
First Order Logic 



Beyond Propositional logic 

• Propositional logic not expressive enough 
– In Wumpus world we needed to explicitly write every 

case of Breeze & Pit relation 

– Facts = propositions 

– “All squares next to pits are breezy” 

• “Regular” programming languages mix facts 
(data) and procedures (algorithms) 
– World[2,2]=Pit 

– Cannot deduce/compose facts automatically 

– Declarative vs. Procedural 



Natural Language 

• Natural language probably not used for 
representation 

– Used for communication 

– “Look!” 

 



First-Order Logic 
• Idea: 

– Don’t treat propositions as “atomic” entities. 

• First-Order Logic: 
– Objects: cs4701, fred, ph219, emptylist … 

– Relations/Predicates: is_Man(fred), Located(cs4701, 
ph219), is_kind_of(apple, fruit)… 
• Note: Relations typically correspond to verbs 

– Functions: Best_friend(), beginning_of()  : Returns object(s) 

– Connectives: , , , ,  

– Quantifiers:  
• Universal: x: ( is_Man(x) ) is_Mortal(x) ) 

• Existential: y: ( is_Father(y, fred) )  



Predicates 

• In traditional grammar, a predicate is one of 
the two main parts of a sentence the other 
being the subject, which the predicate 
modifies.  

• "John is yellow" John acts as the subject, and 
is yellow acts as the predicate.  

• The predicate is much like a verb phrase. 

• In linguistic semantics a predicate is an 
expression that can be true of something 

 
Wikipedia 

http://en.wikipedia.org/wiki/Traditional_grammar
http://en.wikipedia.org/wiki/Sentence_(linguistics)
http://en.wikipedia.org/wiki/Subject_(grammar)
http://en.wikipedia.org/wiki/Verb_phrase
http://en.wikipedia.org/wiki/Semantics


Types of formal mathematical logic 

• Propositional logic 
– Propositions are interpreted as true or false 

– Infer truth of new propositions 

• First order logic 
– Contains predicates, quantifiers and variables 

• E.g. Philosopher(a)  Scholar(a) 

• x,  King(x)  Greedy (x)  Evil (x) 

– Variables range over individuals (domain of discourse) 

• Second order logic 
– Quantify over predicates and over sets of variables  

 



Other logics 

• Temporal logic 
• Truths and relationships change and depend on time 

• Fuzzy logic  

– Uncertainty, contradictions 



Wumpus 

• Squares neighboring the wumpus are smelly 

– Objects: Wumpus, squares 

– Property: Smelly 

– Relation: neighboring 

• Evil king john rules England in 1200 

– Objects: John, England, 1200 

– Property: evil, king 

– Relation: ruled 

 



Example:  
Representing Facts in First-Order Logic 

1. Lucy* is a professor 

2. All professors are people. 

3. John is the dean. 

4. Deans are professors. 

5. All professors consider the dean a friend or don’t know him. 

6. Everyone is a friend of someone. 

7. People only criticize people that are not their friends.  

8. Lucy criticized John .  

* Name changed for privacy reasons. 



Same example, more formally 

Knowledge base: 

•  is-prof(lucy) 

•   x ( is-prof(x) → is-person(x) ) 

•  is-dean(John) 

•   x (is-dean(x)  is-prof(x)) 

•   x ( y ( is-prof(x)  is-dean(y) → is-friend-of(y,x)  knows(x, y) ) ) 

•   x ( y ( is-friend-of (y, x) ) ) 

•   x ( y (is-person(x)  is-person(y)  criticize (x,y) → is-friend-of (y,x))) 

•  criticize(lucy, John ) 

Question: Is John no friend of Lucy? 

  is-friend-of(John ,lucy) 

 



How the machine “sees” it: 

Knowledge base: 

•  P1(A) 

•   x (P1(x) → P3(x) ) 

•  P4(B) 

•   x (P4(x)  P1(x)) 

•   x ( y (P1(x)  P4(y) → P2(y,x)  P5(x, y) ) ) 

•   x ( y (P2(y, x) ) ) 

•   x ( y (P3 (x)  P3(y)  P6(x,y) → P2(y,x))) 

•  P6(A, B ) 

Question: P2(B ,A)? 

 



Knowledge Engineering 

1. Identify the task.  

2. Assemble the relevant knowledge. 

3. Decide on a vocabulary of predicates, functions, 
and constants.  

4. Encode general knowledge about the domain. 

5. Encode a description of the specific problem 
instance.  

6. Pose queries to the inference procedure and get 
answers.  

7. Debug the knowledge base.  



Knowledge Engineering 

1. All professors are people. 

2. Deans are professors. 

3. All professors consider the dean a friend or don’t know 
him. 

4. Everyone is a friend of someone. 

5. People only criticize people that are not their friends.  

6. Lucy* is a professor 

7. John is the dean. 

8. Lucy criticized John. 

9. Is John a friend of Lucy’s?  

General 
Knowledge 

Specific 
problem 

Query 



Inference Procedures: Theoretical Results 
• There exist complete and sound proof procedures for propositional and FOL.  

– Propositional logic 

• Use the definition of entailment directly. Proof procedure is 
exponential in n, the number of symbols.  

• In practice, can be much faster… 

• Polynomial-time inference procedure exists when KB is 
expressed as Horn clauses:          

    where the Pi and Q are non-negated atoms.  
– First-Order logic 

• Godel’s completeness theorem showed that a proof 
procedure exists… 

• But none was demonstrated until Robinson’s 1965 resolution 
algorithm.  

• Entailment in first-order logic is semidecidable.  

 



Types of inference 

• Reduction to propositional logic 

– Then use propositional logic inference, e.g. 
enumeration, chaining 

• Manipulate rules directly 



Universal Instantiation 

• x,  King(x)  Greedy (x)  Evil (x) 

– King(John)  Greedy (John)  Evil (John) 

– King(Richard)  Greedy (Richard)  Evil (Richard) 

– King(Father(John))  Greedy (Father(John))  Evil 
(Father(John)) 

• Enumerate all possibilities 

– All must be true 

 

 



Existential Instantiation 

•  x,  Crown(x)  OnHead(x, John) 

– Crown (C)  OnHead(C, John) 

– Provided C is not mentioned anywhere else 

• Instantiate the one possibility 

– One must be true 

– Skolem Constant (skolemization) 

 



Resolution Rule of Inference 

General Rule: 

Note: Eij can be negated. 

Example: 

“Resolvent” 



Algorithm: Resolution Proof 
• Negate the original theorem to be proved, and add the 

result to the knowledge base.  

• Bring knowledge base into conjunctive normal form 
(CNF)  
– CNF: conjunctions of disjunctions 

– Each disjunction is called a clause. 

• Repeat until there is no resolvable pair of clauses: 
– Find resolvable clauses and resolve them. 

– Add the results of resolution to the knowledge base. 

– If NIL (empty clause) is produced, stop and report that the 
(original) theorem is true.  

• Report that the (original) theorem is false.  





Resolution Example: Propositional Logic 
• To prove: P 
• Transform Knowledge Base into CNF 

 
 
 

• Proof 
1.  P  Q   Sentence 1 
2.  Q  R   Sentence 2 
3.  R   Sentence 3 
4. P    Assume opposite 
5. Q   Resolve 4 and 1 
6. R   Resolve 5 and 2 
7. nil    Resolve 6 with 3 
8. Therefore original theorem (P) is true 



Resolution Example: FOL 

Axioms:   Regular   CNF 

  

   

Is bird(tweety)? 

A: True            B: False 



Resolution Example: FOL 

Example: Prove bird(tweety) 

Axioms:   Regular   CNF 

1:   

2:   

3: 

4: 

Resolution Proof 

1. Resolve 3 and 1, specializing (i.e. “unifying”) tweety for x.  
Add :feathers(tweety) 

2. Resolve 4 and 2. Add NIL. 



Resolution Theorem Proving 

Properties of Resolution Theorem Proving: 
 

– sound (for propositional and FOL) 
 

– (refutation) complete (for propositional and FOL) 

 

Procedure may seem cumbersome but note that 
can be easily automated. Just “smash” clauses 
until empty clause or no more new clauses.  

Pigeon-Hole (PH) problem: you cannot place n+1 pigeons in n holes (one per hole) 



A note on negation 

• To prove theorem  we need to show it is never 
wrong: 
– we test if there is an instance that satisfies  
– if so report that  is false 

• But we are not proving that  is true 
– Just that  is false 
– Showing instance of  is not the same as showing that 
 is always true 

• E.g. prove theorem  that says “x+y=4x=2y=2” 
– We find a case x=1y=3 so theorem is not true 
– But  is also not always true either 



Substitutions 

• Syntax: 
– SUBST (A/B, q) or SUBST (, q) 

• Meaning: 
– Replace All occurrences of “A” with “B” in 

expression “q” 

• Rules for substitutions:  
– Can replace a variable by a constant. 
– Can replace a variable by a variable. 
– Can replace a variable by a function expression, as long as 

the function expression does not contain the variable. 



Generalize Modus Ponens 

• Given n+1 terms: p1’… pn’, (p1… pn  q) 

• And a substitution  that makes 
corresponding terms identical 

 

• Then apply the substitute also to q 

 

 

 



Generalize Modus Ponens 

 

 

• Example 

 

 

 

 

 



Unification 

Unify procedure: Unify(P,Q) takes two atomic 
(i.e. single predicates) sentences P and Q and 
returns a substitution that makes P and Q 
identical.  

 
Unifier: a substitution that makes two clauses 

resolvable.  



Unification 

• Knows(John,x), Knows(John, Jane) 

– {x/Jane) 

• Knows(John,x), Knows(y, Bill) 

– {x/Bill,y/John) 

 

 

 



Unification 

• Which unification solves 

 

• Choose 

– A: {y/Bill,x/Mother(John)) 

– B: {y/John,x/Bill) 

– C: {y/John,x/Mother(John)) 

– D: {y/Mother(John),x/John) 

– E: {y/John,x/Mother(y)) 

 

 

Knows(John,x), Knows(y, Mother(y)) 



Unification 

• Knows(John,x), Knows(John, Jane) 
– {x/Jane) 

• Knows(John,x), Knows(y, Bill) 
– {x/Bill,y/John) 

• Knows(John,x), Knows(x, Bill) 
– Fail 

• Knows(John,x), Knows(z, Bill) 
– {x/Bill,z/John) 

– Standardizing apart 

 

 

 



Unification - Purpose 

Given:  
  Knows (John, x)  Hates (John, x) 
 Knows (John, Jim) 
Derive: 
 Hates (John, Jim) 
Unification: 
 
 Need unifier {x/Jim} for resolution to work. 
Add to knowledge base:  



Unification (example) 
Who does John hate?  
   x: Hates (John, x)  
Knowledge base (in clause form):  

1.   Knows (John, v)  Hates (John, v) 
2.  Knows (John, Jim) 
3.  Knows (y, Leo) 
4.  Knows (z, Mother(z)) 
5.   Hates (John, x)          (since  x: Hates (John, x)   x: Hates(John,x))  

Resolution with 5 and 1: 
   unify(Hates(John, x), Hates(John, v)) = {x/v} 

6.    Knows (John, v)  
Resolution with 6 and 2:  
   unify(Knows(John, v), Knows(John, Jim))= {v/Jim} 
or resolution with 6 and 3:  
   unify(Knows (John, v), Knows (y, Leo)) = {y/John, v/Leo} 
or Resolution with 6 and 4:  
   unify(Knows (John, v), Knows (z, Mother(z))) = {z/John, v/Mother(z)} 

Answers: 
1. Hates(John,x) with {x/v, v/Jim} (i.e. John hates Jim) 
2. Hates(John,x) with {x/v, y/John, v/Leo} (i.e. John hates Leo) 
3. Hates(John,x) with {x/v, v/Mother(z), z/John} (i.e. John hates his mother) 

 
 
 



Most General Unifier 

In cases where there is more than one substitution choose the one that 
makes the least commitment (most general) about the bindings.  

 

   = {y / John, x / z} 

   not {y / John, x / John, z / John} 

   not {y / John, x / z, z / Freda} 

   … 

See R&N for general unification algorithm. O(n2) with Refutation 

 UNIFY  (Knows (John,x), Knows (y,z)) 



Subsumption Lattice 



Blocksworld 



Converting More Complicated Sentences to CNF 

1. First, bricks are on something else that is not a pyramid; 
2. Second, there is nothing that a brick is on and that is on the brick as well. 
3. Third, there is nothing that is not a brick and also is the same thing as the brick.  



Algorithm: Putting Axioms into Clausal Form 

1. Eliminate the implications. 

2. Move the negations down to the atomic formulas. 

3. Eliminate the existential quantifiers.  

4. Rename the variables, if necessary. 

5. Move the universal quantifiers to the left. 

6. Move the disjunctions down to the literals.  

7. Eliminate the conjunctions. 

8. Rename the variables, if necessary. 

9. Eliminate the universal quantifiers.  



1. Eliminate Implications 

Substitute E1  E2 for E1 → E2 



2. Move negations down to the atomic formulas 

Equivalence Transformations: 

Result: 



3. Eliminate Existential Quantifiers: 
Skolemization  

Harder cases: 

 

 

There is one argument for each universally 
quantified variable whose scope contains the 
Skolem function. 

 

Easy case:  



4. Rename variables as necessary 

We want no two variables of the same name. 



5. Move the universal quantifiers to the left 

This works because each quantifier uses a unique variable name.  



6. Move disjunctions down to the literals 



7. Eliminate the conjunctions 



8. Rename all variables, as necessary, so no two 
have the same name 



9. Eliminate the universal quantifiers 



Algorithm: Putting Axioms into Clausal Form 

1. Eliminate the implications. 

2. Move the negations down to the atomic formulas. 

3. Eliminate the existential quantifiers.  

4. Rename the variables, if necessary. 

5. Move the universal quantifiers to the left. 

6. Move the disjunctions down to the literals.  

7. Eliminate the conjunctions. 

8. Rename the variables, if necessary. 

9. Eliminate the universal quantifiers.  



Resolution Proofs as Search 
• Search Problem 

– States: Content of knowledge base in CNF 
– Initial state: Knowledge base with negated theorem to 

prove 
– Successor function: Resolution inference rule with unify 
– Goal test: Does knowledge base contain the empty 

clause ’nil’ 
• Search Algorithm 

– Depth first search (used in PROLOG) 
• Note: Possibly infinite state space 
• Example:  

– IsPerson(Fred) 
– IsPerson(y)  IsPerson(mother(y))  
– Goal:  x: IsPerson(x) 
– Answers: {x/Fred} and {x/mother(Fred)} and {x/mother(mother(Fred))} 

and … 



Strategies for Selecting Clauses 

unit-preference strategy: Give preference to 
resolutions involving the clauses with the 
smallest number of literals.  

 
set-of-support strategy: Try to resolve with the 

negated theorem or a clause generated by 
resolution from that clause.  

 
subsumption: Eliminates all sentences that are 

subsumed (i.e., more specific than) an existing 
sentence in the KB.  

 
May still require exponential time.  



Example 

Jack owns a dog. 

Every dog owner is an animal lover. 

No animal lover kills an animal. 

Either Jack or Curiosity killed the cat, who is named 
Tuna. 

Did Curiosity kill the cat?  



Original Sentences (Plus Background Knowledge) 



Conjunctive Normal Form 
        (D is a placeholder for the dogs unknown name 

      (i.e. Skolem symbol/function). Think of D like  
      “JohnDoe”)    



Find Mistake in proof by Resolution 
 kills(Curiosity,Tuna) kills(Jack,Tuna)  kills(Curiosity,Tuna) 

kills(Jack,Tuna)  AnimalLover(w)   Animal(y)   kills(w,y) 

 AnimalLover(Jack)   Animal(Tuna) 

 AnimalLover(Jack)   Cat(Tuna) 

Animal(z)   Cat(z) 

Cat(Tuna) 

AnimalLover(Jack)  Dog(y)   Owns(x,y)  AnimalLover(x) 

 Dog(y)   Owns(Jack,y) Dog(D) 

 Owns(Jack,D) 

Owns(Jack,D) 

NIL 

{} 

{w/Jack, y/Tuna} 

{z/Tuna} 

{} 

{x/Jack} 

{y/D} 

A 

B 

C 

D 

E 

A 

B 



Proof by Resolution 
 kills(Curiosity,Tuna) kills(Jack,Tuna)  kills(Curiosity,Tuna) 

kills(Jack,Tuna)  AnimalLover(w)   Animal(y)   kills(w,y) 

 AnimalLover(Jack)   Animal(Tuna) 

 AnimalLover(Jack)   Cat(Tuna) 

Animal(z)   Cat(z) 

Cat(Tuna) 

 AnimalLover(Jack)  Dog(y)   Owns(x,y)  AnimalLover(x) 

 Dog(y)   Owns(Jack,y) Dog(D) 

 Owns(Jack,D) 

Owns(Jack,D) 

NIL 

{} 

{w/Jack, y/Tuna} 

{z/Tuna} 

{} 

{x/Jack} 

{y/D} 



Simple problem 
• Schubert Steamroller:  

– Wolves, foxes, birds, caterpillars, and snails are animals and there are 
some of each of them. Also there are some grains, and grains are 
plants. Every animal either likes to eat all plants or all animals much 
smaller than itself that like to eat some plants. Caterpillars and snails 
are much smaller than birds, which are much smaller than foxes, which 
are much smaller than wolves. Wolves do not like to eat foxes or grains, 
while birds like to eat caterpillars but not snails. Caterpillars and snails 
like to eat some plants.  

• Prove: there is an animal that likes to eat a grain-eating animal 
• Some of the necessary logical forms:  

–  x (Wolf(x) → animal(x)) 
–  x  y  ((Caterpillar(x)  Bird(y)) → Smaller(x,y) 
–  x bird(x) 

• Requires almost 150 resolution steps (minimal)  



Proofs can be Lengthy 

A relatively straightforward KB can quickly overwhelm general resolution 
methods.  

Resolution strategies reduce the problem somewhat, but not completely.  

As a consequence, many practical Knowledge Representation formalisms in AI 
use a restricted form and specialized inference.  

– Logic programming (Prolog) 

– Production systems 

– Frame systems and semantic networks 

– Description logics 

 



Successes in Rule-Based Reasoning 

Expert systems 

• DENDRAL (Buchanan et al., 1969) 

• MYCIN (Feigenbaum, Buchanan, Shortliffe) 

• PROSPECTOR (Duda et al., 1979) 

• R1 (McDermott, 1982) 



DENRAL: Mass Spectrometry 



Successes in Rule-Based Reasoning 

• DENDRAL (Buchanan et al., 1969) 

– Infers molecular structure from the information 
provided by a mass spectrometer 

– Generate-and-test method 



• MYCIN (Feigenbaum, Buchanan, Shortliffe) 

– Diagnosis of blood infections 

– 450 rules; performs as well as experts 

– Incorporated certainty factors 

Successes in Rule-Based Reasoning 



• PROSPECTOR (Duda et al., 1979) 
– Correctly recommended exploratory drilling at 

geological site 

– Rule-based system founded on probability theory 

• R1 (McDermott, 1982) 
– Designs configurations of computer components 

– About 10,000 rules 

– Uses meta-rules to change context 

 

Successes in Rule-Based Reasoning 



Cognitive Modeling with Rule-Based Systems 

SOAR is a general architecture for building 
intelligent systems. 
– Long term memory consists of rules 

– Working memory describes current state 

– All problem solving, including deciding what rule 
to execute, is state space search 

– Successful rule sequences are chunked into new 
rules 

– Control strategy embodied in terms of meta-rules 



Properties of Knowledge-Based Systems 
Advantages 

1. Expressibility*: Human readable 
2. Simplicity of inference procedures*: Rules/knowledge in 

same form 
3. Modifiability*: Easy to change knowledge 
4. Explainability: Answer “how” and “why” questions. 
5. Machine readability 
6. Parallelism* 

Disadvantages 
1. Difficulties in expressibility 
2. Undesirable interactions among rules 
3. Non-transparent behavior 
4. Difficult debugging 
5. Slow 
6. Where does the knowledge base come from??? 



Impossible Objects as Nonsense 
Sentences 

D. A. Huffman, Machine Intelligence, Vol. 6 (1971), pp. 295-323 







Other types of “logic” KB 



Geometric KB 
C0:P0.X=6.0 C4:D(P2,P3)=5.00 
C1:P0.Y=7.0 C5:A(P2,P3,P0,P1)=0' 
C2:P1.Y=7.0 C6:D(P1,P2)=8.00 
C3:D(P0,P1)=10.00 C7:D(P0,P3)=7.00 
Solving: 
Using ground-x constraint C0: Locus P0L0: Point P0 is on line 1.00x+0.00y+-6.00=0 
Using ground-y constraint C1: Locus P0L1: Point P0 is on line 0.00x+1.00y+-7.00=0 
Combining locus P0L0 and P0L1, point P0 is at 6.00;7.00 
Using ground-y constraint C2: Locus P1L0: Point P1 is on line 0.00x+1.00y+-7.00=0 
Using point-point distance constraint C3 and point P0: Locus P1L1: Point P1 is on circle at 
6.00;7.00 with R=10.00 
Combining locus P1L0 and P1L1, point P1 is at 16.00;7.00 or -4.00;7.00 (Selected 1st) 
Using point-point distance constraint C6 and point P1: Locus P2L0: Point P2 is on circle at 
16.00;7.00 with R=8.00 
Using point-point distance constraint C7 and point P0: Locus P3L0: Point P3 is on circle at 
6.00;7.00 with R=7.00 
Translocating constraints using the parallelogram principle Added point P4 at  0.90;7.30 
Translocating C7 into C8:D(P2,P4)=7.00 
Translocating C4 into C9:D(P0,P4)=5.00 
From parallelogram principle: C11:A(P2,P3,P0,P4)=0' C10:A(P0,P3,P2,P4)=0' 
Using point-point distance constraint C9 and point P0: 
Locus P4L0: Point P4 is on circle at 6.00;7.00 with R=5.00 
Deriving from C5, C11: C12:A(P1,P0,P4)=0` 
Using angle constraint C12 and points P0, P1, P0: Locus P4L1: Point P4 is on line 
0.00x+1.00y+-7.00=0 
Combining locus P4L0 and P4L1, point P4 is at 11.00;7.00 or 1.00;7.00 (Selected 1st) 
Using point-point distance constraint C8 and point P4: Locus P2L1: Point P2 is on circle at 
11.00;7.00 with R=7.00 
Combining locus P2L0 and P2L1, point P2 is at 12.00;0.07 or 12.00;13.93 (Selected 2nd) 
Using angle constraint C10 and points P3, P2, P4: Locus P3L1: Point P3 is on line 0.99x+-
0.14y+ -4.94=0 
Combining locus P3L0 and P3L1, point P3 is at 7.00;13.93 or 5.00;0.07 (Selected 1st) 





Prolog (Programming in Logic) 
• What is Prolog? 

– Full-featured programming language 
– Programs consist of logical formulas 
– Running a program means proving a theorem 

• Syntax of Prolog 
– Predicates, objects, and functions:  

• cat(tuna), append(a,pair(b)) 

– Variables: X, Y, List (capitalized) 
– Facts:  

• university(cornell). 
• prepend(a,pair(a,X)). 

– Rules:  
• animal(X) :- cat(X).  
• student(X) :- person(X), enrolled(X,Y), university(Y). 
 implication “:-” with single predicate on left and only non-negated predicates 

on the right. All variables implicitly “forall” quantified.  

– Queries: 
• student(X). 
All variables implicitly “exists” quantified. 

 

Read: “Animal is true if Cat is true” 



mother_child(trude, sally).  

father_child(tom, sally).  

father_child(tom, erica).  

father_child(mike, tom).  

 

sibling(X, Y) :- parent_child(Z, X), parent_child(Z, Y).  

 

parent_child(X, Y) :- father_child(X, Y).  

parent_child(X, Y) :- mother_child(X, Y).  

 

?- sibling(sally, erica).  

Yes  



W-Prolog 
parent(sue, diana).       parent(john, diana). 
parent(sue, bonnie).      parent(john, bonnie). 
parent(sue, tom).         parent(john, tom). 
parent(diana, katie).     parent(paul, katie). 
parent(edna, sue).        parent(john2, sue). 
parent(edna, john3).      parent(john2, john3). 
parent(francis, john).    parent(john4, john). 
parent(francis, janice).  parent(john4, janice). 
parent(janice, jennifer). parent(joe, jennifer). 
parent(janice, juliet).   parent(joe, juliet). 
parent(janice, joey).     parent(joe, joey). 
 
% Each one of these statements, "parent(x,y)" indicates that "x" is a 
% parent of "y".  These are called "facts" in Prolog parlance.   
 
% Convenience rules to test (in)equality of terms.  Note the use of upper 
% case letters.  The upper case letters are variables.  When used in a query, 
% Prolog will attempt to match  
eq(A, A). 
neq(A, B) :- not(eq(A, B)). 
 
% X is Y's ancestor if X is Y's parent. 
ancestor(X, Y) :- parent(X, Y). 
% X is Y's ancestor if X is parent of some Z who is Y's ancestor.  Note 
% the use of the variable Z, and of (in some sense) recursion. 
ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y). 
 

http://waitaki.otago.ac.nz/~michael/wp/  

http://waitaki.otago.ac.nz/~michael/wp/


Programming in Prolog 

• Path Finding 
path(Node1,Node2) :- 
edge(Node1,Node2). 

path(Node1,Node2) :-  
 edge(Node1,SomeNode),  
 path(SomeNode,Node2). 

edge(ith,lga). 

edge(ith,phl). 

edge(phl,sfo). 

edge(lga,ord). 

• Query 
– path(ith,ord). 

– path(ith,X). 



Programming in Prolog 

• Data structures: Lists 
length([],0).  

length([H|T],N) :- length(T,M), N is M+1.  

 

member(X,[X|List]).  

member(X,[Element|List]) :- member(X,List).  

 

append([],List,List). 

append([Element|L1],L2,[Element|L1L2]) :- 
 append(L1,L2,L1L2).  

• Query: 
– length([a,b,c],3). 

– length([a,b,c],X). 

– member(b,[a,b,c]). 

– member(X,[a,b,c]). 



Programming in Prolog 
Example: Symbolic derivatives (http://cs.wwc.edu/~cs_dept/KU/PR/Prolog.html) 
 
% deriv(Polynomial, variable, derivative)  

% dc/dx = 0  

deriv(C,X,0) :- number(C).  

% dx/dx} = 1  

deriv(X,X,1).  

% d(cv)/dx = c(dv/dx)  

deriv(C*U,X,C*DU) :- number(C), deriv(U,X,DU).  

% d(u v)/dx = u(dv/dx) + v(du/dx)  

deriv(U*V,X,U*DV + V*DU) :- deriv(U,X,DU), deriv(V,X,DV).  

% d(u ± v)/dx = du/dx ± dv/dx  

deriv(U+V,X,DU+DV) :- deriv(U,X,DU), deriv(V,X,DV).  

deriv(U-V,X,DU-DV) :- deriv(U,X,DU), deriv(V,X,DV).  

% du^n/dx = nu^{n-1}(du/dx)  

deriv(U^+N,X,N*U^+N1*DU) :- N1 is N-1, deriv(U,X,DU).  



Programming in Prolog 

• Towers of Hanoi: move N disks from pin a to 
pin b using pin c.  

hanoi(N):-hanoi(N, a, b, c).  

hanoi(0,A,B,C). 

hanoi(N,FromPin,ToPin,UsingPin):- 

 M is N-1, 

 hanoi(M,FromPin,UsingPin,ToPin), 

 move(FromPin,ToPin), 

 hanoi(M,UsingPin,ToPin,FromPin). 

move(From,To):- 

 write([move, disk from, pin, From, to, pin, 

 ToPin]),nl. 



Programming in Prolog 

• 8-Queens: 

solve(P) :-  

 perm([1,2,3,4,5,6,7,8],P),        

 combine([1,2,3,4,5,6,7,8],P,S,D),       

 all_diff(S),       

 all_diff(D).  

combine([X1|X],[Y1|Y],[S1|S],[D1|D]) :-       

 S1 is X1 +Y1,       

 D1 is X1 - Y1,       

 combine(X,Y,S,D).  

combine([],[],[],[]).  

all_diff([X|Y]) :-  \+member(X,Y), all_diff(Y). 

all_diff([X]).  


