them.

SPOILER ALERT: We now present a complete method for solving the 15-Puzzle, read only if you want to
spoil the fun of discovering a solution yourself.

The following solution is due to Jaap Scherphuis (see [13]). It is not an optimal solution, that is, it won’t
allow you to solve the puzzle in the minimum number of moves, but it does give a method that works on
any solvable configuration, and it extends to puzzles of sizes other than 4-by-4. Using this method, with a
smooth puzzle, or better yet a virtual version, solutions can take between 1 to 2 minutes, possibly faster.

Phase 1: Solve the top row from left to right.

1. Find the next tile you want to place in position in the top row.

2. If it is not the last tile of the row, it is fairly easy to place correctly, simply keep the following points
in mind:

(a) Never disturb any previously placed pieces.
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(b) To move the tile in a certain direction, move the other tiles around until the space is next to your
tile on the side you want to move it to. Then you can move the tile.

3. If the last tile is not already in position, bring it to the position directly below its correct spot, with
the space directly below that. Then move tiles in the following directions: down, down, right, up,
left, up, right, down, down, left, up. This should place the piece in position. Note it does temporarily
disturb the previously placed tile. See figure below.

Phase 2: Solve the rest of the puzzle

1. Use the technique in phase 1 to solve each row in turn, until there are only two rows left.

2. Rotate the puzzle a quarter turn to the right. The left column of the two rows becomes the top row
now.

3. Use the technique in phase 1 to solve each row in turn, until there are only two rows left. This means
there is only a 2x2 square left to solve. For example, the next figure show how to get tile 12 in the
correct place in the bottom left corner of the 4-by-4 version.

4. Move the pieces in the remaining 2x2 square around until one piece is positioned correctly, and the
space is in the correct spot. The other two tiles should automatically be correctly positioned as well.

5. If there are two tiles that need to be swapped, then this cannot be done unless two other tiles are
swapped as well. If there are two identical tiles somewhere in the puzzle, then you will have to swap
them and solve the rest again. (This may happen if there are letters or pictures on the tiles instead
of numbers.)

9.4 Exercises

1. In the early 1880’s the world went crazy over trying to solve configuration of the 15-puzzle where the
14 and 15 were swapped. See the Figure below. Explain why no one was able to find a solution.
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2. Show that each of the following scramblings of the 15-puzzle are solvable.

(a) (b) (c) (d)

3. Show that each of the following scramblings of the 15-puzzle are unsolvable.

(a) (b) (c) (d)

4. Determine which of the following arrangements of the 15-puzzle are solvable and which are unsolv-
able.

(a) (b) (c) (d)

5. This exercise is to help us understand the details of the proof in Section 9.2, and to get some practice
with creating 3-cycles. Starting with the puzzle in the solved state write down a sequence of moves
which will produce each of the 3-cycles:

(a) (11, 12, 13) (b) (11, 12, 8) (c) (11, 8, 13).

Either write the moves using transpositions, or use the words “up”, “down”, “left”, “right”, to indicate
the direction the tile adjacent to the empty space is moved. It may help to use a physical or virtual
version of the puzzle. See the “software” section of the course webpage for links to virtual versions of
the puzzle.

6. A 15-puzzle manufacturer wants to sell the puzzle with the tiles already mixed-up, and they want
the pattern to be “pretty” so it catches the eye of the customer when sitting on a store shelf. This
manufactured version of the puzzle does not allow the pieces to be removed, so the pattern needs
to be solvable. They propose to use a pattern where all then even numbered tiles are in the first
two rows, and the odd numbered tiles in the last two rows (see the Figure below). They also colour
all the even tiles red, so that in the solved state the puzzle will have a pattern of vertical lines. If
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they manufacture the puzzle in this way, will it be solvable? Or will this result in angry customers
wanting to return their puzzles?

7. In 1959, the Plas-Trix Company in the USA produced a letter version of the 15-puzzle. The problem
is to rearrange the blocks so they correctly spell RATE YOUR MIND PAL. They manufactured and
sold the puzzle with the last two tiles switched. See the figure below. Explain why it is possible to
solve this puzzle.
(Hint: At first glance it seems this is analogous to the 15-14 problem in Exercise 1, in which case it
is not solvable. But this is not entirely equivalent, and the subtle differences are what allows this
puzzle to be solved. Can you spot the reason this puzzle is solvable?)

8. The Panama Canal Puzzle dates back to 1915. The staring position has the red letter “P” and the
black letter “C” swapped. The problem is to swap the two blocks back. Explain why it is possible to
solve this puzzle.

9. The Get My Goat Puzzle was patented in 1914. The problem is to get the goat inside the fenced-in
area, after removing the marked block. This basically requires a swap of the block with the picture
of the goat’s head and the block adjacent to it. Explain why this puzzle is solvable.

You can play an online version of this puzzle at “Nick Baxter’s sliding puzzle page”
(http://www.johnrausch.com/SlidingBlockPuzzles/).

http://www.johnrausch.com/SlidingBlockPuzzles/


LECTURE 9 MASTERING THE 15-PUZZLE 100

Conjugation:
Exercises 10 through 12 introduce the idea of conjugation.

First a definition:

If α, β ∈ Sn, we call the permutation β−1αβ the conjugate of α by β.

Looking back at the proof of Theorem 9.1 we transformed the 3-cycle σ = (11, 12, 15) into another
3-cycle (11, 12, i) by:

γσγ−1 = (11, 12, i),

where γ = αβα−1 was a sequence of moves that moved tile i to box 15, and left tiles 11 and 12 alone. We
used conjugation twice in the proof: αβα−1 and γσγ−1. These types of products are used extensively
when solving permutation puzzles. If you have some experience with permutation puzzles you will
notice you frequently make moves of the form:

• do a move m1,
• then do another move m2,
• then undo the first move m−11 .

If you notice you do this, then you already have a working feel for conjugation. In the next few
exercises we investigate conjugation, and show that β−1αβ and α have the same cycle structure.
This general result is the reason why γσγ is a 3-cycle.

10. For each of the following pairs of permutations α, β ∈ Sn calculate the conjugate of α by β. In other
words, compute the product β−1αβ.

(a) α = (1, 2, 3, 4, 5), β = (1, 5, 8)(2, 6)(3, 7, 4)

(b) α = (1, 5, 8)(2, 6)(3, 7, 4), β = (1, 2, 3, 4, 5)

(c) α = (5, 7, 3, 6)(10, 11, 8, 12), β = (1, 2)(4, 10, 5, 11, 7, 9, 12)

In each case notice, the cycle structure of β−1αβ is the same as α. For instance in (b), α is a product
of two 2-cycles and one 3-cycle, and so is β−1αβ.

11. For α = (1, 2, 3, 4) and β = (1, 4)(3, 5, 2) do the following.

(a) Calculate β−1αβ.
(b) Calculate the values of β(1), β(2), β(3), β(4), then write down the 4-cycle, (β(1), β(2), β(3), β(4)).
(c) Observe that the 4-cycle in part (b) is the same as the answer to part (a). Coincidence? The next

exercise says, this is no coincidence.

12. Show that for any α, β ∈ Sn the conjugate β−1αβ has the same cycle structure as α.

Hint: express α in disjoint cycle form σ1σ2 · · ·σk, where σi is a mi-cycle, for 1 ≤ i ≤ k. Then show

(i) β−1αβ = (β−1σ1β)(β−1σ2β) · · · (β−1σkβ).
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Then it suffices to only consider the case when α is a cycle. Which means, you just need to prove:

(ii) β−1(a1, a2, . . . , am)β = (β(a1), β(a2), . . . , β(am)).

Other Board Sizes and Obstacles:
In Exercises 13 to 15 we investigate board sizes other than 4× 4.

13. Consider 5 tiles and an empty space on a board consisting of 3 rows and 2 columns. Show, by using a
similar argument to the one used for the 15 puzzle that a permutation α ∈ S5, where the empty space
is in its home location, corresponds to a solvable configuration if and only if α is an even permutation.
Hint: By using a two-by-two square of four boxes, show that a single 3-cycle can be obtained. Then
show every 3-cycle can be obtained by conjugation, similar to the argument we used for the 15 puzzle..

14. The following board shows a variation of the 15 puzzle where boxes 6,7, and 11 are obstacles. That
is, these boxes are “out-of-play” and cannot be used. We can still ask the question as to which per-
mutations of the tiles are solvable. Show that, just like the original 15 puzzle, Theorems 9.1 and 9.2
remain true.
Hint: For simplicity just focus on permutations leaving the empty space in its home location. Use
the two-by-two square of four boxes to generate all 3-cycles: first show you can obtain one 3-cycle,
then use conjugation to obtain all others.

15. [Challenging] The following is a general characterization of the solvability condition for rectangular
boards, with obstacles. Verify it is true.
Let α denote an arbitrary permutation of tiles on a rectangular m× n board such that the board

(a) has one empty space,
(b) has at least one two-by-two array of boxes all of which are in use, and
(c) may have some obstacles (boxes that are out-of-play and cannot be used), but these obstacle do

not trap tiles (in other words, any tile can be moved to any other location).

Then the permutation α is solvable if and only if the parity of α is the same as the parity of the
location of the empty space.
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Lecture 10

Groups

Group Theory is typically referred to as the mathematical study of symmetry. The puzzles we are studying
have exhibited a remarkable amount of symmetry. In this lecture we begin our introduction into group
theory by introducing the concept of a group. Though, from our experience in exploring puzzles and per-
mutations we already have experience in working with groups. In later lectures, we will see that group
theory is the tool required to understand permutation puzzles, in particular their end-game.

10.1 Group: Definition

Playing with permutation puzzles has already given us a working definition of a group. We have a set of
move-sequences, call this set M . We are able to compose two move-sequences together to form a new move-
sequence (m1,m2 ∈ M =⇒ m1m2 ∈ M ), there is a “do-nothing” move (ε ∈ M ) and we can “undo” a move
sequence (for m1 ∈ M there is an m−11 ∈ M ). This is also how permutations behave under composition.
Each consist of a set, an operation to combine objects in the set, and a few properties this operation must
possess. This is precisely what we will call a group.

Definition 10.1 (Group): A group is a nonempty set G, together with an operation, which can be
thought of as a function ∗ : G × G → G, that assigns to each ordered pair (a, b) of elements in G an
element a ∗ b ∈ G, that satisfies the following properties:

1. Associativity: The operation is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G.

2. Identity: There is an element e (called the identity) in G, such that a ∗ e = e ∗ a = a for all a ∈ G.

3. Inverses: For each element a ∈ G, there is an element b in G (called the inverse of a) such that
a ∗ b = b ∗ a = e.

Typically we drop the notation * for the operation and just write the operation by juxtaposition, that is, we
simply write a ∗ b as ab. We’ve already been doing this with permutation composition, and the composition
of puzzle moves. In the case were the group operation is addition, then we will use the symbol ”+”.

103
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Definition 10.2 (Order of a Group): The number of elements of a group (finite or infinite) is called
the order of the group. We will use |G| to denote the order of the group, since this is really just the
cardinality of the set.

The power of mathematics resides in abstraction. Mathematicians look for the similarities between ob-
jects, then articulate and abstract these similarities. They generally work with these abstract conceptual-
izations, since as a result, their discoveries hold for all objects satisfying the properties of the abstraction.

Consider an analogy from biology. Biologists consider the similarities between spiders, scorpions, harvest-
men, ticks, and mites, to be significant enough that they talk about them as being from the same “family”:
the Arachnid family. Arachnids are a class of joint-legged invertebrate animals, all of which have eight
legs. There are over 100,000 named species, five of which we named above. In this sense, a biologist who
studies the (abstract) family Arachnida is in effect studying over 100,000 named species, simultaneously.

Looking back at the definition of a group, in particular at the property “inverses”, we see that nowhere did
it say the inverse has to be unique. However, in our examples of puzzle movements, and permutations,
inverses were unique. Should we have added this as a property? Well, it turns out that we don’t need to
since it is a direct consequence of the properties in the definition. We’ll state this as a theorem.

Theorem 10.1 (Uniqueness of Inverses): For each element a in a groupG, there is a unique element
b ∈ G such that ab = ba = e.

Proof: Suppose b and c are both inverses of a. Then

b = be identity (property 2)
= b(ac) since ac = e (property 3)
= (ba)c by associativity (property 1)
= ec since ba = e (property 3)
= c identity (property 2).

Therefore b = c, so inverses are unique. �

Since inverses are unique we can unambiguously denote the inverse of a ∈ G by a−1.

Previously we observed that permutations under composition satisfied the cancellation property. This is
true of any group.

Theorem 10.2 (Cancellation Property): In a group G, the right- and left- cancellation properties
hold: ba = ca implies b = c, and ab = ac implies b = c.

Proof: If ba = ca then (ba)a−1 = (ca)a−1 and by associativity, b(aa−1) = c(aa−1). Since aa−1 = e, then
be = ce from which it follows that b = c. Left cancellation can be proved in a similar manner. �

10.1.1 Multiplication (Cayley) Table

Since a group is merely a set with a way to combine elements (a sort-of multiplication), we can give the
operation in terms of a table, provided the set is finite.
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The multiplication table1 of a (finite) group G is a tabulation of the values of the operation ∗. Let
G = {g1, ..., gn}. The multiplication table of G is:

* g1 g2 ... gj ... gn
g1
g2
...
gi gi ∗ gj
...
gn

This says the entry of the table in row gi and column gj is the element gi ∗ gj .

This table must satisfy some basic properties, which are immediate consequences of the definition of a
group:

Lemma 10.3: (a) Each element gk ∈ G occurs exactly once in each row of the table.
(b) Each element gk ∈ G occurs exactly once in each column of the table.
(c) If the (i, j)th entry of the table is equal to the (j, i)th entry then gi ∗ gj = gj ∗ gi.
(d) If the table is symmetric about the diagonal ↘ then g ∗ h = h ∗ g for all g, h ∈ G. (In this case, we
call G abelian.)

The proof is left to the reader as Exercise 30.

In the next section we give a number of examples of groups, most of which should already be familiar to
the reader. It is interesting to note that we now know, for those examples and any others we encounter
during the rest of our lives, if the set satisfies the properties of a group then (i) inverses are unique, and
(ii) the cancellation property holds. This is the power of abstraction!

10.2 Some Everyday Examples of Groups

Now that we have a formal description of a group, our first job is to notice we already know many examples.

(1) The set of integers Z, the set of rational numbers Q, and the set of real numbers R, are all groups
under ordinary addition. The identity is 0 in each case, and the inverse of a is its negative −a.

(2) The set of non-zero rational numbers Q∗ = {r ∈ Q | r 6= 0} is a group under ordinary multiplication.
The identity is 1, and the inverse of r is 1/r.

Similarly, the set of non-zero real numbers R∗ = {r ∈ R | r 6= 0} is a group under ordinary multiplica-
tion. The identity is 1, and the inverse of r is 1/r.

Note, that we had to leave out 0, since it doesn’t have a multiplicative inverse, i.e. there is no rational
number r such that r · 0 = 1. In other words, Q is not a group under multiplication.

The set of non-zero integers Z∗ = {n ∈ Z | n 6= 0} is not a group under ordinary multiplication, since
it is not closed under taking inverses. For example, the inverse of 2 is 1

2 , but 1
2 is not in Z∗.

1Also known as a Cayley table, after noted English mathematician Arthur Cayley (1821-1895)
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(3) The set R3 = {(a1, a2, a3) | a1, a2, a3 ∈ R} is a group under componentwise addition:

(a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3).

The identity is (0, 0, 0) and the inverse of (a1, a2, a3) is (−a1,−a2,−a3).
In general, the set of all n-tuples of real numbers Rn = {(a1, a2, . . . , an) | a1, a2, . . . , an ∈ R} is a group
under componentwise addition:

(a1, a2, a3, . . . , an) + (b1, b2, b3, . . . , bn) = (a1 + b1, a2 + b2, a3 + b3, . . . , an + bn).

The identity is (0, 0, 0, . . . , 0).

(4) A rectangular array of the form
[
a b
c d

]
, where a, b, c, d ∈ R, is called a 2 × 2 (real) matrix. The set

of all 2× 2 matrices is denoted by M2,2(R):

M2,2(R) =

{[
a b
c d

]
| a, b, c, d ∈ R

}
.

If we define the addition of two matrices to be componentwise:[
a b
c d

]
+

[
w x
y z

]
=

[
a+ w b+ x
c+ y d+ z

]
,

then M2,2(R) is a group under this addition. The identity is
[

0 0
0 0

]
and the inverse of

[
a b
c d

]
is[

−a −b
−c −d

]
.

In general, for positive integers n and m, the set of all matrices with n rows and m columns, the
so-called n×m matrices, Mn×m(R) is a group under componentwise addition.

Mn,m(R) =


 a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m
an,1 an,2 · · · an,m

 | ai,j ∈ R

 .

(5) General Linear Group. The determinant of a 2 × 2 matrix A =

[
a b
c d

]
is the number det(A) =

ad− bc. The set of all 2× 2 matrices with non-zero determinant,

GL(2,R) = {A ∈M2,2(R) | det(A) 6= 0} .

under matrix multiplication:[
a b
c d

] [
w x
y z

]
=

[
aw + by ax+ bz
cw + dy cx+ dz

]

is a group. The identity is I =

[
1 0
0 1

]
, and the inverse of

[
a b
c d

]
is
[

d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

]
.

In general, the set of invertible n × n matrices GL(n,R), under matrix multiplication, is a group.
It is called the general linear group of n × n matrices over R. This follows from the properties that
det(AB) = det(A) det(B) and A is invertible if and only if det(A) 6= 0. These statements are proved in
any elementary course in linear algebra.
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(6) Special Linear Group. The set of n × n matrices with determinant 1 is a group under matrix
multiplication. This group is denoted by SL(n,R) and is called the special linear group of n × n
matrices over R.

SL(n,R) = {A ∈ GL(n,R) | det(A) = 1} .

To see why it is closed under multiplication, supposeA,B ∈ SL(n,R). Then det(A) = 1 and det(B) = 1,
but then det(AB) = det(A) det(B) = 1 · 1 = 1, by the property of determinants. Therefore, AB ∈
SL(n,R). Moreover, since det(A−1) = 1

det(A) = 1
1 = 1 then A−1 ∈ SL(n.R).

(7) Differentiable functions. The set of all differentiable functions R → R is a group under the oper-
ation of addition: (f + g)(x) = f(x) + g(x). The reason that the sum of two differentiable functions
is differentiable follows from the fact that d

dx (f + g) = d
dxf + d

dxg. The reason the (additive) inverse
of f is differentiable follows from the fact that d

dx (−f) = − d
dxf . The identity is the constant function

which maps everything to 0.

(8) Translations. For each (a, b) ∈ R2, define Ta,b : R2 → R2 by

(x, y) 7→ (x+ a, y + b).

The set of all such functions Ta,b:
T (R2) = {Ta,b | a, b ∈ R}

is a group under function composition. To see this, notice that

(Ta,b ◦ Tc,d)(x, y) = Ta,b(Tc,d(x, y)) = Ta,b(x+ c, y + d) = (x+ a+ c, y + b+ d) = Ta+c,b+d(x+ y)

for all (a, y) ∈ R2. Therefore, Ta,b ◦ Tc,d = Ta+c,b+d, so T (R2) is closed under composition. Moreover,
T0,0 is the identity, and the inverse of Ta,b is T−a,−b. Function composition is always associative. The
elements in T (R2) are called translations of R2.

Similarly we could define the group of translations of Rn, for any positive integer n, as

T (Rn) = {Ta1,...,an : Rn → Rn | ai ∈ R}

where Ta1,...,an(x1, . . . , xn) = (x1 + a1, . . . , xn + an).

(9) Linear Transformations. A linear transformation of Rn is a function T : Rn → Rn such that
T (a~v + ~w) = aT (~v) + T (~w) for all ~v, ~w ∈ Rn and a ∈ R. The set of all linear transformations L(Rn) of
Rn, for a positive integer n:

L(Rn) = {T : Rn → Rn | T is a linear transformation}

is a group under function addition: for T,U ∈ L(Rn) define T + U by

(T + U)(~v) = T (~v) + U(~v).

To see why, first we note that T + U is a linear transformation since

(T + U)(a~v + ~w) = T (a~v + ~w) + U(a~v + ~w) = aT (~v) + T (~w) + aU(~v) + U(~w)

= a(T (~v) + U(~v)) + (T (~w + U(~w))

= a(T + U)(~v) + (T + U)(~w).

So L(Rn) is closed under addition. Moreover, the linear transformation ~v 7→ ~0 is the identity, and for
any T the inverse is −T . Since addition in R is associative, so is addition in L(Rn).

Some of the previous examples have the property that the group operation is commutative, that is ab = ba
for all a, b ∈ G. Groups with this property are called abelian. Named after Niel Abel, a noted Norwegian
mathematician who studied such groups in the 1820’s. Groups where there exist elements that do not
commute are called non-abelian.
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10.3 Further Examples of Groups

Now we’ll present a few more examples of groups. These are the examples that will be important to us in
this course, since we will use them quite frequently.

10.3.1 Symmetric and Alternating Groups

A permutation of a set X is a bijection X → X. The set of all permutations of a set X, is a group under
composition. This set is denoted by SX and called it the symmetric group of X.

SX = {α : X → X | α is a bijection}.

In the case where X is the set [n] = {1, 2, 3, . . . , n} then we denoted S[n] simply by Sn, and called it the
symmetric group of degree n.

The set of even permutations An in Sn is also a group. Since it is a subset of Sn we call it a subgroup of Sn.

For example, consider A4: the set of even permutations of degree 4. We know |A4| = 4!
2 = 12 and we can

list all the permutations in A4 as follows:

ε = (1), σ1 = (1, 2)(3, 4), σ2 = (1, 3)(2, 4), σ3 = (1, 4)(2, 3), σ4 = (1, 2, 3), σ5 = (1, 3, 2), σ6 = (1, 2, 4), σ7 =
(1, 4, 2), σ8 = (1, 3, 4), σ9 = (1, 4, 3), σ10 = (2, 3, 4), σ11 = (2, 4, 3).

We can compute all possible products of two elements of the group and display them in a multiplication
table. This table contains all the information of the group A4. For example, the inverse of σ6 is σ7 since ε
appears as table entry σ6σ7. Also, A4 is not abelian, since the table is not symmetric about the diagonal
line↘.

ε σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11
ε ε σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11

(1, 2)(3, 4) = σ1 σ1 ε σ3 σ2 σ8 σ10 σ9 σ11 σ4 σ6 σ5 σ7
(1, 3)(2, 4) = σ2 σ2 σ3 ε σ1 σ11 σ6 σ5 σ8 σ7 σ10 σ9 σ4
(1, 4)(2, 3) = σ3 σ3 σ2 σ1 ε σ7 σ9 σ10 σ4 σ11 σ5 σ6 σ8

(1, 2, 3) = σ4 σ4 σ11 σ7 σ8 σ5 ε σ3 σ10 σ6 σ1 σ2 σ9
(1, 3, 2) = σ5 σ5 σ9 σ10 σ6 ε σ4 σ8 σ2 σ3 σ11 σ7 σ1
(1, 2, 4) = σ6 σ6 σ10 σ9 σ5 σ2 σ11 σ7 ε σ1 σ4 σ8 σ3
(1, 4, 2) = σ7 σ7 σ8 σ4 σ11 σ9 σ3 ε σ6 σ10 σ2 σ1 σ5
(1, 3, 4) = σ8 σ8 σ7 σ11 σ4 σ10 σ1 σ2 σ5 σ9 ε σ3 σ6
(1, 4, 3) = σ9 σ9 σ5 σ6 σ10 σ3 σ7 σ11 σ1 ε σ8 σ4 σ2
(2, 3, 4) = σ10 σ10 σ6 σ5 σ9 σ1 σ8 σ4 σ3 σ2 σ7 σ11 ε
(2, 4, 3) = σ11 σ11 σ4 σ8 σ7 σ6 σ2 σ1 σ9 σ5 σ3 ε σ10

We can use Sage to construct multiplication tables. The command to use is cayley_table().

Sage
sage: A4=AlternatingGroup(4)
sage: A4.cayley_table()

* a b c d e f g h i j k l
+------------------------
a| a b c d e f g h i j k l
b| b c a f d e h i g l j k
c| c a b e f d i g h k l j
d| d g j a h k b e l c f i
e| e i k c g l a f j b d h
f| f h l b i j c d k a e g
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g| g j d k a h e l b i c f
h| h l f j b i d k c g a e
i| i k e l c g f j a h b d
j| j d g h k a l b e f i c
k| k e i g l c j a f d h b
l| l f h i j b k c d e g a

Notice that we have no idea which element of A4 each letter represents. We can use the command
column_keys() to find out.

Sage
sage: A4.cayley_table().column_keys()
((), (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,2,4), (1,3,2), (1,3,4),
(1,3)(2,4), (1,4,2), (1,4,3), (1,4)(2,3))

This tells us the order the elements appear in the column and row headings. In other words, a = (),
b = (2, 3, 4), etc. We can change the order of the elements in the table by creating a list with the order we
want, then passing the list to cayley_table() using the optional argument elements=.

Sage
sage: A4list=["()", "(1,2)(3,4)", "(1,3)(2,4)", "(1,4)(2,3)", "(1,2,3)", "(1,3,2)",
"(1,2,4)", "(1,4,2)", "(1,3,4)", "(1,4,3)", "(2,3,4)", "(2,4,3)"]
sage: A4.cayley_table(elements=A4list)

* a b c d e f g h i j k l
+------------------------
a| a b c d e f g h i j k l
b| b a d c i k j l e g f h
c| c d a b l g f i h k j e
d| d c b a h j k e l f g i
e| e l h i f a d k g b c j
f| f j k g a e i c d l h b
g| g k j f c l h a b e i d
h| h i e l j d a g k c b f
i| i h l e k b c f j a d g
j| j f g k d h l b a i e c
k| k g f j b i e d c h l a
l| l e i h g c b j f d a k

We can also change the names it uses to represent the elements. We first create a list of “names”, in
precisely the same order as our elements are listed in A4list, then pass this to cayley_table() using
the optional argument names=.

Sage
sage: A4names=["1", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "s8", "s9",
"s10", "s11"]
sage: A4.cayley_table(names=A4names,elements=A4list)

* 1 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
+------------------------------------------------

1| 1 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11
s1| s1 1 s3 s2 s8 s10 s9 s11 s4 s6 s5 s7
s2| s2 s3 1 s1 s11 s6 s5 s8 s7 s10 s9 s4
s3| s3 s2 s1 1 s7 s9 s10 s4 s11 s5 s6 s8
s4| s4 s11 s7 s8 s5 1 s3 s10 s6 s1 s2 s9
s5| s5 s9 s10 s6 1 s4 s8 s2 s3 s11 s7 s1
s6| s6 s10 s9 s5 s2 s11 s7 1 s1 s4 s8 s3
s7| s7 s8 s4 s11 s9 s3 1 s6 s10 s2 s1 s5
s8| s8 s7 s11 s4 s10 s1 s2 s5 s9 1 s3 s6
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s9| s9 s5 s6 s10 s3 s7 s11 s1 1 s8 s4 s2
s10| s10 s6 s5 s9 s1 s8 s4 s3 s2 s7 s11 1
s11| s11 s4 s8 s7 s6 s2 s1 s9 s5 s3 1 s10

And there is our multiplication table, labeled exactly how we wanted.

Exercise 10.1: Construct a multiplication table for S3. First list the elements of S3 then work out the
table. Check your resulting table by using Sage.

Answer on page 123

10.3.2 Finite Cyclic Groups

Consider the set of Rubik’s cube moves G = {ε,R, R2,R3}. Notice that the composition of any moves in this
set is still in this set. For example, move R followed by move R2 is move R3, similarly move R3 followed
by move R2 is move R. In other words,

RR2 = R3, and R3R2 = R.

Each element has an inverse, R−1 = R3 and (R2)−1 = R2.

It follows that this set G is a group. It has the particular property that every element in G is some power
of R (even the identity is a power of R: ε = R0 = R4). A group with this property is called a cyclic group.

Definition 10.3 (Cyclic Group): A group G is called cyclic if there is one element in G, say g, so
that every other element of G is a power of g:

G = {gk | k ∈ Z}.

In this case we write G = 〈g〉, and say g is a generator for G.
If g has order n then G = {e, g, g2, g3, . . . , gn−1} and we say G is a cyclic group of order n.

In the case when the group operation is addition then G is cyclic if every other element in a multiple of g:
G = {kg | k ∈ Z}.

In our example, G is a cyclic group of order 4, since it has four elements, and it is generated by R.

The multiplication table for G is

G ε R R2 R3

ε ε R R2 R3

R R R2 R3 ε

R2 R2 R3 ε R
R3 R3 ε R R2

As another example consider the move sequence α = R2U2 of the Rubik’s cube. This move has order 6, and
if we consider the set of all powers of this move, we get a cyclic group of order 6:

H = 〈α〉 = {ε, α, α2, α3, α4, α5}.

The multiplication table for H is
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H ε α α2 α3 α4 α5

ε ε α α2 α3 α4 α5

α α α2 α3 α4 α5 ε
α2 α2 α3 α4 α5 ε α
α3 α3 α4 α5 ε α α2

α4 α4 α5 ε α α2 α3

α5 α5 ε α α2 α3 α4

You may have noticed that in each of our examples all elements commute under the operation. In other
words, the group is abelian. This is true for any cyclic group.

Definition 10.4 (Cyclic Groups are Abelian): Let G be a cycle group. For any a, b ∈ G, ab = ba.

Proof: Let G = 〈g〉. For a, b ∈ G there exist r and s such that a = gr and b = gs, and so ab = grgs = gr+s =
gs+r = gsgr = ba.

�

In the examples above each element is determined precisely by the power of R (or α), so let’s write out the
multiplication table where we just write i, in place of Ri (or αi).

G 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

H 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

These tables represent the way we ”multiply” in G and H. If we look closely we see that to multiply α2 and
α4 we just add the exponents, and if the sum is larger than 5 then we take the remainder when divided by
6. So in this case 2 + 4 = 6 which has remainder 0 when divided by 6.

In the next section, we investigate this ”remainder” operation on the set of integers.

10.3.3 Group of Integers Modulo n: Zn

Consider the set Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. We define the operation +12 to be addition modulo 12.
By this we mean a +12 b is the remainder of a + b when divided by 12. This type of addition is familiar to
anyone who adds time on a clock. For example, if it is 8-o’clock, then 6 hours later is 8+12 6 = 2, or 2-o’clock.

Some examples are: 2 +12 3 = 5, 7 +12 5 = 0, since 7 + 5 = 12 which is divisible by 12, and 11 +12 10 = 9,
since 11 + 10 = 21 which has remainder 9 when divided by 12. In Sage remainders are computed using the
operator %.

Sage
sage: (2+3)%12
5
sage: (7+5)%12
0
sage: (11+10)%12
9

Is Z12 a group under this ”new” addition +12? Let’s check the properties one-by-one.
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closed: Since the remainder will always be a number between 0 and 11 then Z12 is certainly closed under
+12.

associative: This addition is associative, since it is built from regular addition of integers which is asso-
ciative.

identity: The identity is 0, since 0 +12 b = b for all b ∈ Z12.

inverses: What is the inverse of an element? For example, what is the inverse of 3? This would be a
number b such that 12 divides 3 + b. The number 12 − 3 = 9 has this property. So the inverse of 3 is 9. In
general, the inverse of a is 12− a.

It follows that Z12 is a group.

There was nothing special about 12 in this example, other than it being familiar to us from our experience
dealing with clocks. We can really do this for any positive integer n.

Definition 10.5: Let n > 1 be and integer. Define an operation on the set Zn = {0, 1, 2, 3, . . . , n − 1},
called addition modulo n, as follows. For a, b ∈ Zn, let a +n b be the remainder of a + b when divided
by n. Zn is a group under addition modulo n, and is called the (additive) group of integers modulo
n. Since this group is cyclic it is often called the (additive) cyclic group of order n.

The group Zn is also usually denoted by Z/nZ, which is read ”Z mod n Z”.

Why is Zn cyclic? Each element of Zn can be obtained from 1 by repeatedly adding 1 to itself. Note, our
group operation is addition so the analogy of a “power” is a multiple. Since every element of Zn is a suitable
multiple of 1 then Zn = 〈1〉.

Notation & Terminology:

If a, b, and n are integers we say a is congruent to b modulo n if n | b− a and we write a ≡ b mod n. For
example, 15 ≡ 3 mod 12, and 6 ≡ 2 mod 4, but 7 6≡ 3 mod 5 since 5 6 | 7− 3.

Addition of two integers, a and b, modulo n, which we denoted as a+n b is often denoted by

a+ b (mod n).

For example, 11 +12 10 = 9 could also be written as 11 + 10 ≡ 9 (mod 12).

In Section 10.3.2 we saw the multiplication tables for G and H, written only using the exponents, are
precisely the groups Z4 and Z6. This observation, is true in general, in the sense that every finite cyclic
group is essentially Zn for some integer n. The only difference it just how the elements were named, which
is superficial.

Finite cyclic groups are built into Sage with the command CyclicPermutationGroup(). As the name
suggests, cyclic groups are constructed using permutations. Lets look at an example.

Sage
sage: Z5=CyclicPermutationGroup(5)
sage: Z5.list()
[(), (1,2,3,4,5), (1,3,5,2,4), (1,4,2,5,3), (1,5,4,3,2)]

Here, Z5 is represented by using the 5-cycle (1, 2, 3, 4, 5) as a generator. We can compute the multiplication
table by first telling Sage how to name the elements.
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Sage
sage: Z5list=["()", "(1,2,3,4,5)", "(1,3,5,2,4)", "(1,4,2,5,3)", "(1,5,4,3,2)"]
sage: Z5names=["0","1","2","3","4"]
sage: Z5.cayley_table(names=Z5names,elements=Z5list])

* 0 1 2 3 4
+----------
0| 0 1 2 3 4
1| 1 2 3 4 0
2| 2 3 4 0 1
3| 3 4 0 1 2
4| 4 0 1 2 3

If one wants to work with Zn where the elements are {0, 1, . . . , n − 1}, rather than permutations, then
this can be done using IntegerModRing(). Though, for just doing calculations we would use the modulo
operator %, as in the clock example above.

Sage
sage: Z5=IntegerModRing(5)
sage: Z5.list()
[0, 1, 2, 3, 4]
sage: Z5(3)+Z5(4)
2

Exercise 10.2: Construct a Cayley table for Z7 = {0, 1, 2, 3, 4, 5, 6}, under addition modulo 7. Check your
results using Sage.

Answer on page 123

Example 10.1: We determine the order of each element in Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}. 1 has order
12. Since 6 · 2 ≡ 2 + 2 + 2 + 2 + 2 + 2 ≡ 0 (mod 12) then 2 has order 6. Similarly 4 · 3 ≡ 0 (mod 12) so 3 has
order 4. Continuing in this way we find:

k elements of order k

1 0
2 6
3 4, 8
4 3, 9
6 2, 10
12 1, 5, 7, 11

It follows that 1, 5, 7, and 11 are all generators of Z12. That is,

Z12 = 〈1〉 = 〈5〉 = 〈7〉 = 〈11〉.

A few curious things to note: (i) the only orders that show up are divisors of 12, and (ii) the generators
of Z12 are the elements relatively prime to 12. Are these coincidences? We’ll see in Corollary 11.4 and
Theorem 11.9 that these observations are not coincidences.

10.3.4 Group of Units Modulo n: U(n)

You may wonder if we can do the same thing with multiplication, instead of addition, on Zn. That is, does
Zn form a group under multiplication modulo n, which we denote by ·n?
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First we notice that the identity would be 1, but of course 0 doesn’t have a (multiplicative) inverse. So let’s
take 0 out of consideration, and just focus on the set Z∗n = {1, 2, 3, . . . , n− 1}.

As an example consider Z∗6 = {1, 2, 3, 4, 5}. Lets check to see if this set is closed under multiplication modulo
6. Well, 3 ·6 5 = 3 ∈ Z∗6, so far so good. But 2 ·6 3 = 0 6∈ Z∗6. Therefore, Z∗6 is definitely not closed under
multiplication, so it is not a group.

But all is not lost. It just seems that some elements in Z∗6 are just trouble-makers. Their presence prevents
it from being closed under multiplication. Who are these trouble makers? Lets find out.

1 ·6 2 = 2 1 ·6 3 = 3 1 ·6 4 = 4 1 ·6 5 = 5
2 ·6 2 = 4 2 ·6 3 = 0 6∈ Z∗6 2 ·6 4 = 2 2 ·6 5 = 4
3 ·6 3 = 3 3 ·6 4 = 0 6∈ Z∗6 3 ·6 5 = 3 4 ·6 4 = 4
4 ·6 5 = 2 5 ·6 5 = 1

The elements 2, 3 and 4 seem to be causing the problems. These are precisely the elements that have a
factor in common with 6. Is this a coincidence? Not at all, the remainder of division by 6 will always be
between 0 and 5, and since Z∗6 does not contain 0, the trouble makers are the numbers whose products are
divisible by 6. For two numbers a, b ∈ Z∗6 to have a product divisible by 6, they each must have a factor in
common with 6.

We say two numbers are relatively prime if they do not have a common prime factor. If two numbers
have a common factor then we say they are not relatively prime. Note that if two numbers are relatively
prime, then they have no common prime factor, and so their greatest common divisor is 1. This means a
and b are relatively prime if and only if gcd(a, b) = 1. See Appendix B for more information on greatest
common divisors.

We have just determined that the trouble makers are the numbers which are not relatively prime to 6.
Namely, 2, 3, and 4.

Therefore, consider just the set of numbers in Z∗6 that are relatively prime to 6: This set is denoted by U(6):

U(6) = {1, 5}.

This set is a group! The inverse of 5 is itself. The multiplication table is:

U(6) 1 5
1 1 5
5 5 1

Sage
sage: U6=[m for m in range(0,6) if gcd(m,6)==1]
{1, 5}

The previous construction can be done for any integer n in place of 6. This is the next definition.

Definition 10.6 (Group of Units Modulo n): Let n > 1 be and integer, and let

U(n) = {m | 1 ≤ m ≤ n− 1 and gcd(m,n) = 1}.

U(n) is a group under multiplication modulo n, and is called the group of units modulo n.
In the case when p is prime, U(p) = Z∗p = {1, 2, 3, . . . , p− 1}.

The number of elements in U(n) is precisely the integers between 1 and n which are relatively prime to n.
There is an important number-theoretic function, called Euler’s φ-function, denoted by φ, which calculates



LECTURE 10 GROUPS 115

this number: φ(n) = |U(n)|. See Section B.3 in Appendix B for information on this function including a
simple formula to calculate its value from the prime factorization of n.

Euler’s φ-function is implemented in Sage, under the command euler_phi(). For example, here we see
φ(6) = 2.

Sage
sage: euler_phi(6)
2

Exercise 10.3: Determine the elements of the set U(8), and construct the multiplication table.

Answer on page 123

Example 10.2: In this example we will investigate the group U(18), which has 6 elements.

Sage
sage: euler_phi(18)
6

Of course, we could have done this by hand (or use Sage code similar to the example we did for U(6)). We
would just go through the numbers from 1 to 18 and omit any that have a factor of 2 or 3.

U(18) = {1, 5, 7, 11, 13, 17}.

What is the inverse of 11? One way is to compute the product of 11 with each element of U(18) and check
when we get 1:

Sage
sage: for m in [1, 5, 7, 11, 13, 17]:
sage: if 11*m%18==1:
sage: print m
5

Therefore 11−1 = 5 in U(18).

A more efficient way to find the inverse is to use the Extended Euclidean Algorithm: If a and b are integers
and gcd(a, b) = d then there must be integers u and v so that ua + vb = d (see Theorem B.4 in Appendix
B). The standard algorithm for finding the gcd is called the Euclidean Algorithm, and the algorithm for
producing numbers u and v is called the Extended Euclidean Algorithm. For details of these algorithms
see Appendix B. These algorithms are implemented in Sage, so we can use them.

Sage
sage: d,u,v = xgcd(11,18)
sage: print u,v
5, -3

How does this help us find 11−1? Well, the Extended Euclidean Algorithm has returned three numbers:
the first is 1 which is the gcd, the other two, 5 and −3, have the property that 5(11) + (−3)(18) = 1. This
means 5(11) has remainder 1 when divided by 18. Which is exactly what it means for 5 to be an inverse of
11.

To find the inverse of 13 we can do the same thing, and get 13−1 = 7.
Sage

sage: d,u,v = xgcd(13,18)
sage: print u,v
7, -5
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We can write a function called inverse that will return the inverse of a in U(m).

Sage
sage: def inverse(a,m):
sage: d,u,v=xgcd(a,m)
sage: if d==1:
sage: return u%m # return inverse as a number between 1 and m-1
sage: else:
sage: return a, "is not in U group" # just in case a is not in U(m)

sage: inverse(11,18)
5
sage: inverse(13,18)
13

Actually, Sage already has a built in inverse function of U(n). The syntax is inverse_mod(a,n) and it
returns the inverse of a in U(n).

To compute the order of an element, we can take successive powers until we hit the identity. As an example,
we determine the order of 11 is 6.

Sage
sage: for n in (1..6):
sage: print n, 11ˆn%18
1 11
2 13
3 17
4 7
5 5
6 1

We can also create a function to do this. We’ll see next lecture that the order of an element must divide the
order of the group so we can limit the exponents we need to check. The function divisors(m) returns a
list of the divisors of m, arranged from smallest to largest. Recall |U(m)| = φ(m), the Euler φ-function.

Sage
sage: def order(a,m):
sage: if gcd(a,m)==1: # first check that a is in U(m)
sage: for k in divisors(euler_phi(m)): # order must divide |U(m)|
sage: if aˆk%m==1:
sage: return k
sage: else:
sage: return a, "is not in U group"

sage: order(5,18)
6
sage: order(13,18)
3

It follows that U(18) is a cyclic group generated by 5:

U(18) = 〈5〉.

The element 11 also generates the group.

U(18) has proper subgroups {1}, {1, 17}, and {1, 7, 13}.
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10.3.5 Dihedral Groups: Dn

Consider a square as shown in Figure 10.1a. We want to determine all the ways we can pick up the square,
move it in some way, then put it back in the original space it occupied. If an observer didn’t see us pick
it up, but only saw it before and after, they shouldn’t notice any change. For example, we could rotate it
90 degrees, or we could flip it over a horizontal line. We’d like to determine all possible ways we could
have moved the square. In some sense, the number of ways we can do this is related to how “symmetric” a
square is.

(a) (b)

Figure 10.1: A square and its lines of symmetry.

Let G denote the set of ways in which we can move the square. To keep track of the motions, we can label
the vertices of the squares as 1, 2, 3, 4, see Figure 10.1b, and each motion corresponds to a permutation of
the labels on the vertices. In Table 10.1 we list the elements of G: G = {R0, R90, R180, R270, H, V,D,D

′}.

notation description permutation

R0 rotation of 0◦ (i.e. do nothing) ε
R90 rotation of 90◦ (clockwise) (1, 2, 3, 4)
R180 rotation of 180◦ (clockwise) (1, 3)(2, 4)
R270 rotation of 270◦ (clockwise) (1, 4, 3, 2)
H reflection of 180◦ about horizontal axis (1, 4)(2, 3)
V reflection of 180◦ about vertical axis (1, 2)(3, 4)
D reflection of 180◦ about diagonal axis (see diagram below) (2, 4)
D′ reflection of 180◦ about other diagonal axis (see diagram below) (1, 3)

Table 10.1: Symmetries of the square

We can combine elements of G through consecutive motions. For example, R90H means first rotate by 90◦,
then reflect about the horizontal axis. The resulting motion is equivalent to D′. We can see this by actually
doing both motions R90H and D′ and observing they do exactly the same thing. Or we could compose their
corresponding permutations: (1, 2, 3, 4)(1, 4)(2, 3) = (1, 3).

G is a group under this way of composing moves. It is the group of symmetries of the square, or more
commonly called the dihedral group of order 8, and denoted by D4. The multiplication table for D4 is
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D4 R0 R90 R180 R270 H V D D′

R0 R0 R90 R180 R270 H V D D′

R90 R90 R180 R270 R0 D′ D H V
R180 R180 R270 R0 R90 V H D′ D
R270 R270 R0 R90 R180 D D′ V H
H H D V D′ R0 R180 R90 R270

V V D′ H D R180 R0 R270 R90

D D V D′ H R270 R90 R0 R180

D′ D′ H D V R90 R270 R180 R0

The analysis carried out for a square can similarly be done for any regular n-gon, Pn (where n ≥ 3). See
Figure 10.2 for some familiar n-gons. If n = 3 then P3 is an equilateral triangle. If n = 4 then P4 is a
square as we just considered. If n = 5 then P5 is a regular pentagon, and so on. The corresponding group
is denoted by Dn and is called the dihedral group of order 2n.

Figure 10.2: Some regular n-gons.

Dihedral groups are frequently found in art and nature, and they are a very important type of group used
by mineralogists to study crystals.

You may wonder where the “2n” comes from in the name. Looking back at the square we see that there
are 8 motions preserving the square (we call these the symmetries of the square). Four were rotations,
and four were reflections. This is true for any regular n-gon. There will be n rotational symmetries and n
reflective symmetries, for a total of 2n.

Dihedral groups are built into Sage. Each element is represented as permutations of the vertices of the
n-gon. Here is an example with D4.

Sage
sage: D4=DihedralGroup(4)
sage: D4.list() #lists the elements of D4 as represented in SAGE
[(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2),
(1,4)(2,3)]

We can assign each element to a name. For example, (1, 2, 3, 4) corresponds to the 90◦ rotation R90.

Sage
sage: R90=D4("(1,2,3,4)")
sage: R180=D4("(1,3)(2,4)")
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sage: R270=D4("(1,4,3,2)")
sage: H=D4("(1,4)(2,3)")
sage: V=D4("(1,2)(3,4)")
sage: D=D4("(2,4)")
sage: Dp=D4("(1,3)") # we use Dp for D’

We can now compute products. For example, we see R90D = H.

Sage
sage: R90*D
(1,4)(2,3)

The full multiplication table for D4 can be computed in Sage as follows.

Sage
sage: D4list=["()", "(1,2,3,4)", "(1,3)(2,4)", "(1,4,3,2)", "(1,4)(2,3)",
"(1,2)(3,4)", "(2,4)", "(1,3)"]
sage: D4names=["R0","R90","R180","R270","H","V","D","D’"]
sage: D4.cayley_table(names=D4names,elements=D4list)

* R0 R90 R180 R270 H V D D’
+----------------------------------------

R0| R0 R90 R180 R270 H V D D’
R90| R90 R180 R270 R0 D’ D H V
R180| R180 R270 R0 R90 V H D’ D
R270| R270 R0 R90 R180 D D’ V H

H| H D V D’ R0 R180 R90 R270
V| V D’ H D R180 R0 R270 R90
D| D V D’ H R270 R90 R0 R180

D’| D’ H D V R90 R270 R180 R0

10.3.6 Notation for Dn

For a regular n-gon we typically use r to denote a clockwise rotation through 360
n degrees, and more gen-

erally, rk to denote a clockwise rotation through k 360
n degrees. A reflection through a line of symmetry is

denoted by fi, for 1 ≤ i ≤ n.

For example, the lines of symmetry for a regular 7-gon are labelled below. Some of the elements are
described in Table 10.2. There are 14 elements in D7:

D7 = {1, r, r2, r3, r4, r5, r6, f1, f2, f3, f4, f5, f6, f7}.
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notation description permutation

1 rotation of 0◦ (i.e. do nothing) ε
r rotation of 360

7 degrees (clockwise) (1, 2, 3, 4, 5, 6, 7)
rk rotation of k 360

n degrees (clockwise) for 1 ≤ k ≤ 7 7-cycle
f1 reflection of 180◦ about f1 line (2, 7)(3, 6)(4, 5)
fi reflection of 180◦ about fi axis for 1 ≤ i ≤ 7 product of three 2-cycles

Table 10.2: Symmetries of a regular 7-gon

One can check that every element of D7 can be expressed as a product of the form rkf `1 for some 0 ≤ k ≤ 6,
and 0 ≤ ` ≤ 1. For example, f5 = r3f1. We say D7 is generated by r, f1 and write

D7 = 〈r, f1〉.

10.4 Exercises

1. Give two reasons why the set of odd integers under addition is not a group.

2. Show that
[

1 1
2 2

]
does not have a multiplicative inverse in GL(2,R).

3. Show that the group GL(2,R) is non-abelian by finding two matrices A and B in GL(2,R) where
AB 6= BA.

4. Find the inverse of
[

1 2
1 3

]
in SL(2,R). First verify it is in SL(2,R).

5. The group operation ∗ is frequently omitted, for example a ∗ b would just be written as ab. This is due
to the fact that we often refer to the operation as “multiplication”. However, when the operation is
addition we keep the + symbol, and we also use 0 for the identity instead of e. Translate each of the
following multiplicative expression into its additive counterpart.

(a) a2b

(b) b4a−3b

(c) (ab3)−2c3 = e

6. Let G = {a, b, c, d} have an operation ∗ with corresponding multiplication table

∗ a b c d
a a b c d
b b a d c
c c d a b
d d d b c

Is G a group under this operation? Explain.

Dihedral Groups:
Exercises 7 through 13 investigate the dihedral groups.
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7. (a) With pictures and words, describe each symmetry in D3 (the set of symmetries of an equilateral
triangle).

(b) Write out a complete multiplication (Cayley) table for D3.
(c) Is D3 abelian (that is, does every element commute with every other element)?

8. With pictures and words, describe each symmetry inD5 (the set of symmetries of a regular pentagon).

9. For n ≥ 3 describe the elements of Dn. (You will need to consider two cases, depending on whether n
is even or odd.)

10. In Dn, explain geometrically why

(a) a reflection followed by a reflection must be a rotation.
(b) a reflection and a rotation taken together in either order must be a reflection.

11. Is Dn a cyclic group? That is, does Dn = 〈g〉 for some g ∈ Dn?

12. Is Dn abelian?

13. If r1, r2, and r3 represent rotations and f1, f2, and f3 represent reflections from Dn, determine
whether f1r3r2f2r1f1 is a rotation or reflection.

Group of Integers under addition modulo n:
Exercises 14 through 18 investigate the group of integers modulo n: Zn.

14. List the element of Z2, and write out a multiplication table for this group.

15. Determine the following in Z15

(a) 7 +15 6

(b) 13 +15 8

(c) 12 · 7
(d) the inverse of 11

(e) the inverse of 3

(f) ord(10)

(g) ord(7)

16. Determine the order of each element in Z10.

17. Determine which elements of Z10 are generators for Z10. That is, find all g ∈ Z10 such that Z10 = 〈g〉.

18. Find all the elements of g ∈ Z18 for which Z18 = 〈g〉.

Unit Group modulo n:
Exercises 19 through 22 investigate the Unit Groups U(n).

19. Determine the elements of the set U(5), and construct the multiplication table.

20. Determine the elements of the set U(12), and construct the multiplication table.

21. (a) How many elements does U(37) have?
(b) Find the inverse of 25 in U(37).
(c) What is the order of 25.
(d) Is U(37) cyclic? If so, find a generator.

(Hint: use Sage to help with calculations.)

22. Is U(20) cyclic?

Groups in General:
Exercises 23 through 31 investigate groups in general. Solutions to these exercises should be based
on the four properties listed in the definition of a group, and any theorems which were consequences
of these properties.
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23. For any elements a and b from a group G, and any integer n, prove that (b−1ab)n = b−1anb. (We’ve
already shown this for permutations, so this question is asking you to verity this is really just a
consequence of group properties.)

24. Let a and b be elements of an abelian group G, and let n be any integer. Show that (ab)n = anbn. Is
this true for non-abelian groups? Explain.

25. If a, b ∈ G such that ord(a2) = ord(b2), is it necessarily true that ord(a) = ord(b)?

26. In a group G show that the number of nonidentity elements that satisfy the equation x5 = e is a
multiple of 4.

27. Show that if G is a group and a ∈ G such that a2 = a then a must be the identity.

28. Suppose G = {e, a, b, c, d} is a group with multiplication table

e a b c d
e e
a b e
b c d e
c d a b
d

Fill in the blank entries.

29. Suppose G = {e, a, b, c, d, f} is a group with multiplication table

e a b c d f
e e a b c d f
a a e
b b f
c c e a
d d c a
f f b c a e

Fill in the blank entries.

30. Prove Lemma 10.3.
(Hint: The first two parts are really just consequences of the left- and right- cancellation properties.)

31. Prove that if G is a group with the property that the square of every element is the identity (i.e. every
element has order 2), then G is abelian.

32. Let G be a group with operation ·. For which operation ∗ is the set G a group under ∗?

(a) a ∗ b = b · a
(b) a ∗ b = b−1 · a · b
(c) a ∗ b = b−1 · a
(d) a ∗ b = (a · b)2

A few more examples of groups:

33. The integers 5 and 15 are among a collection of 12 integers that form a group under multiplication
modulo 56. List all 12.

34. Nim Group. Consider the set G = {0, 1, 2, 3, 4, 5, 6, 7}. Suppose there is a group operation ∗ on G that
satisfies the following two conditions:
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(a) a ∗ b ≤ a+ b for all a, b in G,
(b) a ∗ a = 0 for all a in G.

Construct the multiplication table for G. This groups is sometimes called the Nim Group due to its
relationship to the game of Nim.

35. Prove that the set of all 3× 3 matrices with real entries of the form 1 a b
0 1 c
0 0 1


is a group under matrix multiplication. (This group, sometimes called the Heisenberg group after
the Nobel Prize winning physicist Werner Heisenberg, is intimately related to the Heisenberg Uncer-
tainty Principle of Quantum Physics.)

Answers to in-chapter exercises:

Exercise 10.1:

ε (1, 2) (1, 3) (2, 3) (1, 2, 3) (1, 3, 2)
ε ε (1, 2) (1, 3) (2, 3) (1, 2, 3) (1, 3, 2)

(1, 2) (1, 2) ε (1, 2, 3) (1, 3, 2) (1, 3) (2, 3)
(1, 3) (1, 3) (1, 3, 2) ε (1, 2, 3) (2, 3) (1, 2)
(2, 3) (2, 3) (1, 2, 3) (1, 3, 2) ε (1, 2) (1, 3)

(1, 2, 3) (1, 2, 3) (2, 3) (1, 2) (1, 3, 2) (1, 3) ε
(1, 3, 2) (1, 3, 2) (1, 3)) (2, 3) (1, 2) ε (1, 2, 3)

Exercise 10.2:

0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

Exercise 10.3: U(8) = {1, 3, 5, 7}

1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1
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Lecture 11

Subgroups

Last lecture we introduced the concept of a group. This is a set equipped with an (associative) operation
that allows us to combine two elements to produce another element in the same set. We require the set,
under this operation, to have an identity, and for every element to have an inverse. We saw a number of
familiar sets and operations which satisfy the property of being a group. In this lecture we look at subsets
of groups.

11.1 Subgroups

Not all subsets of groups are created equal. For example, consider the two subset of the set of all Rubik’s
cube moves: H = {ε,R,R2,R3} and K = {ε,R,U}. The set H is a group itself as we saw last lecture. On
the other hand, the set K is not a group since, for one thing the product of R and U is not in K.

If G is a group, and H is a subset of G which is also a group (using the same operation), then we say H is
a subgroup of G, and we write H < G.

Example 11.1: (a) H = {ε, (1, 2)} is a subgroup of S3.

(b) The subset G = {ε, (1, 2, 3, 4), (1, 4, 3, 2), (1, 3)(2, 4), (1, 4)(2, 3), (1, 2)(3, 4), (2, 4), (1, 3)} of S4 is a sub-
group. We could check that every product of elements in G is again in G, and that each element has
an inverse in G. However, we could just observe that G is precisely D4, the dihedral group of order 8
that we investigated last lecture, so we already know it is a group.

(c) The subset {0, 2, 4} is a subgroup of the cyclic group of order 6, Z6 = {0, 1, 2, 3, 4, 5}. It is closed since
the sum of any two elements in {0, 2, 4} is still in {0, 2, 4}. The inverse of 2 is 4 since 2+4 = 0 (mod 6).

To verify whether a subset of a group is itself a group we don’t need to start from scratch. For instance,
since the operation on G is associative, then restricting the operation to just elements of a subset H the
operation would still have to be associative. This means we don’t need to check associativity, we get this
for free. So we really only need to check (i) H is closed, (ii) the identity is in H, and (iii) each element of H
has an inverse in H. Notice that if we have (i) and (iii) then we get (ii) for free, since aa−1 = e. This means
we have the following test for a subgroup.

125
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Theorem 11.1 (Two-Step Subgroup Test): Let G be a group and H a nonempty subset of G. If

(a) for every a, b ∈ H, ab ∈ H (closed under multiplication), and

(b) for every a ∈ H, a−1 ∈ H (closed under inverses),

then H is a subgroup of G.

11.2 Examples of Subgroups

Imagine playing with Rubik’s cube but only allowing yourself to use moves U and R. Some examples of
move sequences that you could perform are: RU R−1 U2 R2 U−1, RURURURUR, and (R2U2)3. Observe that
every move sequence has an inverse involving only R and U, and the product of any two move sequences is
another move sequence involving only R and U. That is, the set of all such move sequences is a group! We
denote this group by 〈R,U〉.

For any group G, let g1, g2, . . . , gk be elements in G. Let 〈g1, g2, . . . , gk〉 be the set of all elements of G which
can be expressed as products of g1, g2, . . . , gk and their inverses g−11 , g−12 , . . . , g−1k :

〈g1, g2, . . . , gk〉 = {x ∈ G | x = gmi
ji
gm2
j2
· · · gm`

j`
for some indices ji’s and exponents mi ∈ Z},

then 〈g1, g2, . . . , gk〉 is the subgroup generated by g1, g2, . . . , gk.

When k = 1, the group 〈g〉 = {gn | n ∈ Z} is called a cyclic subgroup of G.

Many of our examples of subgroups will be of these types, and this is how we will construct groups in Sage.

(1) Recall S3 = {ε, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}.
One subgroup of S3 is 〈(1, 2, 3)〉 = {ε, (1, 2, 3), (1, 3, 2)}. Check this is indeed a subgroup.

We can list all subgroups of S3 as follows:
〈ε〉 = {ε}
〈(1, 2)〉 = {ε, (1, 2)}
〈(1, 3)〉 = {ε, (1, 3)}
〈(2, 3)〉 = {ε, (2, 3)}
〈(1, 2, 3)〉 = {ε, (1, 2, 3), (1, 3, 2)} = 〈(1, 3, 2)〉
We can check that 〈(1, 2), (1, 3)〉 = S3. What this means is that any element of S3 can be written as a
product involving (1, 2) and (1, 3). In fact, the subgroup generated by any two elements will be all of
S3 again.

Sage
sage: S3=SymmetricGroup(3)
sage: a=S3("(1,2)")
sage: b=S3("(1,3)")
sage: H=PermutationGroup([a,b]) # forms the group generated by a and b
sage: H==S3 # check if H is equal to the whole group
true

(2) Recall Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and the operation is additional modulo 10. The subgroups of
Z10 are:
〈0〉 = {0}
〈2〉 = {0, 2, 4, 6, 8}
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〈5〉 = {0, 5}.
There are no other (proper) subgroups of Z10.

(3) Recall U(10) = {1, 3, 7, 9} and the operation is multiplication modulo 10. Since 32 = 9 and 33 = 7 then
U(10) = 〈3〉. A proper subgroup of U(10) is 〈9〉 = {1, 9}. Verify this is the only other proper subgroup
of U(10), besides the trivial subgroup {1}.

(4) In S10, the permutations α = (1, 2) and β = (1, 5, 3)(2, 4) generate a subgroup H of size 120. The
permutation (1, 4, 3, 2) is in H since αβαβ2 = (1, 4, 3, 2). On the other hand, (8, 9, 10) 6∈ H, since any
product of α and β would have to fix 10.

Sage
sage: S10=SymmetricGroup(10)
sage: a=S10("(1,2)")
sage: b=S10("(1,5,3)(2,4)")
sage: H=PermutationGroup([a,b]) # could have used H=S10.subgroup([a,b]) instead
sage: H.order()
120
sage: a*b*a*bˆ2
(1,4,3,2)
sage: S10("(1,4,3,2)") in H
true
sage: S10("(8,9,10)") in H
false

(5) Some subgroups of the dihedral group D4 = {R0, R90, R180, R270, H, V,D,D
′} are

〈R90〉 = {R0, R90, R180, R270}
〈R180〉 = {R0, R180}
〈V 〉 = {R0, V }
〈H,V 〉 = {R0, R180, H, V }
If we construct only the portion of the multiplication table that involves {R0, R180, H, V } then we can
immediately see that it is a subgroup since it is closed under the operation, and inverses.

Sage
sage: D4=DihedralGroup(4)
sage: D4sublist=["()","(1,3)(2,4)", "(1,4)(2,3)", "(1,2)(3,4)"]
sage: D4subnames=["R0","R180","H","V"]
sage: D4.cayley_table(names=D4names,elements=D4list)

* R0 R180 H V
+--------------------

R0| R0 R180 H V
R180| R180 R0 V H

H| H V R0 R180
V| V H R180 R0

11.3 The Center of a Group

The center of a group G is the subset Z(G) of all elements that commute with every element of G:

Z(G) = {a ∈ G | ag = ga for all g ∈ G}.

Theorem 11.2: For a group G the center Z(G) is a subgroup of G.
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Proof: The identity is in Z(G), therefore Z(G) 6= ∅. If a and b are in Z(G) then for any g ∈ G,
(ab)g = a(bg) = a(gb) = (ag)b = (ga)b = g(ab) so ab ∈ G. Also, ag = ga implies ga−1 = a−1g so a−1 ∈ G.
Therefore, by the Two-Step subgroup test Z(G) < G. �

Note that Z(G) = G if and only if G is abelian. We’ve shown in Lecture 3 Exercise 9 that for every
non-trivial permutation in Sn, where n ≥ 3, there exists one that does not commute with it. This means
Z(Sn) = {ε}. However, for subgroups of Sn this is not necessarily the case. For example A3 is abelian and
so Z(A3) = A3. Here we verify this in Sage.

Sage
sage: A3=AlternatingGroup(3)
sage: A3.center()
Permutation Group with generators [(1,2,3)]
sage: A3.center().list()
[(), (1,2,3), (1,3,2)]

In Section 21.3.1 we determine the center of the Rubik’s Cube group.

11.4 Lagrange’s Theorem

Looking back at our examples in last section we make the following observation: the order of a subgroup
divides the order of the group. For example, in S3, which is a group of order 6, all the subgroups we listed
are either of order 1, 2 or 3, which are precisely the divisors of 6. Verify this observation for the other
examples.

This raises the question: Must the order of a subgroup always be a divisor of the order of the group? If this
is true, then it puts a pretty strict condition on the possible subsets that can be subgroups. For instance,
we would be able to quickly conclude that {R0, H,D} is not a subgroup of D4 since 3 does not divide 8.

It turns out that our observation is true in general. This is known as Lagrange’s Theorem.

Theorem 11.3 (Lagrange’s Theorem): If G is a finite group and H is a subgroup of G, then |H|
divides |G|.

We will prove this theorem in Section 18.2 of Lecture 18. Also see Exercise 15 in Lecture 17.

If we consider the subgroup 〈g〉 generated by an element g ∈ G, then the order of this subgroup is precisely
the order of g. In other words, our two definitions of the word “order” (both as the size of a group, and the
smallest number n for which gn = e) agree.

Corollary 11.4 (ord(a) divides |G|): In a finite group, the order of each element divides the order of
the group.

Here is some experimental evidence in support of the corollary.
Sage

sage: n=20
sage: Zn = CyclicPermutationGroup(n)
sage: element_orders=Set([g.order() for g in Zn])
sage: element_orders
{1, 2, 4, 5, 10, 20}
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The orders of the elements in Z20 are all divisors of 20. We could vary n, try dihedral groups or unit integer
groups, etc. In every case, we would find that the order of an element must divide the order of the group.

As a partial converse to Corollary 11.4 we have the following.

Theorem 11.5 (Cauchy’s Theorem): Let p be a prime dividing |G|. Then there is a g ∈ G of order p.

Note that for non-prime divisors d of |G| it is not true in general that G contains an element of order d. For
example, A4 is a group of order 12 but it does not contain an element of order 4 (Why?).

A proof of Cauchy’s Theorem will be deferred to a later lecture (if we have time).

11.5 Cyclic Groups Revisited

In a cyclic group G = 〈g〉 every element is of the form gk for some k. If G is infinite then every distinct
power of g is a distinct element of G. Think about Z = 〈1〉 under addition as an example (of course, here
we have to reinterpret “power” to mean “multiple” since the group operation is addition),

If G = 〈g〉 is finite of order n then G = {e, g, g2, . . . , gn−1} and gi = gj if and only if n | j − i.

This means it is fairly easy to work with cyclic groups, since taking products and determining when two
elements are really the same, is a fairly simple task.

The following theorems list some nice properties that cyclic groups have, including how to find all sub-
groups and all elements of a particular order.

Theorem 11.6 (Fundamental Theorem of Cyclic Groups): Every subgroup of a cyclic group is
cyclic. Moreover, if |〈g〉| = n then for each divisor of k of n there is exactly one subgroup of 〈g〉 of order
k.

The proof of this is well within our reach, but I will not prove it here.

Theorem 11.7 (Generators of Cycle Groups): Let G = 〈g〉 be a cyclic group of order n. Then
G = 〈gk〉 if and only if gcd(k, n) = 1.

Theorem 11.8 (Number of elements of each order in a cyclic group.): If d is a divisor of n, the
number of elements of order d in a cyclic group of order n is φ(d).

In the specific case when the group is Zn, and the operation is addition, these theorems can be restated as
follows.
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Theorem 11.9 (Generators, Subgroups, and Orders in Zn): Consider the group of integers mod-
ulo n, Zn.

(a) An integer k is a generator of Zn if and only if gcd(k, n) = 1.

(b) For each divisor k of n, the set 〈n/k〉 is the unique subgroup of Zn of order k, moreover, these are
the only subgroups of Zn.

(c) For each k | n the elements of order k are of the form ` · (n/k) where gcd(`, k) = 1. The number of
such element is φ(k), and each of these is a generator of the unique subgroup of order k.

Example 11.2: Let’s determine all the subgroups of Z24. By Theorem 11.9 the generators of Z24 are
precisely the elements which are relatively prime to 24 = 233. These are 1, 5, 7, 11, 13, 17, 19, 23.

〈1〉 = Z24

2 is an element of order 12, so it generates a cyclic subgroup of order 12:

〈2〉 = {0, 2, 3, 6, 8, 10, 12, 14, 16, 18, 20, 22}.

The other generators are k ·2 where k is relatively prime to 12. Since there are φ(12) = 4 numbers relatively
prime to 12, namely {1, 5, 7, 11} then the other generators of this subgroup are 5 ·2 = 10, 7 ·2 = 14, 11 ·2 = 22.

3 is an element of order 8, so it generates a cycle subgroup of order 8:

〈3〉 = {0, 3, 6, 9, 12, 15, 18, 21}.

Other generators of this subgroup are m · 3 where m is relatively prime to 8. There are φ(8) = 4 such
generators: 3, 9, 15, 21.

We can continue looking for subgroups (and generators) in this way. We just keep in mind that to find a
subgroup of size k we look for an element of order k, since it will generate the only subgroup of size k. This
is what Theorem 11.9 (and more generally Theorem 11.6) states.

Table 11.1 lists all subgroups, orders and generators of Z24.

subgroup order other generators

〈1〉 = Z24 24 5, 7, 11, 13, 17, 19, 23
〈2〉 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22} 12 10, 14, 22
〈3〉 = {0, 3, 6, 9, 12, 15, 18, 21} 8 9, 15, 21
〈4〉 = {0, 4, 8, 12, 16, 20} 6 20
〈6〉 = {0, 6, 12, 18} 4 18
〈8〉 = {0, 8, 16} 3 16
〈12〉 = {0, 12} 2
〈0〉 = {0} 1

Table 11.1: Subgroups of Z24

11.6 Cayley’s Theorem

We’ve mostly been focussing our attention on permutation groups. One may wonder whether we are
limiting ourselves and missing out on some pretty important groups that we wouldn’t otherwise see. Well,
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as it turns out, every group is really just a permutation group, the difference is only in how we name the
elements. To see this, let G be a finite group of order n. List the elements of G:

g1, g2, g3, . . . , gn−1 , gn.

For any element a ∈ G multiply the elements of the list by a:

ag1, ag2, ag3, . . . , agn−1, agn.

This is just a permutation of the list of elements inG. Why? In other words, we can associate to the element
a the permutation that it induces on the elements of G. It turns out that the set of all such permutations
contains all the information about G. In other words, we can just think of G as a set of permutations. This
is known as Cayley’s theorem.

Theorem 11.10 (Cayley’s Theorem): Let G be a group. For each a ∈ G, define a mapping

ρa : G→ G

x 7→ ax.

Then

(a) ρa is a permutation of the set G,

(b) H = {ρa | a ∈ G} is a subgroup of SG, the group of all permutations of the set G.

(c) H and G are essentially the same groups, all that is different is the names of the elements. More
precisely, ab = c in G if and only if ρaρb = ρc as permutations.

We only note the theorem here since it tells us that we aren’t, in a sense, limiting ourselves by studying
only permutation groups. Also, this theorem indicates why Sage uses permutation groups to represent
other groups.

11.7 Exercises

1. Is {ε, (1, 2), (1, 2, 3)} a subgroup of S4?

2. Name the elements in S3 as follows:

s1 = (1, 2), s2 = (1, 3), s3 = (2, 3), s4 = (1, 2, 3), s5 = (1, 3, 2).

(a) Let G be the subgroup generated by s1, G = 〈s1〉. Verify there are only two elements in G.

(b) What is the order of s4?

(c) Let H be the permutation group with generator s5, G = 〈s5〉. Verify that there are only three
elements in H.

(d) Show that S3 = 〈(1, 2), (1, 3, 2)〉. In other words, show that S3 is generated by (1, 2) and (1, 3, 2).

3. Let G = 〈(1, 2), (3, 4, 5)〉. Show that G is a subgroup of S5 of order 6.

4. Find a subgroup of order 4 in S4.
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5. Find a subgroup of order 8 in S4.

6. (a) List all the elements of A4.
(b) List all the subgroups of A4.
(c) Show that the converse of Lagrange’s Theorem is false by finding a divisor of |A4| for which there

is no subgroup of that order.

Dihedral Groups:

7. Determine all the subgroups of D3.

8. Find the center Z(D4) of D4.

9. Determine all the subgroups of D5.

10. (a) Determine the number of elements of order 2 in Dn.
(Hint: You will need to consider separately the cases when n is even and n is odd.)

(b) How many subgroups of order 2 does Dn have?

11. Determine the orders of the elements in D33 and how many there are of each.

12. How many elements of order 4 does D12 have? How many elements of order 4 does D4n have?

13. Let n be an odd integer. Prove that every subgroup of Dn of odd order is cyclic.

Group of Integers under addition modulo n:

14. Find all the subgroups, and determine generators for each subgroup, for each of the following.

(a) Z8 (b) Z12 (c) Z17

15. Find all the elements of order 6 in Z18.

16. Find all the elements of order 15 in Z30.

17. Find all the elements of order 10 in Z40.

18. List all the elements of order 8 in Z8000000.

Unit Group modulo n:

19. Determine all the subgroups of U(12).

20. For each value of n listed below, determine whether or not U(n) is a cyclic group. When it is cyclic,
list all of the generators of U(n), n = 5, 9, 10, 14, 15, 18, 20, 22, 25. Make a conjecture about the prime
power decomposition of integers n for which U(n) is cyclic. Are n = 9 and n = 16 counterexamples of
your conjecture? (Try them.) If so, modify your conjecture.

21. Given the fact that U(49) has 42 elements, determine the number of generators that U(49) has without
actually finding any of the generators.

22. Prove that U(2n) (n ≥ 3) is not cyclic.
(Hint: Look for a property that U(2n) has but cyclic groups do not have.)

Subgroups in General:

23. Prove that a group of order 3 must be cyclic.
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24. Suppose that G is a cyclic group for which 6 divides |G|. How many elements of order 6 does G have?
If 8 divides |G|, how many elements of order 8 does G have? If a is one element of order 8, list the
other elements of order 8.

25. Let |G| = 33. What are the possible orders for the elements of G? Show that G must have an element
of order 3.

26. Let |G| = 8. Show that G must have an element of order 2. Show by counterexample that G need not
have an element of order 4.

27. If G is an abelian group and contains cyclic subgroups of orders 4 and 5, what other sizes of cyclic
subgroups must G contain.

28. If G is an abelian group and contains a pair of subgroups of order 2, show that G must contain a
subgroup of order 4. Must this subgroup be cyclic?

29. Show that every group of order at most 4 is abelian. This says that groups of order ≤ 4 don’t have
enough room to have elements that don’t commute.

30. Show that if G is a group where |G| = p is prime then G is cyclic.

31. Let G be a group such that |G| = pn, where p is prime. Show that G has an element of order p.

32. Let G be a group such that |G| = p2. Show that either G is cyclic, or ap = e for all a ∈ G.

33. One-Step Subgroup Test. Let G be a group and H a nonempty subset of G. Show that H is a
subgroup of G if ab−1 ∈ H for every a, b ∈ H.

34. Finite Subgroup Test Let G be a finite group and H a nonempty subset of G. Show that H is a
subgroup of G if H is closed under multiplication.
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Lecture 12

Puzzle Groups

In this lecture we associate a group to each permutation puzzle, called the puzzle group. We’ll see that this
group can be represented by a group of permutations, allowing us to use Sage to investigate the puzzles.

12.1 Puzzle Groups

Let’s first recall the definition of a permutation puzzle, since we would like to see how groups come into
the picture. In Lecture 1 we defined a one person game, and from that we gave the following definition of
a permutation puzzle.

A permutation puzzle is a one person game (solitaire) with a finite set T = {1, 2, . . . , n} of puzzle pieces
satisfying the following four properties:

1. For some n > 1 depending only on the puzzle’s construction, each move of the puzzle corresponds to
a unique permutation of the numbers in T,

2. If the permutation of T in (1) corresponds to more than one puzzle move then the two positions
reached by those two respective moves must be indistinguishable,

3. Each move, say M , must be ”invertible” in the sense that there must exist another move, say M−1,
which restores the puzzle to the position it was at before M was performed, In this sense, we must
be able to “undo” moves.

4. If M1 is a move corresponding to a permutation τ1 of T and if M2 is a move corresponding to a
permutation τ2 of T then M1 ·M2 (the move M1 followed by the move M2) is either

• not a legal move, or
• corresponds to the permutation τ1τ2.

As indicated in part 4 it may happen that the composition of two moves is not legal. For example, this
happens with the 15-Puzzle since legal moves change as the empty space moves around the board. This
generally happens when dealing with a puzzle that contains a “gap”. We won’t consider such puzzles in
this lecture, besides a remark in Section 12.4. Instead we will focus on puzzles for which two moves can
always be composed. Typically these are the puzzles ”without-gaps”.

Let Puz be a permutation puzzle (where any two moves can be composed). For example Puz could be
Rubik’s cube, Oval Track, or Hungarian Rings. We consider two puzzle moves, m1 and m2, to be equivalent
if the two positions reached by those two respective moves are indistinguishable.

135
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Let M(Puz) be the set of all inequivalent puzzle moves (what we typically refer to as move-sequences).
We can think of M(Puz) as just the set of all possible configurations, or positions (permutations) of the
puzzle pieces. We have a way to combine elements of M(Puz): if m1,m2 ∈ M then m1m2 represents the
move-sequence m1 followed by m2, which is again in M(Puz). (This is why we assume the puzzle does not
have gaps.) It turns out that M(Puz) is a group under this operation. The identity is the “do nothing”
move, and inverses exist by part 3 of the definition above. Associativity follows from the fact that “moves”
correspond to “permutations” and permutation composition is associative.

Definition 12.1 (Puzzle Group): For a permutation puzzle Puz, the set of all inequivalent puzzle
moves M(Puz) is a group under move composition. M(Puz) is called the puzzle group of Puz.

Since puzzle moves and positions correspond to permutations we can represent M(Puz) as a subgroup of a
permutation group. To do this we just need to associate each basic legal move mi ∈M(Puz), 1 ≤ i ≤ k, to a
permutation αi. We then use the permutation group 〈α1, α2, . . . , αk〉 to represent the puzzle. We’ve already
done this with all of our puzzles, so here we are just emphasizing the fit within group theory.

12.2 Rubik’s Cube

Let Puz be an n × n × n Rubik’s cube, then we call M(Puz) the n-cube group. In the special case when
n = 3 we call it the Rubik’s cube group. We use the special notation RCn to denote the n-cube group.

12.2.1 3-Cube Group

As we described in Lecture 1 label the facets of the Rubik’s Cube as shown Figure 12.1. Figure 12.2 shows
the labeling on a 3-dimensional cube.

Figure 12.1: Facet labeling on the Rubik’s cube.
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(a) Labeling on Up, Right,
Front faces

(b) Labeling on Down, Back,
Left faces

Figure 12.2: The labeling of the facets of Rubik’s Cube.

The permutation corresponding to each of the basic moves of the Rubik’s Cube are:

R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
D = (41, 43, 48, 46)(42, 45, 47, 44)(14, 22, 30, 38)(15, 23, 31, 39)(16, 24, 32, 40)
F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)

R−1, L−1, U−1, D−1, F−1, B−1 correspond to the inverses of these permutations.

Since the centre’s of the cube are fixed by these moves then any two of these moves are inequivalent. This
means that RC3 can be represented by the subgroup of S48 generated by these permutations:

RC3 = 〈R,L,U,D,F,B〉.

We can define RC3 in Sage as follows.

Sage
sage: S48=SymmetricGroup(48)
sage: R=S48("(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)")
sage: L=S48("(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)")
sage: U=S48("(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)")
sage: D=S48("(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)")
sage: F=S48("(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)")
sage: B=S48("(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)")
sage: RC3=S48.subgroup([R,L,U,D,F,B]) # define Rubik’s cube group to be RC3

Now that RC3 is in Sage we can calculate some facts about the Rubik’s cube. For example, we can
determine the size of RC3. This is the number of different configurations there are of the cube.

Sage
sage: RC3.order()
43252003274489856000
sage: factor(RC3.order())
2ˆ27 * 3ˆ14 * 5ˆ3 * 7ˆ2 * 11

Therefore there are approximately 4.3 · 1019 configurations of the cube. And only one solution!
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Theorem 12.1: The Rubik’s cube group RC3 has order 227314537211 = 43, 252, 003, 274, 489, 856, 000.

Since the order of an element in a group must divide the size of the group, then we immediately see from
the factored form of |RC3| that there are no elements of prime order ≥ 13. Also, by Cauchy’s theorem (see
Lecture 11), there must be an element of order 11. Actually finding such an element is another story, all
we know is one exists. In fact, 9 others must exist as well since it would generate a subgroup of order 11.

We can also check if it is possible to flip a single edge, while leaving everything else in place. Consider
flipping the cubie in the uf cubical, the corresponding permutation is (7, 18). The following calculation
shows it is not in RC3.

Sage
sage: S48("(7,18)") in RC3
False

However, we can flip two edges, say for example the cubies in the uf and ur cubicals. This corresponds to
the permutation (7, 18)(5, 26).

Sage
sage: S48("(7,18)(5,26)") in RC3
True

Notice this only tells us that it is possible to flip two edges using moves R,L,U,D, F,B, but it doesn’t
indicate what sequence of moves will do this. This is in fact a much harder problem. Basically what we
are asking for is a method which can determine, for any element of RC3, a way to write it as a product of
the generators (or equivalently, as a word in R,L,U,D, F,B). This is known as the word problem in group
theory and is very difficult in many situations.

However, Sage does contain an implementation of an algorithm for solving the word problem in RC3. It
doesn’t necessarily return the shortest possible move sequence, but it does a pretty good job nonetheless.
For this we need to use the built-in CubeGroup() package.

Sage
sage: rubik=CubeGroup();
sage: G=rubik.group();
sage: B=rubik.B();
sage: state = G("(7,18)(5,26)")
sage: rubik.solve(state) # calls the solve algorithm
"F2 R2 B’ F’ D’ F D B R2 F’ R’ F’ R"

Therefore, one move-sequence for flipping edges uf and ur is

F 2R2B−1F−1D−1FDBR2F−1R−1F−1R.

12.2.2 2-Cube Group

Label the facets of the Pocket Cube as shown in Figure 12.3 and Figure 12.9.
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Figure 12.3: Facet labeling on the Pocket cube.

(a) Labeling on Up (blue),
Right (yellow), Front (red)
faces

(b) Labeling on Down
(green), Back (orange),
Left (white) faces

Figure 12.4: The labeling of the facets of the Pocket Cube.

The permutation corresponding to each of the basic moves of the Pocket Cube are:

R = (13, 14, 16, 15)(10, 2, 19, 22)(12, 4, 17, 24)
L = (5, 6, 8, 7)(3, 11, 23, 18)(1, 9, 21, 20)
U = (1, 2, 4, 3)(9, 5, 17, 13)(10, 6, 18, 14)
D = (21, 22, 24, 23)(11, 15, 19, 7)(12, 16, 20, 8)
F = (9, 10, 12, 11)(3, 13, 22, 8)(4, 15, 21, 6)
B = (17, 18, 20, 19)(1, 7, 24, 14)(2, 5, 23, 16)

R−1, L−1, U−1, D−1, F−1, B−1 correspond to the inverses of these permutations.

There is one major difference between the Pocket cube and Rubik’s cube: the Pocket cube does not have
any fixed centres. Why does this matter? Consider the moves R and L. They are equivalent! Notice that
applying R, leaves the cube in exactly the same position as L (the cube as a whole has just been rotated in
space). Another way to say this is RL−1 is the identity in RC2. Try it!

But if we were to use the permutations above to generate a group then this wouldn’t be the group RC2.
Since the product of permutations associated with R and L don’t have the property that RL−1 = ε. This
means the permutations are picking up the fact that the cube rotated in space.

Again let’s summarize the real difference between Rubik’s cube and the Pocket cube: the Pocket cube can
be rotated in space using only puzzle moves (which rotate faces), whereas Rubik’s cube cannot be rotated
in space using puzzle moves (since centres stay fixed under face rotations).

This means that RC2 is smaller that the permutation group generated by the 6 permutations above. In
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fact, we really only need one of each of the following pairs of moves: {R,L}, {U,D}, {F,B}. We’ll choose to
only use R,D,F . This means the UBL cubie always remains in its home position. This is the piece we will
keep fixed.

Sage
sage: S24=SymmetricGroup(24)
sage: R=S24("(13,14,16,15)(10,2,19,22)(12,4,17,24)")
sage: D=S24("(21,22,24,23)(11,15,19,7)(12,16,20,8)")
sage: F=S24("(9,10,12,11)(3,13,22,8)(4,15,21,6)")
sage: RC2=S24.subgroup([R,D,F]) # define Pocket cube group to be RC2

We can determine the size of RC2.

Sage
sage: RC2.order()
3674160
sage: factor(RC2.order())
2ˆ4 * 3ˆ8 * 5 * 7

Therefore there are approximately 3.6 million configurations of the Pocket cube. And only one solution.

Theorem 12.2: The Pocket cube group RC2 has order 24385 · 7 = 3, 674, 160.

If we didn’t realize that some moves are equivalent, and just constructed the group generated by all moves,
what would happen?

Sage
sage: S24=SymmetricGroup(24)
sage: R=S24("(13,14,16,15)(10,2,19,22)(12,4,17,24)")
sage: L=S24("(5,6,8,7)(3,11,23,18)(1,9,21,20)")
sage: U=S24("(1,2,4,3)(9,5,17,13)(10,6,18,14)")
sage: D=S24("(21,22,24,23)(11,15,19,7)(12,16,20,8)")
sage: F=S24("(9,10,12,11)(3,13,22,8)(4,15,21,6)")
sage: B=S24("(17,18,20,19)(1,7,24,14)(2,5,23,16)")
sage: S24.subgroup([R,L,U,D,F,B]).order()
88179840
sage: 88179840/3674160
24

We would have been off by a factor of 24. Why 24? This is precisely the number of different rotations there
are for the whole cube. Since the permutation group was treating rotations of the cube as different states,
but the cube group RC2 should know these states really aren’t different at all, then it is no surprise that
we would be off by the number of rotations to the cube: 24.

This does illustrate, however, that we can’t just assign a permutation to each move, and form the permu-
tation group. Some thought needs to be taken as to whether the representation is faithful.

Swapping Corners on the Pocket Cube:

Are we able to swap two corners on the Pocket Cube, while keeping every other cubie in its home location
(not necessarily with proper orientation)?

Think about what a typical permutation would look like. Since corners can possibly be twisted when
returned to their home locations, it is not simply a matter of asking if a 2-cycle is in RC2. However, we
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aren’t really interested in how the stickers move around, just the cubies themselves. If we view RC2 acting
on the the 8 cubies, we just want to know if we can swap two cubies, and fix all other cubies in their current
location.

If we number the cubicles as follows: 1 is the ufr cubical, 2 is the urb cubical, 3 is the ubl cubical, 4 is the
ulf cubical, 5 is the dfr cubical, 6 is the drb cubical, 7 is the dbl cubical, 8 is the dlf cubical.

The action of each move on the cubies are then:

R = (1, 2, 6, 5)
L = (3, 4, 8, 7)
U = (1, 4, 3, 2)
D = (5, 6, 7, 8)
F = (1, 5, 8, 4)
B = (2, 3, 7, 6)

We can the ask Sage to compute whether it is possible to swap the 1 and 2 cubies.

Sage
sage: S8=SymmetricGroup(8)
sage: R=S8("(1,2,6,5)")
sage: L=S8("(3,4,8,7)")
sage: U=S8("(1,4,3,2)")
sage: D=S8("(5,6,7,8)")
sage: F=S8("(1,5,8,4)")
sage: B=S8("(2,3,7,6)")
sage: H=S8.subgroup([R,L,U,D,F,B])
sage: S8("(1,2)") in H
True
sage: H.order()=factorial(8)
True

The computation shows we can not only swap cubies 1 and 2 but in fact every permutation of the 8 cubies
is possible. Remember though, the representation of RC2 that we chose to work with here ignores any
twisting of corners. So even though we can move the pieces anywhere we want, there may be limitations
on how we can twist them. We will investigate how the corners can twist in Lecture 20.

12.2.3 Oval Track

Let Puz be the Oval Track puzzle (or one of its variations), then we call M(Puz) the Oval Track group
and we use the notation OT to denote this group.

We’ll look at a few different variations of the puzzle, corresponding to different modifications of the
turntable move T .

12.2.4 Oval Track - TopSpin: T = (1, 4)(2, 3)

The basic legal moves of the TopSpin version of the Oval Track puzzle are R, and T , where R denotes a
clockwise rotation of numbers around the track, where each number moves one space, and T denotes a
rotation of the turntable. See Figure 12.5.

The permutation corresponding to the legal moves R, and T are as follows:

R = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)
T = (1, 4)(2, 3)
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Figure 12.5: The Oval Track Puzzle.

Note that T−1 = T . This is due to the fact that spinning the turntable in either direction achieves the
same result.

The basic moves R and T are not equivalent, so OT can be represented by the permutation group generated
by these two permutations.

Sage
sage: S20=SymmetricGroup(20)
sage: R=S20("(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)")
sage: T=S20("(1,4)(2,3)")
sage: OT=S20.subgroup([R,T]) # define OT to be a permutation group

What is the size of OT ? The puzzle consists of permuting 20 disks, so it is natural to wonder if all permu-
tations are possible. Since there are 20! permutations of 20 objects, we’d like to know if |OT | = 20!.

Sage
sage: OT.order()==factorial(20)
True

This means OT is actually the symmetric group of degree 20: OT = S20. Therefore, every permutation
of the disks is possible. Of course, the key to solving this puzzle is to figure out how you can obtain each
permutation using only moves R and T .

12.2.5 Oval Track - Variation 2: T = (1, 4, 3, 2)

The turntable move in the original TopSpin puzzle is now replaced with the move indicated by the purple
dashed lines. In this version, the new turntable move for the puzzle in Figure 12.6 moves the disk in spot
4 to spot 3, the disk in spot 3 to spot 2, the disk in spot 2 to spot 1, and takes the disk in spot 1 to spot 4.

Figure 12.6: The Oval Track Puzzle.
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The permutation corresponding to the legal moves R, and T are as follows:

R = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)
T = (1, 4, 3, 2)

Sage
sage: S20=SymmetricGroup(20)
sage: R=S20("(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)")
sage: T=S20("(1,4,3,2)")
sage: OT2=S20.subgroup([R,T]) # define OT2 to be a permutation group
sage: OT2.order()==factorial(20)
True

In this variation all possible permutations of the 20 disks are possible.

12.2.6 Oval Track - Variation 3: T = (1, 6)(2, 5)(3, 4)

Another version of the turntable move involving 6 disks is given in Figure 12.7.

Figure 12.7: The Oval Track Puzzle.

Sage
sage: S20=SymmetricGroup(20)
sage: R=S20("(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)")
sage: T=S20("(1,6)(2,5)(3,4)")
sage: OT3=S20.subgroup([R,T]) # define OT3 to be a permutation group
sage: OT3.order()==factorial(20)
True

In this variation all possible permutations of the 20 disks are possible.

12.3 Hungarian Rings

Let Puz be the Hungarian Rings puzzle (numbered version), then we call M(Puz) the Hungarian Rings
group and we use the notation HR to denote this group.

The basic legal moves of the Hungarian Rings puzzle are R, and L, where R denotes a clockwise rotation of
numbers around the right-hand ring (each number moves one space), and L denotes a clockwise rotation
of numbers around the left-hand ring.

The permutation corresponding to each of the legal moves R and L are:

R = (1, 38, 37, 36, 35, 6, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21)
L = (1, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)
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Figure 12.8: Hungarian Rings - numbered version.

R−1 and L−1 correspond to the inverses of these permutations.

Since the moves R and L are inequivalent then HR can be represented by the group of permutations
generated by R and L.

Sage
sage: S38=SymmetricGroup(38)
sage: L=S38("(1,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2)")
sage: R=S38("(1,38,37,36,35,6,34,33,32,31,30,29,28,27,26,25,24,23,22,21)")
sage: HR=S38.subgroup([R,L])==factorial(38)
True

Therefore, all possible permutations of the 38 balls are possible.

12.4 15-Puzzle

The 15-puzzle does not fit into group theory as neatly as our other puzzles do. The problem is that a move
must involve the empty space, so the available legal moves at each stage changes depending on where the
empty space is.

In what follows, we will describe a move of the pieces of the 15 puzzle by the first letter of the word (u)p,
(d)own, (l)eft, (r)ght, which is to indicate the direction a tile is pushed into the empty space. For example,
beginning with the empty space in spot 16, let m1 be the sequence of moves:

m1 = rrr.

Similarly, with the empty space in spot 16, let m2 be the sequence of moves:

m2 = rddd.

Move m1 places the empty space in spot 13 by moving all tile on the bottom row to the right. Whereas,
move m2 places the empty space in spot 3. Therefore, it is impossible to perform the move sequence
m1m2 = (rrr)(rddd) since once three r moves are applied there is no tile to the left of the empty space to
apply another r move. The set of all legal moves is not closed under composition, therefore is not a group.

However, if we narrow our focus we can find a group lurking in there somewhere.

Represent each sequence of moves by its corresponding permutation, so the set of all such move sequence
corresponds to a subset of the permutation group S16. Let this subset be denoted by FP :

FP = {α | α is the permutation corresponding to a legal position of the 15-puzzle}.

We already noted FP is not a group but the example gives us some insight into how we can fix this. If each
moves starts with the empty space in box 16, then returns it to box 16, then the next move can be applied
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without any trouble. We let FP ∗ consist of the set of all moves that leaves the empty space in spot 16. In
terms of permutations this means:

FP ∗ = {α ∈ FP | α(16) = 16}.

Now FP ∗ is a group. In fact we know it to be the group A15.

In general when considering puzzles with gaps, we can look at the subset of legal moves where each move
returns the space to its home position, this set will form a group.

12.5 Exercises

1. Single Corner Twist. Is it possible to rotate a single corner cubie of Rubik’s cube, while leaving
everything else in its home position? See Figure 12.9a.

(a) Figure for Exercise
1

(b) Figure for Exercise
2

(c) Figure for Exercise
3

Figure 12.9: Which corner twists are possible?

2. Two Corner Twists. For Rubik’s cube, is it possible to rotate two corner cubies in the same direction,
while leaving everything else in its home position? See Figure 12.9b.

3. Another Two Corner Twists. For Rubik’s cube, is it possible to rotate two corner cubies in opposite
directions, while leaving everything else in its home position? See Figure 12.9c.

4. Swapping Corners on Rubik’s cube. Show that it is impossible to swap two corner cubies on
Rubik’s cube, while leaving all other cubies in their home locations (not necessarily with proper
orientation)?

5. Oval Track with 19 Disks. Consider the Oval Track puzzle (TopSpin version) where only 19 disks
are used. Are all permutations of the 19 disks possible? If not, can you describe exactly which
permutations are possible?

6. Varying the Number of Disks on Oval Track. For the Oval Track puzzle with n disk, let OTn
denote the puzzle group, determine the size of OTn, for 6 ≤ n ≤ 20. In each case, describe exactly
which permutations of the puzzle pieces are possible.

7. Very Few Disks on Oval Track. Consider OTn for n = 4, 5. Investigate which permutations of the
puzzle pieces are possible.

8. Varying the turntable move T of the Oval Track puzzle. In this exercise you will investigate,
with the help of Sage, some variations of the Oval Track puzzle. In all variations1, we assume there

1Variation names are due to John O. Kiltinen who studies these in his book: Oval Track and other Permutation Puzzles.
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are 20 disks, and the usual move consisting of rotating the pieces along the track isR. We will vary the
turntable move T . We have already seen that if the turntable move is T = (1, 4)(2, 3) or T = (4, 3, 2, 1)
then we are still able to obtain all permutations of the 20 disks. Investigate the other variations of
the move T given in Table 12.1. Under the column “permutation group”, try to determine what group
of permutations of the 20 pieces is possible. The first two rows have been filled in already.

variation turntable move T permutation group

OT 1 (1, 4)(2, 3) S20

OT 2 (4, 3, 2, 1) S20

OT 3 (3, 2, 1)
OT 4 (5, 4, 3, 2, 1)
OT 5 (1, 2)(3, 4)
OT 6 (1, 11)(4, 14)
OT 7 (5, 3, 1)
OT 8 (1, 3)(2, 4)

Table 12.1: Variations of the Oval Track puzzle



Lecture 13

Commutators

fanwuq: Just solve one corner at a time like LBL until you get to last layer. Then, you can just use
commutators to solve the rest of the corners.

JBogwith: I’m sorry, I don’t understand. I can get to the last layer, it is then where I get stuck. What
are commutators?

www.speedsolving.com forum discussion. Dec. 2007

In this lecture we look at a product known as a commutator. This type of move sequence is useful for
creating moves on permutation puzzles.

13.1 Commutators

When playing with permutation puzzles, certain move sequences can occur more often than others. For
instance, a move sequence of the form “move 1, then move 2, then inverse of move 1, then inverse of move
2” turns out to be quite useful. This type of move is called a “commutator”. As you read through this
lecture, you will find it useful to have a puzzle in-hand to try things out for yourself.

Definition 13.1: If g, h are two elements of a group G, then we call the element

[g, h] = ghg−1h−1

the commutator of g and h.

Note that if g and h commute then [g, h] = e. To see this observe,

[g, h] = ghg−1h−1 = (gh)(g−1h−1) = (hg)(g−1h−1) = h(gg−1)h−1 = heh−1 = hh−1 = e.

Conversely, if [g, h] = e then g and h commute. See Exercise 2. Commutators are useful in mathematics
wherever non-commutative operations occur.

The commutator [g, h] provides a measure of how much g and h fail to commute with each other. In
particular. if g and h are permutations and they fail to commute with each other by “just a little bit” then
[g, h] will be close to the identity, i.e. it will only permute a few numbers. This is why commutators will be

147
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of interest to us in solving permutation puzzles, they will help us to “create” good moves. You may have
just realized that you frequently use “commutator moves” when solving puzzles; if this is the case then you
already have a working understanding of commutators.

Example 13.1: Consider the symmetric group S3 and the elements s1 = (1, 2), s2 = (1, 3, 2). Then the
commutator [s1, s2] is

[s1, s2] = s1s2s
−1
1 s−12 = (1, 2)(1, 3, 2)(1, 2)(1, 2, 3) = (1, 3, 2),

and the commutator [s2, s1] is

[s2, s1] = s2s1s
−1
2 s−11 = (1, 3, 2)(1, 2)(1, 2, 3)(1, 2) = (1, 2, 3).

It is not a coincidence that [s2, s1] = [s1, s2]−1, see Exercise 3.

13.2 Creating Puzzle moves with Commutators

We will explore some properties of commutators of permutations and then see how we can apply what we
learn to our standard collection of puzzles.

For a permutation α ∈ Sn define the fixed set of α to be the set of all numbers in [n] = {1, 2, 3, . . . , n} that
α doesn’t move:

fix(α) = {m ∈ [n] | α(m) = m}.
The set of numbers that are not fixed by α, the ones that are moved, is the compliment of this set, which
we denote by mov(α):

mov(α) = fix(α) = {m ∈ [n] | α(m) 6= m}.
By way of contrast we will refer to this as the moved set of α. fix(α) is precisely the set of numbers that
would appear as 1-cycles in the disjoint cycle form of α, and mov(α) are those numbers that appear in
cycles of length ≥ 2.1 Since α and α−1 fix precisely the same objects it follows that fix(α) = fix(α−1) and
mov(α) = mov(α−1).

In terms of permutation puzzles, mov(α) is the list of all the positions of the pieces that are moved when α
is applied, and fix(α) are positions in which the pieces are left alone.

We’ll need one more bit of notation to simplify things to come. For a subset A ⊂ [n] and a permutation
α ∈ Sn, we denote the set of all images of the elements of A under α as αA: 2

αA = {α(m) | m ∈ A}.

Since α is injective then |αA| = |A|.

Example 13.2: For α = (1, 7, 3, 4, 12)(5, 9) ∈ S13, the set of objects that are moved is mov(α) = {1, 3, 4, 5, 7, 9, 12}
and the set of objects that are fixed is fix(α) = {2, 6, 8, 10, 11, 13}. ForA = {2, 4, 6, 8, 10, 12} andB = {3, 7, 11},
αA = {α(2), α(4), α(6), α(8), α(10), α(12)} = {2, 12, 6, 8, 10, 1}, and αB = {α(3), α(7), α(11)} = {4, 3, 11}. This
can be done in Sage by using the map function: map(f,L) applies function f to each element of a list/set
L.

Sage
sage: S13=SymmetricGroup(13)
sage: a=S13("(1,7,3,4,12)(5,9)")
sage: map(a,Set([2,4,6,8,10,12]))
[2,12,6,8,10,1]
sage: map(a,Set([3,7,11]))
[4,3,11]

1The moved set, as we have called it here, is sometimes referred to as the support of the permutation, denoted by supp(α).
2This type of set is sometimes denoted by α(A).
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Now we are ready to investigate why the commutator [α, β] is likely to be “close” to the identity.

Let α, β ∈ Sn, and m a number in [n]. If m is moved by the commutator [α, β], i.e. m ∈ mov([α, β]), then
both:

(a) m ∈ mov(α) or β(m) ∈ mov(α), and

(b) m ∈ mov(β) or α(m) ∈ mov(β) .

In set notation, we can write this as:

mov([α, β]) ⊂
(
mov(β) ∪ α−1mov(β)

)
∩
(
mov(α) ∪ β−1mov(α)

)
. (13.1)

To see why (b) is true assume that m,α(m) 6∈ mov(β), then [α, β] must leave m fixed:

[α, β](m) = (αβα−1β−1)(m) = β−1(α−1(β(α(m))) = β−1(α−1(α(m))) = β−1(m) = m,

so m 6∈ mov([α, β]). This proves (b). The proof of (a) is analogous.

We can describe the set of pieces that are moved in a more verbal way. First we need an alternate expres-
sion for (13.1). An equivalent way to write the set on the right-hand side in (13.1) is

(mov(α) ∩mov(β)) ∪ α−1 (mov(α) ∩mov(β)) ∪ β−1 (mov(α) ∩mov(β)) .

This follows from the facts that γ (mov(δ) ∩mov(σ)) = γmov(δ) ∩ γmov(σ) and γ−1mov(γ) = mov(γ) (See
Exercises 7 and 8). To simplify notation we will define mov(α, β) to be the intersection of mov(α) and
mov(β):

mov(α, β) = mov(α) ∩mov(β).

Therefore (13.1) can be written as

mov([α, β]) ⊂ mov(α, β) ∪ α−1mov(α, β) ∪ β−1mov(α, β). (13.2)

Notice mov(α, β) is the set of pieces affected by both α and β, and α−1mov(α, β) is the set of pieces that are
moved to mov(α, β) by α, and β−1mov(α, β) is the set of pieces moved to mov(α, β) by β. In words (13.2)
says the following:

Remark 13.1. If α and β are puzzle moves, the permutation produced by [α, β] only affects pieces that are
in, or moved to, locations that are moved by both α and β.

This remark will guide our choices for α and β. We want very little overlap in these two moves, and
we want very few new pieces moved into this overlap. It can be challenging to find two moves with this
property, but we can state some weaker conditions as to when [α, β] may still be a good move.

Since |α−1mov(β)| = |mov(β)| and |β−1mov(α)| = |mov(α)| then (13.1) tells us that |mov([α, β])| is at most
twice the size of the smaller of the sets mov(α) and mov(β):

|mov([α, β])| ≤ 2 min{|mov(α)|, |mov(β)|}. (13.3)

So if one of |mov(α)| and |mov(β)| is small, then so is |mov([α, β])|. Which means [α, β] may be a good puzzle
move. We can actually say something more here.

Remark 13.2. If the commutator [α, β] is to move the fewest possible pieces then α should bring as few
new pieces into the locations where they will be moved by β. In other words, α−1mov(β) ∩mov(α) should
be small.

This remark is weaker than Remark 13.1 but its conditions are sometimes easier to check in practice. With
that little bit of theory behind us, let’s put it into practice on a number of our favourite puzzles.
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13.2.1 Rubik’s Cube

Here we consider the Rubik’s cube group RC3 generated by permutations R,L,U,D, F,B. It is best if you
have your Rubik’s cube handy as your read through this section.

Consider the move sequence URU−1R−1. Although it is not the identity (apply it to your cube to see this),
it is a lot less complex than UR alone.

Sage
sage: S48=SymmetricGroup(48)
sage: R=S48("(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)")
sage: L=S48("(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)")
sage: U=S48("(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)")
sage: D=S48("(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)")
sage: F=S48("(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)")
sage: B=S48("(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)")
sage: RC3=S48.subgroup([R,L,U,D,F,B]) # define Rubik’s cube group to be RC3

Sage
sage: commutator = lambda x,y: x*y*xˆ(-1)*yˆ(-1) # define a function called commutator
sage: commutator(U,R)
(1,3,9,33,35,27)(2,5,21)(8,24,19,43,25,30)(26,28,34)
sage: commutator(U,R).order()
6
sage: U*R
(1,38,43,19,11,35,32,30,25,17,9,48,24,8,6)(2,36,45,21,5,7,4)(3,33,27)(10\
,34,29,31,28,26,18)
sage: (U*R).order()
105

In the above code we defined a function called commutatorwhich takes two arguments x and y and returns
the product xyx−1y−1. We use a Python lambda function to do this, which is just a quick way to define a
function in one line where no complicated decision making has to be done (see Section A.5.2 in Appendix
A for more information). Of course, we really didn’t need to define the function, we could have just typed
in U*R*Uˆ-1*Rˆ-1, but with this function now defined we can quickly work out other commutators with
less typing (just cut-and-paste).

Why should we have expected URU−1R−1 to be less complicated than UR? Many of the pieces that are
moved by UR are returned to where they started by U−1R−1. For instance, consider the cubie in the ufl
cubicle. The move U sends it to the ubl cubicle which is untouched by the move R, then it is moved back
to the ufl cubicle by move U−1, and finally move R−1 leave it where it is. This means the move sequence
URU−1R−1 leaves the ufl cubicle untouched.

In general, if a piece is moved by U to a place that is not moved by R, then it will be moved back by U−1 to
where it started. If the place where it started is not moved by R−1 – or equivalently, is not moved by R –
then URU−1R−1 ends up leaving the piece where it started. Only where there is an overlap of the moves U
and R are the pieces affected. The permutation produced by URU−1R−1 only affects pieces that are in, or
moved to, locations common to both the up and right faces. This is precisely what (13.2) (and thus Remark
13.1) says. See Figure 13.1a.

In terms of the notation introduced, since the 3 pieces moved by both U andR are mov(U,R) = {urf, ur, ubr},
and the pieces moved to these positions by U and R are:

U−1mov(U,R) = {ubr, ub, ulb} and R−1mov(U,R) = {frd, fr, fur},

then URU−1R−1 moves at most the 7 pieces shaded in Figure 13.1a.

Commutators of two faces which share an edge occur so frequently that they have been given special
names: the Z-commutator is [F,R] = FRF−1R−1, and the Y-commutator is [F,R−1] = FR−1F−1R . The
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(a) Possible cubies moved by
URU−1R−1.

(b) Z-commutator: Shading indicates
locations changed by FRF−1R−1

(c) Y-commutator: Shading indicates
locations changed by FR−1F−1R

Figure 13.1: Y- and Z- commutators

names, Z-commutator and Y-commutator are used regardless of which two adjacent faces are used, all that
matters is both faces are turned in the same direction (Z-commutator), or turned in opposite directions
(Y-commutator). See Figure 13.1.

The cycle structure of a commutator may be such that taking powers of it will kill-off some cycles, and as
a result reduce the number of pieces that are moved. This is illustrated in the next exercise.

Exercise 13.1: If x and y are basic moves of Rubik’s cube associated with faces that share an edge, verify
that

(a) [x, y]2 permutes exactly 3 edges and does not permute any corners;

(b) [x, y]3 permutes exactly 2 pairs of corners and does not permute any edges.

Let’s try to create a move-sequence, using commutators, that moves only a few pieces of the cube around.
Looking back at (13.2) (and Remark 13.1) we keep in mind that for any move sequences x and y, the
commutator only affects pieces that are in, or moved to, locations that are moved by both x and y. For
example, consider the move

x = LD2L−1.

Amongst other things, this move sequence takes ufl to bdr, and leaves all other cubies in the up face in
their original positions. If we now consider the move

y = U,

there is only one cubie that both x and y move: the ufl cubie. Since y only moves ufr to ulf , and x only
moves rbd to luf , then the only cubies that are possibly affected by [x, y] are: ufl, ufr, and rbd. Trying this
new move sequence out we see it moves all 3 of these cubies: the ones shaded in the Figure 13.2.The order
of [x, y] = [LD2L−1, U ] is 3.
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Figure 13.2: cubies moved by [LD2L−1, U ].

Sage
sage: commutator(L*Dˆ2*Lˆ(-1),U)
(6,8,38)(11,19,32)(17,25,48)
sage: commutator(L*Dˆ2*Lˆ(-1),U).order()
3

As another example, let’s construct a move to untwist two corner cubies. Consider the two moves

x = L−1D2LBD2B−1, and y = U.

The first move may look a little complicated, but try it out for yourself. It is actually quite simple: it moves
ulb to the bottom layer, then brings it back into its home location, but twisted into position bul. The only
location that is affected by both x and y is ulb, but x does not move it to another location, it only twists it
in place. Once x is applied, then applying y followed by x−1 restores the down and middle layers of the
cube, and will untwist the piece that moved from ufl to ulb by y. Finally y−1 moves the piece that started
in ufl back home, but now twisted. The result is that [x, y] twists the corner piece in ufl clockwise, and the
corner piece in ulb counter-clockwise as shown in Figure 13.3. When we write out the move sequence for
[x, y] = [L−1D2LBD2B−1, U ] it is 14 moves long:

[x, y] = L−1D2LBD2B−1UBD2B−1LD2L−1U−1.

Figure 13.3: cubies moved by [L−1D2LBD2B−1, U ].

The move notation that we are using doesn’t take into account that we can twist the whole cube around in
our hands. This may make it difficult to see that a move sequence is a commutator. For example, the move
sequence

x = U2LR−1F 2L−1R

doesn’t look like it has the form of a commutator. However, if we let R denote a clockwise rotation of the
whole cube around an axis through the right face, then F 2 can be written asRU2R−1 and so x can be seen
to be the move sequence:

x = U2LR−1RU2R−1RL−1

= [U2, LR−1R],
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which is a commutator. This move sequence is order 3 and permutes 3 edge cubies as shown in Figure
13.4. If we let MR denote the “slice move” which consists of rotating the middle slice, parallel to the R face,
in the clockwise direction, from the perspective of the R face, then we can simply write this commutator
move as:

x = [U2,MR].

Figure 13.4: cubies moved by [U2, LR−1R] = U2LR−1F 2L−1R.

13.2.2 Hungarian Rings

We now consider the Hungarian Rings group HR generated by permutations R and L. It is best if you
have your puzzle handy (virtual or physical) as your read through this part.

Figure 13.5: Hungarian rings puzzle.

Since each move affects over half the pieces of the puzzle then (13.3) isn’t very helpful. It says a commu-
tator moves at most 40 pieces, but this is more than the number of pieces on the puzzle. However, using
Remark 13.2 as a guide will help us create moves that affect only a few pieces.

This puzzle has the feature that the two rings intersect at only two locations (1 and 6), so the two moves L
and R have very little overlap. Specifically, mov(L) = {1, 2, 3, . . . , 20} and mov(R) = {1, 6} ∪ {21, 22, . . . , 38},
and the intersection is mov(L,R) = mov(L) ∩ mov(R) = {1, 6}. Consequently, from (13.2) a commutator
[Ri, Lj ], 1 ≤ i, j ≤ 19, moves at most 6 disks:

mov([Ri, Lj ]) = {1, 6} ∪R−i{1, 6} ∪ L−j{1, 6} (13.4)

= {1, 6, R−i(1), R−i(6), L−j(1), L−j(6)}. (13.5)

Remark 13.3. On the Hungarian Rings puzzle, any commutator of the form [Li, Rj ] moves at most 6 disks.

This maximum number can be reached, for example the commutator [L,R−1] moves 6 disks: 1, 2, 6, 7, 34, 38.

Sage
sage: S38=SymmetricGroup(38)
sage: L=S38("(1,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2)")
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sage: R=S38("(1,38,37,36,35,6,34,33,32,31,30,29,28,27,26,25,24,23,22,21)")
sage: commutator(L,Rˆ(-1)) #this is a function we defined in a previous code block
(1,38,2)(6,34,7)

For [Li, Rj ] to move fewer than 6 disks we would need some elements in (13.5) to be the same. Remark
13.2 tells us we should look for a move Lj which moves as few new disks into spots 1 and 6 as possible. The
values of j that do this are 5 and 15 (or equivalently −5). If we take i, j ∈ {5, 15} then one of L−i(1) = 6 or
L−i(6) = 1 is true, and one of R−j(1) = 6 or R−j(6) = 1 is true, which means mov([Ri, Lj ]) has 4 elements.
This gives the following.

Remark 13.4. On the Hungarian Rings puzzle, any commutator of the form [Li, Rj ] where i, j ∈ {5, 15}
moves exactly 4 disks.

As an example,
[L5, R−5] = (1, 6)(11, 30), and [L−5, R5] = (1, 6)(16, 25).

(a) L5R−5L−5R5 (b) L−5R5L5R−5

Figure 13.6: Basic commutators on the Hungarian Rings puzzle

Knowing these commutators is enough to solve the colour version of this puzzle (see Section 16.4).

We could use Sage to determine all the powers i and j for which |mov([Li, Rj ])| = 4. The first line of
code below defines a function mov whose input is a permutation a and whose output is the set of all
numbers between 1 and n which a moves. The command len(a.tuple()) just gets the value of n from
the permutation in cycle form by first converting the permutation to a list, then computing its length.

Sage
sage: mov= lambda a: Set([ m for m in (1..len(a.tuple())) if a(m)!=m])
sage: for i in range(1,20):
sage: for j in range(1,20):
sage: if mov(commutator(Lˆ(i),Rˆ(j))).cardinality()==4:
sage: print i, j
5 5
5 15
15 5
15 15

13.2.3 Oval Track Puzzle

The Oval Track group OT is generated by permutations R and T . As with the other sections, it is best if
you have your puzzle handy (virtual or physical) as you read through this part.
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Figure 13.7: Oval Track puzzle.

A natural type of commutator to consider for this puzzle is [Ri, T ] where Ri is a rotation of the disks around
the track by i positions, and T is a rotation of the turntable. In this case mov(Ri) = {1, 2, 3, . . . , 20} and
mov(T ) = {1, 2, 3, 4}, and so by (13.3) a commutator of this type will move at most 2 min{20, 4} = 8 disks.

This maximum can sometimes be reached, for example the commutator [R−4, T ] = (1, 4)(2, 3)(5, 8)(6, 7)
moves 8 disks: 1, 2, 3, 4, 5, 6, 7, 8.

For the commutator [R−1, T ] the numbers of disks moved is less. This is because R−1 moves only one new
disk into the turntable, namely disk number 5. As a result [R−1, T ] = (1, 4, 2, 5, 3) only moves 5 disks:
1, 2, 3, 4, 5.

Sage
sage: S20=SymmetricGroup(20)
sage: R=S20("(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)")
sage: T=S20("(1,4)(2,3)")
sage: OT=S20.subgroup([R,T])
sage: commutator(Rˆ(-4),T) #this is a function we defined in a previous code block
(1,4)(2,3)(5,8)(6,7)
sage: commutator(Rˆ(-1),T)
(1,4,2,5,3)

We will look for a commutator of the form [R−i, T ] with a useful cycle structure. We can run a simple loop
in Sage to see this quite quickly.

Sage
sage: for i in (1..19):
sage: print i, commutator(Rˆ(-i),T)
1 (1,4,2,5,3)
2 (1,4,5)(2,3,6)
3 (1,4,7)(2,3)(5,6)
4 (1,4)(2,3)(5,8)(6,7)
5 (1,4)(2,3)(6,9)(7,8)
6 (1,4)(2,3)(7,10)(8,9)
7 (1,4)(2,3)(8,11)(9,10)
8 (1,4)(2,3)(9,12)(10,11)
9 (1,4)(2,3)(10,13)(11,12)
10 (1,4)(2,3)(11,14)(12,13)
11 (1,4)(2,3)(12,15)(13,14)
12 (1,4)(2,3)(13,16)(14,15)
13 (1,4)(2,3)(14,17)(15,16)
14 (1,4)(2,3)(15,18)(16,17)
15 (1,4)(2,3)(16,19)(17,18)
16 (1,4)(2,3)(17,20)(18,19)
17 (1,18,4)(2,3)(19,20)
18 (1,20,4)(2,19,3)
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19 (1,3,20,2,4)

For 4 ≤ i ≤ 16 it is no surprise the cycle structure is a product of four disjoint 2-cycles. The commutator
[R−i, T ] brings four new disks: disks i + 1, i + 2, i + 3, i + 4, into the turntable, permutes them, then sends
them back, and finally it permutes the original four disks: 1, 2, 3, 4. The resulting permutation is:

[R−i, T ] = (1, 4)(2, 3)(i+ 1, i+ 4)(i+ 2, i+ 3) for 4 ≤ i ≤ 16.

Consider the case when i = 1, 2, 3. The cases when i = 17, 18, 19 are similar, only the rotation move R−i is
clockwise 20−i spots. Perhaps at this point we should mention why we are considering a negative exponent
on R. This is really just because for i = 1, 2, 3, [R−i, T ] only brings other small numbered disks into the
turntable. If we were to rotate clockwise first, then some high numbered disks (i.e. 20, 19, etc) would enter
the turntable. Eventually we would like to consider variations of the puzzle where the number of disks is
changed, so it would be nice to have our results expressed in such a way that do not depend on the total
number of disks.

The commutator [R−3, T ] has a particularly advantageous cycle structure, it consists of one 3-cycle and two
2-cycles. We can kill-off the 2-cycles by applying the commutator twice:

[R−3, T ]2 = ((1, 4, 7)(2, 3)(5, 6))2 = (1, 4, 7)2(2, 3)2(5, 6)2

= (1, 7, 4).

This should be a useful move to know in solving end-game problems on this puzzle. Also, since commuta-
tors are even (see Exercise 1) this is the smallest permutation we could get using products of commutators.

(a) R−3TR3T = (1, 4, 7)(2, 3)(5, 6) (b) (R−3TR3T )2 = (1, 7, 4)

Figure 13.8: Basic commutators on the Oval Track puzzle

13.3 Exercises

1. Let α, β ∈ Sn. Show that the commutator [α, β] is an even permutation.

2. Show that if [g, h] = e then g and h commute.

3. Let G be a group and g, h ∈ G, show that [g, h]−1 = [h, g].

4. Prove each of the following.
(a) A permutation α commutes with the commutator [α, β] if and only if [α, β] = [β, α−1].
(b) A permutation β commutes with the commutator [α, β] if and only if [α, β] = [β−1, α].
(c) Both α and β commute with [α, β] if and only if [α, β] = [β, α−1] = [β−1, α].
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5. We have already seen that if α and β commute then (αβ)n = αnβn. But this can fail if α and β do not
commute. Show that if α and β satisfy the weaker hypothesis that both commute with [α, β], then for
every positive integer n, (αβ)n = αnβn[β, α]n(n−1)/2.

6. Let α, β ∈ Sn.

(a) If mov(α) and mov(β) have no locations (elements) in common (i.e. mov(α) ∩mov(β) = ∅), what
is the permutation of [α, β]?

(b) If mov(α) and mov(β) have two locations (elements) in common (i.e. |mov(α) ∩ mov(β)| = 2),
what is the largest |mov([α, β])| can be?

(c) If mov(α) and mov(β) have two locations (elements) in common, what are the possibilities for
|mov([α, β])|.

7. Let γ, δ, σ ∈ Sn. Prove the following.

(a) mov(γ) = mov(γ−1)

(b) γ−1mov(γ) = mov(γ)

(c) γ (mov(δ) ∩mov(σ)) = γmov(δ) ∩ γmov(σ)

8. Prove that for permutations α and β,(
mov(β) ∪ α−1mov(β)

)
∩
(
mov(α) ∪ β−1mov(α)

)
= mov(α, β) ∪ α−1mov(α, β) ∪ β−1mov(α, β).

(Hint: Use the Distributive Law: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C), and the results of Exercise 7.)

Rubik’s Cube:

9. Find the order of the Y-commutator [F,R−1] = FR−1F−1R and of the Z-commutator [F,R] = FRF−1R−1.

10. Find the order of [R, [F,U ]].

11. What is the permutation produced by [F,R−1][R,U−1][U,F−1]?

12. Show that

(a) [F,R−1]5 = R−1[F,R]R

(b) [F−1, R−1] = R−1F−1[F,R]FR.

13. What is the permutation produced by [(R2U2F 2)3, U2]?

14. 3-cycle of corners. In this exercise you will build, as a commutator, a move which cycles 3 corner
cubies as shown in the diagram.

(a) To begin with, consider the move sequence α = F−1D−1FR−1D2RF−1DF . Verify that this move
swaps the two corner cubes in the up layer, keeping their orientation (i.e. the up colour remains
in the up face, which in the diagram is indicated by black). The lightly shaded cubies in the
middle and down layer in the diagram move around, but the unshaded cubies remain fixed.
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You may wonder how this move was constructed. The idea is to basically take one or two cubies
from the up layer, move them to the bottom layer, perform some moves which have minimal
effect on the up layer, then bring them back to the up layer. Since we don’t require pieces in the
middle and down layers to be returned home, coming up with these moves isn’t so difficult.

(b) Since α only affects two cubies in the up layer, let β = U and consider the commutator [α, β].
Can you predict the effect of this move on the cubies? Hint: Remark 13.1 tells us which cubies
can be affected. And with a little more thought you should be able to see how they are affected.

(c) Perform the move [α, β] = F−1D−1FR−1D2RF−1DFU(F−1D−1FR−1D2RF−1DF )−1U−1 and
verify your prediction from the previous part.

15. Flip 2 adjacent edges. Let MR denote the “slice move” which consists of rotating the middle slice,
parallel to the R face, in the clockwise direction, from the perspective of the R face. Consider the
move sequence

α = MRUM
−1
R U−1MRU

2M−1R .

(a) Verify α flips the edge in the fd position, and fixes everything else in the down layer.

(b) Since α only affects one cubies in the down layer, let β = D and consider the commutator [α, β].
Can you predict the effect of this move on the cubies?

(c) Perform the move [α, β] and verify your prediction from the previous part.

16. Another, flip 2 adjacent edges. If we instead would like to flip 2-edges in the up layer. We could
consider the move sequence

α = M−1R DMRD
−1M−1R D2MR.

(a) Verify α flips the edge in the uf position, and fixes everything else in the up layer.

(b) Since α only affects one cubie in the up layer, let β = U and consider the commutator [α, β]. Can
you predict the effect of this move on the cubies?

(c) Perform the move [α, β] and verify your prediction from the previous part. The move sequence
should produce the double edge flip as shown in the figure below.

17. Flip 2 opposite edges. Find moves α and β so that the commutator [α, β] flips two opposite edges
(as shown in the diagram below), and fixes everything else. (Hint: Modify the moves in the previous
exercise.)
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18. Investigate the commutators [α, β] for each of the following choices of α and β.

(a) α = RUR−1 and β = D−1

(b) α = F−1D−1FR−1D2RF−1DF and β = U2

(c) α = RUR−1U−1RUR−1 and β = D−1

(d) α = M−1R and β = M−1U . (MX denotes a slice move of the middle slice parallel to face X.)

19. Create some of your own moves using commutators. Start by creating a move α which affects very
few cubies in the up layer. Then take the commutator with β = U . Try to predict what your move
with do before you even apply it.

Hungarian Rings:

20. Exploring the following commutators on the Hungarian Rings puzzle. Express the resulting permu-
tation in disjoint cycle form.

(a) [L,R]

(b) [L,R−1]

(c) [R,L]

(d) [R,L−1]

(e) [L5, R]

(f) [R,L5]

(g) [L5, R−1]

(h) [L,R−5]

(i) [L5, R5]

(j) [R5, L5]

(k) [L−5, R−5]

(l) [L5, R−5]

21. Getting a 3-cycle with compound commutators. In this exercise we investigate the compound
commutator: [[L5, R5], R−1LR]. It may look pretty complicated at first glance, but its construction has
been well controlled. Let α = [L5, R5] and β = R−1LR, so the compound commutator is [α, β]. The
overlap of pieces moved by both α and β consists of a single disk as we’ll see below. This indicates
that the commutator [α, β] will likely be a good move to know.

(a) Show that the permutation corresponding to the commutator α = [L5, R5] is (1, 25)(6, 11). Con-
clude that mov(α) = {1, 6, 11, 25}.

(b) Show that the only pieces of the right ring that β affects are the pieces in positions 34 and 38.
Note that β affects all pieces in the left ring, except for 1 and 6. Conclude that

mov(β) = (mov(L)− {1, 6}) ∪ {34, 38} = {38} ∪ {20, 19, 18, . . . , 8, 7} ∪ {34} ∪ {5, 4, 3, 2}.

(c) If you didn’t already do so in the previous part, determine the cycle form of β.
(d) Show that mov(α, β) = {11}.
(e) Show that α−1mov(α, β) = {6} and β−1mov(α, β) = {12}.
(f) Conclude from formula (13.2) that [α, β] moves only 6, 11, and 12, and verify that [α, β] = (6, 11, 12).

Note: One could just use Sage to compute [α, β] = [[L5, R5], R−1LR], however this wouldn’t help to
understand how to “build” this useful commutator in the first place. The exercises above are to get
you to investigate how the commutator was constructed, so you may discover how to build your own
commutators in the future.

Oval Track:
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22. Determine the permutation corresponding to the commutator [R−1TR, T ] on the Oval Track puzzle.

23. Consider the variation of the Oval Track puzzle where the turntable move T corresponds to the
permutation T = (4, 3, 2, 1). See Figure 13.9.

(a) Show that [R−1, T ] = (1, 2, 5).
(b) Show that [T−1, R−1] = (1, 5, 4).
(c) Show the product [R−1, T ][T−1, R−1] is (1, 2, 4).
(d) Since commutators are even, so is any product of commutators. This means that 3-cycles are

the best we can do. However, the turntable move T is odd, so combining this move with a
commutator may allow us to produce a 2-cycle. See what the product [R−1, T ][T−1, R−1]T gives
you.

Figure 13.9: Oval Track puzzle variation for Exercise 23.

24. Varying the turntable move T of the Oval Track puzzle. In this exercise you will investigate,
with the help of Sage , some variations of the Oval Track puzzle. In all variations3, we assume there
are 20 disks, and the usual move consisting of rotating the pieces along the track is R. We will vary
the turntable move T . We have already investigated commutators on OT 1, the original Oval Track
puzzle. In the previous exercise we investigated commutators on OT 2 where the turntable move is
T = (4, 3, 2, 1). In each case below, write out the permutation resulting from the commutator in cycle
form.

(a) [R−1, T ] on OT 2 where T = (4, 3, 2, 1)

(b) [R−2, T ] on OT 2 where T = (4, 3, 2, 1)

(c) [T 2, R−2] on OT 2 where T = (4, 3, 2, 1)

(d) [R−1, T 2] on OT 2 where T = (4, 3, 2, 1)

(e) [R−1, T ] on OT 4 where T = (5, 4, 3, 2, 1)

(f) [R−1, T 2] on OT 4 where T = (5, 4, 3, 2, 1)

(g) [R−1, T ] on OT 5 where T = (1, 2)(3, 4)

(h) [R−2, T ] on OT 5 where T = (1, 2)(3, 4)

(i) [R−3, T ] on OT 5 where T = (1, 2)(3, 4)

(j) [R−5, T ] on OT 17 where T = (1, 6)(2, 5)(3, 4)

3Variation names are due to John O. Kiltinen who studies these in his book [9].



Lecture 14

Conjugates

Commutators provided us with a method for creating puzzle moves that affect only a small number of
pieces. In this lecture we introduce “conjugation” which is a process for modifying existing moves to pro-
duce new moves that have similar structure.

14.1 Conjugates

When playing with permutation puzzles, a move sequence of the form “move 1, then move 2, then inverse
of move 1” comes in handy. Moves of this form are called conjugates. You may have just realized that you
frequently use “conjugate moves” when solving puzzles, if this is the case then you already have a working
understanding of conjugation. As you read through this lecture, you will find it useful to have a puzzle on
hand to try things out for yourself.

Definition 14.1: If g, h are two elements of a group G, then we call the element

gh = h−1gh

the conjugate of g by h.

Note that gh = g if and only if g and h commute. Therefore, much like the commutator, the conjugate gh
provides a measure of how much g and h fail to commute with each other. If g and h don’t commute, then
gh 6= g, however gh should be like g in some ways. In the case of permutations we can say exactly how they
are similar. This is stated in Lemma 14.1 below.

The exponential notation is used because conjugation enjoys similar properties to that of exponentiation.
See Exercise 5.

Example 14.1: Consider the symmetric group S3 and the elements s1 = (1, 2), s2 = (1, 3, 2). Then the
conjugate of s1 by s2 is

ss21 = s−12 s1s2 = (1, 2, 3)(1, 2)(1, 3, 2) = (1, 3)

and the conjugate of s2 by s1 is

ss12 = s−11 s2s1 = (1, 2)(1, 3, 2)(1, 2) = (1, 2, 3).

161
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Definition 14.2: We say that two elements g1, g2 ∈ G are conjugate (in G) if there is an element
h ∈ G such that g2 = gh1 .
The set of all elements in G that are conjugate to g is called the conjugacy class of g and denoted
by cl(g):

cl(g) = {xgx−1 | x ∈ G}.

In the example above we see that cycle structure seems to be preserved by conjugation. By this we mean,
the conjugate of a 2-cycle is also a 2-cycle, the conjugate of a 3-cycle is also a 3-cycle. This is true in general,
and we state it as the following remark. We prove this as a part of the subsequent lemma.

Remark 14.1. For α, β ∈ Sn, the two permutations α and β−1αβ have the same cycle structure.

Lemma 14.1 (Conjugation preserves cycle structure): Let α, β be any permutation in Sn, and
suppose α(i) = j. Then αβ = β−1αβ sends β(i) to β(j):

(αβ)(β(i)) = β(j).

Moreover, if α has cycle structure

α = (a1, a2, . . . , ak1)(b1, b2, . . . , bk2) · · · (c1, c2, . . . , ckm)

then αβ has the same cycle structure

αβ = (β(a1), β(a2), . . . , β(ak1))(β(b1), β(b2), . . . , β(bk2)) · · · (β(c1), β(c2), . . . , β(ckm))

Proof: To see αβ = β−1αβ sends β(i) to β(j) we notice

αβ(β(i)) = (β−1αβ)(β(i)) = β(α(β−1(β(i)))) = β(α(i)) = β(j).

To show that the cycle structure is as described in the statement of the lemma first express α in disjoint
cycle form: α = σ1σ2 · · ·σm, where σi is a ki-cycle. Observe that

αβ = β−1(σ1σ2 · · ·σm)β = (β−1σ1β)(β−1σ2β) · · · (β−1σmβ),

so it suffices to prove the result for each of the cycles σi.

Consider the cycle σ = (a1, a2, . . . , ak), and let di = β(ai). By the first part of the lemma, which we have
already proved, σβ contains the cycle (d1, d2, . . . , dk). Moreover, if x is an element that is moved by σβ then
(β−1σβ)(x) 6= x and so σ(β−1(x)) 6= β−1(x), which means β−1(x) = ai for some i. Therefore, x = di for some
i. It follows that

σβ = (d1, d2, . . . , dk).

This proves the lemma. �

As an example, this lemma and the preceding remark tells us that if we have a 3-cycle α, then no matter
what the permutation β is, the conjugate αβ will be another 3-cycle. This is how we will use conjugation to
modify existing puzzle moves.

As a consequence of Lemma 14.1 it is easy to see when two permutation α, β ∈ Sn are conjugate in Sn:
they are conjugate if and only if the cycles in their respective disjoint cycle forms have the same length
when arranged from shortest to longest (i.e. they have the same cycle structure). The “only if” part we
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have already proven. On the other hand, if two permutation α and β have the same cycle structure then
arrange their disjoint cycle forms as follows (here we insert 1-cycles on the end):

α = (a1,1, a1,2, . . . , a1,k1)(a2,1, a2,2, . . . , a2,k2) · · · (am,1, am,2, . . . , am,km)(am+1,1) · · · (am+s,1)

β = (b1,1, b1,2, . . . , b1,k1)(b2,1, b2,2, . . . , b2,k2) · · · (bm,1, bm,2, . . . , bm,km)(bm+1,1) · · · (bm+s,1)

and construct a permutation γ such that γ(ai,j) = bi,j . It follows the αγ = β and so α and β are conjugate.
(Note, γ is not necessarily unique.)

For example, the permutations

α = (1, 2, 3)(4, 5, 6, 7, 8)(9, 10), and β = (4, 5, 3)(1, 8, 2, 10, 11)(7, 12)

are conjugate in S12. One possibility for γ is (1, 4)(2, 5, 8, 11, 6)(3)(7, 10, 12, 9).

14.2 Modifying Puzzle moves with Conjugates

We’ve already made extensive use of conjugation while investigating the 15-puzzle. We showed in Lecture 9
that the solvable configurations of the 15-puzzle, where the empty space is in box 16, are precisely the even
permutations. The way we argued this was we found one 3-cycle, namely (11, 12, 15) and by conjugation we
were able to modify this to produce any other 3-cycle.

In general, if we have a move α that does something useful then we can modify it by using conjugates.
First find a set-up move β−1 that takes some pieces that we wish to affect and moves them to the positions
affected by α. Applying α then affects these new pieces, and β then moves everything back. This will only
affect the pieces moved by β−1 into mov(α), and they are permuted with the same structure of α. This
description may seem a little confusing, but once you’ve played around with conjugates you will see their
actions are very intuitive. We’ll look at many examples for the various puzzles over the next few sections.

14.2.1 Rubik’s Cube

It is best if you have your Rubik’s cube in hand while reading through this part.

Looking back at the commutators we constructed in Lecture 12 you will notice that many of the x moves
were made up of conjugates. We saw that the commutator [LD2L−1, U ] permuted three corner cubies as
shown in Figure 14.1a.

(a) 3-cycle of corner cubies by commu-
tator LD2L−1ULD2L−1U−1

(b) conjugation of commutator by B

Figure 14.1: cycling 3 corner cubies

We will modify this move so it permutes the three corner cubies as show in Figure 14.1b. To do this, first
apply the set-up move B−1 which takes the urb corner piece to the rdb position. Then applying commutator
[LD2L−1, U ] cycles the 3 corner cubies as shown in Figure 14.1a, though the piece in the rdb position is
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really the piece that started in the urb position. Undoing the set-up move results in a move sequence
B−1[LD2L−1, U ]B which moves the cubes as shown in Figure 14.1b.

As another example, the commutator [x, y] where

x = L−1D2LBD2B−1, and y = U

produced a twist of 2 corners as shown in Figure 14.2a. If we use the set-up moveB, before apply the corner
twist commutator, then undo the set-up move by taking B−1, then we produce a new move which twists di-
agonally opposite corner cubies (see Figure 14.2b). This new move is the conjugateB[L−1D2LBD2B−1, U ]B−1.

(a) 2 corner twist by commutator
xyx−1y−1

(b) conjugation of commutator by B−1

Figure 14.2: twisting 2 corner cubies

14.2.2 Hungarian Rings

Using commutators we found some very useful moves on the Hungarian Rings puzzle:

[L5, R5] = (1, 25)(6, 11), [L−5, R−5] = (1, 16)(6, 30),

[L5, R−5] = (1, 6)(11, 30), [L−5, R5] = (1, 6)(16, 25).

(a) Hungarian Rings with numbers (b) Hungarian Rings with colours

Figure 14.3: Hungarian Rings puzzle

Suppose we wanted to swap the contents of boxes 8 and 27, then we could move 8 to position 11, 27 to
position 30. Call the move that does this γ. For example γ = L−3R−3 would achieve this. Then apply the
commutator [L5, R−5], which swaps disks 8 and 27, along with the disks in positions 1 and 6. Now undo
the set-up move γ. The move sequence performed is γ[L5, R−5]γ−1. Since the cycle structure is the same
as [L5, R−5] it swapped two pairs of disks, one pair being 8 and 27, and the other one was 32, 36.

In the coloured version of the Hungarian Rings puzzle, shown in Figure 14.3b, if two balls of the same
colour are in the intersection positions (1 and 6) then applying one of the commutators, say [L5, R−5] =
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(1, 6)(11, 30), would swap balls in positions 11 and 30, but the 1, 6-swap would go unnoticed since the balls
were identical. This gives us a way to swap any two balls on the puzzle, and as we know from the theory
of permutations, this is enough to construct any permutation of the coloured balls.

In the numbered version of the puzzle, where every ball is distinct (Figure 14.3a) this is still not enough
to solve every permutation. We will actually need to find a genuine 2-cycle. We’ll pick up this topic in
Section 16.2.4 of Lecture 16. Though, armed with the tools of commutators and conjugates perhaps you
can discover such a move for yourself! Next we’ll use commutators to construct a 3-cycle.

Compound Commutator - Getting a 3-cycle.

We have seen that by using commutators we can produce a product of two disjoint 2-cycles. For example
[L5, R5] = (1, 25)(6, 11). We now show that we are able to produce a move sequence which gives a 3-cycle by
using compound commutators, that is, something of the form:

[[α, β], γ] = (αβα−1β−1)γ(βαβ−1α−1)γ−1.

Since one of the transpositions in [L5, R5] involves the lower point of intersection (position 1) and the right
ring, while the other involves the upper point of intersection (position 6) and the left ring, we should be
able to tweak one of the intersection points while leaving the other unchanged. We would like a move γ
that has little overlap with [L5, R5], where mov([L5, R5]) = {1, 6, 11, 25}. Since each ring has 3 disks which
are moved by [L5, R5] we would like a move that temporarily moves the disks out of the intersection points,
then moves the left ring (for example), and then moves disks back onto the intersection points. It would
then follow that mov([L5, R5]) ∩ mov(γ) = {11}. Consider the move γ = R−1LR. This leaves the disks
in positions 1, 6 and 25 unchanged, but it moves the disk in position 11 to position 10. See Figures 14.4a
and 14.4b. The circled positions in the figure are just to draw you attention to these positions. The pieces
affected by the commutator [[L5, R5], γ] are at most

mov([[L5, R5], γ]) ⊂ mov([L5, R5], γ) ∪ [L5, R5]−1mov([L5, R5], γ) ∪ γ−1mov([L5, R5], γ)

= {11} ∪ [L5, R5]−1{11} ∪ γ−1{11}
= {11, 6, 12}

In fact, [[L5, R5], γ] is the 3-cycle (6, 11, 12).
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(a) Commutator L5R5L−1R−5 (b) γ = R−1LR tweaks disks around 11

(c) Undoing L5R5L−1R−5 restores 1
and 25

(d) Undoing γ undoes some changes
made by γ

Figure 14.4: A compound commutator that uses the commutator [L5, R5] to construct a 3-cycle (6, 11, 12)

14.2.3 Oval Track Puzzle

Conjugation is a very natural process on the Oval Track puzzle. If you have spent some time playing with
the puzzle you undoubtedly use conjugation on almost every move. The reason for this is the turntable
is located on one part of the puzzle, pieces will need to be moved into the turntable say by a move Rj ,
then they are rotated in the turntable T , and finally the pieces are moved back R−j . The move sequence
RjTR−j is conjugation.

Figure 14.5: Oval Track puzzle.

Using commutators we found the 3-cycle γ = [R−3, T ]2 = (1, 7, 4). Any conjugate of this would also be a
3-cycle, so let’s try to construct the 3-cycle (1, 2, 3). To do this we would need to find a move sequence β that
takes {1, 2, 3} to {1, 7, 4}. The order doesn’t matter much, for example we could find a move sequence that
takes 1 7→ 1, 2 7→ 4, and 3 7→ 7. What is important though is once we get 1, 2, 3 into positions 1, 4, 7 then we
must cycle them appropriately: either γ or γ−1. So before we do anything we make a mental note that to
produce the 3-cycle (1, 2, 3) we want “1 to chase 2”. By this we mean, once we get disks 1, 2, 3 into positions
1, 4, 7 we then cycle them in the direction so the 1 goes to the current position of 2. The rest of the disks
will follow accordingly.

Since 1 is already in position 1 we leave it there. The move β just needs to take 2 7→ 4 and 3 7→ 7. We begin
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by pushing disk 3 away from the rest of the pack. To do this, move it to position 1 and apply T . It stills
need to move one more unit to the right in order to be 6 units away from disk 1, so move it to position 2
and apply T . This move sequence R−2TR−2T has now pushed disk 3 far enough away from 1 so that if 1
rotates to its home position disk 3 will be in position 7. See the following figure.

Now, using the space between disks 1 and 3 we push 2 two units to the right. This is done by putting it in
position 1 applying T , then putting it again in position 3 and applying T . The move sequence to do this is
R3TR−1T . The complete move sequence is β = R−2TR−2TR3TR−1TR2, and the puzzle now looks like this:

We now apply the 3-cycle γ = [R−3, T ]2 = (1, 7, 4), but we have to recall we wanted 1 to chase 2. Since 2 is
in position 4 we want to apply the 3-cycle (1, 4, 7) which is actually γ−1. After applying γ−1 the puzzle now
looks like this:
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Finally, undoing β returns all pieces back to their original positions, except the pieces circled in red. These
pieces have been moved since β was applied. β−1 will take the piece in position 1 back to 1, the piece in
position 4 back to 2, and the piece in position 7 back to 3.

Therefore the move sequence βγβ−1 produces the 3-cycle (1, 2, 3).

14.2.4 15-Puzzle

Here we revisit our results about the 15-puzzle using our new tool: conjugation. The proof of the solvability
criteria, Theorem 9.1, which states that

A configuration of the tiles, in which the empty space is in box 16, is solvable if and only if it is
an even permutation.

relied on the ability to construct 3-cycles. The essence of the proof was based on conjugation.

Recall we can produce the 3-cycle σ = (11, 12, 15) by focussing on the bottom right corner of the puzzle:

From this one 3-cycle σ, we can conjugate it to construct any other 3-cycle we want. To do this we just need
a way to move any 3 tiles down to the bottom right-hand corner, along with the empty space. Hiding any
tiles you have already brought down in boxes 12 and 15, we can bring any other tile down using one of the
two tours in Figure 14.6. Call the move sequence which brings all three tiles down β.

(a) (b)

Figure 14.6: Tours for producing 3-cycles.

Applying σ cycles the tiles around (or if you want to cycle them in the other direction apply σ−1). Then
β−1 takes all the tiles back to where they started, but with the main three tiles now cycled. In other words
βσβ−1 is precisely the move that cycles the three tiles.
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This was a purely theoretical argument. In practice solving the puzzle in this way is completely inefficient.
However, if one wants to produce a particular 3-cycle it is not necessary to push the 3 tiles down to the
bottom right-hand corner, apply (11, 12, 15), then reverse the moves. Instead, if we can apply a sequence of
moves β which take the 3 tiles, along with the empty space, into any 2-by-2 array then we can perform a
3-cycle there, call it σ, then apply β−1. The resulting move sequence βσβ−1 will be a 3-cycle on the selected
tiles.

14.3 Exercises

1. For each of the pairs of permutations α, β ∈ Sn calculate the conjugate α−1βα. Note that it has
the same cycle structure as β, and notice the each entry in the cycle is the image under α of the
corresponding entry in the cycle of β.

(a) α = (1, 2, 3, 4, 5, 6, 7)(8, 9, 10), β = (1, 5, 8)(2, 6)(3, 7, 4)

(b) α = (1, 5, 8)(2, 6)(3, 7, 4), β = (1, 2, 3, 4, 5, 6, 7)(8, 9, 10)

(c) α = (1, 7, 5, 9, 3, 10, 12)(4, 6)(8, 11), β = (1, 6)(2, 8)(4, 7)

2. For α = (1, 2, 3, 4)(5, 6) and β = (1, 6)(2, 5, 3) do the following.

(a) Calculate β−1αβ.
(b) Calculate the values of β(1), β(2), β(3), β(4), β(5), β(6), then write down the product of cycles,

(β(1), β(2), β(3), β(4))(β(5), β(6)).
(c) Observe that the product of cycles in part (b) is the same as the answer to part (a). This is the

essence of Lemma 14.1.

3. For each of the following pairs of permutations state whether they are conjugate in S10. That is,
determine whether there exists a γ ∈ S10 so that α = γ−1βγ.

(a) α = (1, 2, 3, 4, 5, 6, 7)(8, 9, 10), β = (1, 5, 8)(2, 6, 3, 7, 4, 10, 9)

(b) α = (1, 5, 8)(2, 6)(3, 7, 4), β = (1, 2)(7, 3)(8, 9, 10)

(c) α = (1, 7, 5, 9, 3), β = (1, 6, 2, 8, 4)

4. Let G be a group. Prove that every conjugate of a commutator is a commutator by showing that
g[a, b]g−1 = [gag−1, gbg−1] for all a, b, g ∈ G.

5. Show that for g1, g2, h, h1, h2 ∈ G the following hold.

(a) (g1g2)h == gh1 g
h
2

(b) gh1h2 = (gh1)h2

6. Show that g and gh have the same order.

7. For permutations α, β ∈ Sn, show that α and αβ have the same parity.

8. Show that the notion of conjugate defines an equivalence relation. That is, show that

(a) any element of g ∈ G is conjugate to itself (reflexive)
(b) if g is conjugate to h, then h is conjugate to g (symmetry)
(c) if g is conjugate to h, and h is conjugate to k, then g is conjugate to k (transitivity)

9. Show that the conjugacy classes form a partition of G. That is, show that G can be expressed as a
disjoint union of distinct conjugacy classes.
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10. Is the building of commutators associative? (a) Explore the equation [[α, β], γ] = [α, [β, γ]] by
trying out these compound commutators on one of the puzzles. Show that this equation is not true
for all permutations α, β, and γ. This show the operation of commutator building is not an associative
operation. (b) Show that for any permutations α, β, and γ such that β commutes with both α and γ,
this associativity equation is trivially true.

11. The expressions [(αβ), γ] and [α, (βγ)] are commutators of products. Prove the following formulas
which show a commutator of products is a product of commutators.

(a) [α, (βγ)] = [α, β](β[α, γ]β−1) = [α, β][βαβ−1, βγβ−1]

(b) [αβ, γ] = (α[β, γ]α−1)[α, γ] = [αβα−1, αγα−1][α, γ]

15-Puzzle:

12. Starting with the 15-puzzle in the solved state write down a sequence of moves which will produce
each of the following 3-cycles.

(a) (2, 12, 7) (b) (3, 8, 12) (c) (3, 9, 13).

Either write the moves using transpositions, or use the words “up”, “down”, “left”, “right”, to indicate
the direction the tile adjacent to the empty space is moved. Rather than bringing the three tiles
together in the lower right-hand corner, bring them together with the empty space into any 2-by-2
array that is convenient. (It may help to use a physical or virtual version of the puzzle, see the
“software” section of [10] for some links.)

Rubik’s Cube:

13. Set-up Moves. The move β−1 in the conjugate β−1αβ is called a set-up move. This is because it is
the move that brings the desired pieces into the positions that are affected by α, once α is applied, the
pieces are then restored by applying β. The important thing to keep in mind with these set-up moves
is that it doesn’t matter how the other pieces are moved around, this will eventually be undone. All
that matters is how a small subset of pieces are moved, this is where we are to focus our attention.
To get some practice in creating set-up moves, find a sequence of moves which accomplishes each of
the following. In each case your move sequence should move the pieces as described, and we don’t
really care if it moves the other cubies that aren’t mentioned. (See comment below for an explanation
of the notation used.)

(a) Moves the piece in the urf corner to the frd position.
(b) Moves the piece in the rdf corner to the fur corner.
(c) Moves the piece in the ur edge to the ul edge position, and the piece in the ul edge to the ur edge

position.
(d) Moves the piece in the ur edge to the ul edge position, and the piece in the ul edge to the ru edge

position.
(e) Moves the piece in the uf edge to the fu edge position (i.e. it flips the uf edge piece).
(f) Moves the piece in the ufr corner to the fru corner position (i.e. it rotates the ufr corner piece

counterclockwise).
(g) Moves the piece in the ufr corner to the ulb corner, and the piece in the ulb corner to the ufr

corner.

Notation: Here order of how the positions are listed matters. For example urf 7→ rdf means the
corner which is part of the up, right, and front faces is moved to the corner which is part of the right,
down, and front faces, and moreover the facet in the up face moves to the right face, the facet in the
right face moves to the down face, and the facet in the front face moves to the front face.
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14. More Set-up moves. Find a sequence of moves which accomplishes the following:

ufr 7→ bur, bur 7→ lfu, lfu 7→ ufr.

Do this so that all other cubies in the up layer remain in their home positions, but all other cubies in
the middle and down layer may move around.

15. Suppose we know a move α which flips two opposite edges in the top layer, as shown in Figure 14.7a.
Find a move β so the β−1αβ flips two adjacent edges in the top layer, as shown in Figure 14.7b.

(a) Known move α flips opposite edges. (b) Determine how to achieve this
move from α.

Figure 14.7: Exercise 15

16. The commutator [L−1D2L,U ] permutes corner cubies as follows (ulb, ufl, frd). (Here we are using
our cycle notation as a compact way to represent the movement of pieces.) What pieces does the
conjugate R−1[L−1D2L,U ]R permute?

17. Building a corner 3-cycle. In this exercise we build a 3-cycle of corners in the up layer that pre-
serves orientation (that is, the up facets remain in the up layer for each of the corners cubies being
moved). The desired movement is shown in the figure, where black facets are moved to black facets.

(a) Verify the conjugate ULU−1 brings one new corner cubie into the right face.
(b) Since ULU−1 brings one new corner cubie into the right face this makes a good candidate to

form a commutator with R−1. Verify the commutator [ULU−1, R−1] moves the corner cubies as
indicated in the diagram. The movement of pieces is also given notationally as follows

ulf 7→ ruf, ruf 7→ rbu, rbu 7→ ulf.
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(c) Unfortunately, the commutator [ULU−1, R−1] twists the corners in addition to permuting them.
We’d like to tweak this commutator a little bit so the it doesn’t twist the corners. Find a set-up
move γ which twists some of the corners in place, so that when the commutator [ULU−1, R−1] is
applied, followed by γ−1, the corner cubies that were permuted still have their up facets in the
up layer.
(Hint: a move which twists ufl counterclockwise, and urb clockwise, and leaves ufr alone (and
possibly moving other pieces) should work.)

(d) Verify that γ[ULU−1, R−1]γ−1 produces the desired 3-cycle of corners (as shown in the first figure
above).

Oval Track:

18. By conjugating the 3-cycle (1, 4, 7) produce three other 3-cycles, say (1, 2, 4), (2, 8, 14), and (5, 10, 15).

19. (a) Verify that TR−1 is the product of a 17-cycle and a 2-cycle.
(b) By raising TR−1 to the power of 17 the 17-cycle can be killed-off, leaving just a 2-cycle. Verify

that (TR−1)17 = (1, 3).
(c) Find a move sequence β so that β(TR−1)17β−1 = (1, 2).
(d) Using conjugation produce two other 2-cycles on this puzzle, say (5, 15) and (9, 12).
(e) Convince yourself that you can produce any 2-cycle as a conjugate of (TR−1)17. Since every

permutation is a product of 2-cycles you have proven that every permutation is obtainable in
this puzzle.



Lecture 15

Mastering the Oval Track Puzzle

We now have enough theory developed to give a thorough analysis of the Oval Track puzzle.

15.1 Oval Track with T = (1, 4)(2, 3)

In this section we focus on the standard Oval Track puzzle as shown in Figure 15.1. This version is also
known as TopSpin and was once manufactured by Binary Arts (now ThinkFun).

Figure 15.1: Oval Track puzzle.

The two basic moves of the Oval Track puzzle are R, and T , where R denotes a clockwise rotation of
numbers around the track, where each number moves one space, and T denotes a rotation of the turntable.

The permutation corresponding to the legal moves R and T are as follows:

R = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)
T = (1, 4)(2, 3)

and the Oval Track puzzle group is OT = 〈R, T 〉.

Note that T−1 = T since T has order 2, and R−1 represents a counterclockwise rotation of the disks along
the track.

Let’s get right down to business and find out which permutations of the 20 disks are possible. We can
set-up the corresponding puzzle group OT in Sage and compute its order. Since the maximum possible
number of permutation is 20! we’ll ask if the order of OT is this value.

173
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Sage
sage: S20=SymmetricGroup(20)
sage: R=S20("(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)")
sage: T=S20("(1,4)(2,3)")
sage: OT=S20.subgroup([R,T])
sage: OT.order()==factorial(20)
True

Therefore, all permutations of the puzzle pieces are possible. We could have instead asked Sage if OT is
the symmetric group S20 to achieve the same result.

Sage
sage: OT==SymmetricGroup(20)
True

Theorem 15.1 (Solvability Criteria for Oval Track puzzle): For the Oval Track puzzle with 20
disks and T = (1, 4)(2, 3), every permutation α ∈ S20 is solvable. In other words, OT = S20.

Knowing that all permutation in S20 are obtainable is a start, but we would actually like to know how to
solve the puzzle from any arrangement of the disks. Moreover, it would be nice to see exactly why Sage is
correct in stating OT = S20; the algorithms implemented in Sage to do these calculations are beyond the
scope of this course.

The theory we have developed provides us with the answer as to why OT = S20. In Lecture 13 we found a
square commutator that produces a 3-cycle:

[R−3, T ]2 = (1, 7, 4).

The puzzle provides us enough flexibility, or “wiggle room”, to bring any 3 disks into positions 1, 7, 4. See
Exercise 3 for some practice in doing this. Therefore we may perform any 3-cycle by conjugation. See
Section 15.1.2 for an example. This means we can produce any even permutation of the 20 disks, so
A20 < OT . Also, OT contains an odd permutation: the 20-cycleR. This is enough to conclude thatOT = S20.
See Exercise 6.

This gives a theoretical answer as to why every permutation of the disks is possible, but it doesn’t provide
us with a method, or strategy, to solve any given configuration. We still have some work to do to find out
how to solve the puzzle.

We begin by looking for a 2-cycle, which we know must exist. Given one 2-cycle we should be able to
conjugate it to get all other 2-cycles, given that there seems to be enough “wiggle room”.

15.1.1 2-cycles

The most basic combination of moves is TR−1. (Here we use R−1 since this brings low numbered disks into
the turntable, and this will be handy later when we vary the number of disks used.) This is the product of
a 2-cycle and a 17-cycle. In other words, it is a move of order 34. The move (TR−1)17 has order 2 and is in
fact a 2-cycle. Let τ denote this 2-cycle:

τ = (TR−1)17 = (1, 3).
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Sage
sage: T*Rˆ(-1)
(1,3)(4,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5)
sage: (T*Rˆ(-1))ˆ(17)
(1,3)

Producing τ = (1, 3) is a good first step. But it uses quite a few moves: 34 in total. Is it possible to perform
a transposition using less moves? Notice that this move sequence sends every disk through the turntable,
in some sense this sequence of moves is considered “global”. Maybe we could find a “local” move sequence,
like the 3-cycle commutator: [R−3, T ]2 = (1, 7, 4), which only puts disks 1 through 7 in the turntable, all
other disks are just rocked back-and-forth. Are we able to find a “local” move to produce a 2-cycle?

Our theory tells us no! If we think about a local move sequence, it would only use disks 1 through m, all
other disks (m+ 1 through 20) would just rock back-and-forth. This means, the same move sequence would
produce a 2-cycle on the puzzle with 21 disks for example. Yes, we are changing the puzzle, but this doesn’t
affect the 2-cycle, as long as it is “local”. But T is an even permutation, and R would be a 21-cycle, which
is even too. Therefore 〈T,R〉 would only produce even permutations, hence no 2-cycle. Therefore, if we are
able to get a 2-cycle in OT it must use a sequence of moves that puts every disk through the turntable at
least once. Our move τ = (TR−1)17 does this: it sends all disks through the turntable once. This seems to
be the best we can do. This is an illustration of the power of the theory we have developed so far. We can
answer questions about what we can, and cannot, do with the pieces of the puzzle.

Now that we have one 2-cycle we can conjugate it to get others.

For example, let’s build (1, 4) as a conjugate of τ = (1, 3). To do this, we will find a sequence of moves that
takes 4 to position 3, while at the same time leaving 1 in position 1. The required movement is to push disk
4 one spot to the left (i.e. one spot closer to disk 1). If we rotate the track until 4 is in spot 3, then apply T ,
we have now moved 4 one spot closer to 1 on the right. Then rotate the track so 1 is back in position 1. You
may have noticed we just applied a conjugate to do this: R−1TR. See the following diagram.

We now swap 1 and 4 using the transposition τ = (1, 3), which puts the puzzle in following position.
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Then undo the set-up moves above to produce (1, 4). To summarize, we performed the conjugate

(R−1TR)τ(R−1TR)−1 = (1, 4).

There was nothing special about 1 and 4 in this example. For any two disks a and b we can use turntable
moves to bring them closer together, until there is only one disk between them, then we can rotate the
track until they are in positions 1 and 3. This results in the set-up move β. Now apply τ , then undo the
set-up move: β−1. The result is βτβ−1 = (a, b). This proves the following.

Theorem 15.2 (2-cycles on Oval Track): For the Oval Track puzzle with 20 disks and T =
(1, 4)(2, 3), every 2-cycle can be obtained as a conjugate of (TR−1)17 = (1, 3).

Notice, Theorem 15.1 now follows from this theorem. This provides another proof that OT = S20.

15.1.2 3-cycles

While investigating commutators in Lecture 13 we found a square commutator that produces a 3-cycle:

[R−3, T ]2 = (1, 7, 4).

Having one 3-cycle is valuable since we can conjugate it to get other 3-cycles. Note, we can’t simply assume
we can generate all 3-cycles as conjugates since we need to be able to perform a set-up move which takes
any 3 disks to spots 1, 7, 4. From the example below we’ll see that the puzzle provides enough flexibility so
that this is always possible.

For example suppose we are solving the puzzle and have brought it to an end-game position (1, 2, 3). See
Figure 15.2a. To solve the puzzle we need to apply the inverse 3-cycle (1, 3, 2). To accomplish this we will
use our fundamental 3-cycle (1, 7, 4) by first performing a sequence of moves that puts disks 3, 1 and 2 into
spots 1, 4 and 7. We will record the sequence of moves as β−1.



LECTURE 15 MASTERING THE OVAL TRACK PUZZLE 177

(a) End-game position (1, 2, 3). The cy-
cle (1, 3, 2) is needed to solve.

(b) Set-up by putting disks 3, 1, 2 into
spots 1, 4, 7.

(c) Perform the 3-cycle (1, 7, 4).

Figure 15.2: The steps for performing the 3-cycle (1, 3, 2) as a conjugate of the 3-cycle (1, 7, 4).

Before we start, we look at the current arrangement and make a mental note that “1 chases 3”. By this we
mean that disk 1 is to go to the spot where disk 3 is right now. This description will help us decide whether
we should perform (1, 7, 4) or (1, 4, 7) at a later time.

It doesn’t matter how you go about getting these three disks into positions 1, 4, and 7. We’ll keep 3 in
position 1, move 2 to position 4, and move 1 to position 7. This means we need to space the disks out by
adding two spaces between the pairs of disks.

To add spaces we proceed as follows. Move disk 3 to the left, just off the turntable (position 20), and apply
T to get some space between it and disks 1 and 2. Now there are two disks between 3 and 2 and disk 1
is just to the right of disk 2. To add space between disk 1 and 2 we move disk 2 to position 20, apply T ,
which now puts three spaces between 2 and 1, so we close this gap by bringing 1 into position 3 and apply
T . Now the three disks are spaced out, and so we just move disk 3 to position 1, and it follows that 2 is
now in position 4, and 1 is in position 7. See Figure 15.2b. The move sequence we used to do this was
β−1 = R−1TR−3TR−1TR−5.

Now we are ready to apply our fundamental 3-cycle: (1, 7, 4), but we need to know whether we are to apply
it or its inverse. This is where our mental note comes in: “1 chases 3”. We need to send disk 1 to where disk
3 is now, this means we should apply (1, 4, 7). The puzzle is now in the position shown in Figure 15.2c.

Finally we undo the set-up move by applying β, and the puzzle is solved.

This example provides the general technique for producing 3-cycles.

Guide for producing a 3-cycle:

Step 1. Pick the three disks you wish to cycle: (a, b, c). Make a mental note that “a chases b”.

Step 2. Move the disks to positions 1, 4, 7, in any way whatsoever. Call this move β−1.

Step 3. Apply the fundamental 3-cycle (1, 4, 7) or its inverse (1, 7, 4), depending on locations of a and
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b.

Step 4. Undo the set-up move by applying β. The result is the 3-cycle (a, b, c).

15.1.3 Strategy for Solution

We are now ready to describe a strategy for solving the Oval Track puzzle. Since we can perform any
2-cycle we already have a method at hand. However, the fundamental 2-cycle is (TR−1)17 = (1, 3) is 34
moves long, and any other 2-cycle obtained by conjugation will use more moves. So solving the puzzle by
swapping two pieces at a time is very inefficient.

Similarly, we can create any 3-cycle by conjugating the fundamental 3-cycle [R−3, T ]2 = (1, 7, 4). But again
this will result in fairly long move sequences.

Instead, we will just approach the puzzle by first setting pieces 20 through 5 in order, which is fairly
straightforward since there is enough “wiggle room” to move things around. This brings the puzzle to its
end-game position, that is, a position where only disks 1, 2, 3, 4 are permuted. It is at this point where
2-cycles and 3-cycles will be useful. Moreover, we will try to use 3-cycles since the move sequence is
significantly shorter, but if forced we may need to use a 2-cycle, which we have ready and waiting.

Will we ever be forced to use a 2-cycle? In the end game all permutations in S4 are possible. For example,
we may be faced with an end-game configuration which is an odd permutation. Since 3-cycles are even we
won’t be able to solve it using 3-cycles alone, we will be forced to use at least one 2-cycle.

Guide to solve the puzzle:

(a) Starting with disk 20 put disks 20 through 5 in numerical order.

(b) The permutation of the final 4 disks is either even or odd. This is the end-game phase.

(a) If the permutation is even, express it is either a 3-cycle or a product of two 2-cycles.
3-cycle: Use a conjugate of the fundamental 3-cycle [R−3, T ]2 = (1, 7, 4) to solve it.
two 2-cycles: Check whether it is (1, 4)(2, 3), if it is apply T and you’re done. Otherwise, ex-
press it as the product of 3-cycles (recall (a, b)(c, d) = (a, c, d)(a, c, b)), and use conjugates of the
fundamental 3-cycle [R−3, T ]2 = (1, 7, 4) to solve it.

(b) If the permutation is odd, it is either a 2-cycle or a 4-cycle.
2-cycle: Use a conjugate of the fundamental 2-cycle (TR−1)17 = (1, 3) to solve it.
4-cycle: First check whether apply T reduces the 4-cycle to a 2-cycle. Otherwise, there is a 3-
cycle that does. Once you have reduced it to a 2-cycle use a conjugate of the fundamental 2-cycle
(TR−1)17 = (1, 3) to solve it.

Let’s now practice a few end-game configuations.

Example 15.1: Solve the end-game configuration (1, 3)(2, 4).
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To solve the puzzle we need to produce the inverse permutation, which is just itself, (1, 3)(2, 4). Since
(1, 3)(2, 4) is an even permutation we can write it as a product of 3-cycles: (1, 2, 4)(1, 2, 3). We focus on
constructing each 3-cycle as a conjugate of the fundamental 3-cycle.

(1, 2, 4): This 3-cycle involves disks 3, 4, 2 and results in putting 4 in its home position. See Figure 15.3a.

(a) Initial configuration (1, 3)(2, 4).
The cycle (1, 2, 4) is to be produced.

(b) Set-up by putting disks 3, 4, 2 into
spots 1, 4, 7.

(c) Perform the 3-cycle (1, 4, 7), then
undo the set-up move.

Figure 15.3: The steps for performing the 3-cycle (1, 2, 4) as a conjugate of the 3-cycle (1, 4, 7).

The direction we want to cycle these disks is summarized by “3 chases 4”. Apply the strategy of spacing out
the disks by making sure there are two disks between the middle and each outer disk. A move sequence
that does this is

β−1 = R−1TR−1TR−3TR−1TRTR5.

The puzzle will be as shown in Figure 15.3b.

Recalling that 3 chases 4, the fundamental 3-cycle we should apply is [R−3, T ]−2 = (1, 4, 7). Then applying
β to undo the set-up, we end up with the puzzle in the configuration shown in Figure 15.3c.

(1, 2, 3): This 3-cycle involves disks 2, 3, 1 and the direction we want to cycle these disks is summarized by
“2 chases 3”. See Figure 15.4a.

We can space out the disks, making sure there are two disks between the middle and each outer disk, by
using the move sequence

δ−1 = R−1TR−1TR−2TR−1TR5.

The resulting position is shown in Figure 15.4b.

Since 2 is to chase 3, the fundamental 3-cycle we should apply is [R−3, T ]−2 = (1, 4, 7). See Figure 15.4c.
Applying δ to undo the set-up move solves the puzzle.

In the next example we consider the case when the end-game permutation is a 2-cycle.
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(a) Initial configuration (1, 3, 2). The
cycle (1, 2, 3) is to be produced.

(b) Set-up by putting disks 2, 3, 1 into
spots 1, 4, 7.

(c) Perform the 3-cycle (1, 4, 7).

Figure 15.4: The steps for performing the 3-cycle (1, 2, 3) as a conjugate of the 3-cycle (1, 4, 7).

Example 15.2: Solve the end-game configuration (1, 2). See Figure 15.5a.

To solve the puzzle we need to produce the inverse permutation, which is just itself, (1, 2). Since (1, 2) is
a 2-cycle we construct it as a conjugate of the fundamental 2-cycle (TR−1)17 = (1, 3). Apply a set-up move
which leaves 2 in spot 1, and moves 1 to spot 3. One such move sequence is β−1 = R−1TR−1TRTR. Recall
that to do this you just want to insert two disks between disks 2 and 1. The puzzle should now look like
Figure 15.5b. Apply the fundamental 2-cycle (TR−1)17 = (1, 3), which results in swapping disks 2 and 1.
This is shown in Figure 15.5c. Undoing the set-up move by applying β solves the puzzle.

The end-game permutation could be a 4-cycle, which is an odd permutation. If we are lucky a move T will
take it to a transposition as the next example illustrates.

Example 15.3: Solve the end-game configuration (1, 3, 2, 4). See Figure 15.6a.

Every disk is out of place, but disk 4 can be moved to spot 4 by move T . This also brings disk 3 home as
well. The permutation of the puzzle pieces is now (1, 2) (see Figure 15.6b) which we already solved in the
last example.

Contrary to the last example, it may happen the an end-game 4-cycle cannot be immediately converted
into a 2-cycle by performing move T . In this case there will always be a 3-cycle that does. Just use a 3-cycle
to send any piece home, it follows that some other piece must also be sent home as well. The reason for
this is the product of an odd permutation and an even permutation is odd, and the only odd permutations
on 3 objects are transpositions. See Exercise 5 for one such end-game.
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(a) Initial configuration (1, 2). The cy-
cle (1, 2) is to be produced.

(b) Set-up by putting disks 2, 1 into
spots 1, 3.

(c) Perform the 2-cycle (1, 3). Once
here undo the set-up move to solve the
puzzle.

Figure 15.5: The steps for performing the 2-cycle (1, 2) as a conjugate of the 2-cycle (1, 3).

(a) Initial configuration (1, 3, 2, 4). The
cycle (1, 4, 2, 3) is to be produced.

(b) Start by performing T to put as
many disks in their home positions as
possible.

Figure 15.6: The 4-cycle (1, 3, 2, 4) is only one move T away from the 2-cycle (1, 2).

15.1.4 Changing the number of disks

What happens if we change the number of disks in the puzzle. For example, suppose we used only 19 disks
instead of 20. Would we expect our results to be the same. For example, does Theorem 15.1 remain true
for 19 disks? Let’s ask Sage .

Sage
sage: S20=SymmetricGroup(20)
sage: R=S20("(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,19)")
sage: T=S20("(1,4)(2,3)")
sage: OT19=S20.subgroup([R,T])
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sage: OT19.order == factorial(19)
False

Let OT19 be the Oval Track group on 19 disks. Then we determined that |OT19| 6= 19!, so OT19 does not
contain every permutation of the 19 disks. This shouldn’t come as a surprise though, since the rotation
move R is a 19-cycle, which is even, and the turntable move T is also even. Therefore we can only generate
even permutations, so at best we could get the group of all even permutations A19. Let’s see if we get all of
A19.

Sage
sage: OT19 == AlternatingGroup(19)
True

We do! This means that for the Oval Track puzzle on 19 disks the solvable permutations are precisely the
even permutations.

What happened to our fundamental 2-cycle (TR−1)17? It was built from TR−1 so let’s see what TR−1 is
now.

Sage
sage: T*Rˆ(-1)
(1,3)(4,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5)

It is now a product of a 2-cycle and a 16-cycle. Unlike the 20 disk case, there is no way to take a power
of this to kill-off the 16-cycle and leave the 2-cycle alone. However, we still have our fundamental 3-cycle:
[R−3, T ]2 = (1, 7, 4) so we can use conjugates of this to solve the end-game of this puzzle.

What about changing the number of disks even further? Let n be the number of disks, and let OTn be the
Oval Track group on n disks. Notice the move R, which is an n-cycle, will be even if and only if n is odd.
Therefore OTn will contain only even permutations: OTn ≤ An. On the other hand, if n is even then R is
an odd permutation, so OTn will contain some odd permutations. The questions are then: (i) for n odd is
OTn = An, and (ii) for n-even is OTn = Sn?

We can use Sage to help us answer these questions. Here we consider the number of disks 4 ≤ n ≤ 20.

Sage
sage: for n in (4..20):
sage: Rn=S20([tuple(range(1,n+1))]) # creates n-cycle (1,2,3,...,n)
sage: OTn=S20.subgroup([Rn,T]) # creates OTn: the Oval Track group on n disks
sage: if is_even(n):
sage: print n, OTn==SymmetricGroup(n) #check if OTn is the symmetric group
sage: else:
sage: print n, OTn==AlternatingGroup(n) #check if OTn is the alternating group
4 False
5 False
6 True
7 True
8 True
9 True
10 True
11 True
12 True
13 True
14 True
15 True
16 True
17 True



LECTURE 15 MASTERING THE OVAL TRACK PUZZLE 183

18 True
19 True
20 True

Therefore, for n ≥ 6 the answers to our questions are: yes. However, for small values of n the answer is:
no. It seems like there just isn’t enough “wiggle room” to get all the permutations when there is a small
number of disks.

Let’s investigate this further.

If n ≥ 6, the product TR−1 consists of a 2-cycle and an (n− 3)-cycle: disk 2 remains fixed, disks 1 and 3 are
swapped, and the remaining n − 3 disks are cycled to the left around the track. If n is even, then n − 3 is
odd so (TR−1)n−3 is a 2-cycle (1, 3). Having this 2-cycle, and using conjugation, indicates why OTn = Sn
when n is even.

If n ≥ 7 we still have the fundamental 3-cycle [R−3, T ]2 = (1, 7, 4), so we can conjugate it to get other
3-cycles. This indicates why OTn = An when n is odd.

The remaining cases are n = 4, 5.

n = 4: We can view this puzzle as in the diagram, where only the labeled disks are in play and they are
free to move around the track by the rotation R = (1, 2, 3, 4).

We use Sage to work out the order of OT4.

Sage
sage: S4=SymmetricGroup(4)
sage: R=S4("(1,2,3,4)")
sage: T=S4("(1,4)(2,3)")
sage: OT4=S4.subgroup([R,T])
sage: OT4.order()
8
sage: OT4.list()
[(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3)]

It is a group of order 8, and these elements look very familiar. They remind us of another group of order 8
we know, the dihedral group D4, which is the group of symmetries of a square. If we label the vertices of
the square by 1, 2, 3, 4, then the group of symmetries D4 can be viewed as a subgroup of S4.
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Sage
sage: D4=DihedralGroup(4)
sage: D4.list()
[(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2),(1,4)(2,3)]

A rotation R of the pieces along the track, corresponds to a rotation of the square. A turntable move
correspond to a reflection about the horizontal axis.

Since OT4 andD4 are essentially the same group, it is just the context that is different, we say these groups
are isomorphic and write

OT4 ≈ D4.

n = 5: We can view this puzzle as in the diagram, where only the labeled disks are in play and they are
free to move around the track by rotation the R = (1, 2, 3, 4, 5).

Sage
sage: S5=SymmetricGroup(5)
sage: R=S5("(1,2,3,4,5)")
sage: T=S5("(1,4)(2,3)")
sage: OT5=S5.subgroup([R,T])
sage: OT5.order()
10

Based on our experience with n = 4, and the fact that the dihedral group of a regular pentagon has order
10, we may suspect that OT5 ≈ D5. Checking with Sage we see this is indeed the case.

Sage
sage: OT5==DihedralGroup(5)
True

Since spot 5 is not on the turntable, move T is analogous to reflection f1 of the pentagon in the digram
below. This analogy indicates that the symmetries of the pentagon are generated by a clockwise rotation
and the reflection f1.
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We summarize our results in the following theorem.

Theorem 15.3: On the Oval Track puzzle with T = (1, 4)(2, 3) , any scrambling can be solved if the
number of disks n is even and n ≥ 6. If n ≥ 7 and odd then every even scrambling can be solved. Under
these latter conditions, odd permutations can be brought down to a single transposition, but cannot
be completely solved. In particular, if OTn denotes the group of permutations achievable by the Oval
Track puzzle with n disks then:

OT4 ≈ D4,

OT5 ≈ D5,

OTn ≈ Sn if n ≥ 6 and even,

OTn ≈ An if n ≥ 6 and odd,

15.2 Variations of the Oval Track T move

Variations of the Oval Track puzzle can be created by changing the turntable move T . Figure 15.7 shows
two different variations.

(a) T = (1, 4, 3, 2) (b) T = (1, 6)(2, 5)(3, 4)

Figure 15.7: Some variation of the turntable move T for the Oval Track puzzle.

We can use Sage to investigate the groups associated with these variations.

Sage
sage: S20=SymmetricGroup(20)
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sage: R=S20("(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)")
sage: T=S20("(1,4,2,3)")
sage: OTv1=S20.subgroup([R,T])
sage: OTv1==SymmetricGroup(20)
True

Sage
sage: S20=SymmetricGroup(20)
sage: R=S20("(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)")
sage: T=S20("(1,6)(2,5)(3,4)")
sage: OTv2=S20.subgroup([R,T])
sage: OTv2==SymmetricGroup(20)
True

Therefore, on both these puzzles, all permutations of the pieces are possible.

Coming up with a strategy to solve these puzzles is similar to how we approached the original Oval Track
puzzle. Use commutators to create moves, and conjugates to modify them. Try to find a fundamental
3-cycle or 2-cycle.

For the first variation, where T = (1, 4, 3, 2), we have commutators [R−1, T ] = (1, 2, 5), and [T−1, R−1] =
(1, 5, 4). The product of these two is

[R−1, T ][T−1, R−1] = (1, 2, 4).

What is interesting about this is that combining this with T gives a 2-cycle:

[R−1, T ][T−1, R−1]T = (2, 3).

We know how important having a 2-cycle is for solvability.

15.3 Exercises

1. Getting to the end-game position. Go to Jaaps Puzzle page [13] and play with the javascript “Top
Spin” puzzle. Mix up the disks and try to restore disks 20 through 5. That is, reduce the puzzle
down to the end-game position. Do this a number of times until you are confident that getting to the
end-game position is fairly straightforward. Don’t worry about solving the end-game just yet.

2. 2-cycles onOT with T = (1, 4)(2, 3). For each of the following 2 cycles, find a conjugate of τ = (1, 3)
which produces the 2-cycle. That is, find a sequence of moves β−1 so the β−1τβ produces the desired
2-cycle.

(a) (1, 9) (b) (1, 2) (c) (3, 14) (d) (2, 11)

3. 3-cycles on OT with T = (1, 4)(2, 3). For each of the following 3 cycles, find a conjugate of the
fundamental 3 cycle σ = (1, 4, 7), or its inverse σ−1 which produces the 3-cycle. That is, find a sequence
of moves β−1 so the β−1σβ produces the desired 3-cycle.

(a) (1, 4, 3) (b) (1, 3, 4) (c) (2, 3, 4)

http://www.jaapsch.net/puzzles/topspin.htm
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4. There are six end-game configurations shown below. (a) Write out each one in cycle notation. (b) Plan
a strategy for solving the end-game. (c) Implement your strategy and solve each of the puzzles. You
may find it useful to use the virtual puzzles on Jaaps Puzzle page [13] to try out your move sequences.

(a) (b) (c)

(e) (f) (g)

5. Solve the end-game configuration (1, 3, 4, 2), which is shown in the diagram.

6. Getting all permutations from one odd, and An. Let G < Sn be a group of permutation which
contains all even permutations (i.e. An < G). and has at least one odd permutation β ∈ G. Show that
G = Sn.

(Hint: We already know the set of odd permutationOn is the same size as the set of even permutations
An (see Theorem 8.1). It suffices to show we can get all the elements of On from An and β. Show
On = βAn := {βα | α ∈ An}.)

7. Consider the variation T = (1, 3, 2) of the turntable move on the Oval Track puzzle with 20 disks. Are
all permutations of the puzzle pieces possible?

http://www.jaapsch.net/puzzles/topspin.htm
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8. Consider the variation T = (1, 3)(2, 4) of the turntable move on the Oval Track puzzle with 20 disks.
Are all permutations of the puzzle pieces possible?



Lecture 16

Mastering the Hungarian Rings
Puzzle

In this lecture we give a thorough analysis of the Hungarian Rings puzzle, both the coloured and the
numbered versions.

16.1 Hungarian Rings - Numbered version

In this section we focus on the Hungarian Rings puzzle as shown in Figure 16.1. It seems reasonable that
the numbered version is more difficult to solve than the coloured version. This is because in the coloured
version has only 4 distinct disks, but the numbered version has 38 distinct disks. Even though it is more
difficult we will start with the numbered version. In Section 16.4 we will apply our new-found knowledge
to the coloured version and describe a simple and elegant solution.

Figure 16.1: Hungarian Rings puzzle - numbered version.

The two basic moves of the Hungarian Rings puzzle are L, and R, where L denotes a clockwise rotation of
disks around left ring, where each disk moves one space, and R denotes a clockwise rotation of numbers
around the right ring.

The permutation corresponding to the legal moves R and L are as follows:

L = (1, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2)
R = (1, 38, 37, 36, 35, 6, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21)

and the Hungarian Rings puzzle group is HR = 〈L,R〉.

189
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Note that L−1 and R−1 represents a counterclockwise rotation of the disks around the respective rings.

Let’s get right down to business and find out which permutations of the 38 disks are possible. We can
set-up the corresponding puzzle group HR in Sage and compute its order. Since the maximum possible
number of permutation is 38! we’ll ask if the order of HR is this value.

Sage
sage: S38=SymmetricGroup(38)
sage: L=S38("(1,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2)")
sage: R=S38("(1,38,37,36,35,6,34,33,32,31,30,29,28,27,26,25,24,23,22,21)")
sage: HR=S38.subgroup([L,R])
sage: HR.order()==factorial(38)
True

Therefore, all possible permutations of the puzzle pieces are possible. We could have instead asked if HR
is the symmetric group S38 to achieve the same result.

Sage
sage: HR==SymmetricGroup(38)
True

Theorem 16.1 (Solvability Criteria for Hungarian Rings puzzle): For the Hungarian Rings
puzzle every permutation of the 38 pieces is possible. In other words, HR = S38.

Much like the Oval Track puzzle we can see theoretically why HR = S38. In Lecture 14 we saw that we
could produce a 3-cycle as a compound conjugate:

[[L5, R5], R−1LR] = (6, 11, 12).

There is enough “wiggle room” on the puzzle to bring any three disks into spots 6, 11, 12, so we can perform
any 3-cycle by conjugating this one. Therefore, we can perform any even permutation of the puzzle pieces.
The move L is a 20-cycle, which is odd. This means HR contains A38 and at least one odd permutation.
Therefore it must contain all of S38. This is similar to the argument used to show OT = Sn when the
number of disks n ≥ 6 is even.

Knowing that all permutations in S38 are obtainable is a start, but we actually would like to know how to
solve the puzzle from any arrangement of the disks. As with the Oval Track puzzle, moving the first few
disks home is straightforward, it is the end-game where we need theory-based strategies.

16.1.1 Start-game: Solve the first 20 disks

There is enough flexibility in the puzzle to solve disks 7 through 16 on the left ring, and disks 21 through
30 on the right ring. You may be able to get a couple more disks in place, such as 17 and 31.

Using general heuristics you may be able to get a few more disks into place. Once you are at the point
where you think general heuristics cannot take you any further you are at the end-game. You will probably
have 20 to 23 disks in their proper position. This leaves 15 to 18 disks we still need to solve.

16.1.2 End-game: A strategy

This puzzle has a rather large end-game, as compared to the Oval Track puzzle. Once we have made it to
this point we express the remaining permutation in disjoint cycle form. It will possibly involve 2-cycles,
3-cycles, 4-cycles, 5-cycles, and perhaps longer cycles.



LECTURE 16 MASTERING THE HUNGARIAN RINGS PUZZLE 191

Figure 16.2: Start-game: begin by putting disks 7 – 16 and 21 – 30 in place.

If we know some fundamental cycles of these lengths then we have a strategy to solve: just solve one cycle
at a time. In the next section we go about building fundamental cycles.

Before doing this. let’s recall the fundamental commutators (see Figure 16.3):

[L5, R−5] = (1, 6)(11, 30), and [L−5, R5] = (1, 6)(16, 25).

These will come in handy in the following sections. We’ll come back to the end game strategy in Section
16.3.

(a) L5R−5L−5R5 = (1, 6)(11, 30) (b) L−5R5L5R−5 = (1, 6)(16, 25)

Figure 16.3: Basic commutators on the Hungarian Rings puzzle

16.2 Building Small Cycles: Tools for Our End-Game Toolbox

16.2.1 5-cycles

Starting with the intersection spots 1 and 6, there is a collection of 6 spots that are nicely spaced around
the puzzle: each one five away from the next one. The locations of these spots are 1, 6, 11, 16, 24, 30. With
this observation, there is a nice 8-move sequence to creates a 5-cycle:

σ5 = (L5R5)4 = (1, 25, 30, 11, 16).

Conjugation of this 5-cycle will come in useful when we need to deal with long cycles in the end-game.

16.2.2 4-cycles

Think back to the Oval Track puzzle and how we produced a 2-cycle. We had to send every disk through
the turntable. It was theoretically impossible to produce a 2-cycle without doing this. The reason, as we



LECTURE 16 MASTERING THE HUNGARIAN RINGS PUZZLE 192

Figure 16.4: Fundamental 5-cycle: σ5 = (L5R5)4 = (1, 25, 30, 11, 16).

discussed in Lecture 14, was that if one or more disks never passed through the turntable then it would
be possible to do the same thing on the puzzle with 21 disks. But this puzzle doesn’t have a 2-cycle since
the basic moves are even. A similar argument would show that every odd permutation on the Oval Track
puzzle must come from a sequence of moves that push every piece through the turntable.

There is a similar theoretical result for the Hungarian Rings puzzle.

Theorem 16.2: On the Hungarian Rings puzzle, suppose there is a sequence of moves that produces
an odd permutation β, which returns at least one disk on each ring to its home position. Then during
the process, each piece r on the right ring where β(r) = r must have been temporarily moved to the left
ring, or each piece ` on the left ring where β(`) = ` must have been temporarily moved to the right ring.
In other words, every piece on one of the rings that β keeps at home would have been temporarily sent
to the other ring.

Proof: To see why this is true, suppose β is an odd permutation that keeps a disk r on the right ring
at home and keeps a disk ` on the left ring at home (i.e. β(r) = r and β(`) = `), and suppose during the
entire process it keeps r on the right ring, and ` on the left ring. Without loss of generality, we can assume
β = Lm1Rk1Lm2Rk2 · · ·Lm`Rk` , for integers mi and kj , in which some could be 0.

Since r is never moved to the left ring, the only moves that affect it are the moves Rki , so the overall effect
of β on r is the same as that of Rk1Rk2 · · ·Rk` = Rk1+k2+···+k` , which turns the right ring k1 + k2 + . . . + k`
positions. Since r is returned home then k1 + k2 + · · ·+ k` must be divisible by 20, and hence the right ring
moves contribute an even permutation to the process.

Similarly, by considering piece ` on the left ring, m1 + m2 + · · ·m` is divisible by 20, and so the left ring
moves contribute an even permutation to the process. Therefore β must be even. A contradiction. �

Theorem 16.2 provides insight as to how to construct a 4-cycle, or any odd permutation for that matter:
for every disk on one ring that is to remain fixed by the permutation, we need to temporarily move it to
the other ring. Let’s try to do this with the disks on the left ring. The reason we use the left ring is purely
aesthetic: the left ring consists of the numbers are 1 through 20 which are easy to remember.

First let’s draw our attention to disks 35 and 21 in the solved state of the puzzle. See Figure 16.6a. We’d like
to consider a move which only affects these disks in the right ring. Recall that our goal is to temporarily
move every disk in the left ring to the right ring, as this is necessary if we wish to construct an odd
permutation. To simplify what could potentially be a complicated set of moves, we would like to minimize
the number of pieces that are moved on the right ring. We will only try to use move-sequences that affect
positions 35 and 21 of the right ring, and these will be the positions where the left ring pieces temporarily
visit.

The conjugate RLR−1 is a move that only affects positions 35 and 21 in the right ring, so let’s begin with



LECTURE 16 MASTERING THE HUNGARIAN RINGS PUZZLE 193

that move. It temporarily moves 1 and 6 off the left ring via move R, puts them in the holding spots
(positions 38 and 34, respectively), after move L is applied then R−1 moves them back on the left ring to
where they started. It also moves disks 2 and 7 off the left ring, and leaves them in our holding spots
(positions 21 and 35, respectively) on the right ring. See Figure 16.5a. If we do this move again, it will
put 2 back on the left ring, but it will be on the opposite side of 1. It also moves 1 and 6 off and on again.
Repeated applications would keep moving 1 and 6 off and on the right ring, while at the same time moving
another two disks off, then eventually back on. Figure 16.5b shows the result of repeated application of
RLR−1.

(a) The affect of applying RLR−1 once. (b) Each application of RLR−1 moves the
disks marked X one unit along the path.

Figure 16.5: The result of applying move RLR−1 once, and repeatedly.

This would be a very slow process, to move every tile off the left ring then back on again, not to mention
at some point we would need to do something to control which odd permutation we construct. Instead,
it would be nice to move as many numbers off and on the left ring as possible, in a minimum number of
moves, while at the same time keeping as many disks as we can in numerical order. To achieve this, we
consider RLR−1 as the first move, then we advance the numbers on the left ring, before applying RLR−1
again, this would put two new numbers in positions 1 and 6 which would then be ready to be moved off and
back on the left ring with the next application of RLR−1. In other words, let’s consider the move sequence
RLR−1L. The result of this move is shown in Figure 16.6b (in the figure we’ve drawn our attention to
positions and disks 21 and 35).

There are a few things that we should note about the move RLR−1L:

• All disks on the right ring were unaffected, except for disk 35 and 21.

• The disks in positions 7 and 2 were moved to storage on the right ring. And disks in positions 35 and
21 moved to take their place on the left ring.

• The disks in positions 1 and 6 were temporarily moved to positions 38 and 34 on the right ring, and
then move back to the left ring, ending up on positions 20 and 5, respectively. That is, they moved
only position clockwise around the ring.

• All other disks on the left ring advanced two positions clockwise around the ring.

Repeated application of RLR−1L is shown in Figure 16.6. A summary of which disks are moved off the
left ring, then back on again, by repeated application of RLR−1L is given in Table 16.1. It is important
to notice the change that was made by (RLR−1L)3, so compare Figure 16.6a to 16.6d. Disks that started
in positions 1 to 10, are now back in their natural order after having been moved temporarily to the right
ring. Disks that started in positions 12 through 20 are still in their natural order (they weren’t moved to
the right ring).

If we continue to repeat the process then we would disturb the natural order of disk 1 to 10. Instead,
we first rotate the left ring so that disks 1 through 10 are out of the way (apply L5), then we apply the
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(a) Puzzle in solved state, but focus your atten-
tion on disks 35 and 21, and also the disks that
move to these positions.

(b) RLR−1L

(c) (RLR−1L)2 (d) (RLR−1L)3

Figure 16.6: The set-up moves for creating the 4-cycle (1, 35, 11, 21).

prior to nth move RLR−1L: during nth move (RLR−1L)n: after nth move (RLR−1L)n:

n all disks that have moved
off/on the left ring

disks that currently moved
on and stayed on the left
ring

disks that currently moved
off/on the left ring

disks that are currently off
the left ring

1 ∅ 35 (35) 21 (21) 6 (34) 1 (38) 7 (35) 2 (21)
2 1, 6 7 (35) 2 (21) 8 (34) 3 (38) 9 (35) 4 (21)
3 1, 2, 3, 6, 7, 8 9 (35) 4 (21) 10 (34) 5 (38) 11 (35) 35 (21)
2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Table 16.1: Summary of disks that moved off then back onto the left ring, and the positions affected, with first 3
application of RLR−1L. The number in brackets next to the disk number represents the position the disk visited in
the right ring.

procedure RLR−1L three more times to move the other 10 disks off the left ring. The result is shown in
Figure 16.7a. Disks 9 through 10 were far enough away that they weren’t affect, but disk 1 got sent to
position 35. Notice most disks on the left ring are back in their proper order, so rotating them back to their
home position by L4 results in the 4-cycle:

σ4 = (RLR−1L)3L5(RLR−1L)3L4 = (1, 35, 11, 21).

We have just shown how to get a 4-cycle (see Figure 16.7b) and Theorem 16.2 tells us that this is probably
the best we could do.
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(a) (RLR−1L)2L5(RLR−1L)3 (b) The fundamental 4-cycle: σ4 =
(RLR−1L)3L5(RLR−1L)3L4 = (1, 35, 11, 21)

Figure 16.7: The set-up moves for creating the 4-cycle (1, 35, 11, 21), continued.

16.2.3 3-cycles

The fundamental 3-cycle, which we call σ3, was built using compound commutators:

σ3 = [[L5, R5], R−1LR] = (6, 11, 12).

See Lecture 14 for the discussion.

Figure 16.8: Fundamental 3-cycle: σ3 = [[L5, R5], R−1LR] = (6, 11, 12).

16.2.4 2-cycles

Theorem 16.2 tells us that producing a 2-cycle is just as challenging as producing a 4-cycle since they are
both odd. Luckily we already found a way to construct a 4-cycle:

σ4 = (RLR−1L)3L5(RLR−1L)3L4 = (1, 35, 11, 21),

as shown in Figure 16.7b.

Using σ4 we can construct the 2-cycle (1, 11). Begin by applying σ4. Now, if we can find a move sequence to
swap disks 1 and 35, and swap disks 11 and 21 then we can produce the 2-cycle (1, 11). To do this we can
conjugate the pair of transpositions:

[L5, R5] = (1, 25)(6, 11)

by the four-step move sequence β = RL−1R−6L which moves disks 1, 35, 11 and 21 to spots 6, 11, 1 and 25,
respectively. Therefore,

σ2 = σ4β[L5, R5]β−1

= ((RLR−1L)3L5(RLR−1L)3L4)(RL−1R−6L)(L5R5L−5R−5)(L−1R6LR−1)

= (1, 11).
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Figure 16.9: Fundamental 2-cycle: σ2 = (1, 11).

16.3 Solving the end-game

Theoretically, knowing how to perform 2-cycles is enough to solve the puzzle for any configuration. How-
ever, this would be very slow to perform manually. We now summarize a strategy for solving the puzzle.

(a) Starting with a scrambled puzzle put disks 7 through 16 on the left ring, and disks 21 through 30 on
the right ring in proper numerical order.

(b) Still using general heuristics get a few more disks in their proper places if possible.

(c) Write down the remaining permutation in cycle form.

(d) Work on cycles that at length 5 or longer using conjugates of the fundamental 5-cycle σ5 = (1, 11, 35, 11, 16).
If the cycle length is more than 5, you will be able to get 4 disks at a time into their right places. If
the cycle is length 5 then you can solve all disks in the cycle this way.

(e) At this point all remaining cycles will be of length 5 or less. Using conjugates of the fundamental
cycles: σ5, σ4, σ3, σ2 solve all disks in each cycle one cycle at a time.

16.4 Hungarian Rings - Coloured version

We now present a simple, and elegant strategy for solving the colour version of the puzzle shown in Figure
16.10.

Figure 16.10: Hungarian Rings puzzle - coloured version.

There are 10 black disks and 10 red disks, but there are only 9 of each in blue and yellow. Solve the black
and red disks first. There is enough room in the puzzle to do this using general heuristics. Once these are
in their proper locations try to put as many blue and yellow disks in their home locations using general
heuristics. To place the final remaining pieces (blue and yellow) you can swap two at a time, but if you’re
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sneaky about how you do this then you actually don’t need to use a 2-cycle. By placing the same coloured
disks in spots 1 and 6, and the disks you want to swap in spots 11 and 30 (or 16 and 25), the commutators
in Figure 16.3 can be used to swap pairs of disks. Since the intersection disks have the same colour this
will go unnoticed, and this process will essentially allow you to swap any two blue and yellow disks. When
using this method try to put either red or black disks in the intersection spots 1 and 6.

16.5 Exercises

1. Play with one of the virtual puzzles from the course website. The Hungarian Rings iphone app is
pretty good. Try to solve each scrambling using the techniques developed in this section.

2. Show that for any cycle α = (a1, a2, a3, a4, a5, . . . , ak) of length k > 5, there is a 5-cycle β so that αβ
has length k − 4. (This fact was used in the strategy for solving the end-game.)
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Lecture 17

Partitions & Equivalence Relations

The cubies of Rubik’s cube come in three types: corner cubies, edge cubies, and center cubies. In some
sense we can think of any two edge cubies as equivalent since, using cube moves, we can take any edge
cubie to the location of any other edge cubie (at the cost of possibly moving other pieces around). Similarly
any two corner cubies are equivalent. Grouping similar elements together when trying to understand a
large complicated set is a very powerful idea.

In this lecture we recall the concept of a partition of a set, and discuss its connection with the concept of
an equivalence relation on a set.

17.1 Partitions of a Set

Consider the set of integers Z. There are two well known subsets: the set of odd integers and the set of
even integers. Every integer is a member of one of these subsets, and no integer is a member of both, so
this gives a partition of Z:

Z = {. . .− 5,−3,−1, 1, 3, 5, . . .} ∪ {. . .− 4,−2, 0, 2, 4, . . .}.

Definition 17.1: A partition of a set A is a finite collection of non-empty subsets A1, A2, . . . , An
satisfying the following properties.

(a) A is the union of all the Ai’s: A = A1 ∪A2 ∪ · · · ∪An,

(b) the Ai’s are disjoint: Ai ∩Aj = ∅ for all i 6= j, 1 ≤ i, j ≤ n.

Example 17.1: Let E be the set of edge cubies of Rubik’s cube, let V be the set of corner cubies, and let C
be the set of centre cubies. E, V and C are disjoint sets, and their union is the set of all cubies. Therefore
E ∪ V ∪ C is a partition of the set of all cubies.

199
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Example 17.2: (a) The three sets

A0 = {. . .− 9,−6,−3, 0, 3, 6, 9, . . .} = {3k | k ∈ Z},
A1 = {. . .− 8,−5,−2, 1, 4, 7, 10 . . .} = {3k + 1 | k ∈ Z},
A2 = {. . .− 7,−4,−1, 2, 5, 8, 11 . . .} = {3k + 2 | k ∈ Z},

form a partition of the integers Z. A0 is all the integers which are divisible by 3, A1 are those integers
whose remainder is 1 when divided by 3, and A2 are those whose remainder is 2 when divided by
3. These exhaust all the possibilities of the remainder, and so A0 ∪ A1 ∪ A3 = Z. Moreover, for any
particular integer, the remainder (upon division by 3) is unique so these sets are disjoint.

(b) A partition of the positive integers Z+ into two sets is P ∪ P where P is the set of prime numbers,
and P = Z+ − P is the set of non-prime positive integers.

(c) The sets {0, 1, 2} and {2, 3, 4} do not form a partition of Z5 = {0, 1, 2, 3, 4} since they are not disjoint.
They have the element 2 in common.

We partitioned Z in three different ways: (i) into odd and even sets, (ii) into sets where the remainder upon
division by 3 were the same, and (iii) into the set of primes, and non-primes. This illustrates there is more
than one way to partition a set. As for which one to use, this depends on the problem you are trying to
solve.

Partitioning a set gives us a nice way to group together elements with similarities. This allows us to
focus our attention on subsets rather than the whole set, and this comes in handy when dealing with
permutation puzzles. Partitions are closely related to another concept known as an equivalence relation.
We now introduce this concept and show its connection with partitions.

17.2 Relations

We are familiar with many types of relations: “parent”, “brother”, “sister”, “sibling”, “spouse”, < , =, >, ⊂,
and other types of comparisons. In essence what we are doing is comparing two objects from the same set.

Definition 17.2: Let A be a set. A subset R ⊂ A×A is called a relation on A. If (x, y) ∈ R then we
say x is related to y (and we sometimes write xRy for simplicity).

Notice this definition is quite basic. It just says that by a “relation” we just mean a subset of A × A. Any
such subset will be a relation.

Example 17.3: Let A = {1, 2, 3, 4, 5}, then each of the following is a relation on A.

(a) R1 = {(1, 4), (3, 2)}

(b) R2 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)} = {(a, b) ∈ A×A | a = b}

(c) R3 = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)} = {(x, y) ∈ A×A | x < y}

In relation R1 we say: 1 is related to 4 and 3 is related to 2. But 1 is not related to 2. Also, 4 is not related
to 1 in this case since (4, 1) 6∈ R1. Read this carefully, 1 IS related to 4, but 4 IS NOT related to 1. Order
matters in a relation. For example, John is the father of Jack, but Jack is not the father of John. This
subtlety won’t bother us too much (we are more interested in equivalence relations, which are symmetric,
as discussed in the next section).
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Since, by definition, a relation is a subset of A × A, and |A × A| = 52 = 25 then there are 225 possible
relations on A (each element of |A × A| can either be included in the relation, or not, hence there are two
choices for each element). Some relations, of course, are more interesting than others.

Example 17.4: LetA = {∅, {1}, {2}, {1, 2}} (that is, A is the set of all subset of {1, 2}). Consider the relation

R = {(∅, ∅), (∅, {1}), (∅, {2}), (∅, {1, 2}), ({1}, {1}), ({1}, {1, 2}), ({2}, {2}), ({2}, {1, 2}), ({1, 2}, {1, 2})}.

This is an example of the “subset” relation, since (X,Y ) ∈ R precisely when X ⊂ Y .

Example 17.5: Let C be the set of all the different configurations of Rubik’s cube (that is, all the ways to
mess up a cube). Let’s say two configurations X and Y are related if there is a quarter turn of one of the 6
faces which takes configuration X to configuration Y :

(X,Y ) ∈ R if Y can be obtained from X by a quarter turn of one face.

This defines a relation on C. The cubes in Figures 17.1a and 17.1b are related (by a quarter turn of the r
face), and the cubes in 17.1b and 17.1c are related (by a quarter turn of the u face). However, the cubes in
17.1a and 17.1c are not related, since it takes two face turns to get from one configuration to the other.

Note that if (X,Y ) ∈ R then (Y,X) ∈ R, since each quarter turn has an inverse. In this case we would say
R is a symmetric relation.

(a) (b) (c)

Figure 17.1: Three different configurations of Rubik’s cube.

17.3 Equivalence Relation

For a given set, some relations are more useful than others. We saw in Example 17.3 that there are 225

different possible ways to define a relation on A = {1, 2, 3, 4, 5}, but relations (b) and (c) seem much more
useful (or should we say meaningful) than relation (a). Perhaps this is because we are so familiar with the
relations “=’” and “<”. In this section we focus our attention on a special type of relation that is very useful
in mathematics.

First a digression into relationships amongst people. For this let’s just consider the set of all people who
are currently alive, call this set P. There are a number of relations we can consider on P, for example if
we are interested in who is whose child then the relation we would consider is: xRy if x is a child of y. Or
maybe we want to consider the relationship of being a brother: xRy if x is a brother of y. Perhaps we just
want to know who is married, and to whom: xRy if x is a spouse of y. If your interest is in relationships on
a more global scale then you can consider a proximity relation: xRy if x lives in the same city as y.

There are some differences in the behaviour of these relations. Consider the “brother of” relation. Tim
could be a brother of Alice, but (assuming Alice is female) Alice is not a brother of Tim. We say that R is
not symmetric in this case. However, the “spouse of” relation is symmetric: if X is the spouse of Y then Y
is the spouse of X.
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For the “proximity” relation, if X lives in the same city as Y and Y lives in the same city as Z, then it
should follow that X lives in the same city as Z. We refer to this property as transitivity. Notice the “child
relation” is not transitive, since if Emma is a child of Karen, and Karen is a child of Henry, then Emma is
not a child of Henry (at least we hope not).

Another property that some relations may possess is the ability for an element to be related to itself. For
example, X lives in the same city as X is certainly true. But, X is a child of X is impossible (though this
would make a disturbing plot for some science fiction movie). A relation where all elements are related to
themselves is known as reflexive.

An important, and very useful, class of relations are the relations that are reflexive, symmetric and transi-
tive.

Definition 17.3: Let R be a relation on a set A. We call R an equivalence relation on A if it
satisfies the following properties:

(a) Each element is related to itself: (a, a) ∈ R for all a ∈ A (reflexive property)

(b) If a is related to b then b is related to a: (a, b) ∈ R implies (b, a) ∈ R (symmetric property)

(c) If a is related to b, and b is related to c then a is related to c: (a, b) ∈ R and (b, c) ∈ R implies
(a, c) ∈ R (transitive property).

Notation: If R is an equivalence relation on A then we often write x ≡ y, or x ∼ y in place of (x, y) ∈ R for
simplicity.

The “child of”, “brother of”, and “spouse of” relations are not equivalence relations. To see why we just
need to observe that one of the three properties doesn’t hold. In each case the reflexive property fails to
hold. However, the “proximity” relation is an equivalence relation.

In Example 17.3 the relations R1 and R3 are not equivalence relations. For instance, neither one is
symmetric. However, R2 is an equivalence relation.

The “proximity” relation ∼ on P is an equivalence relation. Pick some person, say person X from Vancou-
ver. What does the set of all people related to X represent: {Y ∈ P | Y ∼ X}? Well, this would consist of
all the people who live in Vancouver. Think about why? Sets of this type will be important for us, so we
give them a special name.

Definition 17.4: Let ∼ be an equivalence relation on a set A. For each a ∈ A the set

[a] = {x ∈ A | x ∼ a}

is called the equivalence class of A containing a. We call a a representative of the equivalence
class [a]. a

aThe equivalence class of a is sometimes denoted by [a]R or [a]∼.
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Lemma 17.1: If ∼ is an equivalence relation on a set A and x, y ∈ A, then

(a) x ∈ [x] (an equivalence class contains its representative)

(b) x ∼ y if and only if [x] = [y] (if two elements are related then their equivalence classes are
equal)

(c) [x] = [y] or [x] ∩ [y] = ∅ (equivalence classes are either equal or disjoint).

Proof: (a) Since ∼ is reflexive x ∼ x, therefore x ∈ [x].

(b) Suppose x ∼ y. We want to show that this implies [x] = [y]. To do this, let z ∈ [x], then z ∼ x and since
x ∼ y it follows that x ∼ y, by the transitive property, and so z ∈ [y]. Therefore [x] ⊂ [y]. Moreover, y ∼ x by
symmetry and a similar argument shows [y] ⊂ [x]. Therefore [x] = [y].

Conversely, suppose [x] = [y]. By part (a), x ∈ [x] = [y], and so x ∼ y.

(c) If [x] ∩ [y] 6= ∅ then let z ∈ [x] ∩ [y]. It follows that z ∼ x and z ∼ y, and so x ∼ y by transitivity. Now
applying part (b) we have [x] = [y]. �

Partitions and equivalence relations are related as the next result suggests.

Theorem 17.2: (a) If A is a set and R is an equivalence relation on A then the set of equivalence
classes form a partition of A.

(b) If A1, . . . , An is a partition of a set A then the relation R defined by

aRb if a, b ∈ Ai for some i,

is an equivalence relation on A. This relation can written as

R =

n⋃
i=1

Ai ×Ai.

The sets Ai are the equivalence classes of relation R.

Proof: (a) This is a direct consequence of Lemma 17.1.

(b) By definition of R =
⋃n
i=1Ai×Ai symmetric. Reflexivity follows from the fact that A is the union of the

Ai’s, and transitivity follows from the fact that the Ai’s are disjoint. �

Definition 17.5: If ∼ is an equivalence relation on a set A, then a set of class representatives is
a subset of A which contains exactly one element from each equivalence class. We denote the set of
class representative by A/ ∼.

If ∼ is an equivalence relation on a set A , and x ∼ y then we say x and y are equivalent, rather than
simply saying they are related.

Let’s look at some examples to get a little more comfortable with these ideas.
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Example 17.6 (Congruence relation on Z): Let n be a positive integer. Define an equivalence relation
≡ on Z by

a ≡ b if a− b is divisible by n.

We say a is congruent to b modulo n and write a ≡ b (mod n). In Exercise 2 you are asked to verify that
this is indeed and equivalence relation.

For example, 26 ≡ 4 (mod 11) since 26 − 4 = 22 is divisible by 11. We say 26 is equivalent to 4 modulo 11.
On the other hand, 7 6≡ 3 (mod 5) since 5 does not divide 7− 3 = 4.

The equivalence class of x modulo n is often called the congruence class of x modulo n.

The equivalence relation ≡ (mod 2) on Z has two equivalence (congruence) classes:

[0] = {0,±2,±4, . . .} and [1] = {±1,±3,±5, . . .}

A set of equivalence class representatives is {0, 1}.

The equivalence relation ≡ (mod 3) on Z has three equivalence (congruence) classes:

[0] = {0,±3,±6, . . .} , [1] = {±1,±4,±7, . . .} and [2] = {±2,±5,±8, . . .}

A set of equivalence class representatives is {0, 1, 2}.

In general, for n ∈ Z+ and a ∈ Z, the class of a is

[a] = {a+ kn | k ∈ Z}.

The set of equivalence class representatives (also called congruence class representatives modulo n) is

(Z/ ≡) = {0, 1, 2, . . . , n− 1}.

Example 17.7: Let C be the set of all the different configurations of Rubik’s cube. The relation on C given
in Example 17.5 is not transitive as we saw in that example.

Instead, let’s consider another relation on C defined by X ≡ Y if there is a sequence of moves involving
only U and R that takes configuration X to configuration Y . This is an equivalence relation. Check for
yourself that the three properties hold.

The 3 configurations shown in Figure 17.1 are equivalent, and therefore are elements of the same equiv-
alence class. A representative for this class is the solved cube 17.1a. How many other configurations are
equivalent to the solved cube? It turns out that there are a whopping 73, 483, 200 configurations all equiv-
alent to the solved cube. This means that by only twisting the R and U faces of the cube, you can generate
over 73 million different configurations of the cube.

Sage
sage: S48=SymmetricGroup(48)
sage: R=S48("(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)")
sage: L=S48("(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)")
sage: U=S48("(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)")
sage: D=S48("(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)")
sage: F=S48("(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)")
sage: B=S48("(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)")
sage: H=S48.subgroup([R,U])
sage: H.order()
73483200

Example 17.8: Let A denote the set of all possible ways to reassemble Rubik’s cube. That is, first you
take it apart, then put it back together in the shape of a cube again. Define a relation ∼ on A as follows:
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X ∼ Y if through a sequence of legal cube moves (i.e. twists of the 6 faces), X can be taken to Y .

All that this means is we consider two cubes equivalent if one can be twisted into the other.

What is the equivalence class of the solved cube?

This is really asking, what configurations are equivalent to the solved state configuration? In other words,
what are all the possible configurations one can achieve from the solved cube by twisting faces. In this
context, where we are considering all assembled cubes A, this is an interesting question, since if the
equivalence class is not all of A it means there are ways to reassemble the cube which are not solvable. So
you can mess with your friends cube by taking it apart and reassembling it into an unsolvable cube.

Using the notation introduced in this section, and letting X0 denote the cube in the solved state, then what
we want to know is [X0]. Moreover, if there is more than one equivalence class then it would be interesting
to know how many there are and a set of equivalence class representative, i.e. A/ ∼.

We will investigate this question in Lecture 20. But for now we’ll note that |A/ ∼ | ≥ 5 since Figure 17.2
shows five assemblies of Rubik’s cube which are not equivalent under legal cube moves.

(a) solved (b) edge flip (c) edge swap (d) clockwise cor-
ner twist

(e) counterclock-
wise corner twist

Figure 17.2: Five different equivalence class representatives of A. How many more are there?

We also know that a corner swap, see Figure 17.3, is not equivalent to X0.

Figure 17.3: A corner swap is equivalent to an edge swap, but not equivalent to the solved state.

However, it is equivalent to the “edge swap” in Figure 20.6b. We’ll see this when we study the Fundamental
Theorem of Cubology in Lecture 20.

17.4 Exercises

1. Consider the ”cousin of” relation:

xRy if x is a cousin of y.

Is R symmetric? Is it transitive?



LECTURE 17 PARTITIONS & EQUIVALENCE RELATIONS 206

2. In Example 17.6 it was stated that ≡ (mod n) is an equivalence relation on Z. Prove this statement.
That is, show it is reflexive, symmetric and transitive.

3. For each the following relations defined on the set X determine whether or not the relation is reflex-
ive, symmetric, or transitive.

(a) X = Z, aRb if a | b (i.e. a divides b)

(b) X = Z, aRb if a+ b = 10

(c) X = Z, aRb if a− b > 0

(d) X = Z, aRb if a+ b is even

(e) X = Z, aRb if a− b is even

(f) X = Z, aRb if 3 | a+ b

(g) X = Z, aRb if gcd(a, b) = 1

(h) X = Z× (Z− {0}), (a, b)R(c, d) if ad = bc

(i) X = R× R, (a, b)R(c, d) if
√

(a− c)2 + (b− d)2 ≤ 1

(j) X = R× R, (a, b)R(c, d) if ac+ bd = 0

4. Define the relation R on R× R by

(a, b)R(c, d) if b− a = d− c.

Show that R is an equivalence relation and describe the set R geometrically.

5. Define the relation R on R× R by

(a, b)R(c, d) if a2 + b2 = c2 + d2.

Show that R is an equivalence relation and describe the set R geometrically.

6. Define the relation R on X = {1, 2, 3, . . . , 20} by

aRb if 3 | a− b.

Show that R is an equivalence relation. Describe the equivalence classes of the corresponding parti-
tion of X.

7. Define the relation R on X = {1, 2, 3, . . . , 20} by

aRb if a and b have the same prime divisors.

Show that R is an equivalence relation. Describe the equivalence classes of the corresponding parti-
tion of X.

8. For each of the following statements about relations on a set A, where |A| = n, determine whether
the statement is true or false. If it is false, give a counterexample.

(a) If R is a reflexive relation on A, then |R| ≥ n.

(b) If R is a relation on A and |R| ≥ n, then R is reflexive.

(c) If R1, R2 are relations on A and R1 ⊂ R2, then R1 reflexive (symmetric, transitive) ⇒ R2

reflexive (symmetric, transitive).

(d) If R1,R2 are relations on A and R1 ⊂ R2, then R2 reflexive (symmetric, transitive)⇒R1 reflex-
ive (symmetric, transitive).

(e) If R is and equivalence relation on A, then n ≤ |R| ≤ n2.
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9. If A = {a, b, c, d}, determine the number of relations on A that are (i) reflexive, (ii) symmetric, (iii)
reflexive and symmetric, (iv) reflexive and contains (a, b), (v) symmetric and contains (a, b).

10. If A = {1, 2, 3, 4}, give and example of a relation R on A that is

(a) reflexive and symmetric, but not transitive.
(b) reflexive and transitive, but not symmetric.
(c) symmetric and transitive, but not reflexive

11. Describe a partition of the set of all prime numbers into four classes.

12. What is wrong with the following argument?
Let A be a set and R a relation on A. If R is symmetric and transitive, then R is reflexive.
Proof: Let (x, y) ∈ R. By the symmetric property (y, x) ∈ R. Then with (x, y), (y, x) ∈ R, it follows by
the transitive property that (x, x) ∈ R. Consequently R is reflexive. �

13. Let A be a set with |A| = n, and let R be an equivalence relation on A with |R| = r. Why is r − n
always even?

14. Conjugation is an equivalence relation. Let G be a group, show that the relation

gRh ⇐⇒ g is a conjugate of h,

is an equivalence relation.

15. Let G be a group and H a subgroup of G. Define a relation R on G by

aRb if b−1a ∈ H.

(a) Show R is an equivalence relation.
(b) Show that each equivalence class [a] has the form aH = {ah | h ∈ H} for some a. The is called

the left coset of H in G containing a.
(c) Show that each equivalence class has the same cardinality. That is, show |aH| = |bH|, for any

a, b ∈ H.
(d) Conclude from Theorem 17.2 that |H| divides |G|. This proves Lagrange’s Theorem: the order of

a subgroup divides the order of a group. (We’ll discuss Lagrange’s Theorem further in Section
18.2.)

16. Consider the set of all 2× 2 matrices with real entries:

M2,2(R) =

{[
a b
c d

]
| a, b, c, d ∈ R

}
.

Define a relation R on M2,2(R) by

ARB if A is row equivalent to B.

(By row equivalent we mean A can be converted to B through elementary row operations: (i) multiply
a row by a scalar, (ii) swap two rows, (iii) add a multiple of another row to an existing row.)
Show R is an equivalence relation. How many equivalence classes are there? Determine a set of
class representatives.

17. Define a relation R on M2,2(R) by

ARB if there exists and invertible matrix C such that B = CA.

Show R is an equivalence relation. How does this relation compare to the one in Exercise 16.
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Lecture 18

Cosets & Lagrange’s Theorem

In this lecture we introduce a powerful tool for analyzing a group - a coset. We’ll then use cosets to prove
Lagrange’s Theorem which states the size of a subgroup divides the size of the group.

18.1 Cosets

Let H be a subgroup of a group G. Define a relation ∼H on G as follows:

a ∼H b ⇐⇒ a−1b ∈ H. (18.1)

Equivalently, a ∼H b if and only if a−1b = h for some h ∈ H. Or another way to say this is a ∼H b if and
only if b = ah for some h ∈ H.

Lemma 18.1: If H < G, then ∼H is an equivalence relation on G. Moreover, if [a] denotes the equiva-
lence class of a ∈ G, then

[a] = {ah | h ∈ H}.

Proof: We need to show ∼H is reflexive, symmetric and transitive. For all a, b, c ∈ G:

Reflexive: Since H is a subgroup it contains the identity, so a−1a = e ∈ H, Therefore, a ∼H a.

Symmetric: If a ∼H b then a−1b ∈ H. SinceH is a subgroup it is closed under taking inverses, so (a−1b)−1 =
b−1a ∈ H. Therefore b ∼H a.

Transitive: If a ∼H b and b ∼H c then a−1b, b−1c ∈ H. Since H is a subgroup it is closed under products, so
(a−1b)(b−1c) = a−1c ∈ H. Therefore a ∼H c.

It follows that ∼H is an equivalence relation on G.

Since a ∼H b if and only if b = ah for some h ∈ H, then

[a] = {b | a ∼H b}
= {ah | h ∈ H}

�

209



LECTURE 18 COSETS & LAGRANGE’S THEOREM 210

The following definition gives a name to the particular type of equivalence class that appeared in the
lemma.

Definition 18.1 (Coset of H in G): Let G be a group and H a subgroup of G. For any a ∈ G, the set

aH = {ah | h ∈ H}

is called the left coset of H in G containing a. Analogously,

Ha = {ha | h ∈ H}

is called the right coset of H in G containing a. The element a is called the coset representative
of aH or Ha.

The right coset is the equivalence class that comes from the equivalence relation a ∼ b if and only if
ab−1 ∈ H.

Since left cosets of H are the equivalence classes under the relation ∼H they form a partition of the group
G. In particular, for any two left cosets aH and bH we either have

aH = bH or aH ∩ bH = ∅.

Let’s see what these cosets look like in a few specific examples.

Example 18.1: Let S3 = {ε, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}, and consider the subgroup H = 〈(1, 2)〉 =
{ε, (1, 2)}. The left cosets of H are:

εH = H = {ε, (1, 2)}
(1, 3)H = {(1, 3), (1, 3)(1, 2)} = {(1, 3), (1, 3, 2)}
(2, 3)H = {(2, 3), (2, 3)(1, 2)} = {(2, 3), (1, 2, 3)}

The left coset representatives of H in G are therefore ε, (1, 3), and (2, 3).

Notice that
(1, 2)H = H, (1, 3, 2)H = (1, 3)H, (1, 2, 3)H = (2, 3)H.

In other words, it doesn’t matter which element of the coset you use to describe it. For instance, (1, 2), (1, 3, 2), (1, 2, 3)
is another set of left coset representatives of H in G.

The right cosets of H are:

Hε = H = {ε, (1, 2)}
H(1, 3) = {(1, 3), (1, 2)(1, 3)} = {(1, 3), (1, 2, 3)}
H(2, 3) = {(2, 3), (1, 2)(2, 3)} = {(2, 3), (1, 3, 2)}

Notice that the left and right cosets are not necessarily the same. For example (1, 3)H 6= H(1, 3).

For the subgroup K = 〈(1, 2, 3)〉 = {ε, (1, 2, 3), (1, 3, 2)} there are only two distinct left cosets:

K = {ε, (1, 2, 3), (1, 3, 2)}
(1, 2)K = {(1, 2), (1, 2)(1, 2, 3), (1, 2)(1, 3, 2)} = {(1, 2), (1, 3), (2, 3)}.

Notice that K = (1, 2, 3)K = (1, 3, 2)K and (1, 2)K = (1, 3)K = (2, 3)K.
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Example 18.2: Consider Z12, the group of integers modulo 12, and the subgroup H = 〈3〉 = {0, 3, 6, 9}. The
cosets of H are:

0 +12 H = H = {0, 3, 6, 9}
1 +12 H = {1, 4, 7, 10}
2 +12 H = {2, 5, 8, 11}

Note that the left and right cosets are the same in this case since Z12 is abelian. Also,

1 +12 H = 4 +12 H = 7 +12 H = 10 +12 H.

In each of the examples above notice that the only coset of H which is a subgroup of G is H itself. Here are
some basic properties of cosets.

Lemma 18.2 (Properties of Cosets): Let H be a subgroup of G and a ∈ G.

(a) a ∈ aH

(b) aH = H ⇐⇒ a ∈ H

(c) For a, b ∈ G, either aH = bH or aH ∩ bH = ∅.

(d) aH = bH ⇐⇒ a−1b ∈ H ⇐⇒ b−1a ∈ H

(e) If H is finite then |aH| = |H|

(f) aH = Ha ⇐⇒ a−1Ha = H.

(Note that by a−1Ha we mean the set {a−1ha | h ∈ H}.)

Proof: First observe that since aH is the equivalence class [a] then (a), (c), and (d) are just the results of
Lemma 17.1 which we have already proven.

(b) If aH = H then a ∈ aH = H. Conversely, suppose a ∈ H. Then aH ⊂ H, while on the other hand, if
b ∈ H then a−1b ∈ H so b ∈ aH. Therefore aH = H.

Another way to prove this is to just observe that it is a special case of (d) where b = e. Therefore it follows
as a direct consequence of Lemma 17.1.

(e) The map ψ : H → aH defined by
ψ(h) = ah,

is a bijection.
Injective: ψ(h1) = ψ(h2) implies ah1 = ah2, and by cancellation, h1 = h2.
Surjective: For b ∈ aH, there is an h ∈ H such that b = ah. Therefore, a−1b ∈ H and ψ(a−1b) = b.

Since ψ is a bijection then H and aH must have the same size: |H| = |aH|.

(f) (=⇒) If aH = Ha then for any h ∈ H there is an x ∈ H such that ax = ha, so a−1ha ∈ H. Therefore
a−1Ha ⊂ H. On the other hand, for any h ∈ H there is a y ∈ H such that ah = ya, so h = a−1ya ∈ a−1Ha.
Therefore H ⊂ a−1Ha. It follows that H = a−1Ha.

(⇐=) If a−1Ha = H then for any h ∈ H there is an x ∈ H such that a−1xa = h, so ah = xa ∈ Ha. Therefore
aH ⊂ Ha. A similar argument shows Ha ⊂ Ha. Therefore aH = Ha. �
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18.2 Lagrange’s Theorem

We stated Lagrange’s Theorem back in Lecture 11. Now we have the tools to prove it.

Theorem 18.3 (Lagrange’s Theorem): If G is a finite group and H is a subgroup of G, then |H|
divides |G|.

Proof: Let ∼H be the equivalence relation on G defined in (18.1). Then the equivalence classes are the
left cosets [a] = aH. Let

a1H, a2H, . . . , akH

denote the distinct left cosets of H in G. By Lemma 18.2(e) all equivalence classes have the same size:
|[ai]| = |aiH| = |H|. Since these classes partition G then

G = a1H ∪ a2H ∪ · · · ∪ akH, (disjoint union)

and so

|G| = |a1H|+ |a2H|+ · · ·+ |akH| = k|H|, (18.2)

(by Theorem 2.1). Therefore |H| divides |G|. �

From Equation (18.2) we have a formula for the number of left cosets of H in G:

number of left cosets = number of ∼H equivalence classes =
|G|
|H|

.

Similarly, working with right cosets rather than left cosets in our previous arguments, we have that the
number of right cosets is also |G|/|H|.

In particular, the number of left and right cosets of a given subgroup are the same. This is an important
number in calculations involving groups and is called the index of H in G, which is denoted by [G/H]:

[G/H] := the index of H in G =
|G|
|H|

. (18.3)

However, even though the number of left and right cosets of a subgroup H in G is the same, the actual left
and right cosets themselves can be different. See Example 18.1.

In Lecture 11 we noted a few consequences of Lagrange’s Theorem. We’ll list them here again for conve-
nience.

Corollary 18.4 (ord(a) divides |G|): Let G be a finite group and a ∈ G. Then

(a) ord(a) divides |G|.

(b) a|G| = e.

Example 18.3 (Number of different cubes up to U , R moves): In Example 17.7 we considered the set
C of all the different configurations of Rubik’s cube and the equivalence relation ≡ on C defined by

X ≡ Y ⇐⇒ if there is a sequence of moves involving only U and R
that takes configuration X to configuration Y .
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If we identify each configuration in C with its corresponding permutation in RC3, then the equivalence
relation ≡ can be described as

X ≡ Y ⇐⇒ X−1Y ∈ H = 〈U,R〉

In other words, it is just the relation ∼H , and so the equivalence classes are the cosets of H = 〈U,R〉.

If X0 denotes the cube in the solved state, then [X0] = H, and as we found in Example 17.1, has size
73, 483, 200. The number of distinct equivalence classes is given by (18.3), and we can use Sage to compute
it.

Sage
sage: S48=SymmetricGroup(48)
sage: R=S48("(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)")
sage: L=S48("(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)")
sage: U=S48("(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)")
sage: D=S48("(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)")
sage: F=S48("(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)")
sage: B=S48("(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)")
sage: RC3=S48.subgroup([R,L,U,D,F,B])
sage: H=S48.subgroup([R,U])
sage: RC3.order()/H.order()
588597166080

What does this mean? It means that if we think of any two configurations, in which one can be ob-
tained from the other by twisting only the R and U faces, as equivalent, then we’ve partitioned C into
588, 597, 166, 080 sets, each of size 73, 483, 200, where within each set of the partition any two configurations
are equivalent under U , R moves. But for any two configurations coming from different sets in the parti-
tion, there is no way to obtain one from the other using U , R moves. In this sense there are 588, 597, 166, 080
different cubes up to R, U moves.

An Application to Number Theory:

We briefly look at how our previous results can be used to establish two very famous theorems in number
theory.

Corollary 18.5 (Fermat’s Little Theorem): For every integer a and every prime p,

ap ≡ a (mod p).

That is, p divides ap − a.

Proof: Let r be the remainder of a upon division by p. Since a ≡ r (mod p) and ap ≡ rp (mod p) then it
suffices to prove the corollary for 0 ≤ a ≤ p − 1. The result for a = 0 is trivial. So assume 1 ≤ a ≤ p − 1.
Then we can assume a ∈ U(p), the group of integers {1, 2, . . . , p − 1} under multiplication modulo p. (See
Lecture 10 for further discussion of U(n).) Since |U(p)| = p− 1 then by Corollary 18.4(b) ap−1 ≡ 1 (mod p),
therefore ap ≡ a (mod p). �

For example, without doing any calculation we know that 201113 − 2011 is divisible by 13.



LECTURE 18 COSETS & LAGRANGE’S THEOREM 214

Corollary 18.6 (Euler’s Theorem): Let a ∈ Z, n ∈ Z+ and gcd(a, n) = 1. Then

aφ(n) ≡ 1 (mod n).

Proof: It suffices to prove the result for 0 < a < n, since ak ≡ rk (mod n) for any k ∈ N, where r is the
remainder of a when divided by r. Since gcd(a, n) = 1 then a ∈ U(n), the multiplicative group of units
modulo n. Since |U(n)| = φ(n) (Euler’s φ-function) then by Corollary 18.4(b) it follows that

aφ(n) = a|U(n)| ≡ 1 (mod n).

�

18.3 Exercises

1. Consider the group Z12 and the subgroup H = 〈4〉 = {0, 4, 8}.

(a) Are the following pairs of elements related under ∼H?

(i) 3, 7 (ii) 5, 11 (iii) 6, 9

(b) Find all (left) cosets of H in G.

2. In S7, are the following pairs of elements related under ∼H where H = A7?

(a) (1, 2)(3, 4)(5, 6), (1, 7)(2, 6)(3, 5)(4, 7).
(b) (2, 3)(4, 6), (1, 3, 5, 7, 4).

(c) (1, 3, 7, 2), (2, 4, 3, 6, 5).

3. Let H = {ε, (1, 3)} in S3.

(a) Find all the left cosets of H.

(b) Find all the right cosets of H.

4. Find all of the left cosets of H = {1, 11} in U(30).

5. Let H and K be subgroups of a group G such that gcd(|H|, |K|) = 1. Show that |H ∩K| = 1.

6. Suppose that a has order 15. Find all of the left cosets of 〈a5〉 in 〈a〉.

7. Let ord(a) = 30. How many left cosets of 〈a4〉 in 〈a〉 are there? List them.

8. Show that the order of U(n) is even when n > 2.

9. Let G be a group such that |G| = 35.

(a) Show that G has at most 5 subgroups of order 7.

(b) Show that G has at most 7 subgroups of order 5.

(c) Deduce that G has at least one element of order 5 and at least one element of order 7.

10. Let H be a subgroup of a group G with |H| = 1
2 |G|.
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(a) Show that a 6∈ H implies G = H ∪ aH.
(b) Show that a 6∈ H implies anH 6= an+1H.
(c) Deduce that every element in G which has odd order is contained in H.

11. (a) How many 3-cycles are there in A5?
(b) How many 5-cycles are there in A5?
(c) Use Exercise 10 to show that A5 has no subgroup of order 30.

12. Repeat the argument of Exercise11 (modifying it where appropriate) to show that A4 has no subgroup
of order 6.

13. Compute 515 (mod 7) and 713 (mod 11).
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Lecture 19

Rubik’s Cube: Beginnings

In this lecture, we summarize Rubik’s Cube terminology and notation that we have been using so far, as
well as introduce Singmaster notation for each piece of, and each position on, the cube. There is no ”one
size fits all” notation when modelling Rubik’s Cube, we’ll see that each notation has its benefits depending
on what you are trying to do with it.

19.1 Rubik’s Cube terminology and notation

The notation we use was first introduced by David Singmaster in the early 1980’s, and is the most popular
notation in use today.

19.1.1 Move Notation

Fix an orientation of the cube in space. We may label the 6 sides as f , b, r, l, u, d for front, back, right, left,
up, and down.

Face moves:
A quarter twist of a face by 90 degrees in the clockwise direction (looking at the face straight on) is denoted
by the uppercase letter corresponding to the name of the face. For example, F denotes the move which
rotates the front face by 90 degrees clockwise. See Table 19.1 for a complete description of cube moves and
notation.

Slice moves:
We also give names to the slice moves. These are moves in which one of the three middle slices is rotated.
For example, if the slice between the l and r face is rotated upwards, that is, in the clockwise direction
when viewed from the right face, then we denote this move by MR. We could also view this move from the
left side as a counterclockwise rotation, so we could denote it by M−1L . Similarly, we have slice moves for
the slice parallel to the u and d face, and for the slice parallel to the f and b face. These moves are denoted
by:

MR = M−1L , MU = M−1D , MF = M−1B .

See Figure 19.1.

Whole cube moves:
The whole cube, as a single object, can be rotated in space. For example, we can rotate the cube about an
axis through the centres of the left and right faces. If the rotation is in the clockwise direction as viewed

217
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(a) Slice move MR. (b) Slice move MU . (c) Slice move MF .

Figure 19.1: Three basic slice moves of Rubik’s Cube.

from the right face then we denote the move byR. This could also be viewed as a counterclockwise rotation
from the left face perspective, so we could also denote it by L−1. See Figure 19.2.

Figure 19.2: Whole cube rotationR. Also denoted by L−1.

19.1.2 Position and Piece Notation

The 26 pieces of the cube, called cubies, split up into three distinct types: centre cubies (having only
coloured sticker), edge cubies (having two coloured stickers), corner cubies (having three coloured stick-
ers).

We call the space which a cubie can occupy a cubicle, and we call the space a sticker can occupy a facet.
We can also describe a facet as the face of a cubicle. As the pieces move around, the cubies move from
cubicle to cubicle, and the stickers move from facet to facet. In the 15-puzzle, Oval Track, and Hungarian
Rings puzzles, we called the location a piece could occupy a position or spot, the terms cubicle and facet are
customary to use when talking about the Rubik’s Cube.

To solve the puzzle each cubie must get restored to its original cubicle, we call this the cubies home
location, and each sticker must get returned to its original facet (i.e. the facets must also be correctly
positioned), we call this the cubies home orientation.1 See Figure 19.3 for an example of this distinction.
Once all cubies are in their home locations and home orientations the puzzle will be solved.

Figure 19.3: Cubie UF is in its home location, but not in its home orientation since it is flipped. Similarly for cubie
UB.

1This can also be called its home position.
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notation pictorial description of basic move
(Singmaster) (view from front) (clockwise/counterclockwise refers to viewing the face straight-on)

F , F−1 F = quarter turn of front face in the clockwise direction.
F−1 = quarter turn of front face in the counterclockwise direction.

B , B−1 B = quarter turn of back face in the clockwise direction.
B−1 = quarter turn of back face in the counterclockwise direction.

R , R−1 R = quarter turn of right face in the clockwise direction.
R−1 = quarter turn of right face in the counterclockwise direction.

L , L−1 L = quarter turn of left face in the clockwise direction.
L−1 = quarter turn of left face in the counterclockwise direction.

U , U−1 U = quarter turn of up face in the clockwise direction.
U−1 = quarter turn of up face in the counterclockwise direction.

D , D−1 D = quarter turn of down face in the clockwise direction.
D−1 = quarter turn of down face in the counterclockwise direction.

MR , M−1R MR = quarter turn of vertical slice in the clockwise direction.
M−1

R = quarter turn of vertical slice in the counterclockwise direction.

MU , M−1U MR = quarter turn of horizontal slice in the clockwise direction.
M−1

R = quarter turn of horizontal slice in the counterclockwise direction.

F 2, B2, R2, L2, U2, D2 denote the corresponding half-turn of the face.
Since a clockwise half-turn is equivalent to a counterclockwise half-turn then

F 2 = F−2, B = B−2, R2 = R−2, L2 = L−2, U2 = U−2, D = D−2

F ,B,R,L,U ,D denote clockwise rotations of the whole cube
behind the indicated face.

Table 19.1: Summary of cube move notation

We will describe a labeling of facets and cubicles below. It is important to keep in mind that facets and
cubicles don’t move, only the pieces (cubies and stickers) move. So when describing a labeling of the
cubicles and facets it is best to think of this label as appearing on a fictitious layer of skin surrounding the
puzzle. The pieces can move around under the skin but the skin remains in place.

Cubicle notation:
A cubicle can be identified by the faces it touches. For example, the cubicle that touches the up, right and
front faces can be denoted by urf . There was nothing special in how we chose to list these letters, we could
denote this cubicle by any one of the 6 symbols: fur, urf , rfu, fru, rfu, or ufr since each gives enough
information to describe the up-right-front corner cubical. However, the general convention is to use one of
the first three symbols fur, urf , or rfu since these list the faces this cubical touches in clockwise order.

Since a corner cubicle has three facets we denote it by three letters. Similarly, edge cubicles are denoted
by two letters. Figures 19.4 and 19.5 shows a labeling of all the cubicles (use any one of the facet labelings
to denote the cubicle to which the facet belongs).

Facet Notation

Figures 19.4 and 19.5 shows a labeling of the facets of the cube. This labeling is due to mathematician,
and puzzle enthusiast, David Singmaster. Our typical labeling uses numbers (see Figure 1.16 in Lecture
1), but this labeling uses strings of symbols. That advantage to this labeling is that it allows us to easily
determine where a facet position is located. For example, thinking back to our numerical labeling, if asked
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where facet 41 is, you likely don’t know without looking at a diagram. However, with this new labeling,
facet 41 is facet dlf , which you know is on the dlf cubicle. As for which of the three sides it is, this is
denoted by the first letter in the name: d for down. So facet dlf is the down side of the dlf cubicle.

If you are wondering how the order of the other two letters were chosen (i.e. why didn’t we call it dfl?),
the answer is simple: we wrote them in the order the faces appear when moving around the corner in the
clockwise direction. You can check all the labelings in Figure 19.4 to verify this is the convention.

There is a benefit to labeling cubicles and facets in a similar fashion. For the moment we focus our attention
on cubies rather than cubicles/facets. For example consider the move R−1. The cubie in cubicle urf moves
to cubicle dfr. However, there are three different ways a corner cubie can be placed in a cubicle, so just
stating that urf moves to dfr doesn’t indicate how it is oriented once it gets to dfr. Notice that the up face
of the cubie is placed in the front face when it moves to the new cubicle. Similarly, the right face stays on
the right face. It would be more descriptive to say that R−1 takes the cubie in position urf to position frd.
We can write

ufr
R−1

−−−→ fdr.

This indicates that cubie in cubicle ufr moves to cubicle fdr, and the stickers moved as follows: the sticker
in the u-facet moves to f -facet, f -facet moves to d-facet, and r-facet moves to r-facet.

Figure 19.4: Facet labeling on the 3× 3× 3 Rubik’s Cube.

(a) View of front (red),
right (yellow) and up
(blue) faces, labelled with
Singmaster notation.

(b) View of back (orange),
left (white) and down
(green) faces, labeled with
Singmaster notation.

Figure 19.5: Rubik’s Cube with classic colouring scheme: blue opposite green, red opposite orange, white opposite
yellow. Each cubicle is labeled using Singmaster notation.
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Cubie notation:
A cubie is identified by its home cubicle. We use capital letters to denote cubies, and lower case to denote
cubicles. For example, URD denotes the cubie whose home location is the urd cubicle. It may seem that
using the same notation to denote cubies as cube moves is a bad idea, however, we’ll see that this doesn’t
cause any trouble at all. We just need to be aware as to whether we are talking about cube moves, or cube
pieces.

Table 1.2 in Lecture 1 summarizes the terminology.

With all this notation now in our tool box, we are ready to begin a thorough investigation of Rubik’s Cube.

19.2 Impossible Moves

Through previous investigations we’ve found that there are some moves that are impossible to do on the
cube. Figure 19.6 shows five moves that are impossible. This will be helpful when coming up with a
strategy to solve the cube since knowing what is impossible to do, will prevent us from going on a search
we would never come back from.

(a) single edge flip (b) edge swap (c) single corner
twist

(d) double corner
twist in same di-
rection

(e) corner swap

(f) single edge flip (g) edge swap (h) single corner
twist

(i) double corner
twist in same di-
rection

(j) corner swap

Figure 19.6: Five different moves that are impossible to perform. The image in the bottom row is a face-on perspective
of the top face of the corresponding cube in the top row. The thin rectangular boxes on the sides indicate the colour of
the side facets, and the long rectangular box indicates the side face colour.

Exercise 14 of Lecture 7 uses permutation-parity arguments to show why it is impossible to (i) flip an
edge, (ii) swap two edges, and (iii) swap two corners. The impossibility of the corner twist configurations
were investigated using Sage in Exercises 1, 2 and 4 of Lecture 12. In Lecture 20 we will come back to
these configurations and give mathematical proofs that they are indeed impossible, thereby confirming the
computations done by Sage. Since we were relying on group theoretic algorithms in Sage that are beyond
the scope of this book, providing an independent proof will provide us with some closure on this topic.
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19.3 A Catalog of Useful Move Sequences

Over the previous few lectures we have built some useful moves using commutators. These were move
sequences that affected only a few pieces, while returning everything other piece to the position it started.
Using conjugation we are able to modify these move sequences to produce other useful moves of the same
form. Below is a list of the moves we’ve created for convenient reference.

Notice that for each type of cubie (corners and edges) we can (i) 3-cycle any three cubies of the same type,
and (b) twist/flip a pair of cubies of the same type. Knowledge of these moves is enough to solve the cube:
first place cubies in their home locations (using 3-cycles), then orient the cubies in their home orientation
(using twist/flip moves).

Reminder: [x, y] = xyx−1y−1 is the commutator of x and y and y−1xy is the conjugate of x by y. In the
following tables, the move labeled C/E# is created using commutators, and the corresponding move denoted
by C/E#’ is the conjugate of it by the indicated move sequence y.

19.3.1 Corner Moves

name effect move-sequence

C1 [LD2L−1, U ]

= LD2L−1ULD2L−1U−1

C1’ conjugate C1 by y = B:

B−1[LD2L−1, U ]B

= B−1LD2L−1ULD2L−1U−1B

C2 [LD2L−1F−1D2F,U ]

= LD2L−1F−1D2FUF−1D2FLD2L−1U−1

C2’ conjugate C3 by y = R:

R[LD2L−1F−1D2F,U ]R−1

= R−1LD2L−1F−1D2FUF−1D2FLD2L−1U−1R
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It may be worth noting that we also found the following corner 3-cycle that preserves orientation of the
cubies:

The move sequence is [F−1D−1FR−1D2RF−1DF,U ].

19.3.2 Edge Moves

name effect move-sequence

E1 [MR, U
2]

=MRU
2M−1

R U2

E1’ conjugate E1 by y = DR2:

R2D−1[MR, U
2]DR2

E2 [M−1
R DMRD

−1M−1
R D2MR, U ]

E2’ conjugate E2 by by y = B−1R−1:

RB[M−1
R DMRD

−1M−1
R D2MR, U ]B−1R−1
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19.4 Strategy for Solution

Our primary goal is in understanding the cube. With that goal in mind we should come away with a
strategy for solving the cube. We will not find an optimal strategy, nor will will look for a large collection of
moves to tackle all sorts of configurations. Instead, we will be content with a method that systematically
solves the cube and uses the tools we have developed in this course. Ideally the method should not involve
lots of memorization, but should rely on a solid understanding of the mathematics of permutations, i.e.
commutators and conjugates.

If you haven’t already tried to use the moves listed in Section 19.3 to find a strategy yourself, try it now.
The fun of discovering a solution on your own may be lost if you read the strategy described below.

More efficient methods than the ones described here, all of which require memorization, are left for the
reader to find. A simple google search can keep you busy for weeks.

19.4.1 The Layer Method

The method we will use to solve the cube is known as the layer method. We begin by solving the top layer,
followed by the middle layer, and finally the bottom layer. A sketch of the steps involved in implementing
this strategy are shown in Figure 19.7.

You may begin by solving any colour, and it is best to choose a colour that stands out to you from the rest.
This way it is easy to find the pieces on the scrambled cube. In these notes we’ll begin by solving the blue
layer, in which case the bottom layer will be green.

(a) Step 1: Solve edges in top
layer.

(b) Step 2: Solve corners in top
layer.

(c) Step 3: Solve edges in mid-
dle layer

(d) Step 4: Flip over, solve re-
maining corners (first permute
then orient).

(e) Step 5: Solve remaining
edges (first permute then ori-
ent).

Figure 19.7: The Five-Step strategy for solving Rubik’s Cube.

Solving the top and middle layers are pretty straightforward. You should be able to do this with a little
practice and using general heuristics. A theory based strategy won’t be needed until the end-game, which
is when we reach the bottom layer.
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19.4.2 Solving the Top Layer

Solving the top layer is a straightforward task. You can send pieces to the bottom layer, then bring them
back to the top layer, to achieve desired twists. That is, make use of conjugation.

Step 1: Solve the edge cubies in the top layer.

Keep in mind that centres remain fixed, so there is only one proper home orientation for an edge cube. Use
the centres as a guide. This is indicated in Figure 19.7a where the centres are shown, and the facets of the
edge cubies must match the centres.

Step 2: Solve the corner cubies in the top layer.

Let α be any of the moves R, L, F , B. This will bring one corner cubie into the down layer. Rotating the
down layer will then bring a new cubie into the cubicle whose contents are moved back up to the top layer
by α−1. In other words, αDα−1 allows you to change a corner cubie in the top layer without affecting any
other cubies in the top layer. This should help you finish the top layer completely.

19.4.3 Solving the Middle Layer

Step 3: Solve the edge cubies in the middle layer.

We could modify some of the move sequences in Section 19.3 to solve edges in the middle layer. However,
this may be overkill, since at this stage there is plenty of ”wiggle room” in the down layer so we should be
able to find a general heuristic that works. Try to find one yourself.

One method that is pretty straightforward is described here.

If the cubie that is to be placed in the middle layer is currently in the bottom layer then rotate the bottom
layer so one sticker of the edge cubie is directly beneath the centre cubie of the same colour. For example,
see Figure 19.8 where the cubie to be moved in the middle layer has a red sticker on the side layer, so it
is placed directly under the red center cubie. Whatever the colour of your cubie is, rotate the entire cube
so the cubie is now in the fd cubicle, and the colour of the sticker in the f face matches the centre cubie of
the f face right above it.

Depending on whether the cubie is to be moved to the right of the left we can apply one of the two se-
quences:

right: [D−1, R−1][D,F ] = D−1R−1DRDFD−1F−1

left: [D,L][D−1, F−1] = DLD−1L−1D−1F−1DF

Notice that in either case the move sequence is a product of Z commutators (see Lecture 13 for a discussion
of these commutators).

Figure 19.8: Moving an edge piece into the middle layer. To move right apply [D−1, R][D,F ], to move left apply
[D,L][D−1, F−1].
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19.4.4 Solving the Bottom Layer

We now have one layer left to solve. This is the end-game of Rubik’s Cube since it is here where things get
a bit more difficult. Trying to place the remaining few pieces while leaving previously placed pieces alone
requires a collection of strategic moves: ones that move only a few pieces at a time. Luckily, the theory of
commutators and conjugates has provided us with such moves (see Section 19.3).

Flip the cube over, so the bottom layer is now the top layer. This will give us clear visibility of all the pieces
in the last layer that need to be solved.

Step 4: Solve the remaining corner cubies.

We’ll do this in two steps:

Step 4a: Place the remaining corner cubies in their home locations. Don’t worry about twisting them into
their home orientations just yet.

Look at the stickers of each of the remaining corner cubies. The colours that appear will tell you exactly
where its home location is. For example, the corner cubie with green, white and red stickers belongs to the
location which is the intersection of the green, white and red faces. Recall the colour of a face is given by
the colour of the centre cubie.

Now that you know where each corner cubie must be moved, see if a simple rotation of the up face will
restore all corners to their proper locations. If not, then we are in one of the following cases:

Case 1: It is possible to put exactly one corner cubie in its correct location, and have the other 3 out of
position. Use the 3-cycle move sequence C1’ in Section 19.3, or its inverse, to move the remaining 3 corner
cubies into their correct positions.

For example, if we need to swap two corner cubies as in the following diagram

then we can first rotate the face so 1 is home, and 2, 3, 4 are out of position, then we just need to perform a
3-cycle (2, 4, 3).

Case 2: Up to a physical rotation of the whole cube, we are in either one of the two following positions.:

The first case can be taken to the second case by rotating the face counterclockwise 90◦. So assume we are
in the second case. Apply C1’ to produce the 3-cycle (1, 4, 2), which produces the following position.
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Now use C1’ to produce a 3-cycle (1, 3, 2).

Therefore, to restore the corner cubies to their correct locations at most two 3-cycles need to be applied.

Step 4b: Orient (twist) the remaining corner cubies into their home orientations.

Repeated applications of C2 will be enough to orient the corners. (Note, we already used Sage to discover
it is impossible to have exactly one corner twisted, or exactly two corners twisted in the same direction.)

Here are a couple of possible scenarios that we could be faced with:

In the first case, applying C2’ will solve the corners. In the second case, we can apply C2−1 on corners 1
and 4 to solve corner 4, and twist corner 1 so that it is now out of home position by a clockwise twist. Then
applying C2 to corners 1 and 2 will solve the remaining two corners. Other scenarios are possible and can
be dealt with similarly.

Step 5: Solve the remaining edge cubies.

We’ll do this in two steps:

Step 5a: Place the remaining edge cubies in their home locations. Don’t worry about flipping them into
their home positions just yet.

Much like the corners, we can use 3-cycles E1’ to restore all the edge cubies.

Step 5b: Orient (flip) the remaining edge cubies into their home orientations.

Using E2 and E2’ we can flip any pair of edges to restore to their home orientation.

Note, it is impossible to have a single edge flipped as we’ve already discovered. Therefore, flipped edges
occur in pairs and so E2, E2’ are the only moves we will need.

Congratulations! Not only have we solved the cube, we built the moves to do it from scratch! Behold the
power of the theory of permutations.

19.5 Exercises

1. Practice solving the first two layers of your cube. Repeatedly scramble and solve until you are confi-
dent you can easily solve the first two layers.
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2. Practice with Step 5: solving edges in final layer. In each part below, write down a strategy to
solve the puzzle.

(a) (b)

(c) (d)

3. Practice with Step 4: solving corners in final layer. In each part below, write down a strategy
to solve the puzzle.

(a) (b) (c)

4. Impossible Configurations. In each part below, a configuration of the last layer is shown. Show
that each configuration is impossible.
(Hint: Try showing the configuration is equivalent to one shown in Section 19.2.)
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(a) (b)

(c) (d)

5. Practice with Steps 4 and 5: solving corners and edges in final layer. In each part below, a
configuration of the last layer is shown. Write down a strategy to solve the puzzle.

(a) (b)
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Lecture 20

Rubik’s Cube: The Fundamental
Theorem of Cubology

In this lecture, we present the Fundamental Theorem of Cubology. This is the theorem which gives us a
complete understanding of what permutations of the cubies are possible, a solvability criteria, and much
more.

20.1 Rubik’s Cube - A Model

We now describe a mathematical model of Rubik’s Cube which is superior to our previous models in a few
ways. The difficulty in modeling Rubik’s Cube comes from the fact that each cubie has a home location and
orientation. Sometimes we would like to focus on how the cubies have been permuted (without focusing on
the orientation of the stickers), and other times we would like to focus on how the cubies are oriented in the
cubicle they occupy. Our model will consist of a 4-tuple (ρ, σ,v,w), where ρ (respectively σ) describes how
the corner cubies (respectively edge cubies) are permuted, and v (and w) describe how the corner cubies
(and edges) are oriented.

We begin by fixing an orientation of the cube in space, that is, we choose an up face and a front face. This
can be done in any way whatsoever (in fact, there are 24 different ways to do this), but once an orientation
is chosen this will remain fixed for the rest of the discussion. In these notes the orientation we will choose
is: blue face up, red face in front. We call this the standard orientation of the cube. We also assume the
classic colouring scheme: blue opposite green, red opposite orange, and yellow opposite white. See Figure
20.1.

Figure 20.1: The standard orientation for the cube: blue face up, red face front.

231
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We recall some notation:

• V denotes the set of corner cubies. |V | = 8.

• E denotes the set of edge cubies. |E| = 12.

• RC3 denotes the Rubik’s Cube group.

• SV = S8 is the symmetric group on the corner cubies.
(Fix a numbering of the corner cubies - see Figure 20.2a.)

• SE = S12 is the symmetric group on the edge cubies.
(Fix a numbering of the edge cubies - see Figure 20.2b.)

As with our other puzzles, we imagine that both the cubies (pieces), and the cubicles (locations), are num-
bered. When a cubie is in its home location the cubie number will match the cubicle number. Imagine a
fictitious layer of skin around the outside of the cube which stays in play under cube moves, the cubicle
numbers are printed on this layer of skin. Any configuration of the cube will give two permutations (ig-
noring orientation of the cubies): ρ ∈ S8 which corresponds to how the corner cubies are permuted, and
σ ∈ S12 which corresponds to how the edge cubies are permuted. See Figure 20.2.

(a) (b)

Figure 20.2: Labeling of the corner and edge cubies.

In order to describe the orientation of the corner and edge cubies, we mark exactly one facet of each cubicle
with a “+” sign. Again, imagine this marking is on the fictitious layer of skin surrounding the cube. Figure
20.3a shows how the facets will be marked. The key thing to observe is that every cubicle has exactly one
facet marked. We call this marked facet the primary facet of the cubicle.

Next we mark the stickers on each cubie based on their relative position to the primary facet. For this
marking, think of the cube in the solved state. For an edge cubie, mark the sticker with a 0 if it is in
the primary facet (i.e. beneath the “+” mark on the skin layer), and mark the other sticker on the same
cubie with a 1. For a corner cubie, mark the sticker in the primary facet with a 0, and mark the other two
stickers with 1 and 2 as you move in the clockwise direction around the cubie. See Figure 20.3b.

For an arbitrary configuration of the cube, the orientation of the edge pieces can be charcterised by a 12-
tuple w = (w1, w2, . . . , w12) ∈ Z12

2 = {0, 1}12,1 where wi is the number on the sticker of the ith edge cubie
that is in the primary facet of the cubicle it occupies. Read this last statement again carefully so you
know how wi is defined. Similarly, the orientation of the corner pieces can be charcterised by an 8-tuple
v = (v1, v2, . . . , v8) ∈ Z8

3 = {0, 1, 2}8, where vi is the number on the sticker of the ith corner cubie that is in
the primary facet of the cubicle it occupies.

We now have a way to describe the position of all the pieces in any configuration of the cube.

1For a set A, An denotes the cartesian product of A with itself n times: A×A · · · ×A.
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(a) Marking the primary facets of a cu-
bicle.

(b) Numbering the stickers of a cubie.

Figure 20.3: Orientation markings.

Definition 20.1 (Position vector of a configuration of cube pieces.): If X is any configura-
tion of Rubik’s Cube the position vector is a 4-tuple (ρ, σ,v,w) where ρ ∈ S8, σ ∈ S12 encode the
permutations of the cubies, and v ∈ Z8

3 and w ∈ Z12
2 encode the orientations of the cubies.

ρ ∈ S8 : ρ(i) = j if corner cubie i is in cubicle j.
σ ∈ S12 : σ(i) = j if edge cubie i is in cubicle j.

v = (v1, v2, . . . , v8) ∈ Z8
3 = {0, 1, 2}8 : vi is the number on the ith corner cubie beneath

the “+” mark of the cubicle ρ(i) it occupies.

w = (w1, w2, . . . , w12) ∈ Z12
2 = {0, 1}12 : wi is the number on the ith edge cubie beneath

the “+” marking of the cubicle σ(i) it occupies.

For simplicity we will use 0 to denote the 8-tuple and 12-tuple (0, 0, . . . , 0).

Let’s look at a few examples where we take a configuration and write it as a 4-tuple.

(a) The solved state
cube

(b) Move R−1 (c) Move U (d) Corner 3-cycle C1’

Figure 20.4: Configurations for Example 20.1.

Example 20.1: (a) The solved state cube shown in Figure 20.4a corresponds to the 4-tuple (ε, ε,0,0),
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since cubies have not been permuted, nor twisted.

(b) Consider the cube corresponding to the move R−1 as shown in Figure 20.4b. The corner cubies have
been 4-cycled: ρ = (2, 3, 7, 6), and the edge cubies have been 4-cycled: σ = (2, 7, 10, 6). To determine
the orientation vectors v and w, we look at where each cubie was moved to, one by one. Let’s start
with the corner cubies. Only 4-corner cubies were moved, namely 2, 3, 7 and 6, therefore we only need
to figure out what v2, v3, v7 and v6 are. All others are 0. Cubie 2 (the blue-yellow-orange cubie) has its
orange side in the primary facet now, since the orange side is labeled 1 (see brf facet in Figure 20.3)
this means v2 = 1. Similarly, cubie 3 (the URF cubie) is now in cubicle frd and the sticker from facet
fur (marked with number 2) is now primary facet dfr. Therefore, v3 = 2. The reader should verify
the rest of the components in the orientation vectors:

v = (0, 1, 2, 0, 0, 2, 1, 0), w = (0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0).

Together with permutations ρ = (2, 3, 7, 6), and σ = (2, 7, 10, 6), we have found the 4-tuple position
vector.

(c) Consider the cube corresponding to the move U as shown in Figure 20.4c. Since all “+” markings are
on the up-face each cubie still has the sticker labeled 0 in the primary facet. Therefore,

v = 0, w = 0.

The permutations of the cubies are:

ρ = (1, 2, 3, 4), σ = (1, 2, 3, 4).

(d) Finally, consider the cube corresponding to the move C1’ as shown in Figure 20.4d. Edge cubies
remained fixed so σ = ε and w = 0. The corner cubies are permuted as a 3-cycle ρ = (2, 4, 3) and the
orientation vector is:

v = (0, 1, 2, 0, 0, 0, 0, 0).

Not every 4-tuple (ρ, σ,v,w) corresponds to a legal configuration of Rubik’s Cube (i.e. one that is achievable
using basic cube moves). For example, the 4-tuple (ε, ε,0, (1, 0, 0, . . . , 0)) represents a single edge flip (where
the edge cubie in the ub position was flipped). This is not possible to do through legal cube moves as we
have already seen (see Lecture 7 Exercise 14, see also the Sage calculation on page 138). Therefore, the
set

S8 × S12 × Z8
3 × Z12

2 = {(ρ, σ,v,w) | ρ ∈ S8, σ ∈ S12,v ∈ Z8
3,w ∈ Z12

3 } (20.1)

is much larger than the set of legal cube configurations RC3. In fact, this set is precisely the set of ways
there are to reassemble the cube (assuming you don’t take apart the mechanism holding the centres in
place, but only disassemble and reassemble edge and corner pieces). We denote set (20.1) by RC∗3 and call
it the illegal cube group (as opposed to RC3 which is the (legal) cube group). Previously we used the
notation A to denote this set, but from now on we will use RC∗3 as a reminder of how it is related to RC3.

Since RC3 ⊂ RC∗3 we’d like to characterize exactly which 4-tuples correspond to legal configurations of the
cube. This characterization is known as the First Fundamental Theorem of Cubology.
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20.2 The First Fundamental Theorem of Cubology

Theorem 20.1 (First Fundamental Theorem of Cubology): A position vector (ρ, σ,v,w) ∈ S8 ×
S12 × Z8

3 × Z12
2 corresponds to a legal configuration of Rubik’s Cube if and only if the following three

conditions are satisfied.

(a) sign(ρ) = sign(σ)

(b) v1 + v2 + · · ·+ v8 = 0 (mod 3)

(c) w1 + w2 + · · ·+ w12 = 0 (mod 2)

In words, this theorem says that a configuration is legal if and only if the permutation of the edge cubies
has the same parity as the permutation of the corner cubies, the number of clockwise corner twists is equal
to the number of counterclockwise corner twists modulo 3, and edge flips occur in pairs.

Verify for yourself that these conditions are satisfied in each case of Example 20.1. Moreover, in the case
of a single edge flip in the ub cubicle, the position vector is (ε, ε,0, (1, 0, 0, . . . , 0)) which doesn’t satisfy
condition (c) of the theorem, hence it isn’t a legal configuration.

Proof: (1) First we show that the three conditions are necessary, i.e. that they hold for every legal config-
uration. To do this we just need to show these conditions hold for the solved state configuration, and they
are preserved under the six basic cube moves R,L,U,D, F,B.

The solved state configuration corresponds to the position vector (ε, ε,0,0) and the three conditions in the
theorem are satisfied.

For each of the six moves R,L,U,D, F,B the corresponding position vectors are:

R 7→ ((2, 6, 7, 3), (2, 6, 10, 7), (0, 1, 2, 0, 0, 2, 1, 0), (0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0))

L 7→ ((1, 4, 8, 5), (4, 8, 12, 5), (2, 0, 0, 1, 1, 0, 0, 2), (0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1))

U 7→ ((1, 2, 3, 4), (1, 2, 3, 4), (0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

D 7→ ((5, 8, 7, 6), (9, 12, 11, 10), (0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

F 7→ ((3, 7, 8, 4), (3, 7, 11, 8), (0, 0, 1, 2, 0, 0, 2, 1), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

B 7→ ((1, 5, 6, 2), (1, 5, 9, 6), (1, 2, 0, 0, 2, 1, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

and the conditions (a)-(c) of the theorem are satisfied. Each pemutation is a 4-cycle which is odd and has
sign −1. The sum of the components of each corner orientation vector is either 0 or 6 which is divisible by
3. The sum of the components of each edge orientation vector is either 0 or 4 which is divisible by 2.

If X is a legal configuration with position vector (ρ, σ,v,w) satisfying (a)-(c) then after applying one of the
six basic moves to X (a)-(c) remain satisfied: (a) is satisfied since every one of these moves simultaneously
causes a 4-cycle of corners cubies and a 4-cycle of edge cubies, which have the same parity. (b) remains
satisfied, because components with U and D don’t change at all, while with R,L, F,B simultaneously two
components are increased by 1 (modulo 3), and two components are reduced by 1 (modulo 3). (c) remains
satisfied, because components with U,D, F,B don’t change at all, while with R, L simultaneously two
components are increased by 1 (modulo 2), and two components are reduced by 1 (modulo 2).

Since every legal configuration is obtainable from the solved state cube through legal cube moves then
properties (a)-(c) are satisfied by any legal configuration.

(2) In order to prove these three conditions are sufficient, we have to show that any position vector
(ρ, σ,v,w) satisfying these three properties can be solved using legal cube moves. Our strategy for solving
the cube, as laid out in Lecture 19, is enough to prove this part. Let’s see why.

Let X be a configuration corresponding to (ρ, σ,v,w).
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(i) Without loss of generality we can assume sign(ρ) = sign(σ) = 1. If not, just apply any single basic
quarter-turn of a face, the resulting position vector will now satisfy this parity condition. This means
the permutation of corner cubies is even, and therefore can be restored to their home locations using
3-cycles. Also, edge cubies can be restored to their home locations using 3-cycles. Since we can
perform any 3-cycle of corner or edge cubies, then we can restore all cubies to their home locations.
Call this new configuration X ′.
Since the basic cube moves preserve conditions (a)-(c) then the position vector (ρ′, σ′,v′,w′) for X ′
satisfies these conditions, and in this case ρ′ = ε, σ′ = ε. All that remains now is to show we can twist
the cubies into their proper orientations.

(ii) Condition (c) says that an even number of edge pieces need to be flipped. Since we have moves to
flip any pair of edges then we can solve all the edge cubies. Condition (b) says that the number of
clockwise corner twists is equal to the number of counterclockwise corner twists modulo 3. So first
twist any cw, ccw pairs into their home orientations. The result will be that all remaining corners
twists will occur in triples: 3 cw or 3 ccw twists. These can be solved using our corner twisting moves.

Therefore, X is a solvable configuration. This completes the proof of the theorem. �

The First Fundamental Theorem of Cubology is the solvability criteria for Rubik’s Cube. This is the
analogue to the solvability criteria that we developed for all the other puzzles. Moreover, this theorem
allows us to compute the size of the group RC3 simply by counting the number of 4-tuples that satisfy the
three conditions.

Corollary 20.2 (The Size of the Cube Group): The number of positions of the illegal and legal
Rubik’s Cube groups are:

|RC3| = |C| =
|RC∗3 |

12
= 227 · 314 · 53 · 72 · 11 = 43, 252, 003, 274, 489, 856, 000 ≈ 4.3 · 1019.

|RC∗3 | = |A| = 8! · 12! · 38 · 212.

Proof: Since RC∗3 = S8 × S12 × Z8
3 × Z12

2 then |RC∗3 | = |S8| · |S12| · |Z3|8 · |Z2|12 = 8! · 12! · 38 · 212.

For legal positions this number is reduced by

• half by condition (a) in Theorem 20.1, since there are as many even permutations as there are odd
ones,

• a third by condition (b), since the orientation of 7 corner cubies can be arbitrarily chosen and this
would determine the orientation of the 8th,

• half by condition (c), since the orientation of 11 edge cubies can be arbitrarily chosen and this would
determine the orientation of the 12th.

Therefore |RC3| = |RC∗
3 |

12 . �

How big is this number |RC3|?

If we put 4.3 · 1019 cubes of 5.6 cm width – each in a different configuration – side by side in a straight line,
the length of the line would be ≈ 2.4 ·1015 kilometres, which is about 255 light years. By way of comparison
the star α1 Centauri is about 4.39 lights years away. Or packed tightly on the surface of the earth the
cubes would blanket the earth to a height of 15 metres (see Figure 20.5). Allowing a second for each turn,
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Figure 20.5: Covering the earth in Rubik’s Cubes would create a blanket 15m thick. Calculation on wolframal-
pha.com.

it would take 1364 billion years to go though all possible configurations (assuming you don’t revisit the
same configuration twice). By comparison the universe is around 13 billion years old.

Of course it is not the size of the cube group that make Rubik’s Cube challenging. After all, if you were
given a shuffled deck of 52 playing cards and asked to put them back in order this would be a simple task.
Yet there are 52! ≈ 8.07 · 1067 ways the cards could be shuffled, and only one is in the proper order. What
makes Rubik’s Cube challenging is the way the pieces are linked together, and the restrictions this imposes
on legal moves.

20.3 The Second Fundamental Theorem of Cubology

We have two different models for a configuration of Rubik’s Cube: (i) the permutation of the 48 faces, as an
element in S48, which also corresponds to the move sequence that was applied to the solved state cube to
reach the configuration, and (ii) the 4-tuple position vector. The First Fundamental Theorem of Cubology
was about the position vector. A restatement of this theorem in terms of move sequences, permutation
parity, and twists and flips of cubies is known as The Second Fundamental Theorem of Cubology.

Theorem 20.3 (The Second Fundamental Theorem of Cubology): A move sequence is possible,
if and only if the following three conditions are satisfied:

(a) The permutation of the corner and edge cubies (as a product) is even.

(b) The number of corners that are twisted clockwise is equal to the number that are twisted coun-
terclockwise modulo 3.

(c) The number of flipped edges is even.
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As a consequence we can characterize some impossible move sequences. Notice we have already seen each
of these moves to be impossible (some used Sage to investigate these impossibilities). However, now we
have given a formal mathematical proof that these are impossible.

Corollary 20.4: Each of the following configurations cannot be obtained from the solved state cube
through legal cube moves.

(a) Exactly two edge cubies are swapped.

(b) Exactly two corner cubies are swapped.

(c) Exactly one edge cubie is flipped.

(d) Exactly one corner cubie is twisted.

(e) Exactly two corner cubies are twisted in the same direction.

20.4 When are two assembled cubes equivalent?

Consider the equivalence relation ∼RC3 on the illegal cube group RC∗3 defined by:

X ∼RC3
Y ⇐⇒ X−1Y ∈ RC3

⇐⇒ X can be taken to Y through a sequence of legal cube moves (i.e. twists of the 6 faces).

All this means is that we consider two assembled cubes equivalent if one can be twisted into the other
using legal cube moves.

This partitions RC∗3 into equivalence classes: the left cosets of RC3 in RC∗3 . The class RC3 is precisely the
set of solvable configurations. We’d like to be able to determine (i) all the other left cosets of RC3, (ii) a set
of representatives for RC∗3/ ∼RC3

, and (iii) a quick way to determine to which coset a given cube belongs.

By Corollay 20.2 the number of left cosets is [RC∗3 : RC3] =
|RC∗

3 |
|RC3| = 12. The First Fundamental Theorem

20.1 provides a complete characterization of the left cosets. The conditions for a position vector (ρ, σ,v,w)
to be in RC3 are sign(ρ) = sign(σ) and v1 + v2 + · · ·+ v8 = 0 (mod 3) and w1 + w2 + · · ·+ w12 = 0 (mod 2).
The other cosets are given by the 11 different ways these conditions can fail.

In what follows we will use the notation X(i,j,k), where i ∈ {±1}, j ∈ {0, 1, 2} and k ∈ {0, 1}, to denote a
configuration of the cube where sign(ρ) ·sign(σ) = i, v1+v2+ · · ·+v8 = j (mod 3), and w1+w2+ · · ·+w12 = k
(mod 2).

For example, the following conditions on the position vector (ρ, σ,v,w)

sign(ρ) = sign(σ), v1 + v2 + · · ·+ v8 = 0 (mod 3), w1 + w2 + · · ·+ w12 = 1 (mod 2)

defines the coset [X(1,0,1)] = X(1,0,1)RC3 represented by a single edge flip X(1,0,1) (shown in Figure 20.6c).

sign(ρ) = sign(σ), v1 + v2 + · · ·+ v8 = 1 (mod 3), w1 + w2 + · · ·+ w12 = 0 (mod 2)

defines the coset [X(1,1,0)] = X(1,1,0)RC3 represented by a single corner twist in the counterclockwise direc-
tion X(1,1,0) (shown in Figure 20.6e).

sign(ρ) 6= sign(σ), v1 + v2 + · · ·+ v8 = 0 (mod 3), w1 + w2 + · · ·+ w12 = 0 (mod 2)

defines the coset [X(−1,0,0)] = X(−1,0,0)RC3 represented by a swap of two edge cubies X(−1,0,0), or equiva-
lently a swap of two corner cubies (shown in Figure 20.6b).

sign(ρ) 6= sign(σ), v1 + v2 + · · ·+ v8 = 2 (mod 3), w1 + w2 + · · ·+ w12 = 0 (mod 2)
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defines the coset [X(−1,2,0)] = X(−1,2,0)RC3 represented by a swap of two edge cubies, and a clockwise twist
of a corner cubie X(−1,2,0) (shown in Figure 20.6j). And so on.

Figure 20.6 shows a set of twelve representative for the left cosets of RC3 in RC∗3 . This means that a
randomly assembled cube can be reduced to exactly one of these 12 possibilities.

(a) X(1,0,0): solved (b) X(−1,0,0): edge
swap

(c) X(1,0,1): edge flip (d) X(−1,0,1): edge
swap & edge flip

(e) X(1,1,0): counter-
clockwise corner twist

(f) X(−1,1,0): ccw cor-
ner twist & edge swap

(g) X(1,1,1): ccw corner
twist & edge flip

(h) X(−1,1,1): ccw cor-
ner twist & edge swap
& edge flip

(i) X(1,2,0): clockwise
corner twist

(j) X(−1,2,0): cw corner
twist & edge swap

(k) X(1,2,1): cw corner
twist & edge flip

(l) X(−1,2,1): cw corner
twist & edge swap &
edge flip

Figure 20.6: Representatives for the 12 different equivalence classes in RC∗3
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Example 20.2: The following diagram shows a (possibly illegal) configuration of the last layer of Rubik’s
Cube. We’d like to determine which of the configurations in Figure 20.6 it is equivalent to. To do this it
suffices to determine the position vector.

The corners permutation is ρ = (6, 7) and the edge permutation is σ = ε. The corner orientation vector is

v = (0, 0, 0, 0, 0, 1, 0, 0)

since corner cubie 6 is now in position 7 and twisted counterclockwise, and the edge orientation vector is

w = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1),

since edge cubie 12 is flipped. Therefore

sign(ρ) 6= sign(σ), v1 + v2 + · · ·+ v8 = 1 (mod 3) w1 + w2 + · · ·+ w8 = 1 (mod 2)

so it is equivalent to the a configuration where: two edges are swapped, one corner is twisted counterclock-
wise, and one edge is flipped. This is the configuration in Figure 20.6h.

20.5 Exercises

1. For each of the following configurations (i) determine the position vector (ρ, σ,v,w) ∈ S8 × S12 ×Z8
3 ×

Z12
2 , and (ii) determine whether it is a legal (i.e. solvable) configuration.

(The corner cubicles are labeled in the diagram below, see Figure 20.2 for a labeling of the edge
cubicles.)

(a) (b)
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2. Each of the following configurations is solvable. Determine the position vector (ρ, σ,v,w) ∈ S8×S12×
Z8
3 × Z12

2 in each case.
(The corner cubicles are labeled in the diagram below, see Figure 20.2 for a labeling of the edge
cubicles.)

(a) (b)

3. Verify the following configuration is not solvable, by showing the position vector doesn’t satisfy the
three conditions of Theorem 20.1. Determine the quickest way to disassemble/reassemble it so that
it becomes solvable. That is, decide if you have to swap two pieces, or flip a single edge, or twist a
corner, or a combination of these, etc.

4. Impossible Configurations. In each part below, a configuration of the last layer is shown. All non-
visible cubies are in their home orientations. Show that each configuration is impossible by showing
its position vector doesn’t satisfy the three conditions of Theorem 20.1.

(a) (b) (c) (d)

5. For each of the following move sequences determine the position vector (ρ, σ,v,w) ∈ S8×S12×Z8
3×Z12

2 .

(a) RU
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(b) R2U2

(c) (R2U2)3

(d) [LD2L−1, U ] (a corner 3-cycle)

6. For each of the following position vectors (ρ, σ,v,w) ∈ S8 × S12 × Z8
3 × Z12

2 draw the corresponding
configuration.
(Assume the standard orientation as shown in Figure 20.1.)
(The puzzles templates file on the webpage includes some Rubik’s Cube templates.)

(a) (ρ, σ,v,w) = ((2, 4)(1, 3), ε, (1, 1, 2, 2, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0))

(b) (ρ, σ,v,w) = (ε, (2, 3)(6, 7), (0, 0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

(c) (ρ, σ,v,w) = ((2, 4)(3, 7), (2, 7, 3), (0, 1, 2, 1, 0, 0, 2, 0), (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0))

7. In each part below, a configuration Yi of the last layer for a cube in RC∗3 is shown. Determine the
representative Xi,j,k (from Figure 20.6) for the coset to which configuration Yi belongs. That is,
determine i ∈ {±1}, j ∈ {0, 1, 2}, k ∈ {0, 1} for which Yi ∈ [Xi,j,k] = Xi,j,kRC3.

(a) Y1 (b) Y2 (c) Y3

(d) Y4 (e) Y5 (f) Y6

8. Are the following two (possibly illegal) configurations equivalent under cube moves?
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(a) X (b) Y

9. Explorations of the Pocket Cube: 2× 2× 2 cube.
The 2× 2× 2 Rubik’s Cube is shown in the figure.

In this question you are asked to discover an analogous version of the Fundamental Theorem of
Cubology (Theorem 20.1) as applied to this cube. You are also asked to determine the number of
inequivalent illegal cubes, and a set of representatives. This requires a thorough understanding of
the material in this lecture since you will have to do a similar analysis for this smaller cube.
To begin, we have to notice that there are no fixed centres for any of the sides. In fact, every cubie can
be moved on this puzzle. Therefore, specifying a frame of reference requires some care. Notice that
it is sufficient to only use the three moves F , R and D. Since, for example, an L move results in the
same configuration as an R move (up to a rotation of the whole cube). Restricting our basic moves to
just F , R and D means the ulb cubie remains fixed. We will use this cubie as our frame of reference.

(a) Define a numbering of the cubies and cubicles. (Analogous to Figure 20.2.) Include a picture of
your numbering scheme. (Note, you done need to number the cubie in ulb since it doesn’t get
moved by F , R and D. This means you only need to number the remaining 7 cubies.)

(b) Define what you will mean by the primary facet of each cubicle. (Analogous to Figure 20.3a.)
Include a picture of your labeling. (See templates file at [10] for a 2× 2× 2 template.)

(c) Assign orientation numbers to each sticker. (Analogous to Figure 20.3b.) Include a picture of
your labeling.

(d) Give a definition for a position vector of a configuration. This should contain complete informa-
tion about the configuration.

(e) Give some examples of configurations and the corresponding positions vectors.
(f) Define the terms: illegal Pocket Cube groups RC∗2 and legal Pocket Cube group RC2. (Analogous

to the 3× 3× 3 description on page 234.)
(g) State a Fundamental Theorem of Pocket Cubology. (Analogous to Theorem 20.1)
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(h) Prove your Fundamental Theorem of Pocket Cubology. (See what parts of the proof of Theorem
20.1 can still be used/modified.)

(i) Use your theorem to determine the the size of the legal pocket cube group RC2. (Analogous to
Corollary 20.2)

(j) Determine a condition on the position vector to determine when two assembled pocket cubes
in RC∗2 are equivalent under cube moves. Find the number of inequivalent ways there are to
assemble a pocket cube, and determine a set of representative for each equivalence class. In
other words, do what was done in Section 20.4 but now for the pocket cube.

Emphasis here is on explanations. Write in full sentences and provide clear detailed descriptions.



Lecture 21

Rubik’s Cube: Subgroups of the Cube
Group

In this lecture, we consider various collections of moves on Rubik’s Cube and determine the subgroups
they generate. We also see what the Fundamental Theorem of Cubology tells us about the structure of the
group operation on RC3 and we show the only (nontrivial) move sequence that commutes with every other
move sequence is the superflip.

21.1 Building Big Groups from Smaller Ones

Starting with a collection of groups we can stick them together to form a new, larger group.

Given a finite collection of groups G1, G2, . . . Gn, the direct product of G1, G2, . . . Gn is

G1 ⊕G2 · · · ⊕Gn = {(g1, g2, . . . , gn) | gi ∈ Gi}

which is a group under the operation:

(g1, g2, . . . , gn)(h1, h2, . . . , hn) = (g1h1, g2h2, . . . , gnhn).

It is understood that each product gihi is performed with the operation of group Gi.

To see why G1 ⊕G2 · · · ⊕Gn is a group under this operation we observe:

1) It is closed since each Gi is closed under its operation.

2) The operation is associative since the operations on each of the Gi’s is associative.

3) The identity is (e1, e2, . . . , en) where each ei is the identity of Gi.

4) The inverse of an element (g1, g2, . . . , gn) is (g−11 , g−12 , . . . , g−1n ).

Example 21.1: The direct product of S3 and Z5 consists of 3! · 5 = 30 elements. For example ((1, 3, 2), 4),
and ((1, 2), 3) are two elements in S3 ⊕ Z5. The product of these elements is

((1, 3, 2), 4) ((1, 2), 3) = ((1, 3, 2)(1, 2), 4 + 3) = ((1, 3), 2).

For simplicity let’s just limit our attention to the direct product of two groups: G⊕H. The subset

G⊕ {eH} := {(g, eH) | g ∈ G}

245
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is a subgroup of G⊕H which essentially a copy of G. Similarly,

{eG} ⊕H := {(eG, h) | h ∈ H}

is a subgroup of G ⊕ H which essentially a copy of H, In other words, we have used G and H to build a
bigger group G⊕H in which G and H are subgroups.

Example 21.2: The group Z3
2 := Z2 ⊕ Z2 ⊕ Z2 is a group of order 8, and every non-identity element has

order 2.

The group Z2 ⊕ Z3 is a cyclic group of order 6, since the element (1, 1) has order 6 (check this).

Z2 ⊕ Z3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}.

For a group G, we denote by Gn the direct product with itself n-times: Gn = G⊕G · · · ⊕G.

21.2 Some Subgroups of RC3

In this section we investigate some of the types of groups that appear as subgroups of the Rubik’s Cube.
In Chemistry, one my be interested in what elements make up a compound. As an analogy, think of the
Rubik’s Cube group as the “compound”, and the “elements” that make it up are the subgroups. We’d like
to see what kinds of groups live inside RC3.

It is particularly interesting to “realize” a finite group A as a subgroup of the cube. This can be done for
all groups of order < 13; the smallest abelian group which is not a subgroup of RC3 is Z13 (since 13 6 | |RC3|
by Corollary 20.2), and the smallest non-abelian group is D13. In the next few sections, we’ll see a few
examples of some groups that live inside RC3.

21.2.1 Cyclic subgroups and orders of elements in RC3

The easiest type of subgroup to look for are the cyclic subgroups. Since the order of an element is precisely
the size of the cyclic group it generates then we are really just interested in what are the possible orders
of elements in RC3.

An element of order 4 is R. So RC3 contains a cyclic group of order 4 as a subgroup: Z4 = 〈R〉.

The move sequence R2U2 has order 6, so RC3 contains as cyclic subgroup of order 6: Z6 = 〈R2U2〉.

The move sequence RU has order 105 and the move sequence RU−1 has order 63. Therefore, RC3 contains
copies of Z63 and and Z105 as subroups.

Sage
sage: S48=SymmetricGroup(48)
sage: R=S48("(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)")
sage: L=S48("(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)")
sage: U=S48("(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)")
sage: D=S48("(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)")
sage: F=S48("(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)")
sage: B=S48("(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)")
sage: RC3=S48.subgroup([R,L,U,D,F,B])
sage: (R*U).order()
105
sage: (R*Uˆ(-1)).order()
63
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There exist precisely 73 different orders of elements in RC3 and the maximum order is 1260. The move
sequence RU2D−1BD−1 has order 1260. (See page 93 of [7], or page 51 of [2].)

21.2.2 Two Squares Group: 〈R2, U2〉

Let H = 〈R2, U2〉 denote the group generated by the square moves R2 and U2. The group contains the
useful 2-pair edge swap: (R2U2)3.

Figure 21.1: The two pair edge swap (R2U2)3 in H = 〈R2, U2〉.

We can find all the elements of this group fairly easily:

H ={1, R2, R2U2, R2U2R2, (R2U2)2, (R2U2)2R2, (R2U2)3,

(R2U2)3R2, (R2U2)4, (R2U2)4R2, (R2U2)5, (R2U2)5R2},

Therefore, |H| = 12. Note that 1 = (R2U2)6, U2 = (R2U2)5R2, and U2R2 = (R2U2)5.

We can compute the order of each element one by one and see that the maximum order is 6. This can also
be done quickly in Sage.

Sage
sage: S48=SymmetricGroup(48)
sage: R=S48("(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24)")
sage: L=S48("(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35)")
sage: U=S48("(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19)")
sage: D=S48("(41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)(16,24,32,40)")
sage: F=S48("(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11)")
sage: B=S48("(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27)")
sage: RC3=S48.subgroup([R,L,U,D,F,B])
sage: H=S48.subgroup([Rˆ2,Uˆ2])
sage: [g.order() for g in H]
[1, 2, 2, 2, 2, 3, 2, 6, 2, 3, 2, 6]

We’ve just discovered that H is a group of order 12, with two elements of order 6, two elements of order 3,
and seven elements of order 2. This seems eerily reminiscent of the dihedral group D6. Let check to see H
is really D6 in disguise.

Sage
sage: H.is_isomorphic(DihedralGroup(6))
True
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It is! We’ve just discovered that the dihedral group D6 lives inside the Rubik’s Cube group. 1

21.2.3 The Slice Squared Group: 〈M2
R,M

2
U ,M

2
F 〉

Let H = 〈M2
R,M

2
U ,M

2
F 〉 denote the group generated by the square slice moves.

Each of the generators M2
R,M

2
U ,M

2
F has order 2, and each of the products

M2
RM

2
F , M2

RM
2
U , M2

FM
2
U

has order 2 also (play with your cube to see this). This means that H is an abelian group (Why?), and every
element has order 2.

For simplicity of notation let a = M2
R, b = M2

F and c = M2
U then it is straightforward to see that:

H ={1, a, b, c, ab, ac, bc, abc},

is a group of order 8. In fact, H ≈ Z2 ⊕ Z2 ⊕ Z2 under the correspondence

1↔ (0, 0, 0)

a↔ (1, 0, 0)

b↔ (0, 1, 0)

c↔ (0, 0, 1)

ab↔ (1, 1, 0)

ac↔ (1, 0, 1)

bc↔ (0, 1, 1)

abc↔ (1, 1, 1)

See Figure 21.2.

21.3 Structure of the Cube Group RC3

Let X and Y be two elements of RC3 with corresponding position vectors (ρ, σ,v,w) and (ρ∗, σ∗,v∗,w∗),
respectively.

Recall, this notation means that corner cubie i moved to cubicle ρ(i) and vi is the label on the sticker
beneath the primary face labeled “+”, and edge cubie i moved to edge cubicle σ(i) with label wi on the
sticker in the primary facet labeled “+”. If we compose the moves X and Y then the position vector of XY
can be obtained as follows:

• corner cubie i moves to (ρρ∗)(i) = ρ∗(ρ(i)),

• edge cubie i moves to (σσ∗)(i) = σ∗(σ(i)),

• the label on the ith corner cubie, in the primary facet of cubicle (ρρ∗)(i), is vi + v∗ρ(i) (mod 3).

• the label on the ith edge cubie, in the primary facet of cubicle (σσ∗)(i), is wi + w∗σ(i) (mod 2).

1We say two groups G1 and G2 are isomorphic if they have the same group structure (i.e. same Cayley table), but the names of
the elements could be different. More precisely, we mean there is a map φ : G1 → G2 which is a bijection, and for any g, h ∈ G1,
φ(gh) = φ(g)φ(h). Sage has built in functionality for checking whether two groups are really the same (i.e. isomorphic).
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Figure 21.2: Cayley graph of H: The elements in the slice squared group and their representations in terms of the
generators.

If we define addition of 8-tuple (and 12-tuple) orientation vectors componentwise: i.e. a+b = (a1, a2, . . . , ak)+
(b1, b2, . . . , bk) = (a1 + b1, a2 + b2, . . . , ak + bk) (i.e. think Z8

3 = Z3⊕Z3⊕ · · · ⊕Z3 and Z12
2 = Z2⊕Z2⊕ · · · ⊕Z2)

then the group operation on RC3 = S8 × S12 × Z8
3 × Z12

2 is:

(ρ, σ,v,w)(ρ∗, σ∗,v∗,w∗) = (ρρ∗, σσ∗,v + ρ(v∗),w + σ(w∗)) (21.1)

where ρ(v∗) represents the orientation vector obtained from v∗ by replacing the ith component vi with vρ(i):

ρ(v∗) = ρ((v∗1 , v
∗
2 , . . . , v

∗
8)) = (v∗ρ(1), v

∗
ρ(2), . . . , v

∗
ρ(8)).

and σ(w∗) represents:

σ(w∗) = σ((w∗1 , w
∗
2 , . . . , w

∗
12)) = (w∗σ(1), w

∗
σ(2), . . . , w

∗
σ(12)).

Let

G1 = {g = (ρ, σ,v,w) ∈ RC3 | v = 0,w = 0}
G2 = {g = (ρ, σ,v,w) ∈ RC3 | ρ = ε, σ = ε}.

Then G1 and G2 are subgroups of RC3. G1 is the subgroup of all move sequences which preserves the
orientation of all the pieces. G2 is the subgroup of all move sequences which leaves every cubie in its own
cubicle, but may flip/twist the cubies.

The following theorem describes how the subgroups G1 and G2 are interlinked in order to form RC3. Some
of the terms are not explained as it is a more advanced theorem. I include it here only for the benefit of
those who know about: normal subgroups, isomorphisms, and semidirect products.
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Theorem 21.1:

(a) G1 is a subgroup, G2 is a normal subgroup of RC3. a

(b) G1 ≈ {(ρ, σ) ∈ S8 × S12 | sign(ρ) = sign(σ)}, G2 ≈ Z7
8 × Z11

2 .

(c) RC3 is the semidirect product of G1 with G2.
a A normal subgroup is a subgroup H of a group G with the property that all its left and right cosets are equal: aH = Ha

for all a ∈ G. Such subgroups are extremely important in advanced group theory.

21.3.1 The Centre of the Cube group, Z(RC3), and the Superflip

Recall that for any group G, the centre of G, denoted by Z(G) is the set of all elements that commute with
every element of G:

Z(G) = {a ∈ G | ag = ga for all g ∈ G}.

The centre is a subgroup of G. (See Section 11.3)

Theorem 21.2: The centre of RC3 consists of two elements: the identity ε and the superflip XSF . The
superflip, is the configuration in which every cubie is in its home location but all the edge cubies are
flipped (see Figure 21.3).

Z(RC3) = {ε,XSF }.

Figure 21.3: The superflip configuration of Rubik’s Cube: XSF .

Proof: Let g = (ρ, σ,v,w) ∈ Z(RC3). Since the centre of the symmetric group Sn, for n ≥ 3, is trivial
and since every ρ∗ ∈ S8 appears as a first coordinate of the position vector, it immediately follows from
Equation 21.1 that ρ = ε, and similarly σ = ε. That is, g = (ε, ε,v,w) ∈ G2. Thus, gg∗ = g∗g simply
becomes v + v∗ = v∗ + ρ∗(v), i.e. v = ρ∗(v) for all ρ∗ ∈ S8, and w + w∗ = w∗ + σ∗(w), i.e. w = σ∗(w)
for all σ∗ ∈ S12. This means the v and w are constant (i.e. vi = vj for all 1 ≤ i, j ≤ 8 and wi = wj for all
1 ≤ i, j ≤ 12). So we have

v = (0, 0, 0, 0, 0, 0, 0, 0) = 0 or v = (1, 1, 1, 1, 1, 1, 1, 1) = 1 or v = (2, 2, 2, 2, 2, 2, 2, 2) = 2
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and
w = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = 0 or w = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) = 1.

The First Fundamental Theorem of Cubology (Theorem 20.1) excludes the cases v = 1,2, therefore v = 0.
Both choices for w are possible. This means g is either (ε, ε,0,0) or (ε, ε,0,1). Therefore,

Z(RC3) = {(ε, ε,0,0), (ε, ε,0,1)}.

The configuration (ε, ε,0,1) is the superflip. �

21.4 Exercises

1. Consider the direct product S3 ⊕D4 of the symmetric group and the dihedral group.

(a) How many elements does S3 ⊕D4 have. That is, what is |S3 ⊕D4|.
(b) Find the product of ((1, 3), H) and ((1, 2, 3), R90).
(c) What is the order of the element ((1, 3), H)?
(d) What is the order of the element ((1, 2, 3), R90)?

2. Show that Z3 ⊕ Z5 is a cyclic group of order 15.
(Hint: What is the order of the element (1, 1)?)

3. Is Z2 ⊕ Z6 a cyclic group? Explain.
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Lecture 22

Symmetry & Counting I: The
Orbit-Stabilizer Theorem

In this lecture we discuss how to use group theory to count like a professional. The Orbit-Stabilizer Theo-
rem gives an application of cosets to determine the size of a permutation group. In particular, we discover
a straightforward way to count the number of symmetries of various geometric objects.

22.1 Orbits & Stabilizers

In this section we will take a look at how permutation groups act on various structures.

It will be helpful to extend the definition of a permutation from finite sets of numbers [n] to arbitrary sets.
Let X be a nonempty set. A permutation α of X is a bijection α : X → X. The set of all permutations of
X is called the symmetric group of X and is denoted by SX :

SX = {α | α : X → X is a bijection}.

If X = [n] = {1, 2, . . . , n} then we simply denoted S[n] by Sn.

Definition 22.1 (Stabilizer of a Point): Let G be a subgroup of SX . For each i ∈ X, let

stabG(i) = {α ∈ G | α(i) = i}.

We call stabG(i) the stabilizer of i in G.

We can check that stabG(i) is a subgroup of G by using the Two-Step Subgroup Test (Theorem 11.1). Since
ε fixes every element in X it is definitely in stabG(i). Let α, β ∈ G, then α(i) = i and β(i) = i. It then
follows that α−1(i) = i and (αβ)(i) = β(α(i)) = β(i) = i, hence α−1, αβ ∈ stabG(i). Therefore stabG(i) < G.

253



LECTURE 22 SYMMETRY & COUNTING I: THE ORBIT-STABILIZER THEOREM 254

Definition 22.2 (Orbit of a Point): Let G be a subgroup of SX . For each i ∈ X, let

orbG(i) = {α(i) | α ∈ G}.

We call orbG(i) the orbit of i under G.

Example 22.1: If G = S4, then stabS4(3) is the set of all permutation in S4 which fixes 3. There are 4! = 24
permutations in S4 but only the ones that don’t have 3 in their disjoint cycle form fix 3. Therefore,

stabS4
(3) = {ε, (1, 2), (1, 4), (2, 4), (1, 2, 4), (1, 4, 2)}

= S{1,2,4}.

Notice we used the notation S{1,2,4} to denote the set of all permutations of the set {1, 2, 4}.

Example 22.2: Let

G = 〈(1, 2, 3)(4, 5, 6)(7, 8)〉
= {ε, (1, 2, 3)(4, 5, 6)(7, 8), (1, 3, 2)(4, 6, 5), (7, 8), (1, 2, 3)(4, 5, 6), (1, 3, 2)(4, 6, 5)(7, 8)}.

be a group of permutation on X = {1, 2, 3, 4, 5, 6, 7, 8}. Then

orbG(1) = {1, 2, 3} stabG(1) = {ε, (7, 8)}
orbG(2) = {2, 3, 1} stabG(2) = {ε, (7, 8)}
orbG(3) = {3, 1, 2} stabG(3) = {ε, (7, 8)}
orbG(4) = {4, 5, 6} stabG(4) = {ε, (7, 8)}
orbG(5) = {5, 6, 4} stabG(5) = {ε, (7, 8)}
orbG(6) = {6, 4, 5} stabG(6) = {ε, (7, 8)}
orbG(7) = {7, 8} stabG(7) = {ε, (1, 2, 3)(4, 5, 6), (1, 3, 2)(4, 6, 5)}
orbG(8) = {8, 7} stabG(8) = {ε, (1, 2, 3)(4, 5, 6), (1, 3, 2)(4, 6, 5)}

In each case notice that stabG(i) is a subgroup of G. Also notice that the orbits are either disjoint or equal.
Moreover, the distinct orbits form a partition of X:

{1, 2, 3}, {4, 5, 6}, {7, 8}

Let G be a group of permutations on X, and define a relation on X by:

x ∼G y ⇐⇒ y = α(x) for some α ∈ G. (22.1)

Then ∼G is an equivalence relation (see Exercise 2), and the equivalence class of an element x ∈ X is its
orbit:

[x] = orbG(x).

Since equivalence classes partition the set, this indicates that our observation in Example 22.2 were not a
coincidence. Orbits will always be the same or disjoint, and distinct orbit classes will partition X.

Example 22.3: Recall that D4, the dihedral group of order 8, is the group of all symmetries of the square
(see Figure 22.1a). The elements are the rotations R0, R90, R180, R270, and the reflections H,V,D,D′. We
can view D4 as a group of permutations on the vertices of the square. Here we identify the vertices of the
square with the set X = {1, 2, 3, 4}. Since vertex 1 can be taken to any other vertex by a rotation then the
orbit of 1 is all of X: orbD4(1) = {1, 2, 3, 4}. See Figure 22.1b.
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(a) Reflection elements in D4 (b) Orbit of vertex 1

Figure 22.1: The group D4 acting as a permutation group on the set of vertices.

The stabilizer of 1 is:
stabD4

(1) = {R0, D}.

Similarly, we have stabD4(2) = stabD4(3) = {R0, D
′}.

Example 22.4: Building on the previous example, we may viewD4 as a group of permutations of the points
X enclosed by the square. Figure 22.2a illustrates the orbit of the point P and Figure 22.2b illustrates the
orbit of the point Q under D4. Notice stabD4

(P ) = {R0, D}, and stabD4
(Q) = {R0}.

(a) Orbit of point P under ac-
tion of D4

(b) Orbit of point Q under ac-
tion of D4

Figure 22.2: The group D4 acting as a permutation group on the set of points enclosed by the square.

We can also view D as a group of permutations on the set of 4 line segments h, v, d, d′ shown in Figure 22.3.
Then

orbD4(h) = {h, v} stabD4(h) = {R0, R180, H, V }
orbD4

(v) = {h, v} stabD4
(v) = {R0, R180, H, V }

orbD4
(d) = {d, d′} stabD4

(d) = {R0, R180, D,D
′}

orbD4
(d′) = {d, d′} stabD4

(d′) = {R0, R180, D,D
′}

Example 22.5: Let RC3 be the Rubik’s cube group, and let X be the set of all cubies of Rubik’s cube. X
can be partitioned into edge cubies E, corner cubies V , and centre cubies C. If x denotes the uf edge cubie,
then since it is possible to move it to the location of any other edge cubie, then orbRC3(x) = E. Also, since
centre cubies don’t move under cube moves, the orbit of each centre cubie is just a set of size 1.

Example 22.6: Again, let RC3 be the Rubik’s cube group, but now let X be the set of all facets of Rubik’s
cube. Recall |X| = 48. The Rubik’s cube group can be viewed as a group of permutations of the set X
(we have made use of this fact frequently already). Let x be the facet on the up layer of the uf cubie. In
our numbering system we denoted this facet by x = 7. Since an edge cubie can be moved to the location
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Figure 22.3: Orbit classes of the group D4 acting as a permutation group on the set of line segments h, v, d, d′.

of any other edge cubie, and with either orientation, then the orbit of x is every edge-facet. Therefore,
|orbRC3

(7)| = 24. The next theorem will tell us that |stabRC3
(7)| = |RC3|

24 .

Looking back at the examples we can observe an obvious relationship between the sizes of G, orbG(i), and
stabG(i): we always get |orbG(i)| · |stabG(i)| equal to the size of G. This is true in general and is stated in
the following theorem.

Theorem 22.1 (Orbit-Stabilizer Theorem): Let G be a subgroup of SX . Then for any i in X,

|G| = |orbG(i)| · |stabG(i)|.

Proof: Since stabG(x) is a subgroup of G, we know from Lagrange’s Theorem that

|G|/|stabG(x)| = the number of distinct right cosets of stabG(x) in G.

So we need to show that the number of right cosets equals the number of elements in orbG(x). To this end
define

ψ : {(stabG(x))α | α ∈ G} → orbG(x)

by
ψ(stabG(x) α) = α(x).

Our goal is to show that ψ is a bijection.

(a) ψ is well defined. We have

stabG(x) α = stabG(x) β =⇒ α = γβ for some γ ∈ stabG(x)

=⇒ α(x) = (γβ)(x) = β(γ(x))

=⇒ α(x) = β(x) since γ ∈ stabG(x).

(b) ψ is injective. Let α, β ∈ G, we have

ψ(stabG(x) α) = ψ(stabG(x) β) =⇒ α(x) = β(x)

=⇒ β−1(α(x)) = x

=⇒ (αβ−1)(x) = x

=⇒ αβ−1 ∈ stabG(x)

=⇒ stabG(x) α = stabG(x) β.

The last implication follows from Lemma 18.2 (but expressed in terms of right cosets).
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(c) ψ is surjective. Let y ∈ orbG(x). Then for some α ∈ G we have y = α(x). Therefore,

ψ(stabG(x) α) = α(x) = y,

and so ψ is surjective.

Therefore ψ is a bijection, and so it follows that

|orbG(x)| = |{(stabG(x))α | α ∈ G}|
= the number of right cosets of stabG(x) in G

= |G|/|stabG(x)|,

which implies
|G| = |orbG(i)| · |stabG(i)|.

�

We now consider a few applications of this theorem.

22.2 Permutations Acting on Sets: Application of the Orbit-Stabilizer
Theorem

The orbit-stabilizer theorem (Theorem 22.1) is a counting theorem. It enables one to determine the number
of elements in a group. We will now see how this theorem will help us determine the number of rotational
symmetries of some familiar 3-dimensional objects.

For a object X we let GX be the group of all rotational symmetries of X. That is, the set of all ways the
object can be picked up, rotated, and placed back on a table in front of you, so that it looks as though it
wasn’t moved. For each of the objects below we will determine |GX |.

22.2.1 Rotation Group of a Tetrahedron

Let GT be the group of all rotational symmetries of a regular tetrahedron.

(a) (b)

Figure 22.4: regular tetrahedron.

Let VT be the set of 4 vertices of the tetrahedron, labeled as in Figure 23.4b. Then each rotation in GT
induces a permutation on VT . That is, each element of GT gives a permutation in SVT

= S4. Vertex 1 can
be taken to any other vertex by a rotation, so the orbit of vertex 1 is orbGT

(1) = {1, 2, 3, 4}, and therefore
|orbGT

(1)| = 4. The stabilizer of 1 consists satisfies |stabGT
(1)| = 3, and the rotations in the stabilizer are:

the identity, and two rotations corresponding to the permutations (2, 3, 4) and (2, 4, 3). Therefore, by the
orbit-stabilizer theorem:

|GT | = |orbGT
(1)| · |stabGT

(1)| = 4 · 3 = 12.
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The 12 rotations of GT are shown in Figure 22.5. Each rotation is described by the permutation it induces
on the vertices. It is clear from this description that GT ≈ A4.

(a) ε (b) (1, 4)(2, 3) (c) (1, 3)(2, 4) (d) (1, 2)(3, 4)

(e) (2, 3, 4) (f) (2, 4, 3) (g) (1, 4, 3) (h) (1, 3, 4)

(i) (1, 2, 4) (j) (1, 4, 2) (k) (1, 3, 2) (l) (1, 2, 3)

Figure 22.5: All 12 rotational symmetries of a regular tetrahedron

22.2.2 Rotation Group of a Cube

Let GC be the group of all rotational symmetries of a cube.

(a) (b)

Figure 22.6: cube.
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We can view GC as a groups of permutations of the 8 corners, that is, as a subgroup of S8. Observe that

orbGC
(1) = {1, 2, 3, 4, 5, 6, 7, 8} ⇒ |orbGC

(1)| = 8

and that
stabGC

(1) = {ε, (2, 4, 5)(3, 8, 6), (2, 5, 4)(3, 6, 8)} ⇒ |stabGC
(1)| = 3.

The elements of the stabilizer are the rotations about an axis through vertices 1 and 7.

Therefore, by the orbit stabilizer theorem:

|GC | = |orbGC
(1)| · |stabGC

(1)| = 8 · 3 = 24.

Recall the symmetric group S4 has 24 elements. Perhaps GC is S4 in disguise. To see if it is we should find
4 things in the cube that GC permutes. There are 4 diagonals as shown in Figure 22.7, and each rotation
of the cube permutes these diagonals. In fact, each rotation of the cube can be described precisely by how
these diagonals are permuted. Therefore GC ≈ S4.

Figure 22.7: Viewing GC as a group of permutations on the diagonals 1, 2, 3, 4.

22.2.3 Rotation Group of an Octahedron

Let GO be the group of all rotational symmetries of a regular octahedron.

(a) (b)

Figure 22.8: regular octahedron.

We can view GO as a groups of permutations of the 6 vertices, that is as a subgroup of S6. Observe that

orbGO
(1) = {1, 2, 3, 4, 5, 6} ⇒ |orbGO

(1)| = 6

and that
stabGO

(1) = {ε, (2, 3, 4, 5), (2, 4)(3, 5), (2, 5, 4, 3)} ⇒ |stabGO
(1)| = 4.

The elements of the stabilizer are the rotations about an axis through vertices 1 and 6.

Therefore, by the orbit stabilizer theorem:

|GC | = |orbGO
(1)| · |stabGO

(1)| = 6 · 4 = 24.



LECTURE 22 SYMMETRY & COUNTING I: THE ORBIT-STABILIZER THEOREM 260

It is no coincidence that this is the same size as the group of symmetries of the cube. Figure 22.9 shows
the octahedron sitting inside the cube (join midpoints of every two squares by a line). This means that
GC ≈ GO. The cube and the octahedron are referred to as dual solids.

Figure 22.9: The octahedron is dual to the cube, so GO ≈ GC .

22.2.4 Rotation Group of an Dodecahedron

Let GD be the group of all rotational symmetries of a regular dodecahedron.

(a) (b)

Figure 22.10: regular dodecahedron.

We can view GD as a groups of permutations of the 20 vertices, that is as a subgroup of S20. Observe that

orbGD
(1) = {1, 2, 3, . . . , 20} ⇒ |orbGD

(1)| = 20

and that
|stabGD

(1)| = 3.

The elements of the stabilizer are the rotations about an axis through vertices 1 and 18.

Therefore, by the orbit stabilizer theorem:

|GC | = |orbGD
(1)| · |stabGD

(1)| = 20 · 3 = 60.

22.2.5 Rotation Group of an Icosahedron

Let GI be the group of all rotational symmetries of a regular icosahedron.

We can view GI as a groups of permutations of the 12 vertices, that is as a subgroup of S20. Observe that

orbGI
(1) = {1, 2, 3, . . . , 12} ⇒ |orbGI

(1)| = 12
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(a) (b)

Figure 22.11: regular icosahedron.

and that
|stabGI

(1)| = 5.

The elements of the stabilizer are the rotations about an axis through vertices 1 and 12.

Therefore, by the orbit stabilizer theorem:

|GC | = |orbGI
(1)| · |stabGI

(1)| = 20 · 3 = 60.

It is no coincidence that this is the same size as the group of symmetries of a regular dodecahedron. Figure
22.12 shows both the dodecahedron sitting inside the icosahedron (join midpoints of every two squares by
a line), and the icosahedron sitting inside the dodecahedron. This means that GI ≈ GD.

Figure 22.12: The icosahedron is dual to the dodecahedron, so GI ≈ GD.

22.2.6 Rotation Group of an Soccer Ball, Basket Ball, Volley Ball, and Tennis
Ball

The balls used in soccer, basketball, volleyball, and tennis have distinct patterns on their surface. We can
use the orbit-stabilizer theorem to determine the rotational groups of symmetries of these patterns.

For each ball, pick an object on the ball: either a point, or shape. Determine the size of the orbit and
stabilizer of the point/shape and verify the results in Table 22.1.

It will help if you have a physical ball in your hands. For the soccer ball, there are 12 pentagons (the black
faces), and 20 hexagons. See Figure 22.14 for an unfolded view of the soccer ball.

In case you are interested, the rotational group of the soccer ball is A5.
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(a) soccer ball (b) basket ball (c) volley ball (d) tennis ball

Figure 22.13: Familiar sports balls.

ball size of group of rotations

soccer ball 60
basket ball 4
volley ball 12
tennis ball 4

Table 22.1: The size of the rotational group for various playing balls.

Figure 22.14: A soccer ball unfolded.

In nature, the helix is the structure that occurs most often. The second most commonly found structures
are polyhedrons made from pentagons and hexagons, such as the dodecahedron and the truncated icosa-
hedron (soccer ball). Although it is impossible to enclose a space with hexagons along, adding 12 pentagons
will be sufficient to enclose the space (like the soccer ball). Many viruses have this kind of structure (Figure
22.15). 1

1John Galloway, Nature’s Second-Favourite Structure. New Scientist 114 (March 1988); 36-39
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(a) rhinovirus (common cold) (b) Archaeal virus

Figure 22.15: Viruses.

22.3 Exercises

1. Let G be a group of permutations of the set X. For x ∈ X what type of object is orb(X)? What type of
object is stab(x)?

2. Prove the relation defined in (22.1) is an equivalence relation.

3. Let RC3 be the Rubik’s cube group and let H be the subgroup generated by the product α = UR.

H = 〈UR〉.

Let X be the set of all cubies of the Rubik’s cube.

(a) If x denotes the ufr corner cubie, determine orbH(x).

(b) If y denotes the uf edge cubie, determine orbH(y).

(c) How many elements do stabH(x) and stabH(y) have?

4. Instead of considering the set of vertices of the tetrahedron, consider how GT permutes the 6 edges of
the tetrahedron. By picking one edge, say the edge 12, the edge between vertices 1 and 2, verify that
|orbGT

(12)| · |stabGT
(12)| = 12.

5. Consider how GT permutes the 4 triangular faces of the tetrahedron. That is, consider GT as a
subgroup of S4. By picking one face, say the face f1,2,3 containing vertices 1, 2 and 3, verify that
|orbGT

(f1,2,3)| · |stabGT
(f1,2,3)| = 12.

6. Instead of considering the set of vertices of the dodecadedron, consider howGD permutes the 30 edges
of the dodecahedron. That is, consider GD as a subgroup of S30. By picking one edge, say the edge 12,
the edge between vertices 1 and 2, verify that |orbGD

(12)| · |stabGD
(12)| = 60.

7. Consider how GD permutes the 12 pentagonal faces of the dodecahedron. That is, consider GD as
a subgroup of S12. By picking one face, say the face f containing vertices 1, 2, 3, 4, 5, verify that
|orbGD

(f)| · |stabGD
(f)| = 60.

8. For each of the following objects, describe each element of the group of rotations as a single rotation.
(Similar to what was done for the tetrahedron in Figure 22.5.)

(a) cube

(b) octahedron
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9. Let G be the group of rotations of a rectangular box of dimensions 1× 2× 3. Describe each element of
G as a rotation.

10. Let G be the group of rotations of a rectangular box of dimensions 1× 1× 2. Describe each element of
G as a rotation.

11. The group D4 acts as a group of permutations of the points enclosed by the square shown below. (The
axis of symmetry are drawn for reference purposes.) For each square, locate the points in the orbit of
the indicated point P under the action of D4. In each case, determine the stabilizer of P .

(a) (b) (c)

12. A soccer ball has 20 faces that are regular hexagons and 12 faces that are regular pentagons (see
Figures 22.13a and 22.14). Use the orbit stabilizer theorem to explain why a soccer ball cannot have
60◦ rotational symmetry about a line through the centres of two opposite hexagonal faces.

13. For each of the solids below, determine the number of rotational symmetries. (In the figures each
solid is also shown as “unfolded”.)
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(a) cuboctahedron

(b) (small) rhombicuboctahedron

(c) great rhombicuboctahedron or truncated cuboctahedron



LECTURE 23 SYMMETRY & COUNTING II: BURNSIDE’S THEOREM 266



Lecture 23

Symmetry & Counting II: Burnside’s
Theorem

In this lecture we continue our discussion of how to use group theory to count like a professional. We look
at an application permutation groups to count the number of different designs there are of various objects.

23.1 A Motivating Example

Consider the task of colouring the six vertices of a regular hexagon so that there are three black and three
white vertices. Figure 23.1 shows an example of one such colouring.

Figure 23.1: An example of a colouring of the vertices of the hexagon: three white, three black.

Ceramic Tiles:
If such a colouring appears on a ceramic tile, it wouldn’t make sense to consider this different from the
colouring

since this one can be obtained by rotating the one in Figure 23.1 counterclockwise by 60◦. In this case, we
should consider two colours equivalent if one can be obtained from the other by a rotation of the hexagon.
In other words, a manufacturer would only need to make the tile in Figure 23.1, and simply by rotating
the tile the following six colourings are equivalent under the group of rotations of a hexagon.

267
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How many tiles would a manufacturer need to make in order to obtain all possible ways to colour three
vertices black and three white (up to rotational equivalence)?

There are
(
6
3

)
= 20 ways to pick three vertices to colour black. As we observed above it would be nonsensical

for a manufacturer to produce each of the 20 designs, since up to rotation, the colouring in Figure 23.1 is
equivalent to six different designs.

Figure 23.2 shows all 20 possible colourings. They are organized into equivalence classes. For example, all
colouring in 23.2a are equivalent under the rotational group of the hexagon. Similarly for the other three
cases. This means, a manufacturer would only need to produce 4 different tiles, say for example the first
one in each collection of Figure 23.2.

(a)

(b)

(c)

(d)

Figure 23.2: All the different ways to colour three vertices of a hexagon black, and the other three white.

Beads on a Necklace:
On the other hand, if we think of these colourings as representing beads on a necklace, then two colourings
would be equivalent if one can be obtained from the other by an element of the dihedral group of the
hexagon. In other words, colourings can also be reflected to obtain equivalent colourings. In this situation,
the colourings in Figure 23.2b and 23.2c are equivalent. This means there are essentially 3 different ways
to make a necklace with three black beads and three white ones (up to rotational/reflexive symmetries of
the hexagon).

In general, we say that two designs (arrangements) A and B are equivalent under a group G of permuta-
tions if there is an element α ∈ G such that α(A) = B. That is, two designs are equivalent under G if they
are in the same orbit of G. The set being permuted by G is the set of designs or arrangements.
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Therefore the number of inequivalent configurations is the number of orbit classes under G. In the next
section we present a celebrated theorem which allows us to count the number of orbit classes.

In the ceramic tile example, the 20 designs in Figure 23.2 have been split up into 4 orbit classes ((a)-(d))
under the group of rotations Z6 of the hexagon. In the necklace example, there are only 3 orbit classes
under the dihedral group D6. Classes (b) and (c) merge to form one equivalence class in this case.

23.2 Burnside’s Theorem

Let X be a nonempty set, and SX the set of all permutations of X:

SX = {α | α : X → X is a bijection}.

We first recall what we mean by the fixed set of a permutation in SX .

For a permutation α ∈ SX , the fixed set of α is the set of all elements in X that α doesn’t move. We denote
the set by fix(α).

fix(α) = {x ∈ X | α(x) = x}.

Note that
x ∈ fix(α)⇐⇒α ∈ stabSX

(x).

Theorem 23.1 (Burnside’s Theorem): a If G is a finite group of permutations on a set X, then the
number of distinct orbits of G on X is

N =
1

|G|
∑
α∈G
|fix(α)|.

aThis theorem is also commonly called the Polya-Burnside Counting Theorem.

Proof: Let the orbits be

O1 = {a1, . . . , am}
O2 = {b1, . . . , bn}

...
ON = . . .

Recall, the Oi’s partition X, so each element of X appears in one and only one orbit. For each x ∈ X we
apply the orbit-stabilizer theorem to get |orbG(x)| · |stabG(x)| = |G|, or equivalently |stabG(x)| = |G|

|O| , where
O = orbG(x). Therefore,

O1 : |stabG(a1)|+ |stabG(a2)|+ · · ·+ |stabG(am)| = |G|
m

+ · · ·+ |G|
m︸ ︷︷ ︸

m terms

= |G|

O2 : |stabG(b1)|+ |stabG(b2)|+ · · ·+ |stabG(bn)| = |G|
n

+ · · ·+ |G|
n︸ ︷︷ ︸

n terms

= |G|

...
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Summing all these equations, we obtain ∑
x∈X
|stabG(x)| = |G| ·N.

On the other hand,
x ∈ fix(α)⇐⇒α ∈ stabG(x),

so ∑
x∈X
|stabG(x)| = |{(α, x) | α ∈ G, x ∈ X,α(x) = x}|

=
∑
α∈G
|fix(α)|.

Therefore, ∑
α∈G
|fix(α)| = |G| ·N

so that
N =

1

|G|
∑
α∈G
|fix(α)|.

�

23.3 Applications of Burnside’s Theorem

Example 23.1: Let’s return to the ceramic tile and necklace problems from Section 23.1 and see how to
apply Burnside’s theorem in this familiar context. It will be convenient to recall that the dihedral group
D6 consists of elements:

D6 = {ε, r, r2, r3, r4, r5, f, rf, r2f, r3f, r4f, r5f}

where r denotes a clockwise rotation through 60◦ and f is a reflection about a line through opposite vertices.
The groups of rotational symmetries is

G = 〈r〉 = {ε, r, r2, r3, r4, r5}.

In the case of counting hexagonal tiles with three black vertices and three white vertices, the set of ob-
jects being permuted is the 20 possible designs, whereas the group of permutations is G, the group of six
rotational symmetries of a hexagon.

The identity fixes all 20 designs in Figure 23.2. Rotations through 60◦, 180◦, or 300◦ fix none of the designs.
That is, |fix(r)| = |fix(r3)| = |fix(r5)| = 0. Rotations through 120◦ and 240◦ fix the two designs in Figure
23.2d, so |fix(r2)| = |fix(r4)| = 2. We summarize these results in Table 23.1.

By Burnside’s Theorem, we have that

number of orbits = N =
1

|G|
∑
α∈G
|fix(α)|

=
1

6
(20 + 0 + 2 + 0 + 2 + 0)

=
24

6
= 4.

Now let’s use Burnside’s Theorem to count the number of necklace arrangements. In this case we want to
count the number of orbits under D6. Table 23.2 summarizes the sizes of the fixed sets for each α ∈ D6.
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element: α Number of arrangements fixed
by this type of element: |fix(α)|

ε 20
r 0
r2 2
r3 0
r4 2
r5 0

Table 23.1: |fix(α)| for each α ∈ 〈r〉 < D6.

type of element number of elements of this type Number of arrangements fixed
by this type of element

identity 1 20
rotation of order 2 (180◦) 1 0
rotation of order 3 (120◦ or 240◦) 2 2
rotation of order 6 (60◦ or 300◦) 2 0
reflection across diagonal 3 4
reflection across bisector 3 0

Table 23.2: |fix(α)| for each type of α ∈ D6.

By Burnside’s Theorem, we have that

number of orbits = N =
1

|D6|
∑
α∈D6

|fix(α)|

=
1

12
(20 + 0 + 2 · 2 + 0 + 3 · 4 + 0)

=
36

12
= 3.

Example 23.2: Consider the number of ways to colour the faces of a regular tetrahedron with 4 different
colours.

How should we decide when two colourings of the tetrahedron are nonequivalent? Certainly, if we were
to pick up a tetrahedron coloured in a certain manner, rotate it, and put it back down, we would think of
the tetrahedron as being positioned differently rather than being coloured differently. So our permutation
group for this problem is just the group of 12 rotations of the tetrahedron, which we denoted by GT (see
Section 22.2.1). This group consists of the identity; eight elements of order 3, each which fix one vertex;
and three elements of order 2, each which fix no vertices (but fix exactly two edges).

The total number of colourings, without regard to equivalence, is 4!. Therefore

fix(ε) = 4!

while, for any α ∈ GT , α 6= ε,

fix(α) = 0.

Table 23.3 summarizes the results.
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type of element number of elements of this type Number of arrangements fixed
by this type of element

identity 1 4!
rotation of order 2 3 0
rotation of order 3 8 0

Table 23.3: |fix(α)| for various types of α ∈ GT .

By Burnside’s Theorem, we have that

number of orbits = N =
1

|GT |
∑
α∈GT

|fix(α)|

=
1

12
(4! + 0 + 0 + · · · 0)

=
4!

12
= 2.

Representative for the two orbit classes are showing in Figure 23.3.

(a) (b)

Figure 23.3: The two inequivalent colourings of the faces of a tetrahedron (tetrahedron is unfolded to see all sides).

Example 23.3: Suppose that we have the colours red (R), green (G), and blue (B), and we wish to colour the
edges of a regular tetrahedron. First observe there are 36 = 729 colourings without regard to equivalence.
As with the previous example, we consider how the group of rotations of the tetrahedron, GT acts on these
colourings. Two colourings are equivalent if they are in the same GT orbit. Every rotation permutes the
729 colourings, and to apply Burnside’s theorem we must determine the size of fix(α) for each of the 12
rotations.

(a) (b)

Figure 23.4: regular tetrahedron, with vertices and edges labeled.

The identity fixes all 729 colourings:
|fix(ε)| = 729.

Now consider the rotation (2, 3, 4) or order 3. (Here we are describing a rotation by the permutation it
induces on the vertices.) Suppose that a specific colouring is fixed by this element (that is, the tetrahedron
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appears to be coloured the same before and after this rotation). Since (2, 3, 4) takes edge 12 to edge 13, edge
13 to 14, and edge 14 to edge 12, these three edges must be coloured the same. The same argument shows
that edges 23, 24 and 34 must be coloured the same. Since there are three choices of colour for each of these
two sets, there are 32 = 9 colourings of the tetrahedron in total that are fixed by the rotation (2, 3, 4). Table
23.4 lists the 9 different colourings. Therefore,

|fix((2, 3, 4))| = 9.

For each of the other 7 rotations of order 3 a similar argument shows the fixed set has sized 9.

egde colours
colouring 12 13 14 23 24 34

scheme 1 R R R R R R
scheme 2 R R R G G G
scheme 3 R R R B B B
scheme 4 G G G G G G
scheme 5 G G G R R R
scheme 6 G G G B B B
scheme 7 B B B B B B
scheme 8 B B B R R R
scheme 9 B B B G G G

Table 23.4: Nine colourings fixed by (2, 3, 4).

Now consider the rotation (1, 2)(3, 4) of order 2. Since edges 12 and 34 are fixed they may be coloured in
any way and will appear the same after the rotation (1, 2)(3, 4) (since the rotation fixes these edges). This
gives 3 · 3 = 9 choices for these edges. Edges 14 and 23 are swapped by the rotation (1, 2)(3, 4) and so must
be coloured the same. Similarly, edges 13 and 24 are swapped and must be coloured the same. There are
3 choices to colour each of these sets, so there are 9 ways to colour these two sets altogether. Therefore,
there are 9 · 9 = 81 ways to colour all the edges in such a way that the colouring remains fixed under the
rotation (1, 2)(3, 4). Table 23.5 lists the 81 different colourings. Therefore,

|fix((1, 2)(3, 4))| = 81.

For each of the other 2 rotations of order 2 a similar argument shows the fixed set has sized 81.

egde colours
colouring 12 13 14 23 24 34

scheme 1 X Y R R R R
scheme 2 X Y R R G G
scheme 3 X Y R R B B
scheme 4 X Y G G G G
scheme 5 X Y G G R R
scheme 6 X Y G G B B
scheme 7 X Y B B B B
scheme 8 X Y B B R R
scheme 9 X Y B B G G

Table 23.5: Eighty-one colourings fixed by (1, 2)(3, 4). X and Y can be any of R, G, B.

The results are summarized in Table 23.6.
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type of element number of elements of this type Number of arrangements fixed
by this type of element

identity 1 729
rotation of order 2 3 81
rotation of order 3 8 9

Table 23.6: |fix(α)| for various types of α ∈ GT .

By Burnside’s Theorem, we have that

number of orbits = N =
1

|GT |
∑
α∈GT

|fix(α)|

=
1

12
(729 + 3(81) + 8(9))

=
1044

12
= 87.

It would be a difficult task to solve this problem without Burnside’s Theorem.

At this point you may be wondering who besides mathematicians would be interested in counting problems
such as these. Chemists for one, are interested in these types of counting problems. Though, their interests
lie more in counting configurations of molecules. We’ll now look at an example.

Example 23.4: Benzene is a chemical compound, each molecule of shich is made up of six carbon (C)
atoms, and six hydrogen (H) atoms. The carbon atoms are arranged in a hexagon with alternating single
and double bonds. Each carbon atom must have four bonds and each hydrogen atom must have one bond.
See Figure 23.5.

Figure 23.5: A benzene molecule.

By replacing three of the hydrogen atoms by CH3 clusters (see Figure 23.6) we can create a chemical
derivative from benzene. Let’s determine the number of such derivatives.

Taking into account orientation, the number of possibilities would just be the number of ways of choosing
three hydrogen atoms for replacement from six possibilities, in other words

(
6
3

)
= 20. However, those that

are related by rotational/reflective symmetry clearly correspond to the same derivative chemical. So we
wish to determine the number of derivatives up to equivalence under the symmetries of the molecule.

Let r denote the rotation in the clockwise direction through an angle of 120◦, and let f be a reflection about
the “x− axis”. The group of symmetries of the molecule (respecting the single/double bonds) is:

G = {ε, r, r2, f, rf, r2f}.
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Figure 23.6: An example of how a hydrogen atom is replaced with a CH3 cluster.

A reflection (f , rf , or r2f ) swaps pairs of vertices so it would not fix any molecule. An order 3 rotation
would fix a molecule if all clusters lie on the same side of a double bond. There are two such molecules.
Table 23.7 summarizes the number of arrangements, where three hydrogen atoms are replaced by CH4

clusters, which are fixed by each element of G.

type of element number of elements of this type Number of arrangements fixed
by this type of element

identity 1 20
reflection of order 2: f, rf, r2f , 3 0
rotation of order 3: r, r2 2 2

Table 23.7: |fix(α)| for various types of α ∈ G.

By Burnside’s Theorem, we have that

number of orbits = N =
1

|G|
∑
α∈G
|fix(α)|

=
1

6
(20 + 3(0) + 2(2))

=
24

6
= 4.

Therefore, there are 4 such derivatives. You should try listing them.

Another kind of molecule that chemists consider is visualized as a regular tetrahedron with a carbon
atom at the centre and any of the four radicals HOCH2 (hydroxymethyl), C2H2 (ethyl), Cl (chlorine) or
H (hydrogen) at the four vertices. The number of such molecules can be easily counted using Burnside’s
Theorem.

23.4 Exercises

1. Define the functions fix, mov, stab and orb.

2. Determine the number of different ways there are of arranging 6 keys on a key ring.

3. Determine the number of ways of colouring the vertices of a square so that two are red and two are
green.

4. Determine the number of ways there are to colour the vertices of a pentagon under each of the
following conditions:
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(a) using five distinct colours;
(b) using colours black and white, so that two are black and three are white;
(c) using colours black, white and blue, so that two are black, two are white, and one is blue.

5. Determine the number of ways of colouring a regular n-gon with n different colours.

6. Determine the number of ways of seating n diplomats around a table.

7. Determine the number of (inequivalent) ways to colour the 6 faces of a cube with 6 distinct colours.
Consider two colourings equivalent if one can be obtained from the other by a rotation of the cube.

8. Determine the number of (inequivalent) ways to colour the 6 faces of the cube so that three faces are
white and three faces are black. Consider two colourings equivalent if one can be obtained from the
other by a rotation of the cube.

9. Determine the number of (inequivalent) ways to colour the 6 faces of the cube so that two faces are
white and four faces are black. Consider two colourings equivalent if one can be obtained from the
other by a rotation of the cube.

10. Determine the number of (inequivalent) ways to colour the 12 edges of the cube so that six edges are
white and six edges are black. Consider two colourings equivalent if one can be obtained from the
other by a rotation of the cube.

11. Determine the number of (inequivalent) ways to colour the 12 pentagonal faces of a regular dodeca-
hedron with 12 distinct colours. Consider two colourings equivalent if one can be obtained from the
other by a rotation of the dodecahedron.

12. Determine the number of (inequivalent) ways to colour the 12 pentagonal faces of a regular dodeca-
hedron so that 6 faces are white and 6 faces are black. Consider two colourings equivalent if one can
be obtained from the other by a rotation of the dodecahedron.

13. Determine the number of (inequivalent) ways to colour the 20 triangular faces of a regular icosahe-
dron with 20 different colours. Consider two colourings equivalent if one can be obtained from the
other by a rotation of the icosahedron.

14. A benzene molecule can be viewed as six carbon atoms arranged in a regular hexagon. See Figure
23.7 (ignore double vs. single bonds). At each carbon atom, one of three radicals (NH2, COOH, or
OH) can be attached. How many such compounds are possible?

Figure 23.7: Diagram for Exercise 14.



Lecture 24

Lights Out

In this lecture we look at an electronic puzzle called Lights Out and see how we can solve it using linear
algebra.

24.1 Lights Out

Lights Out consists of a 5-by-5 grid of lights; when the game starts, a set of these lights (random, or one
of a set of stored puzzle patterns) are switched on. Pressing one of the lights will toggle it, and the four
lights adjacent to it, on and off. (Diagonal neighbours are not affected.) The game provides a puzzle: given
some initial configuration where some lights are on and some are off, the goal is to switch all the lights
off, preferably in as few button presses as possible. See Figure 24.1 for sample game play.

Figure 24.1: A demonstration of Lights Out play.

Two physical versions of the game are shown in Figure 24.2. The first one is the original game, each button
has two states: on or off. The second one, called Lights Out 2000, has a further option of allowing 3 states
for each button: red, green and off.

Variations of Lights Out: Lights Out is another puzzle that has been updated for the digital era. Many
variations of this puzzle exist now in software form. Variations include: more states for the lights (i.e. more
colours for the lights to cycle through), changing size of game boards, modifying how a button press changes
the state of the lights. For example, we could make it so pressing a button changes the state of all lights
in the same row and column as the button that was pressed.

Software: This puzzle is available for play on the web as well as available for ios. More information
about where to find your own digital copy can be found here http://www.sfu.ca/ jtmulhol/math302/.
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(a) Lights Out (b) Lights Out 2000

Figure 24.2: Lights Out electronic games released by Tiger Toys

24.2 Lights Out: A Matrix Model

A complete strategy for the game can be obtained using linear algebra, requiring only knowledge of Gauss-
Jordan elimination and some facts about the column and null space of a matrix.

We make some initial observations:

(a) Pushing a button twice is equivalent to not pushing it at all.

(b) The state of a button depends only on how often (whether even or odd) it and its neighbours have
been pushed. Hence, the order in which the buttons are pressed does not matter. Together with (a),
for any configuration, a solution exists in which each button is pushed no more than once.

We will represent the state of each light by an element of F2 = {0, 1}; 1 for on, 0 for off. We can represent a
lit button configuration by a 5× 5 matrix A with entries from F2, i.e. A ∈M5×5(F2) where the (i, j)th entry
is 1 if the button in position (i, j) is on, or 0 if the button is off. See Figure 24.3. We call this matrix the lit
button configuration matrix. Here,

M5×5(F2) = {[bi,j ] | 1 ≤ i, j ≤ 5, bi,j ∈ F2 = {0, 1}}.

(a) sample lit but-
ton configuration

(b) corresponding con-
figuration matrix in
M5×5

Figure 24.3: Matrix corresponding to a lit button configuration

If a button is pressed the states of the lights around the button are toggled. For the standard lights out
puzzle it is the button itself, and its vertical and horizontal neighbours that are toggled. For each button
(i, j) we define a toggle matrix Ti,j where the entry is 1 if the button in that location changes state, or 0
if it doesn’t. For example, see Figure 24.4.

The sample game play shown in Figure 24.1 can be translated into a matrix equation using configuration
and toggle matrices as follows.
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(a) pressing button (1, 1) (b) corresponding toggle matrix T1,1

(c) pressing button (3, 4) (d) corresponding toggle matrix T3,4

(e) pressing button (5, 3) (f) corresponding toggle matrix T5,3

Figure 24.4: Some examples of the toggle matrix corresponding to pressing a button.

Let B be the initial configuration matrix:

B =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 1 1 0
0 0 0 0 1

 .

Then the game play corresponds to
B + T4,4 + T5,5 = 0,

where 0 denotes the zero matrix, and addition of matrices is done in the usual way – componentwise – but
here entries are added modulo 2. Recall, modulo 2 arithmetic means 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0.
Since a matrix in M5×5(F2) added to itself is 0 (Why?) then adding B to both sides of the previous equation
gives

T4,4 + T5,5 = B.

In other words, to solve the puzzle we just have to determine how to write B as a linear combination of the
toggle matrices.

Moreover, since for any matrices A,C ∈M5×5(F2) we have A+ C = C +A and A+A = 0 then we can now
easily see why (i) order in which buttons are presses doesn’t matter, and (ii) no button needs to be pressed
more than once.

In general, given any lit button configuration B = [bi,j ], solving the puzzle is equivalent to solving the
matrix equation: ∑

1 ≤ i ≤ 5
1 ≤ j ≤ 5

xi,jTi,j = B (24.1)
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for the 25 coefficients xi,j ∈ {0, 1}. The coefficients xi,j tell use exactly what buttons we need to press. We
callX = [xi,j ] the strategy matrix. We will sometimes write it as a vector x = (x1,1, x1,2, x1,3, . . . , x4,5, x5,5)
and call it the strategy vector. In general, we can turn any matrix into a vector by listing the entries in
order from left-to-right, then top to bottom.

Matrix equation (24.1) corresponds to a system of 5 ·5 = 25 linear equations (one for each component of the
matrix equation).

For example, the linear equation corresponding to entry (1, 1) in matrix equation (24.1) is

x1,1 + x1,2 + x2,1 = b1,1,

since the only toggle matrices with 1 in position (1, 1) are T1,1, T1,2, and T2,1. Similarly, the linear equation
corresponding to entry (3, 4) in matrix equation (24.1) is

x2,4 + x3,3 + x3,4 + x3,5 + x4,4 = b3,4.

Writing b = (b1,1, b1,2, b1,3, . . . , b4,5, b5,5) for the vector corresponding to the configuration matrix B, it is
straightforward to check that this big system (Equation (24.1)) can be written as a matrix product

Ax = b (24.2)

where A is the 25× 25 matrix whose columns are the toggle vectors ti,j (which are the toggle matrices Ti,j
written as vectors):

A = [t1,1 | t1,2 | · · · | t5,5] .

We can write A as

A =


C I5 0 0 0
I5 C I5 0 0
0 I5 C I5 0
0 0 I5 C I5
0 0 0 I5 C

 (lights out matrix) (24.3)

where C represents the 5× 5 matrix

C =


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1

 ,

and I5 denotes the 5× 5 identity matrix. The matrix A is referred to as the lights out matrix.

Therefore, solving the puzzle for a general configuration b is equivalent to solving the 25×25 linear system
24.2 for a strategy vector x (where all arithmetic is done modulo 2).

We would like to determine the answers to the following questions.

(a) Will the standard algorithm using Gauss-Jordan elimination work to solve this system? Recall, this
method works if entries are real numbers under regular addition/multiplication. But here we are
working over a different number system: F2 = {0, 1} under addition/multiplication modulo 2.

(b) Must there be a solution for every configuration b?

(c) If not, what is the probability a random configuration b is solvable?

(d) When there is a solution for b, is it unique? If not, can we find the smallest solution (i.e. giving the
least number of button presses)?
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24.2.1 Imagine you are in a field...

The algorithm learned in linear algebra for solving linear systems of the form Ax = b is known as Gauss-
Jordan elimination (or simply as Gaussian elimination). The steps of the algorithm are as follows:

(a) Form the augmented matrix [A|b].

(b) Reduce the augmented matrix to reduced row echelon form by using elementary row operations:

• (swap) Swap any two rows.

• (scalar multiply) Multiply any row by a non-zero number.

• (replacement) Replace any row with a multiple of another row added to the row itself.

(c) Read off the solution (or conclude there isn’t a solution) directly from the reduced row echelon form.

In linear algebra we only considered the real numbers R under addition/multiplication. If you were lucky
you saw that the same thing could be done with complex numbers C. We’d like to know, does all the theory
developed in linear algebra carry over to more abstract sets of “numbers” under some sort of “addition”
and “multiplication”? In particular what about the situation we are in with the lights out puzzle. Here our
number system is

F2 = {0, 1}

and the addition and multiplication tables are defined as follows.

+ 0 1
0 0 1
1 1 0

* 0 1
0 0 0
1 0 1

Does Gauss-Jordan elimination still work?

Let’s consider a set F of objects which is closed under two operations + and ∗. What properties would
(F,+, ∗) need to satisfy in order for Gauss-Jordan elimination to still possibly work?

First note the key to having this algorithm work is that the elementary row operations must be reversible.
Clearly a row swap is reversible, just swap the rows back. Multiplying a row by a nonzero element a is
reversible only if the element has a multiplicative inverse in F (a b ∈ F such that ab = 1). Another key
part to the algorithm is that we could use additive inverses to make entries of the matrix 0. This means
we want our set of numbers F to satisfy the following 9 properties, known as the field axioms.
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Definition 24.1: A set F with two operations + and ∗ satisfying the following properties for every
a, b, c ∈ F is called a field.

(a) Addition is commutative, a+ b = b+ a.

(b) Addition is associative, a+ (b+ c) = (a+ b) + c.

(c) There is a unique element 0 (zero) in F such that a+ 0 = a.

(d) For each a ∈ F there is a unique element −a ∈ F such that a+ (−a) = 0.

(e) Multiplication is commutative, ab = ba.

(f) Multiplication is associative, a(bc) = (ab)c.

(g) There is a unique element 1 (one) in F such that a1 = a

(h) For each non-zero a ∈ F there is a unique element a−1 ∈ F such that aa−1 = 1.

(i) Multiplication distributes over addition, a(b+ c) = ab+ ac and (b+ c)a = ba+ ca.

So Gauss-Jordan elimination still works if our set of numbers F is a field. In our terminology of Chapter 10
properties (a)-(d) mean that F is an abelian group under +, and properties (e)-(h) mean that F ∗ = F − {0}
is an abelian group under ∗ (see Definition 10.1 for the definition of a group).

It turns out these were the only properties of (R,+, ∗) we used in linear algebra. Therefore, everything
done in linear algebra holds true for matrices whose entries come from any field F .

Since F2 is a field with two elements then Gauss-Jordan elimination will work to solve the linear system.
Moreover, any result we want to use from linear algebra will carry over to this new setting where our
“numbers” come from F2.

24.2.2 Solving linear systems with Sage.

In a first course in linear algebra you were typically asked to solve linear systems by-hand. This was to
allow you to understand the details of the Gauss-Jordan elimination algorithm. In practice, people don’t
generally solve systems of equations by hand, these are generally done by computer. We’ll now see how to
use Sage to solve linear systems.

To solve a linear system Ax = b in Sage, we must first define the matrix A, for example

matrix(ZZ,[[1,2],[3,4],[5,6]) defines the matrix

 1 2
3 4
5 6

, over the integers Z. Here we defined

each row. We can give Sage a list and tell it how many rows, then have it split the list into a matrix as
follows:

matrix(QQ,2,[1,2,3,4,5,6]) defines the matrix
(

1 2 3
4 5 6

)
, over the rationals Q,

Here is an example using Sage to solve the system

(
1 0 2
3 2 5

)
x =

(
3
0

)
.
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As we can see from the output of Sage the solution is

 3
−9/2

0

.

Sage
sage: M=matrix(QQ,2,[[1,0,2],[3,2,5]])
sage: b=vector(QQ,[3,0])
sage: M.solve_right(b) #command for solving Mx = b (i.e. x is right of M)
(3, -9/2, 0)

The command for solving a linear system Ax = b is A.solve_right(b). 1

Coming back to the lights out puzzle, we first need to construct the lights out matrix A defined in (24.3).
We could do it one entry at a time, which would involve entering 25 · 25 = 625 numbers. This wouldn’t
be fun, and if we want to consider larger game boards than 5 × 5 we would have a lot more typing to do.
Instead, we use two loops to define A, and we do this for a general n× n board. Keep in mind, we have to
tell Sage we are working over the field of integers modulo 2, F2. Sage knows this field by the name GF (2),
which stands for Galois Field of size 2.

Sage
sage: # Definition of the matrix for Lights Out
sage: # input = integer n (where lights out board is nxn)
sage: # output = lights out matrix A which is nxn
sage: def lights_out(n):
sage: M = MatrixSpace(GF(2),n*n,n*n) #tells SAGE to work with matrices in M_n(F_2)
sage: A = M.matrix() #initializes A to a matrix in M, we then define entries below
sage: for i in range(n):
sage: for j in range(n):
sage: m = n*i+j
sage: A[(m,m)] = 1
sage: if i > 0 : A[(m,m-n)] = 1
sage: if i < n-1 : A[(m,m+n)] = 1
sage: if j > 0 : A[(m,m-1)] = 1
sage: if j < n-1 : A[(m,m+1)] = 1
sage: return A

For example the lights out matrix for the 3× 3 game board is
Sage

sage: lights_out(3)

[1 1 0 1 0 0 0 0 0]
[1 1 1 0 1 0 0 0 0]
[0 1 1 0 0 1 0 0 0]
[1 0 0 1 1 0 1 0 0]
[0 1 0 1 1 1 0 1 0]
[0 0 1 0 1 1 0 0 1]
[0 0 0 1 0 0 1 1 0]
[0 0 0 0 1 0 1 1 1]
[0 0 0 0 0 1 0 1 1]

Asking for the lights out matrix for the 5 × 5 game returns confirmation it is stored in memory, but
Sage saves us from having to look at it.

Sage
sage: lights_out(5)
25 x 25 dense matrix over Finite Field of size 2

1 Using the word “left” would be the command to solve xA = b, but in this case x and b would be row vectors, not column vectors.
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Now that A is loaded into Sage let’s solve some configurations.

Example 24.1: Solve the following configuration:

The configuration matrix is B =


1 1 0 0 1
1 1 1 0 0
1 0 0 0 1
0 0 1 1 1
1 0 0 1 1

 which we can express as a vector

b = (1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1).

(Spaces are inserted after each group of 5 entries in b so it is easier to read. ) Now we have Sage solve
Ax = b.

Sage
sage: #current game configuration (i.e. buttons that are lit)
sage: b=vector(GF(2),[1,1,0,0,1, 1,1,1,0,0, 1,0,0,0,1, 0,0,1,1,1, 1,0,0,1,1]);

sage: #solving the game
sage: x=lights_out(5).solve_right(b);

sage: #now put the solution x in a nice matrix form so we can see what buttons to press
sage: button_press_matrix = matrix(GF(2),5,5,x.list()) # convert vector to a matrix
sage: button_press_matrix # show matrix in output

[0 0 1 0 0]
[1 0 1 1 1]
[0 1 0 1 0]
[1 1 1 0 1]
[0 0 1 0 0]

Therefore, to solve the puzzle we just need to press the 12 buttons shown in the diagram below.

Rather than have to type out the previous lines of code every time we want to solve a configuration we
could build a solve function as follows:

Lights-Out Solve function: (basic version)
Sage

sage: # Definition of the solution function for Lights Out
sage: # input = integer n (where lights out board is nxn), and b the configuration vector
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sage: # output = a matrix X indicating which buttons to press for solution
sage: def lights_out_solver(n,b):
sage: x=lights_out(n).solve_right(b);
sage: button_press_matrix = matrix(GF(2),n,n,x.list())
sage: return button_press_matrix

For our previous example we could just type:
Sage

sage: b=vector(GF(2),[1,1,0,0,1, 1,1,1,0,0, 1,0,0,0,1, 0,0,1,1,1, 1,0,0,1,1]);
sage: lights_out_solver(5,b)
[0 0 1 0 0]
[1 0 1 1 1]
[0 1 0 1 0]
[1 1 1 0 1]
[0 0 1 0 0]

24.2.3 Solvable Configurations

A lit button configuration b is solvable if the corresponding linear system Ax = b has a solution. From
linear algebra we know

Ax = b is solvable for every b ⇐⇒ A is invertible ⇐⇒ det(A) 6= 0.

The lights out matrix (for 5×5 game) has determinant 0. Therefore, there do exist unsolvable configurations
b.

Sage
sage: lights_out(5).determinant()
0

For example, the configuration in Figure 24.5 is unsolvable.

Figure 24.5: An unsolvable configuration of lights.

Sage
sage: b=vector(GF(2),[1,0,1,0,1, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0]);
sage: lights_out_solver(5,b)

Traceback (click to the left of this block for traceback)
...
ValueError: matrix equation has no solutions

Recall that Ax = b has a solution only when b is in the column space of A, denoted col(A). This is just a
fancy way of saying ∑

1≤i,j≤5

xi,jti,j = b
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for some xi,j , where ti,j are the toggle vectors, as we already know. However, phrased in this way we see
that the set of solvable configurations is col(A) = span(t1,1, t1,2, . . . , t5,5), and the dimension of col(A) is
called the rank of A, denoted rank(A).

Sage
sage: lights_out(5).rank()
23

Therefore only 23 buttons are required to solve any configuration, and if each one can either be pressed
or not, then there are 223 solvable configurations, out of a possible 225 configurations. This proves the
following theorem.

Theorem 24.1: For the 5×5 lights out puzzle, the probability that a random configuration is solvable
is 1/4.

Quiet Patterns:

There exist sequences of button presses that will leave the lights unchanged. These are known as quiet
patterns. Such a sequence x is a solution to the homogeneous equation Ax = 0. That is, x is in the null
space of A, denoted by nul(A). The dimension of this space is nullity(A) = 25 − rank(A) = 25 − 23 = 2. If
we let d1 and d2 be a basis for nul(A) then

nul(A) = span(d1,d2) = {r1d1 + r2d2 | r1, r2 ∈ F2}
= {0,d1,d2,d1 + d2}.

Therefore, there are only 4 such button sequences (vectors).

We can use Sage to find these vectors. The command for computing the null space is .right_kernel().

Sage
sage: lights_out(5).right_kernel()
Vector space of degree 25 and dimension 2 over Finite Field of size 2
Basis matrix:
[1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1]
[0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0]

Sage returns a basis for the nullspace. The span of these vectors (using coefficients from F2 = {0, 1}) gives
us the complete null space. These correspond to the button presses shown in Figure 24.6.

(a) 0 (b) d1 (c) d2 (d) d1 + d2

Figure 24.6: The 4 Quiet Patterns: These are the button press sequences in the nullspace of A. Starting with all the
lights out and pressing the buttons indicated in any of these four patterns will result in all the lights being out again.
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24.2.4 Optimal solution to Lights Out

Let b be a (solvable) configuration of the lights. If x is a strategy vector (i.e. a solution to Ax = b) then the
set of all solution strategies is: 2

b+ null(A) = {b, b+ d1, b+ d2, b+ d1 + d2}.

The optimal solution will be the one with the fewest number of 1’s as entries.

Let’s go back to Example 24.1 and see if we can find an optimal solution. The one we found requires 12
button presses, perhaps we can do better.

It will be convenient to have Sage count the number of occurrences of 1 in a strategy vector. We will define
a function called number_of_presses to do this.

Sage
sage: def number_of_presses(x):
sage: counter=0; # initialize counter, which is our variable to count 1’s
sage: for i in range(0,25): # recall Python indexes lists from 0, not 1
sage: if x[i]==1: counter=counter+1 # check if ith entry is 1, increment counter
sage: return counter

Now let’s find all 4 solutions to Example 24.1.

Sage
sage: b = vector(GF(2),[1,1,0,0,1, 1,1,1,0,0, 1,0,0,0,1, 0,0,1,1,1, 1,0,0,1,1]);
sage: x = lights_out(5).solve_right(b) # one solution
sage: nulsp = lights_out(5).right_kernel()
sage: for d in nulsp:
sage: print b+d, number_of_presses(b+d)
(0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0) 12
(1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1) 8
(0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0) 8
(1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1) 20

There are two optimal solutions, each requiring 8 button presses. Therefore, an optimal solution to the
configuration in Figure 24.7a is the strategy matrix in Figure 24.7b.

(a) Configuration of
lights

(b) optimal strategy matrix (c) optimal solution

Figure 24.7: An optimal solution requiring 8 button presses.

2For a set A and element x the notation x + A represents the set obtained by adding x to every element of the set A. That is,
x+A = {x+ a | a ∈ A}.
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24.3 Summary of 5× 5 lights out puzzle

Solving a configuration b of the lights out puzzle is equivalent to solving the linear system Ax = b for
strategy vector x where A is a 25 × 25 lights out matrix. All arithmetic is done in the finite field of size 2:
F2 = {0, 1}.

• The dimension of space of solvable configurations is rank(A) = 23,
the number of solvable configurations is 2rank(A) = 223.

• The probability that a random configuration is solvable is 223/225 = 1/4,

• The dimension of space quiet patterns (nul(A)) is nullity(A) = 52 − rank(A) = 2,
the number of quiet patterns is |nul(A)| = |F2|nullity(A) = 22 = 4.

• For a given strategy vector x the 4 equivalent vectors are the elements of x+ nul(A).

Putting all the previous ideas into one code block, we can write a lights out solver which returns the
optimal solution.

Lights-Out Solve function: (optimal version)
Sage

sage: # Function: number_of_presses
sage: # input = a vector x of dimension 25 with 0,1 entries
sage: # output = the number of times 1 appears as an entry
sage: def number_of_presses(x):
sage: counter=0;
sage: for i in range(0,25):
sage: if x[i]==1: counter=counter+1
sage: return counter

sage: # Function: optimal_solution
sage: # input = a strategy vector x
sage: # output = an equivalent strategy vector which uses least number of button presses
sage: def optimal_solution(x):
sage: op_button_presses=x # initialize variable to store optimal solution
sage: n=number_of_presses(x) # initial variable to store optimal presses
sage: nul=lights_out(5).right_kernel()
sage: for d in nul:
sage: if number_of_presses(x+d)<n:
sage: op_button_presses=x+d # update variable
sage: n=number_of_presses(x+d) # update variable
sage: return op_button_presses

sage: # Function: lights_out_solver
sage: # input = b the configuration vector of lights on 5-by-5 game
sage: # output = an optimal strategy matrix which solves the puzzle
sage: def lights_out_solver(b):
sage: x=lights_out(5).solve_right(b); # one solution
sage: x=optimal_solution(x) # exchanges x for an optimal solution
sage: button_press_matrix = matrix(GF(2),5,5,x.list()) #turn output vector into matrix
sage: return button_press_matrix

As an example, to solve the configuration in Figure 24.8a we proceed as follows.

Sage
sage: b=vector(GF(2),[0,1,0,0,0, 1,1,0,1,1, 1,1,1,1,0, 1,1,1,1,1, 1,0,1,0,1]);
sage: lights_out_solver(b)
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[0 0 0 0 1]
[0 1 0 1 1]
[0 0 0 1 0]
[1 0 0 1 0]
[0 0 0 1 0]

(a) Configuration of
lights

(b) an optimal solution

Figure 24.8: An optimal solution requiring 8 button presses.

24.4 Eigenvalues and Eigenvectors

Here we discuss how the lights out puzzle gives an example of how to visualize eigenvalues and eigenvec-
tors, which is a topic covered in a first course in linear algebra.

Recall that x is an eigenvector of A if x 6= 0 and

Ax = λx

for some scalar λ. The scalar λ is called the corresponding eigenvalue. In our case we only have two
scalars: 0 and 1, so either (i) Ax = 0 or (ii) Ax = x. We already considered Ax = 0 (which corresponds to
the nullspace, and what we called the quiet patterns). So let’s consider Ax = x, the space of eigenvectors
corresponding to eigenvalue 1.

A solution to Ax = x would be a pattern such that if, starting with all the lights off, then pressing the
buttons corresponding to the solutions, exactly the pressed lights will end up being on. For an example see
Figure 24.9.

(a) Button presses cor-
responding to an eigen-
value

(b) Light configuration
after pressing buttons
in 24.9a

Figure 24.9: An example of an eigenvector for the lights out matrix.

How many of these patterns are there? That is, how many eigenvectors are there which correspond to the
eigenvalue 1? The solutions to Ax = x are precisely the solutions to (A − I)x = 0, where I is the 25 × 25
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identity matrix. So the answers lies with the nullspace of A − I. From the calculation below we see the
dimension of the nullspace of A− I is 5.

Sage
sage: I25=MatrixSpace(GF(2),25,25).identity_matrix(); # 25x25 identity matrix
sage: A=lights_out(5);
sage: (A-I25).nullity()

5

Therefore, there are 5 linearly independent eigenvectors (with λ = 1) which form a basis for nul(A−I). Any
linear combination of these five vectors, with coefficients 0 or 1, is an eigenvector. This gives 25 possibilities
(including 0 which is not a eigenvector but does solve Ax = x).

In Exercise 4 you are asked to find 5 vectors which form a basis for the eigenspace corresponding to λ = 1.

24.5 Other sized game boards

Lights Out has be modified and generalized in many ways: bigger games boards, different toggle condi-
tions, more states (colours) for the lights to cycle through.

Here we mention briefly some results about larger games boards. We assume the toggling condition is
the same as for the 5 × 5 game board. Let An be the lights out matrix for the n × n game board. The
key to understanding solvability lies in knowing the whether the n2 − rank(An) is 0 or not. If it is 0 then
An has full rank, and so it’s columns are linearly independent, therefore An is invertible. This means
every configuration is solvable and has a unique solution in which no button is pressed more than once.
If it is non-zero then rank(An) < n2 so An is not invertible, therefore there exist configuration which are
not solvable. Moreover, the number of different solutions for a given configuration (if the configuration is
solvable) is 2nullity(An) = 2n

2−rank(An).

Table 24.1 lists the values of n2 − rank(An) for 3 ≤ n ≤ 10.

n rank(An) nullity(An) = n2 − rank(An)

3 9 0
4 12 4
5 23 2
6 36 0
7 49 0
8 64 0
9 73 8
10 100 0

Table 24.1: nullity(An) and rank(An) for various boards sizes of lights out.

24.6 Light-Chasing Strategy

There is a strategy for solving the 5× 5 lights out puzzle which, though not optimal, will allow you to solve
the puzzle without having to solve a linear system. The technique is known as light-chasing. Begin with
the top row and press the button beneath any lit button in the top row. This will turn out all lights in the
top row. Apply this strategy row by row until you reach the bottom row.
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The lights in the bottom row will be one of the 7 configurations shown in Table 24.2, press the corresponding
buttons in the top row as indicated in the table. Then apply the light-chasing strategy again, beginning
from the top row. This will solve the puzzle. Can you use the techniques we discussed in this lecture to
come up with the button press sequences shown in the right-hand column of the table?

Lights on bottom rown Press these on top row

Table 24.2: Light-chasing strategy

24.7 Exercises

1. Solve each of the following configurations.
(You can use the Lights-out puzzle on Jaap’s puzzle page to edit the lights, then try out your solution.)

(a) (b) (c) (d)

2. Show each of the following configurations are not solvable.

(a) (b) (c)
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3. In Table 24.2 there are 7 cases shown for the configuration of lights in the last row of the puzzle. The
case in which all the lights in the last row are out isn’t included in this table since the puzzle would
already be solved in this case. Show that the other 25 − 8 = 24 configurations are not solvable. This
explains why they are not considered in the table.

4. In Section 24.4 we discussed how to visualize eigenvectors on the lights out puzzle. In this exercise
find five linearly independent vectors which are eigenvectors corresponding to the eigenvalue 1. Once
you found these vectors verify them visually by starting with all the lights off, then pressing the
buttons corresponding to the vector observe that exactly the pressed lights will end up being on.

5. Consider a variant of the lights out game on an n×n board in which a button press changes the state
of the button itself and its four diagonal neighbours. All other rules remain the same.

(a) What is the lights out matrix for this game when n = 4?
(b) For n = 3, 4, . . . , 8 calculate the dimension of the space of solvable configurations and the dimen-

sion of the space of quiet patterns.
(c) Compare your answers to the situation for the classic toggle rule which are shown in Table 24.1.

6. Consider the variation of the game in which each light has 3 states (red, green, off). You can assign to
each state a number in the field F3 = {0, 1, 2}. Assume the classic toggle rules apply (only the button
pressed and its horizontal and vertical neighbours are toggled). Explain what the elements of each
eigenspace represent in terms of the game.



Appendix A

Sage

Ted Kosen, author of Sage For Newbies, describes Sage as follows

Sage is an open source mathematics computing environment for performing symbolic, algebraic,
and numerical computations. Mathematics computing environments are complex, and require
a significant amount of time and effort to become proficient at using one. It will take a beginner
a while to become an expert using Sage, but fortunately one does not need to be a Sage expert
in order to begin using it to solve problems.

This is precisely the viewpoint we will take in this book. We will not attempt to become Sage experts, we
will however us it to solve problems. In particular, problems regarding permutation puzzles.

A mathematics computing environment is a collection of computer algorithms, and data structures, that
are built on top of a programming language. This means one has access to a full programming language,
in Sage’s case it is Python, and further access to a mathematical objects library complete with algorithms
for performing calculations.

There is an excellent online Sage tutorial at http://www-rohan.sdsu.edu/∼mosulliv/sagetutorial/. It covers
everything we’ll discuss in this appendix plus a whole lot more.

Rather than say anything more about what Sage is, let’s just see for ourselves what it can do.

A.1 Sage Basics

We’ll be using Sage through an online server via a web browser (called a “Sage notebook”). This means you
can use it through your desktop computer or mobile device such as a laptop or iPad. It is not necessary to
download and install the (free) Sage software package, however you are free to do so if you want your own
local copy. See [16] for more information.

Once you log-in to the Sage server (first time requires you to create a free account) a worksheet manager
page will be displayed. See Figure A.1. Here you can create new worksheets or continue to work with
previously created worksheets.

To create a new worksheet click the “New Worksheet” link. You will be prompted to give the worksheet
a title (by default the worksheet is given the name “Untitled”). A blank worksheet will be displayed (see
Figure A.2). You can now begin working in Sage by typing commands in the cell (code-clock) where I’ve
written “type code here”.

293

http://www-rohan.sdsu.edu/~mosulliv/sagetutorial/
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Figure A.1: Sage worksheet management page.

Figure A.2: Sage blank worksheet.

Let’s now have a look at the kinds of computations we can do in Sage. In this book we will display Sage cells
as shown below in order to make the text easier to read.

Sage
sage: input (or source code) will be typed here
output will be displayed here

A.1.1 Arithmetic Operations

We can use Sage like a calculator to add/subtract/multiply/divide numbers.

Sage
sage: 2+3
5

When typing input, [enter] will jump you down to the next line, whereas [shift-enter] gets Sage to evaluate
the code-block. You can also press the [evaluate] link below the active cell instead of [shift- enter].

A bit of terminology: What is typed in a cell is called the source code. When the cell is executed, what
Sage prints to the screen (blue writing in the Sage notebook) is called the output.

So ”2+5” in the cell above is the source code, and ”5” is the output.

Common arithmetic operations are:
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operation syntax name

addition +
subtraction −
multiplication ∗
division /
remainder %
integer quotient //
exponentiation ˆ or **

Sage
sage: 3+2/5*2ˆ3
31/5
sage: 2ˆ3
8
sage: 2**3
8
sage: (5ˆ3)ˆ2
15625
sage: 11%4
3
sage: 7//3
2

As we can see Sage follows the usual order of operations:

(a) first evaluate exponents from right to left,

(b) then multiplication, division, remainder from left to right,

(c) finally, addition and subtraction from left to right.

The order in which expressions are evaluated can be changed using parenthesis: ( ).

A.1.2 Inserting a New Cell

A new cell will automatically appear below the last cell of your sheet when the contents of the last cell
have been evaluated. Sometimes, however, we would like to add a new cell in the middle of our worksheet.
To insert a new execution shell in the worksheet, you can:

Hover the mouse slightly above or below the current cell, until a purple horizontal line appears, then click
the line. This will add a cell where you clicked.

If you just want to add a cell, or a bunch of cells, at the end of the worksheet, just select the last cell and
hit [shift-enter] to add a new cell.

A.1.3 Working in a Cell: Enter, Shift-Enter, The Semicolon, and Comments

Multiple statements can be placed in a single cell. After typing ”1+2”, use [enter] to bring the cursor down
to the next line. Notice when the cell is evaluated (either [shift-enter] or click [evaluate] below cell) only
the output of the last line of code is displayed.

Sage
sage: 1+2
sage: 3-2
1
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To display both outputs we can place the statements on the same line, separating them by semicolons ”;”.
In Sage, semicolons can be placed after statements as optional terminators, but most of the time one will
only see them used to place multiple statements on the same line.

Sage
sage: 1+2; 3-2;
3
1

There is also a ”print” command for sending outputs to the screen. We’ll see this in Section A.2.2.

It will come in handy to be able to add comments directly in the source code. Comments are basically notes
to yourself about what you are doing, and are not intended for the computer to execute. Anything followed
by the ”#” symbol is treated as a comment.

Sage
sage: # this is a comment
sage: 2-3 # and this is another comment after some code
-1

When a comment is too long to fit in one line, we can enclose it in triple quotes: ””” text here ”””.

Sage
sage: """here is a really long comment. What the next line does is evaluates 3
expressions all on the same line. Nothing special, but my comment is now pretty long."""
sage: 5ˆ4; 4+2*3;
625
10

A.2 Variables and Statements

Part of the power of a computing environment lies in the ability to store, manipulate, and recall informa-
tion. This is done using ”variables” and ”statements”.

A.2.1 Variables

A variable is a name that is associated with the data stored in a memory address. One way to create
variables in Sage is through assignment which consists of placing the variable you would like to create to
the left of an equal sign ”=”, and the expression on the right side.

Here we create a variable ”a”, and assign to it the number 5.

Sage
sage: a=5 # create a new variable a and assign 5 to it.
sage: b=7 # create a new variable b and assign 7 to it.
sage: a=3 # reassign to the variable a the number 3.
sage: c=a+b # assign to the variable c the sum of a and b
sage: c # output the value of c
10

A.2.2 Statements

Statements are the part of a programming language that are used to encode algorithmic logic.
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Simple statements:

• assignment:
a=a+1

• call:
var(x), print(a+1), factor(24)

• assumption:
assume(x > 0)

Compound statements:

• if-statement:
if A > 3:

print(A-3)
else:

print(”not big enough”)

• while statement:
while x <= 10:

print(x)
x=x+1

• for-statement:
for x in [1,2,3,4,5]:

print x

We will look at if, while, and for statements more thoroughly in Section A.6. But the odd one may creep
into some of our examples below.

print()

Sage has a statement called ”print” that allows the results of expressions to be displayed regardless of
where they are located in the cell.

Sage
sage: a=3
sage: b=2
sage: print a,b
3 2

We could also have used semicolons to get a and b on the same line. Notice though, this displays a and b
on separate lines in the output, whereas ”print” puts them on the same line.

Sage
sage: a=3; b=2;
sage: a; b;
3
2

Sage
sage: if is_prime(5): # is_prime() is a built-in function
sage: print("5 is prime")
sage: else:
sage: print("5 is not prime")
5 is prime
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A.3 Lists

Lists are one of the most fundamental objects in any programming language.

A.3.1 Defining a List

A list is defined by putting the items of the list, separated by commas, inside square brackets ”[ ]”.

Sage
sage: L=[1,2,"milk","cheese","new shoes"]
sage: print L
[1, 2, ‘milk’, ‘cheese’, ‘new shoes’ ]

We can select items from the list as follows. (Note: the first item in a Sage/Python list is indexed by 0, not
1 as you may have expected.)

Sage
sage: L[0] # select the first item (indexed by 0) from the list L
1

sage: L[4] # select the last item
‘new shoes’

sage: L[5] # what if there is no item with the index you’ve input
Traceback (click to the left of this block for traceback)
...
IndexError: list index out of range

Order matters in a list. If items are in different orders, then the list are not equal.

Sage
sage: [1,2,3]==[2,1,3]
False

We can also create a list by stating conditions we want the elements to satisfy. This usually requires
starting with a bigger list, and either constructing a sublist, or constructing a new list.

Sage
sage: [n for n in [1,2,3,4] if is_even(n)] # selects the even integers
[2,4]

sage: [2*n+1 for n in [1,2,3,4]] # creates a new list of odd integers from the old list
[3,5,7,9]

A.3.2 List Operations: remove, append, etc.
Sage

sage: L=[1,2,3]
sage: L.remove(3) # removes item 3 from L
sage: L
[1,2]
sage: L.append(4) # adds item 4 to the end of list L
sage: L
[1,2,4]
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sage: len(L)
3

Here are some more list operations. We won’t really use any of them, but just in case you are curious. In
each of the following ”L” is used as the name of our list and the operation being described is typed in bold.

operation description

x in L True if item x is in list L, else False.

x not in L False if item x is in list L, else True.

L + S The concatenation of lists L and S.

n*L, or L*n n copies of list L concatenated.

L[i] ith entry of list L (first entry has index 0).

L[i:j] slice of L from i up to, but not including j.

L[i:j:k] slice of L from i to j with step k.

len(L) length of list L.

min(L) smallest item in L.

max(L) largest item in L.

L.append(x) Add an item x to the end of the list L

L.extend(S) Extend the list L by appending all the items in the given list S to the end of L

L.insert(i,x) Insert item x in position i of list L. For example, L.insert(0, x) inserts x at the front
of the list, and L.insert(len(L), x) is equivalent to L.append(x).

L.remove(x) Remove the first item from the list whose value is x. It is an error if there is no
such item.

L.pop(i) Remove the item at the given position in the list, and return it. If no index is
specified, L.pop() removes and returns the last item in the list.

L.index(x) Return the index of the first occurrence of item x in the list. It is an error if there
is no such item.

L.count(x) Return the total number of times item x appears in the list.

A.3.3 Built-In Lists

Sage (and Python) already have some built-in lists that we can use. The range function, range(a,b),
creates the list of integers beginning with a and ending at b-1. Here we assume a is less than b.

Sage
sage: range(1,11) # creates a list of integers from 1 to 10
[1,2,3,4,5,6,7,8,9,10]

sage: [1..10] #another way to construct the list
[1,2,3,4,5,6,7,8,9,10]

We can select one or multiple items from a list as follows.

Sage
sage: L=range(1,26)
sage: print L[1] # selects item of index 1
sage: print L[0:3] # sublist of L consisting of items indexed 0 through 3
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2
[1,2,3]

The items in a list can be overwritten by new items, as the following shows.

Sage
sage: L=[1,2,3,4]
sage: L
[1,2,3,4]
sage: L[1]=5
sage: L
[1,5,3,4]

An example of using lists to factor all integers from 1 to 10.

Sage
sage: [factor(n) for n in range(1,11)]
[1, 2, 3, 2ˆ2, 5, 2 * 3, 7, 2ˆ3, 3ˆ2, 2 * 5]

A.4 Sets

Sage has a built-in Set type. It offers a fast lookup of whether an element is in the set or not, and it comes
equipped with standard set-theoretic operations: union, intersection, etc.

Unlike lists, where order matters, the order of the elements in a set does not matter. All the matters is the
elements themselves. So in this sense, we can think of sets as unordered lists.

A.4.1 Defining a Set
Sage

sage: Set([1,2,3]) # here we turn the list [1,2,3] into a set
{1,2,3}

sage: Set([1,2,3])==Set([2,1,3]) # order doesn’t matter in a set
True

sage: Set(range(1,101)) # using the range list to construct a set
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100}

Another way to construct the same set.

Sage
sage: Set(1..100)
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100}
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We can construct sets by specifying conditions on the elements, much like we did with lists.

Sage
sage: Set(x for x in range(1,11) if is_even(x))
{8,2,4,10,6}

sage: Set(x for x in range(1,51) if x%3==0) # integers divisible by 3
{33, 3, 36, 6, 39, 9, 42, 12, 45, 15, 48, 18, 21, 24, 27, 30}

There is also a filter command for selecting elements satisfying some special condition. Here we select the
prime numbers.

Sage
sage: S=Set(1..20)
sage: filter(is_prime,S)
[2, 3, 5, 7, 11, 13, 17, 19]

See Lecture 2 for some further examples of sets in Sage, including the set-theoretic operations: union,
intersection, etc.

A.5 Commands/Functions

We have already seen a few built-in Sage/Python commands: print(), is_prime(), factor(), etc. We
now look at two ways to define our own commands.

A.5.1 Defining Your Own Commands

The syntax for defining a command, which in this template we have called “function name”, is:

def function_name( <parameters> ):
:

<statement>
<statement>

:
return <expression>

Here are some examples.

Sage
sage: def f(x):
sage: return x*x

sage: f(2) # here we test the command f
4
sage: f(7)
49

Sage
sage: def is_divisible_by_three(x):
sage: if x%3==0: # check to see if the remainder is 0 when divided by 3
sage: return True
sage: else:
sage: return False # this ends the definition of the command
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sage: is_divisible_by_three(6) # here we test the command
True
sage: is_divisible_by_three(7)
False

Commands can take more than one parameter.

Sage
sage: # this function capitalizes the word x then concatenates it with itself n times
sage: def repeat_word(x,n):
sage: return x.capitalize()*n

sage: repeat_word("limabean",3)
’LimabeanLimabeanLimabean’

A.5.2 Lambda Functions

Python supports the creation of anonymous functions (i.e. functions that are not bound to a name) using a
construct called ”lambda”. This is a very powerful concept that’s well integrated into Python and is often
used in conjunction with typical functional concepts like filter() and map().

Using the lambda function we can create a function like f above.

Sage
sage: f = lambda x: x*x
sage: f(2)
4
sage: f(7)
49

A lambda function can take more than one argument.

Sage
sage: concat = lambda x,y: x+y
sage: concat("super","man")
superman

Also note that you can put a lambda definition anywhere a function is expected, and you don’t have to
assign it to a variable at all. Here we use a lambda function along with filter() to pick out all elements
of a list which are divisible by 3.

Sage
sage: print filter(lambda x: x%3==0,range(1,50))
[3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48]

A.6 if, while, and for statements

A.6.1 if statement

A conditional statement is what we use when we want our code to make decisions. For example, suppose
we wanted to divide a number by 2 only if it is even. We can do this in Sage by using an if statement. The
general syntax for Python’s if-else statement is
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if <condition>:
<statement>

:
else:

<statement>
:

<condition> is an expression that can use relational operators <, >, <=, >=, == (is equal), and != (is not
equal), as well as logical operators: and, or, not. Its value is either True or False. If the condition is true,
the statements indented under if are executed, otherwise the statements under else are executed. The
else clause is optional: you can have if alone. In that case, if the condition is true the program executes
the statements indented under if, otherwise the program skips them.

Sage
sage: n = 15
sage: if n%3==0:
sage: print(’n is divisible by 3’)
sage: else
sage: print(’n is not divisible by 3’)
n is divisible by 3

Often you’ll need to string a chain of several if-else statements together. For example

Sage
sage: def letterGrade(score):
sage: if score >= 90:
sage: return ’A’
sage: else:
sage: if score >= 80:
sage: return ’B’
sage: else:
sage: if score >= 70:
sage: return ’C’
sage: else:
sage: if score >= 60:
sage: return ’D’
sage: else:
sage: return ’F’

Python lets you simplify the indentation and compress the ”if-else” on one line by using the keyword elif.
The above code can be shortened to

Sage
sage: def letterGrade(score):
sage: if score >= 90:
sage: return ’A’
sage: elif score >= 80:
sage: return ’B’
sage: elif score >= 70:
sage: return ’C’
sage: elif score >= 60:
sage: return ’D’
sage: else:
sage: return ’F’
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A.6.2 while loop

while loops are one of the most useful techniques in programming. Essentially, a while loop allows us to
repeat the same block of statements multiple times (but with different values of variables) while a certain
condition holds true. The general syntax for Python’s while loop is

while <condition>:
<statement>

:

As long as the condition remains true the program repeats the statements in the while block.

The next example uses a while loop to add the integers from 1 to 10.

Sage
sage: i = 1
sage: sum1ton = 0
sage: while i <= 10:
sage: sum1ton += i # equivalent to sum1ton = sum1ton + i
sage: i += 1 # increments i by 1
sage: sum1ton
55

A.6.3 for loop

for loops are traditionally used when you have a block of code which you want to repeat a fixed number
of times. In Python, for loops iterate over a fixed list. As an alternative, the while loop could be used,
however, while is used when a condition is to be met, or if you want a block of code to theoretically repeat
forever, for example repeatedly asking for user input until the format the user provides is correct. The
general syntax for Python’s for loop is

for x in <list>:
<statement>

:

Here is an example of using the for loop to step through the entries of a list and square each one.

Sage
sage: L = [1,2,3,4,5]
sage: for x in L:
sage: print xˆ2
1
4
9
16
25

In the next example we use a for loop together with an if statement to print the list of integers from 1 to
20 which are divisible by 3.

Sage
sage: for x in range(1,21):
sage: if x%3 == 0:
sage: print x
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3
6
9
12
15
18

This has been a quick introduction to get you up and running with Sage. We will be developing our
experience with Sage throughout this book, so have fun!.

A.7 Exercises

1. Assign 27 to the variable a, 1027 to the variable b, and the product to the variable c. Have Sage output
the values of all three variables.

2. For a, b and c in Exercise 1, use the factor() command to factor c. Also, use the remainder command
% to determine if 16 is a factor of ab+ 1.

3. Create and print a list of integers from 50 to 100 (inclusive).

4. From the list in Exercise 3, create a sublist consisting of (a) even integers, (b) odd integers, (c) primes,
and (d) numbers divisible by 13.

5. Create the two sets A = {1, 2, 3, 4, 5, 6}, B = {2, 4, 6, 8, 10} and find (a) their intersection, (b) their
union, and (c) the cardinality of their cartesian product.

6. Define a function sum1ToN that returns 1+2+3+ · · ·+n using the formula 1+2+3+ · · ·+n = n(n+1)
2 .

7. The function below prints string obj n times:

def printNtimes(n,obj):
count=0
result=’’ # empty string
while count < n:

result += str(obj) # += is equivalent to result = result + str(obj)
count += 1

print(result)

Test it with various inputs for obj and n.
Notice there is no return line in the function. Since we don’t ask the function to return anything
we could either write the last line as return, or just leave it out as we have done above. Type in
print printNtimes(3,’hello’) and describe what happens.

8. Write a function pow4(x) that returns x4 and performs only two multiplications (and no exponenti-
ations).

9. Write a function divBy(n,m) which returns True if integer n is divisible by m, otherwise it returns
False.
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Appendix B

Basic Properties of Integers

In this book a few occasions have arisen where we needed some properties of the integers:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

This section is devoted to a brief account of some of these properties such as divisibility, greatest common
divisors, the Euclidean Algorithm, and prime numbers.

B.1 Divisibility and the Euclidean Algorithm

We say that a divides b (written a | b) if and only if there is an integer d such that b = ad. For example,
2 | 6, 12 | 60, −5 | 15, and 8 | −24. If a does not divide b then we write a - b. For example 4 - 2 and 3 - 4.

We say d is the greatest common divisor of a and b (written gcd(a, b)) if and only if

(i) d | a and d | b, and

(ii) if c | a and c | b then c ≤ d

Condition (i) says that d is a common divisor of a and b and condition (ii) says it is the greatest such divisor.
For example, gcd(5, 15) = 5 since 5 divides both 5 and 15 and it is the largest such divisor. Check for yourself
that gcd(12, 32) = 4.

If gcd(a, b) = 1 then we say a and b are relatively prime. This is equivalent to saying a and b do not have
a common prime factor, but we didn’t phrase it in this way since we won’t define what a prime number
is until Section B.2. When a and b are small it is possible to see what gcd(a, b) is by inspection, but when
a and b are large this is no longer possible. We will describe an algorithm for easily computing gcd(a, b)
called the Euclidean Algorithm (see Theorem B.3). The Euclidean Algorithm allows us to compute gcd’s
without the need to factor the numbers first, and this is a good thing since factoring large numbers can be
computationally difficult. Before we present the Euclidean Algorithm we present a useful theorem.

Theorem B.1 (Division Algorithm): Let a, b ∈ Z. Suppose that b 6= 0. Then there exist unique
q, r ∈ Z, with 0 ≤ r < |b| such that

a = qb+ r.

307
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For example, consider a = 29 and b = 8. Then 29 = 3 · 8 + 5. In this case q = 3 is called the quotient and
r = 5 the remainder.

We will not give a formal proof of the Division Algorithm here, but the reader should be familiar with the
method for finding q and r since it is just long division. The idea is to divide b evenly into a as many times
as possible (this is q), and what is left over (the remainder r) must be smaller than b. For the interested
reader a formal proof of this theorem is covered in any text in elementary number theory (for example [4]).

We can use Python commands // and % to compute the quotient and remainder, respectively.

Sage
sage: 29//8 # this computes the quotient q
3
sage: 29%8 # this computes the remainder r
5

As an exercise in applying the definition of greatest common divisor, and because we will use this result in
the proof of the Euclidean Algorithm, we prove the following lemma.

Lemma B.2: If a = bq + r then gcd(a, b) = gcd(b, r).

Proof: Let a, b, q and r be integers such that a = bq + r. Let d = gcd(a, b) and let g = gcd(b, r). We want to
show d = g. Since d | a and d | b then there exist integers a and b such that a = da and b = db. Substituting
these into a = bq + r we have

da = dbq + r =⇒ r = d(a− bq)

which implies d | r. Therefore d divides both b and r so, by the definition of gcd, d ≤ g.

On the other hand, since g | b and g | r then g divides bq + r = a by a similar argument to the one we gave
above. Therefore g divides both a and b so, by the definition of gcd, g ≤ d.

It follows from d ≤ g and g ≤ d that d = g. �

Now we present the Euclidean Algorithm for computing greatest common divisors.

Theorem B.3 (Euclidean Algorithm): If a and b are positive integers, b 6= 0, and

a = qb+ r, 0 ≤ r < b,

b = q1r + r1, 0 ≤ r1 < r,

r = q2r1 + r2, 0 ≤ r2 < r1,

...
...

rk = qk+2rk+1 + rk+2, 0 ≤ rk+2 < rk+1,

then for k large enough, say k = `, we have r`+1 = 0 and

r`−1 = q`+1r`,

and gcd(a, b) = r`.
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Proof: Apply the Division Algorithm to a, b to produce q and r. Then apply the division algorithm to b,
r to produce q1 and r1. If we continue applying the Division Algorithm, as indicated by each line in the
statement of the theorem above, then we produce a strictly decreasing sequence of non-negative integers

b > r > r1 > r2 > · · ·

and this sequence must must come to an end. One of the remainders must be zero. Suppose that r`+1 = 0.
Then r`−1 = r`q`+1. By Lemma B.2 applied over and over,

gcd(a, b) = gcd(b, r) = gcd(r, r1) = gcd(r1, r2) = · · · = gcd(r`−1, r`) = gcd(q`+1r`, r`) = r`.

�

If either a or b is negative we can use the fact that gcd(a, b) = gcd(|a|, |b|).

Example B.1: Calculate gcd(343, 273).

Applying the Euclidean Algorithm

343 = 1 · 273 + 70 (B.1)
273 = 3 · 70 + 63 (B.2)
70 = 1 · 63 + 7 (B.3)
63 = 9 · 7 (B.4)

it follows that gcd(343, 273) = 7.

The gcd command is implemented in Sage.

Sage
sage: gcd(343,273)
7

Let’s continue with the previous example. From Equation B.3 we have

7 = 70− 1 · 63.

Solve Equation B.2 for 63 and plug into the previous equation

7 = 70− 1(273− 3 · 70))

= 4 · 70− 1 · 273.

Now solve Equation B.1 for 70 and plug into the previous equation

7 = 4(343− 1 · 273)− 1 · 273

= 4 · 343− 5 · 273.

The last equation shows that we are able to write the gcd of 343 and 273 as a linear combination of these
two numbers: 7 = gcd(343, 273) = 4 · 343− 5 · 273. This is not a coincidence as the next theorem states.

Theorem B.4 (Extended Euclidean Algorithm): If gcd(a, b) = d then there exist integers u and v
such that

au+ bv = d.
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We won’t present a detailed proof here, instead we will sketch the idea based on our work in Example B.1.
The idea was to essentially work backwards through the Euclidean Algorithm. Beginning with Equation
B.3 we solve for the gcd r2 = 7 in terms of r = 70 and r1 = 63. Keeping the gcd 7 on the left hand side of the
equation we then we use the previous equations, B.2 and B.1, to first replace r1 in terms of r and b, and
then replace r in terms of a and b. This results in an equation for r in terms of a and b alone as desired.

The Extended Euclidean Algorithm is implemented in Sage. The command is xgcd(a,b) and it returns a
triple (d, u, v) such that d = gcd(a, b) and d = ua+ vb.

Sage
sage: print xgcd(343,273)
(7, 4, -5)

B.2 Prime Numbers

A prime is an integer that is greater than 1 and has no positive divisors other than 1 and itself. An integer
that is greater than 1 but is not prime is called composite. For example 2, 3, and 5 are primes, but 4 and
6 are composite. By convention 1 is neither prime nor composite, we call it a unit. Thus the set of positive
integers can be divided into three classes: the primes, the composites, and a unit.

There are infinitely many prime numbers and every integer n can be factored uniquely into a product of
primes. Any text in elementary number theory will begin with proofs of these two statements (for example
see [4]). It should be noted that one of the reasons we don’t consider 1 to be prime is precisely because we
want integers to have unique factorizations.

There is a lot we could say about prime numbers and all the properties they possess. However we will limit
ourselves to stating one property, which could also be taken as the defining property for an integer to be
prime.

Lemma B.5: If p is a prime number and a and b are integers such that p | ab then either p | a or p | b.

Proof: If p - a then gcd(p, a) = 1 so by the Extended Euclidean Algorithm there exist integers u and v such
that 1 = up+ va. Multiplying through by b we have

b = ubp+ vab

and since p divides both terms on the right-hand side it must also divide b (see Exercise 2). �

Note that the statement of the lemma does not hold if p is not prime. See Exercise 11.

The study of integers and prime numbers is an active area of research today and there is still much about
them that is unknown. For the interested reader a good place to start for further reading would be any
text in elementary number theory (for example [4]).

B.3 Euler’s φ-function

There is an important number-theoretic function, called Euler’s φ-function, denoted by φ.
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Definition B.1 (Euler’s φ-Function): For any positive integer n, φ(n) is the number of integers in
{1, 2, . . . , n} which are relatively prime to n. In other words,

φ(n) = |{m ∈ Z | 1 ≤ m ≤ n, gcd(m,n) = 1}|.

For example, φ(4) = 2 since there are only two numbers in {1, 2, 3, 4} that are relatively prime to 4, namely
1 and 3. φ(10) = 4 since 1, 3, 7, 9 are the only positive integers less than 10 which are relatively prime to 10.
Notice that φ(p) = p− 1 for any prime p since all the numbers 1, 2, 3, . . . , p− 1 are relatively prime to p.

The following theorem gives a formula for φ(n) based on the prime factorization of n.

Theorem B.6: If n has prime factorization given by

n = pe11 p
e2
2 · · · p

ek
k ,

then
φ(n) = pe1−11 (p1 − 1)pe2−12 (p2 − 1) · · · pek−1k (pk − 1).

For example, since 12 = 223 then φ(12) = 22−1(2− 1)31−1(3− 1) = 2 · 2 = 4.

The reader can find a proof of Theorem B.6 in [4].

This function has been implemented in Sage, under the command euler_phi(). For example, here we
see φ(96) = 32.

Sage
sage: euler_phi(96)
32

To find the 32 numbers relative prime to 96 we can do the following.

Sage
sage: [ n for n in range(1,97) if gcd(n,96)==1 ]
[1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55,
59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95]

Or we could use a filter with a lambda function.

Sage
sage: filter(lambda x: gcd(x,96)==1,range(1,97))
[1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55,
59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95]
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B.4 Exercises

1. Which integers divide 0?

2. Prove that if d | a and d | b then d | (a+ b).

3. Show that if a | b and b | c then a | c.

4. If d | c then prove that d | ac for any integer a.

5. For each of the following pairs of numbers a, b below determine gcd(a, b). In each case use the Ex-
tended Euclidean Algorithm to find integers u and v such that gcd(a, b) = ua+ bv.

(a) 306, 702 (b) 314, 159 (c) 4144, 7696 (d) 888, 3071

6. Find x and y such that 888x+ 408y = 24.

7. Find two different solutions of 299x+ 247y = 13.

8. What is gcd(n, 1) where n is any positive integer?

9. What is gcd(n, 0) where n is any positive integer?

10. If gcd(a, b) = d then show gcd(a/d, b/d) = 1.

11. If d | ab does it follow that d | a or d | b?

12. Let gcd(a, b) = d and suppose that c | a and c | b show that c | d.

13. If d | ab and gcd(d, a) = 1 then show that d | b.
(Hint: use the Extended Euclidean Algorithm.)

14. Calculate φ(42), φ(420), and φ(4200).

15. Prove that for n ≥ 1, gcd(n− 1, n) = 1.

16. Find four solutions to φ(n) = 16.

17. Prove this alternate formula for Euler’s φ-function: if n = pe11 p
e2
2 · · · p

ek
k , then

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

pk

)
.

(Hint: Begin by using Theorem B.6.)
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Dn, dihedral group, 117, 118, 132
RC2, Pocket cube group, 139
RC3, Rubik’s cube group, 136
F2, finite field of size 2, 281
N, natural numbers, 15
φ(n), Euler’s φ-function, 311
Q, rational numbers, 16, 105
Q∗, 105
R, real numbers, 16, 105
R∗, 105
[n], 16
Z, integers, 15, 105
Z/nZ, see Zn, cyclic group
Z+, positive integers, 15
Zn, cyclic group, 112, 132
15 puzzle, 4, 54, 91, 144

solvability, 92

alternating group An, 83–85, 108
associativity, 103

commutator, 147
Y-commutator, 150
Z-commutator, 150

congruent, 112, 204
conjugacy class, 162
conjugate, 100, 161
conjugation, see conjugate
coset, see group, coset
coset representative, see group, coset representative

divides, 307
division algorithm, 307

Euclidean Algorithm, 308
Extended Euclidean Algorithm, 309

Euler’s φ-function, 310, see phi(n), Euler’s φ-function
Extended Euclidean Algorithm, 115
extended euclidean algorithm, 115

field, 282
F2, 281

function, 23
bijective, 23
codomain, 23
domain, 23

image, 23
injective, 23
one-to-one, see injective
onto, see surjective
range, 23
surjective, 23

Gaussian elimination, 281
gcd, greatest common divisor, 115
greatest common divisor, 307
group, 84, 103

Dn, dihedral group, 117, 118, 132
GL(n,R), general linear group, 106
Mn,m(R), 106
RC2, Pocket cube group, 139
RC3, Rubik’s Cube group, 232

centre, 250
RC3, Rubik’s cube group, 136
RC∗3 , illegal cube group, 234
SL(n,R), special linear group, 107
U(n), units modulo n under ·, 114, 132
Rn,+, 106
Zn, integers modulo n under +, 112, 132
abelian, 107, 111
alternating group An, 83–85, 108
axioms, 103
cancellation property, 104
Cayley table, see multiplication table
centre, 127
coset, 210
coset representative, 210
cube, GC , 258
cyclic group, 110, 112, 126, 129

generator, 110
definition, 103
differentiable functions under addition, 107
direct product, 245
dodecahedron, GD, 260
Heisenberg group, 123
icosahedron, GI , 260
identity, 103
inverse, 103
linear transformations of Rn, group of, 107
muliplication table, 104
Nim, 122
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octahedron, GO, 259
order of group, 104
puzzle group, 136
size, see order of group
subgoup, 125
subgroup

generated by, 126
symmetric group Sn, 33, 46, 84, 108
tetrahedron, GT , 257
translations of Rn, group of, 107

Hungarian Rings, 7, 58, 143, 153, 189
solvability, 190

integers, see Z, integers

Lights Out puzzle, 277
configuration matrix, 278
lights out matrix, 280
quiet patterns, 286
solvability, 285
strategy matrix/vector, 280
toggle matrix, Ti,j , 278

mapping, see function

natural numbers, see N, natural numbers

one person game, 12
orb, orbit, 254
Oval Track Puzzle, 5, 55, 141, 154, 173

solvability, 174
fundamental 2-cycle, 174
fundamental 3-cycle, 176
solution strategy, 178

permutation, 108, 253
2 cycle, 67
fix, fixed set, 148
mov, moved set, 148
alternating group An, 83–85, 108
array form, 39
arrow diagram, 39
associative, 28, 46
cancellation property, 32
closed under composition, 84
closed under inverses, 84
commutative, 27, 46
composition, 26, 33, 46
cycle form, 39, 40
cycle notation, see cycle form
cycle-arrow form, 39
definiton of permutation, 24
even, 72, 83, 85
fix, fixed set, 269

identity, 25, 33, 46
inverse, 27, 29, 31, 33, 44
inverse of product, 32
m-cycle, 40, 46
n-cycle, 25
odd, 72, 83
of puzzle move, 52
of puzzle position, 51
order, 35, 43, 46
parity, 72
product, see composition
sign, 72
supp, support set, see mov, moved set
symmetric group Sn, 33, 46, 84, 108
transposition, see 2 cycle

permutation puzzle, 12, 135
positive integers, see Z+, positive integers
prime, 310
puzzle

permutation of move, 52
permutation of position, 51

rational numbers, see Q, rational numbers
real numbers, see R, real numbers
relation, 200

equivalence relation, 169, 202
equivalence class, 203
equivalent, 204
representative, 203
set of representatives, 204

reflexive, 169
symmetric, 169
transitive, 169

relatively prime, 114, 307
Rubik’s Cube, 8, 59, 61

2× 2× 2, 60
orientation markings, 232
orientation numbering, 232
cubicle, 9
cubie, 9

centre, 9
corner, 9, 232
edge, 9, 232

facet, 9
primary facet, 232

home location, 9
home orientation, 10
position vector, 233
standard orientation, 231
superflip position, 250

set, 15
cardinality or size, 16
cartesian product, 16
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complement, 16
difference, 16
disjoint, 16
element, 15
empty set ∅, 16
equal, 16
finite, 16
intersection, 16
laws, 16
member, 15
notation, 15
partition, 199
subset, 16
union, 16
universe, 16
well defined, 15

stab, stabilizer, 253
swap, 2, 52, 87

solvability, 69, 73, 87
symmetric group Sn, 33, 46, 84, 108
symmetric group SX , 253

theorem
Burnside’s Theorem, 269
Cauchy’s Theorem, 129
Cayley’s Theorem, 131
conjugation preserves cycle structure, 162
cyclic group, 129
Euler’s Theorem, 214
Fermat’s Little Theorem, 213
finite subgroup test, 133
Fundamental Theorem of Cubology, First, 235
Fundamental Theorem of Cubology, Second, 238
Lagrange’s Theorem, 128, 207, 212
one-step subgroup test, 133
orbit-stabilizer theorem, 256
parity, 72
two-step subgroup test, 126

TopSpin puzzle, see Oval Track Puzzle
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