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Abstract 
This work illustrates an application of vector spaces to data transmission theory.  We show how Hamming code error 
detection and error correction are done through the tool of various theories in vector space.  It is hoped that this article 
will explain the importance of abstract mathematics, such as vector space and basis, in the application of data 
transmission, which enlightens mathematics and computer science majors. 
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1.  Introduction  
The purpose of this article is to introduce the reader to an 
interesting real world application of vector spaces.  We 
wish to exhibit one of the many strong links between 
abstract and applied mathematics.  The ubiquity of the 
Internet makes data transmission a particularly relevant 
“real world” problem.  Computer data is transmitted in a 
binary mode and hence is represented in strings of 0’s and 
1’s called bits.  When transmitting from a home computer 
via a modem, data is susceptible to “noise” corruption by 
an electromotive force, or to loss of signal due to 
attenuation.  Corruption of the binary signal simply means 
some 0’s are changed into 1’s and vice versa.  To 
counteract such corruption Engineers utilize data encoders 
and decoders.  The diagram in Figure 1 shows a typical 
digital data communication system.   

The most basic method of error detection utilizes a 
single-parity-check-bit scheme.  An encoder simply 
attaches an extra binary bit, called a parity check bit, to the 
end of the message.  The parity check bit can be computed 
the sum of all message bits (even parity check).  When the 
decoder receives a string, it computes the binary sum of all 
bits, including the parity check bit.  If there are an odd 
number of errors, the sum will be 1; if there are no errors, 
or an even number of errors, the sum will be 0.  The 
weakness of this method is that only an odd number of 
errors can be detected, and the location of the error remains 
unknown.  This means we cannot fix the errors, and instead 
the decoder must request a re-send of the data.   
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 Figure 1: Data Communication Model 
  

 
In spite of the obvious limitations, the single parity 

check bit scheme is often use in low speed, non-critical 
applications.  When a higher degree of accuracy is needed, 
engineers turn to Hamming Code Theory to find and 
correct errors.   The Hamming Code was devised by 
Richard Hamming in late 1940’s and is currently the 
predominant error detection and correction method in use.  
What we propose to explain the process by which 
Hamming Code error correction finds and corrects a single 
transmission error.  It will be seen that vector spaces 
provide the natural language in which to explain the 
process. 

Hamming Code utilizes the idea of multiple parity 
check bits.  The sole purpose of the parity check bits is to 
detect the location of transmission errors in the message.  
Since we are encoding data in a binary fashion, any 
corrupted bit is simply corrected by replacing the value 
with its complement (i.e. 0’s are replaced with 1’s and vice 
versa.)  A major concern in the design of the encoding 
scheme is that the parity check bits will provide the 
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decoder with enough information to accurately correct 
transmission errors [3].  Parity check bits are simply 
appended to the data being transmitted.  For example, the 
transmission of a k bit message will actually require that n 
bits be transmitted, with n-k parity check bits added to the 
message, as shown in Figure 2.   

It can be seen that the string of message bits, with 
parity check bits appended, form the elements of a vector 
space.  Let ∧ n

2 be the set of all binary n-tuples of numbers 

from ∧2 = {0,1}.   ∧ n
2  is a vector space over ∧2 by the usual 

modulo-2 addition and scalar multiplication operations.  In 
∧ n

2 , let e1 = (1,0,..., 0), e2 = (0, 1, 0,..., 0),..., en = (0,..., 0, 

1).  We know {e1, e2,..., en} as the standard basis for ∧ n
2  

and hence ∧ n
2  is an n-dimensional vector space [2].  Our 

goal is to explain Hamming Code theory in terms of this 
vector space.   We will explain in detail how Hamming 
Code theory allows us to encode a message so that a single 
transmission error can be detected and corrected. 
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Figure 2: Bit Assignment 
 
 

Consider the task of transmitting a 4-bit message.  We 
will see that Hamming Code requires us to add 3 parity 
check bits in order to be able to correct a single 
transmission error.  Therefore, we are actually transmitting 
a binary string of 7 bits which looks like c = (c1, c2, c3, c4, 
c5, c6, c7)  in the ∧ 7

2 vector space.  Each parity check bit is 
set equal to the binary sum of a particular subset of the 
message bits.  The parity check bits, c5, c6 and c7, can be 
defined according to the following rules [1] 

 
c5 = c1+ c2 + c4   (1) 
c6 = c1+ c3 + c4  (2) 
c7 = c2+ c3 + c4   (3) 
 
These equations may be restated as 
c1 + c2+ c4 + c5 = 0 
c1 + c3+ c4 + c6 = 0 
c2 + c3+ c4 + c7 = 0 
 
Every code word (source message plus parity check bits) 
must satisfy the above parity check equations.  In matrix 
notation the equations may be expressed as 
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Define H to be the left matrix in the equation, i.e. 
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We call H the parity check matrix, because the rows of H 
are derived from the parity check equations.  In this design, 
any code word c in the code word set, denoted as C7,4 
which is a subset of ∧ 7

2 , satisfies Hc = 0.  This means any 
string c is in the code word set C7,4 if and only if c is in the 
Null Space of H.   Thus, C7,4 = N.S.(H).  The code word set 
C7,4 is therefore called the code space, which is the vector 
space of all correctly sent code words.  It is impossible for 
a single transmission error to change one code word into 
another code word.  We explain why with the use of a code 
space metric function, called the Hamming Distance.  In 
our design, there are only 16 possible code words in the 
code space C7,4.  We list them all as follows: 
 
(0, 0, 0, 0, 0, 0, 0)  (1, 0, 0, 0, 1, 1, 0)  (0, 1, 0, 0, 1, 0, 1)   
(0, 0, 1, 0, 0, 1, 1)  (0, 0, 0, 1, 1, 1, 1) 
(1, 1, 0, 0, 0, 1, 1)  (1, 0, 1, 0, 1, 0, 1)  (1, 0, 0, 1, 0, 0, 1)   
(0, 1, 1, 0, 1, 1, 0)  (0, 1, 0, 1, 0, 1, 0) 
(0, 0, 1, 1, 1, 0, 0)  (1, 1, 1, 0, 0, 0, 0)  (1, 1, 0, 1, 1, 0, 0)   
(1, 0, 1, 1, 0, 1, 0)  (0, 1, 1, 1, 0, 0, 1) 
(1, 1, 1, 1, 1, 1, 1)  
 

Since a code space is derived from its parity check 
equations, the design of the parity check equations 
determines the code words in the code space.  A good 
choice of parity check equations is one that yields a 
sufficiently “spaced out” code space, meaning that each 
code word is in some sense distant from every other code 
word.  To correct a mis-transmitted string means to re-
assign the string to its correct code word in the code space, 
which is identified by being the closest code word to the 
corrupted string.  If two code words are “too close” to each 
other so that they are equally close to a corrupted string, 
then we have a 50-50 chance of choosing the correct code 
word.  Naturally this leads to two questions:  how do we 
measure distance between two code words, and how do we 
define a well  “spaced out” code space such that there is a 
unique nearest code word.  Hamming distance is the metric 
used to define how far apart two strings are in a code space.  
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For any element x, y ∈ ∧ n
2 , the Hamming distance between 

x and y, denoted d(x, y), is the number of components 
where xi  ≠ yi , for i = 1,...,n. 

In our data transmission example, notice that d(x, y) ≥ 
3 for any (x, y) pair in the code space C7, 4.  This means that 
any two code words differ by at least 3 bits.  In other 
words, our 16 code words are all at least a Hamming 
distance of 3 units apart.  This also means that when 
exactly one bit has been mis-transmitted, the corrupted 
string  xp can be corrected to the closest code word with no 
ambiguity, since there is only one correct code word xc 
with d(xp , xc) = 1.  When two or more errors occur in 
transmission, we may possibly detect the existence of 
errors but cannot correct them, because when d(xp , xc) ≥ 2, 
there is a strong possibility that the corrupted string is 
actually closer to an incorrect code word.  In this case, an 
incorrect code word will mistakenly be assigned to correct 
xp.  Note that the vector space C7,4 along with the Hamming 
distance metric defined on it, give us a metric space in 
which to work. 

Since C7, 4 is a vector space, without too much 
difficulty, we can compute a basis for C7, 4  (i.e. N.S.(H)) 
and place it in row vector form in a matrix, G, as follows: 
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This means R.S.(G) = N.S.(H) (i.e. the Row Space of G 
equals to the Null Space of H).  Since rank(H) = 3, the 
dimension of N.S.(H) = 7 – 3 = 4 = rank(G).   The code 
space C7, 4 generated by G is thus a 4-dimensional subspace 
in the 7-dimensional vector space ∧ 7

2 .  We call G the 
generator matrix of the code space C7, 4.  Since the set of 
row vectors, {g1,  g2,  g3,  g4}, of G form a basis for the 
code space  C7, 4, any code word in C7, 4 can be expressed as 
a linear combination of gi’s.  We also see that the rows of 
the generator matrix G and the rows of parity check matrix 
H are orthogonal to each other by observing that is G·HT = 
0.  Hence N.S.(G) = R.S.(H) = C.S.(HT) (i.e. Column Space 
of HT).  The column space of H, C.S.(H), provides useful 
information regarding the position of the error.  For any 
received string xr, the product of the parity check matrix H 
and xr is called the syndrome vector.  We see that any 
syndrome vector Hxr ∈ ∧ 3

2  =  C.S.(H) and every non-zero 

vector of ∧ 3
2  is a column of H.  Thus if xr ∈ ∧ 7

2  but xr ∉ 
C7,4  (i.e. xr  is a string, but not a code word), then Hxr ≠ 0.  
Therefore, in order for xr to be correct, Hxr must be in the 
column space of H.  We call C.S.(H) the syndrome space 
generated by H and xr.  We will discuss the details of 
syndrome decoding as an alternative decoding method. 
 

2.  Code Words in Code Space 
 
2.1  Encoding Messages   
To encode a message means to convert the message from 
∧ 4

2 to a vector in code space C7,4.  We define the converting 

function F : ∧ 4
2 → C7,4, as 

 
F(x1, x2, x3, x4)  = F(x1e1 + x2e2 + x3e3 + x4e4)  
    = x1g1 + x2g2 + x3g3 + x4g4, 

 
where {еi}{i=1,...,4} with the ith component being 1 and all 
others being 0 is the standard basis for ∧ 4

2 , and {g1, g2, g3, 
g4} is a basis for C7,4.  Since x1g1 + x2g2 + x3g3 + x4g4= (x1, 
x2, x3, x4) · G, the generator matrix G is also a matrix 
induced by the converting function.  For example, to 
encode (0, 1, 1, 1), function F converts (0, 1, 1, 1) = e2 + e3 
+ e4 to g2 + g3 + g4 = (0, 1, 1, 1, 0, 0, 1) which is the same 
as converting (0, 1, 1, 1) through G by using (0,1,1,1) · G.  
Now the coded message has 3 attached parity check bits. 
 
2.2  Decoding Messages   
To decode a message means to check the message to 
determine if there has been an error, and if so, correct the 
error and extract the original message.  The parity check 
matrix H will determine if the message is received 
correctly.  Again here we assume there is at most one bit 
error.  For example when a message is received as  
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the fact that 
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indicates x ∈ N.S.(H), which means x was received 
correctly.  Therefore, the source message is (0, 1, 1, 1) 
which is x without the attached parity check bits. 
   
2.3  Error Detecting and Correcting   
If a message is received as 
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indicates y was received incorrectly, because y ∉ N.S.(H).  
Since the string (0, 0, 1, 1, 1, 0, 0) is the nearest code word 
to y in C7,4  (the only code word with distance one from y), 
the encoder will correct the received string y to the code 
word yc = (0, 0, 1, 1, 1, 0, 0).  We can see, even by this 
simple example, that performing a full-scale nearest 
distance search through the entire code space is rather 
tedious, and it should be avoided.  A slightly more 
sophisticated method called “syndrome decoding” can be 
used instead. 
 
2.4  Syndrome Decoding    
The method of syndrome decoding is used to avoid 
performing the calculation of Hamming distance between 
xr and every single vector in the code space in order to 
identify the nearest code word.  Rather, the syndrome 
vector reveals, through the pattern of parity check failures, 
the location of the error in xr.  A transmitted string y = (0, 
0, 1, 0, 1, 0, 0) with syndrome vector Hy = (1, 1, 1), 
indicates y failed to satisfy all three of equations 1, 2 and 3.  
From Table 1, we see that the syndrome vector indicates an 
error in bit 4.  Correcting the 4th bit in y will correct the 
received string.  Hence, the corrected string is the code 
word yc = (0, 0, 1, 1, 1, 0, 0), and the source message is (0, 
0, 1, 1).  
 
 
 
 
 

Table 1: Parity Check 
 possible bit error 

1     2     3     4 
failed eqn.  1  x     x             x 
failed eqn.  2  x            x      x 
failed eqn.  3         x     x      x 
 

If a string is received as z = (1, 1, 1, 1, 0, 1, 0) and the 
syndrome vector is Hz = (1, 0, 1), then z failed to satisfy 
equations 1 and 3.  From parity check Table 1, bit 2 was 
not received correctly, and therefore the correct string is the 
code word zc = (1, 0, 1, 1, 0, 1, 0), and the correct source 
message is (1, 0, 1, 1).  A syndrome vector of the form (1, 
0, 0), shows failure of equation 1 and therefore bit 5 of the 
received string was in error.  Table 2 shows how the 
syndrome vector can be used to find the error bit for an 
arbitrary syndrome vector Hv.  It is interesting to note that 
if syndrome vector Hv equals the ith column vector in H, 
then the ith bit of the received string v is in error. 
 
Table 2: Error Location Table 
 0: eqn. satisfied;    1: eqn. failed 
eqn. 1 1     1     0     1     1     0     0 
eqn. 2 1     0     1     1     0     1     0 
eqn. 3 0     1     1     1     0     0     1 
 bit error location 1      2     3     4     5    6    7 

 
 
3.  Conclusion 
What we have developed in this example is a motivation 
for the understanding of vector space, basis, null space, row 
space, column space and metric space as they apply to data 
transmission theory.  Hamming code, as it applies to the 
correction of a single transmission error, is explained via 
vector space theory.  Various methods of data transmission 
and error correction are chosen based on the particular 
needs of each project by weighing the cost of error 
correction (reduced speed of transmission) against the need 
to correct corrupted data.  In order to detect and correct 
multiple bit errors, we would have to create a larger and 
more “spaced out” code space.  It is hoped that this 
example will show students of applied mathematics and 
computer sciences that the study of vector spaces has real 
world applications, as well as provide students a solid 
example with which they can understand some abstract 
vector space concepts.  
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