
Reviewed Papers

inroads – The SIGCSE Bulletin 33 Volume 38, Number 2, 2006 June

An Application of Vector Space Theory
in Data Transmission

LieJune Shiau
University of Houston-Clear Lake

2700 Bay Area Boulevard
Houston, Texas 77058 USA

shiau@cl.uh.edu

Abstract
This work illustrates an application of vector spaces to data transmission theory. We show how Hamming code error
detection and error correction are done through the tool of various theories in vector space. It is hoped that this article
will explain the importance of abstract mathematics, such as vector space and basis, in the application of data
transmission, which enlightens mathematics and computer science majors.

Keywords: vector space, data transmission, code words, code space

1. Introduction
The purpose of this article is to introduce the reader to an
interesting real world application of vector spaces. We
wish to exhibit one of the many strong links between
abstract and applied mathematics. The ubiquity of the
Internet makes data transmission a particularly relevant
“real world” problem. Computer data is transmitted in a
binary mode and hence is represented in strings of 0’s and
1’s called bits. When transmitting from a home computer
via a modem, data is susceptible to “noise” corruption by
an electromotive force, or to loss of signal due to
attenuation. Corruption of the binary signal simply means
some 0’s are changed into 1’s and vice versa. To
counteract such corruption Engineers utilize data encoders
and decoders. The diagram in Figure 1 shows a typical
digital data communication system.

The most basic method of error detection utilizes a
single-parity-check-bit scheme. An encoder simply
attaches an extra binary bit, called a parity check bit, to the
end of the message. The parity check bit can be computed
the sum of all message bits (even parity check). When the
decoder receives a string, it computes the binary sum of all
bits, including the parity check bit. If there are an odd
number of errors, the sum will be 1; if there are no errors,
or an even number of errors, the sum will be 0. The
weakness of this method is that only an odd number of
errors can be detected, and the location of the error remains
unknown. This means we cannot fix the errors, and instead
the decoder must request a re-send of the data.

Sending Coded Message

 Binary Message Encoder

 Noise Channel

 Binary Message Decoder

Receiving Coded Message

 Figure 1: Data Communication Model

In spite of the obvious limitations, the single parity

check bit scheme is often use in low speed, non-critical
applications. When a higher degree of accuracy is needed,
engineers turn to Hamming Code Theory to find and
correct errors. The Hamming Code was devised by
Richard Hamming in late 1940’s and is currently the
predominant error detection and correction method in use.
What we propose to explain the process by which
Hamming Code error correction finds and corrects a single
transmission error. It will be seen that vector spaces
provide the natural language in which to explain the
process.

Hamming Code utilizes the idea of multiple parity
check bits. The sole purpose of the parity check bits is to
detect the location of transmission errors in the message.
Since we are encoding data in a binary fashion, any
corrupted bit is simply corrected by replacing the value
with its complement (i.e. 0’s are replaced with 1’s and vice
versa.) A major concern in the design of the encoding
scheme is that the parity check bits will provide the

Reviewed Papers

inroads – The SIGCSE Bulletin 34 Volume 38, Number 2, 2006 June

decoder with enough information to accurately correct
transmission errors [3]. Parity check bits are simply
appended to the data being transmitted. For example, the
transmission of a k bit message will actually require that n
bits be transmitted, with n-k parity check bits added to the
message, as shown in Figure 2.

It can be seen that the string of message bits, with
parity check bits appended, form the elements of a vector
space. Let ∧ n

2 be the set of all binary n-tuples of numbers

from ∧2 = {0,1}. ∧ n
2 is a vector space over ∧2 by the usual

modulo-2 addition and scalar multiplication operations. In
∧ n

2 , let e1 = (1,0,..., 0), e2 = (0, 1, 0,..., 0),..., en = (0,..., 0,

1). We know {e1, e2,..., en} as the standard basis for ∧ n
2

and hence ∧ n
2 is an n-dimensional vector space [2]. Our

goal is to explain Hamming Code theory in terms of this
vector space. We will explain in detail how Hamming
Code theory allows us to encode a message so that a single
transmission error can be detected and corrected.

 encoder

 Message Message| Parity Checks

 { k } decoder { k, n-k }

Figure 2: Bit Assignment

Consider the task of transmitting a 4-bit message. We
will see that Hamming Code requires us to add 3 parity
check bits in order to be able to correct a single
transmission error. Therefore, we are actually transmitting
a binary string of 7 bits which looks like c = (c1, c2, c3, c4,
c5, c6, c7) in the ∧ 7

2 vector space. Each parity check bit is
set equal to the binary sum of a particular subset of the
message bits. The parity check bits, c5, c6 and c7, can be
defined according to the following rules [1]

c5 = c1+ c2 + c4 (1)
c6 = c1+ c3 + c4 (2)
c7 = c2+ c3 + c4 (3)

These equations may be restated as
c1 + c2+ c4 + c5 = 0
c1 + c3+ c4 + c6 = 0
c2 + c3+ c4 + c7 = 0

Every code word (source message plus parity check bits)
must satisfy the above parity check equations. In matrix
notation the equations may be expressed as
















=













































0
0
0

1001110
0101101
0011011

7

6

5

4

3

2

1

c
c
c
c
c
c
c

Define H to be the left matrix in the equation, i.e.
















=

1001110
0101101
0011011

H

We call H the parity check matrix, because the rows of H
are derived from the parity check equations. In this design,
any code word c in the code word set, denoted as C7,4
which is a subset of ∧ 7

2 , satisfies Hc = 0. This means any
string c is in the code word set C7,4 if and only if c is in the
Null Space of H. Thus, C7,4 = N.S.(H). The code word set
C7,4 is therefore called the code space, which is the vector
space of all correctly sent code words. It is impossible for
a single transmission error to change one code word into
another code word. We explain why with the use of a code
space metric function, called the Hamming Distance. In
our design, there are only 16 possible code words in the
code space C7,4. We list them all as follows:

(0, 0, 0, 0, 0, 0, 0) (1, 0, 0, 0, 1, 1, 0) (0, 1, 0, 0, 1, 0, 1)
(0, 0, 1, 0, 0, 1, 1) (0, 0, 0, 1, 1, 1, 1)
(1, 1, 0, 0, 0, 1, 1) (1, 0, 1, 0, 1, 0, 1) (1, 0, 0, 1, 0, 0, 1)
(0, 1, 1, 0, 1, 1, 0) (0, 1, 0, 1, 0, 1, 0)
(0, 0, 1, 1, 1, 0, 0) (1, 1, 1, 0, 0, 0, 0) (1, 1, 0, 1, 1, 0, 0)
(1, 0, 1, 1, 0, 1, 0) (0, 1, 1, 1, 0, 0, 1)
(1, 1, 1, 1, 1, 1, 1)

Since a code space is derived from its parity check
equations, the design of the parity check equations
determines the code words in the code space. A good
choice of parity check equations is one that yields a
sufficiently “spaced out” code space, meaning that each
code word is in some sense distant from every other code
word. To correct a mis-transmitted string means to re-
assign the string to its correct code word in the code space,
which is identified by being the closest code word to the
corrupted string. If two code words are “too close” to each
other so that they are equally close to a corrupted string,
then we have a 50-50 chance of choosing the correct code
word. Naturally this leads to two questions: how do we
measure distance between two code words, and how do we
define a well “spaced out” code space such that there is a
unique nearest code word. Hamming distance is the metric
used to define how far apart two strings are in a code space.

Reviewed Papers

inroads – The SIGCSE Bulletin 35 Volume 38, Number 2, 2006 June

For any element x, y ∈ ∧ n
2 , the Hamming distance between

x and y, denoted d(x, y), is the number of components
where xi ≠ yi , for i = 1,...,n.

In our data transmission example, notice that d(x, y) ≥
3 for any (x, y) pair in the code space C7, 4. This means that
any two code words differ by at least 3 bits. In other
words, our 16 code words are all at least a Hamming
distance of 3 units apart. This also means that when
exactly one bit has been mis-transmitted, the corrupted
string xp can be corrected to the closest code word with no
ambiguity, since there is only one correct code word xc
with d(xp , xc) = 1. When two or more errors occur in
transmission, we may possibly detect the existence of
errors but cannot correct them, because when d(xp , xc) ≥ 2,
there is a strong possibility that the corrupted string is
actually closer to an incorrect code word. In this case, an
incorrect code word will mistakenly be assigned to correct
xp. Note that the vector space C7,4 along with the Hamming
distance metric defined on it, give us a metric space in
which to work.

Since C7, 4 is a vector space, without too much
difficulty, we can compute a basis for C7, 4 (i.e. N.S.(H))
and place it in row vector form in a matrix, G, as follows:



















=

1111000
1100100
1010010
0110001

G

This means R.S.(G) = N.S.(H) (i.e. the Row Space of G
equals to the Null Space of H). Since rank(H) = 3, the
dimension of N.S.(H) = 7 – 3 = 4 = rank(G). The code
space C7, 4 generated by G is thus a 4-dimensional subspace
in the 7-dimensional vector space ∧ 7

2 . We call G the
generator matrix of the code space C7, 4. Since the set of
row vectors, {g1, g2, g3, g4}, of G form a basis for the
code space C7, 4, any code word in C7, 4 can be expressed as
a linear combination of gi’s. We also see that the rows of
the generator matrix G and the rows of parity check matrix
H are orthogonal to each other by observing that is G·HT =
0. Hence N.S.(G) = R.S.(H) = C.S.(HT) (i.e. Column Space
of HT). The column space of H, C.S.(H), provides useful
information regarding the position of the error. For any
received string xr, the product of the parity check matrix H
and xr is called the syndrome vector. We see that any
syndrome vector Hxr ∈ ∧ 3

2 = C.S.(H) and every non-zero

vector of ∧ 3
2 is a column of H. Thus if xr ∈ ∧ 7

2 but xr ∉
C7,4 (i.e. xr is a string, but not a code word), then Hxr ≠ 0.
Therefore, in order for xr to be correct, Hxr must be in the
column space of H. We call C.S.(H) the syndrome space
generated by H and xr. We will discuss the details of
syndrome decoding as an alternative decoding method.

2. Code Words in Code Space

2.1 Encoding Messages
To encode a message means to convert the message from
∧ 4

2 to a vector in code space C7,4. We define the converting

function F : ∧ 4
2 → C7,4, as

F(x1, x2, x3, x4) = F(x1e1 + x2e2 + x3e3 + x4e4)
 = x1g1 + x2g2 + x3g3 + x4g4,

where {еi}{i=1,...,4} with the ith component being 1 and all
others being 0 is the standard basis for ∧ 4

2 , and {g1, g2, g3,
g4} is a basis for C7,4. Since x1g1 + x2g2 + x3g3 + x4g4= (x1,
x2, x3, x4) · G, the generator matrix G is also a matrix
induced by the converting function. For example, to
encode (0, 1, 1, 1), function F converts (0, 1, 1, 1) = e2 + e3
+ e4 to g2 + g3 + g4 = (0, 1, 1, 1, 0, 0, 1) which is the same
as converting (0, 1, 1, 1) through G by using (0,1,1,1) · G.
Now the coded message has 3 attached parity check bits.

2.2 Decoding Messages
To decode a message means to check the message to
determine if there has been an error, and if so, correct the
error and extract the original message. The parity check
matrix H will determine if the message is received
correctly. Again here we assume there is at most one bit
error. For example when a message is received as





























=

1
0
0
1
1
1
0

x

the fact that
















=

0
0
0

Hx

indicates x ∈ N.S.(H), which means x was received
correctly. Therefore, the source message is (0, 1, 1, 1)
which is x without the attached parity check bits.

2.3 Error Detecting and Correcting
If a message is received as

Reviewed Papers

inroads – The SIGCSE Bulletin 36 Volume 38, Number 2, 2006 June





























=

0
0
1
0
1
0
0

y

the fact that
















=

1
1
1

Hy

indicates y was received incorrectly, because y ∉ N.S.(H).
Since the string (0, 0, 1, 1, 1, 0, 0) is the nearest code word
to y in C7,4 (the only code word with distance one from y),
the encoder will correct the received string y to the code
word yc = (0, 0, 1, 1, 1, 0, 0). We can see, even by this
simple example, that performing a full-scale nearest
distance search through the entire code space is rather
tedious, and it should be avoided. A slightly more
sophisticated method called “syndrome decoding” can be
used instead.

2.4 Syndrome Decoding
The method of syndrome decoding is used to avoid
performing the calculation of Hamming distance between
xr and every single vector in the code space in order to
identify the nearest code word. Rather, the syndrome
vector reveals, through the pattern of parity check failures,
the location of the error in xr. A transmitted string y = (0,
0, 1, 0, 1, 0, 0) with syndrome vector Hy = (1, 1, 1),
indicates y failed to satisfy all three of equations 1, 2 and 3.
From Table 1, we see that the syndrome vector indicates an
error in bit 4. Correcting the 4th bit in y will correct the
received string. Hence, the corrected string is the code
word yc = (0, 0, 1, 1, 1, 0, 0), and the source message is (0,
0, 1, 1).

Table 1: Parity Check
 possible bit error

1 2 3 4
failed eqn. 1 x x x
failed eqn. 2 x x x
failed eqn. 3 x x x

If a string is received as z = (1, 1, 1, 1, 0, 1, 0) and the
syndrome vector is Hz = (1, 0, 1), then z failed to satisfy
equations 1 and 3. From parity check Table 1, bit 2 was
not received correctly, and therefore the correct string is the
code word zc = (1, 0, 1, 1, 0, 1, 0), and the correct source
message is (1, 0, 1, 1). A syndrome vector of the form (1,
0, 0), shows failure of equation 1 and therefore bit 5 of the
received string was in error. Table 2 shows how the
syndrome vector can be used to find the error bit for an
arbitrary syndrome vector Hv. It is interesting to note that
if syndrome vector Hv equals the ith column vector in H,
then the ith bit of the received string v is in error.

Table 2: Error Location Table
 0: eqn. satisfied; 1: eqn. failed
eqn. 1 1 1 0 1 1 0 0
eqn. 2 1 0 1 1 0 1 0
eqn. 3 0 1 1 1 0 0 1
 bit error location 1 2 3 4 5 6 7

3. Conclusion
What we have developed in this example is a motivation
for the understanding of vector space, basis, null space, row
space, column space and metric space as they apply to data
transmission theory. Hamming code, as it applies to the
correction of a single transmission error, is explained via
vector space theory. Various methods of data transmission
and error correction are chosen based on the particular
needs of each project by weighing the cost of error
correction (reduced speed of transmission) against the need
to correct corrupted data. In order to detect and correct
multiple bit errors, we would have to create a larger and
more “spaced out” code space. It is hoped that this
example will show students of applied mathematics and
computer sciences that the study of vector spaces has real
world applications, as well as provide students a solid
example with which they can understand some abstract
vector space concepts.

References
[1] Berlekamp , E., Algebraic Coding Theory, McGraw-Hill Book Company, 1968.
[2] Hill, R., Elementary Linear Algebra with Applications, Saunders College publishing, 1996.
[3] Lin, S., An Introduction to Error-Correcting Codes, Prentice-Hall, 1970.

