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Bayesian Decision Theory

I Bayesian Decision Theory is a fundamental statistical
approach that quantifies the tradeoffs between various
decisions using probabilities and costs that accompany
such decisions.

I First, we will assume that all probabilities are known.

I Then, we will study the cases where the probabilistic
structure is not completely known.
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Fish Sorting Example Revisited

I State of nature is a random variable.
I Define w as the type of fish we observe (state of nature,

class) where
I w = w1 for sea bass,
I w = w2 for salmon.
I P (w1) is the a priori probability that the next fish is a sea

bass.
I P (w2) is the a priori probability that the next fish is a salmon.
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Prior Probabilities

I Prior probabilities reflect our knowledge of how likely each
type of fish will appear before we actually see it.

I How can we choose P (w1) and P (w2)?
I Set P (w1) = P (w2) if they are equiprobable (uniform priors).
I May use different values depending on the fishing area, time

of the year, etc.

I Assume there are no other types of fish

P (w1) + P (w2) = 1

(exclusivity and exhaustivity).
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Making a Decision

I How can we make a decision with only the prior
information?

Decide

w1 if P (w1) > P (w2)

w2 otherwise

I What is the probability of error for this decision?

P (error) = min{P (w1), P (w2)}
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Class-Conditional Probabilities

I Let’s try to improve the decision using the lightness
measurement x.

I Let x be a continuous random variable.

I Define p(x|wj) as the class-conditional probability density
(probability of x given that the state of nature is wj for
j = 1, 2).

I p(x|w1) and p(x|w2) describe the difference in lightness
between populations of sea bass and salmon.
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Class-Conditional Probabilities

Figure 1: Hypothetical class-conditional probability density functions for two
classes.
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Posterior Probabilities

I Suppose we know P (wj) and p(x|wj) for j = 1, 2, and
measure the lightness of a fish as the value x.

I Define P (wj|x) as the a posteriori probability (probability of
the state of nature being wj given the measurement of
feature value x).

I We can use the Bayes formula to convert the prior
probability to the posterior probability

P (wj|x) =
p(x|wj)P (wj)

p(x)

where p(x) =
∑2

j=1 p(x|wj)P (wj).
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Making a Decision

I p(x|wj) is called the likelihood and p(x) is called the
evidence.

I How can we make a decision after observing the value of x?

Decide

w1 if P (w1|x) > P (w2|x)

w2 otherwise

I Rewriting the rule gives

Decide

w1 if p(x|w1)
p(x|w2)

> P (w2)
P (w1)

w2 otherwise

I Note that, at every x, P (w1|x) + P (w2|x) = 1.
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Probability of Error

I What is the probability of error for this decision?

P (error |x) =

P (w1|x) if we decide w2

P (w2|x) if we decide w1

I What is the average probability of error?

P (error) =

∫ ∞

−∞
p(error , x) dx =

∫ ∞

−∞
P (error |x) p(x) dx

I Bayes decision rule minimizes this error because

P (error |x) = min{P (w1|x), P (w2|x)}.
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Bayesian Decision Theory

I How can we generalize to
I more than one feature?

I replace the scalar x by the feature vector x
I more than two states of nature?

I just a difference in notation
I allowing actions other than just decisions?

I allow the possibility of rejection
I different risks in the decision?

I define how costly each action is
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Bayesian Decision Theory

I Let {w1, . . . , wc} be the finite set of c states of nature
(classes, categories).

I Let {α1, . . . , αa} be the finite set of a possible actions.

I Let λ(αi|wj) be the loss incurred for taking action αi when
the state of nature is wj.

I Let x be the d-component vector-valued random variable
called the feature vector .
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Bayesian Decision Theory

I p(x|wj) is the class-conditional probability density function.

I P (wj) is the prior probability that nature is in state wj.

I The posterior probability can be computed as

P (wj|x) =
p(x|wj)P (wj)

p(x)

where p(x) =
∑c

j=1 p(x|wj)P (wj).
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Conditional Risk

I Suppose we observe x and take action αi.

I If the true state of nature is wj, we incur the loss λ(αi|wj).

I The expected loss with taking action αi is

R(αi|x) =
c∑

j=1

λ(αi|wj)P (wj|x)

which is also called the conditional risk .
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Minimum-Risk Classification

I The general decision rule α(x) tells us which action to take
for observation x.

I We want to find the decision rule that minimizes the overall
risk

R =

∫
R(α(x)|x) p(x) dx.

I Bayes decision rule minimizes the overall risk by selecting
the action αi for which R(αi|x) is minimum.

I The resulting minimum overall risk is called the Bayes risk
and is the best performance that can be achieved.
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Two-Category Classification

I Define
I α1: deciding w1,
I α2: deciding w2,
I λij = λ(αi|wj).

I Conditional risks can be written as

R(α1|x) = λ11 P (w1|x) + λ12 P (w2|x),

R(α2|x) = λ21 P (w1|x) + λ22 P (w2|x).
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Two-Category Classification

I The minimum-risk decision rule becomes

Decide

w1 if (λ21 − λ11)P (w1|x) > (λ12 − λ22)P (w2|x)

w2 otherwise

I This corresponds to deciding w1 if

p(x|w1)

p(x|w2)
>

(λ12 − λ22)

(λ21 − λ11)

P (w2)

P (w1)

⇒ comparing the likelihood ratio to a threshold that is
independent of the observation x.
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Minimum-Error-Rate Classification

I Actions are decisions on classes (αi is deciding wi).

I If action αi is taken and the true state of nature is wj, then
the decision is correct if i = j and in error if i 6= j.

I We want to find a decision rule that minimizes the
probability of error.
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Minimum-Error-Rate Classification

I Define the zero-one loss function

λ(αi|wj) =

0 if i = j

1 if i 6= j
i, j = 1, . . . , c

(all errors are equally costly).
I Conditional risk becomes

R(αi|x) =
c∑

j=1

λ(αi|wj) P (wj|x)

=
∑
j 6=i

P (wj|x)

= 1− P (wi|x).

CS 551, Spring 2009 c©2009, Selim Aksoy (Bilkent University) 19 / 46



Minimum-Error-Rate Classification

I Minimizing the risk requires maximizing P (wi|x) and results
in the minimum-error decision rule

Decide wi if P (wi|x) > P (wj|x) ∀j 6= i.

I The resulting error is called the Bayes error and is the best
performance that can be achieved.
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Minimum-Error-Rate Classification

Figure 2: The likelihood ratio p(x|w1)/p(x|w2). The threshold θa is computed
using the priors P (w1) = 2/3 and P (w2) = 1/3, and a zero-one loss function.
If we penalize mistakes in classifying w2 patterns as w1 more than the
converse, we should increase the threshold to θb.
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Discriminant Functions

I A useful way of representing classifiers is through
discriminant functions gi(x), i = 1, . . . , c, where the classifier
assigns a feature vector x to class wi if

gi(x) > gj(x) ∀j 6= i.

I For the classifier that minimizes conditional risk

gi(x) = −R(αi|x).

I For the classifier that minimizes error

gi(x) = P (wi|x).
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Discriminant Functions

I These functions divide the feature space into c decision
regions (R1, . . . , Rc), separated by decision boundaries.

I Note that the results do not change even if we replace every
gi(x) by f(gi(x)) where f(·) is a monotonically increasing
function (e.g., logarithm).

I This may lead to significant analytical and computational
simplifications.
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The Gaussian Density

I Gaussian can be considered as a model where the feature
vectors for a given class are continuous-valued, randomly
corrupted versions of a single typical or prototype vector.

I Some properties of the Gaussian:
I Analytically tractable.
I Completely specified by the 1st and 2nd moments.
I Has the maximum entropy of all distributions with a given

mean and variance.
I Many processes are asymptotically Gaussian (Central Limit

Theorem).
I Linear transformations of a Gaussian are also Gaussian.
I Uncorrelatedness implies independence.
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Univariate Gaussian

I For x ∈ R:

p(x) = N(µ, σ2)

=
1√
2πσ

exp

[
−1

2

(
x− µ

σ

)2
]

where

µ = E[x] =

∫ ∞

−∞
x p(x) dx,

σ2 = E[(x− µ)2] =

∫ ∞

−∞
(x− µ)2 p(x) dx.
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Univariate Gaussian

Figure 3: A univariate Gaussian distribution has roughly 95% of its area in
the range |x− µ| ≤ 2σ.
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Multivariate Gaussian

I For x ∈ Rd:

p(x) = N(µ,Σ)

=
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
where

µ = E[x] =

∫
x p(x) dx,

Σ = E[(x− µ)(x− µ)T ] =

∫
(x− µ)(x− µ)T p(x) dx.
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Multivariate Gaussian

Figure 4: Samples drawn from a two-dimensional Gaussian lie in a cloud
centered on the mean µ. The loci of points of constant density are the
ellipses for which (x− µ)T Σ−1(x− µ) is constant, where the eigenvectors of
Σ determine the direction and the corresponding eigenvalues determine the
length of the principal axes. The quantity r2 = (x− µ)T Σ−1(x− µ) is called
the squared Mahalanobis distance from x to µ.
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Linear Transformations

I Recall that, given x ∈ Rd, A ∈ Rd×k, y = ATx ∈ Rk,
if x ∼ N(µ,Σ), then y ∼ N(AT µ,ATΣA).

I As a special case, the whitening transform

Aw = ΦΛ−1/2

where
I Φ is the matrix whose columns are the orthonormal

eigenvectors of Σ,
I Λ is the diagonal matrix of the corresponding eigenvalues,

gives a covariance matrix equal to the identity matrix I.
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Discriminant Functions for the Gaussian
Density

I Discriminant functions for minimum-error-rate classification
can be written as

gi(x) = ln p(x|wi) + ln P (wi).

I For p(x|wi) = N(µi,Σi)

gi(x)=−1

2
(x−µi)

TΣ−1
i (x−µi)−

d

2
ln2π− 1

2
ln|Σi|+lnP (wi).
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Case 1: Σi = σ2I

I Discriminant functions are

gi(x) = wT
i x + wi0 (linear discriminant)

where

wi =
1

σ2
µi

wi0 = − 1

2σ2
µT

i µi + ln P (wi)

(wi0 is the threshold or bias for the i’th category).
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Case 1: Σi = σ2I

I Decision boundaries are the hyperplanes gi(x) = gj(x), and
can be written as

wT (x− x0) = 0

where

w = µi − µj

x0 =
1

2
(µi + µj)−

σ2

‖µi − µj‖2
ln

P (wi)

P (wj)
(µi − µj).

I Hyperplane separating Ri and Rj passes through the point
x0 and is orthogonal to the vector w.
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Case 1: Σi = σ2I

Figure 5: If the covariance matrices of two distributions are equal and
proportional to the identity matrix, then the distributions are spherical in d
dimensions, and the boundary is a generalized hyperplane of d− 1
dimensions, perpendicular to the line separating the means. The decision
boundary shifts as the priors are changed.
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Case 1: Σi = σ2I

I Special case when P (wi) are the same for i = 1, . . . , c is the
minimum-distance classifier that uses the decision rule

assign x to wi∗ where i∗ = arg min
i=1,...,c

‖x− µi‖.
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Case 2: Σi = Σ

I Discriminant functions are

gi(x) = wT
i x + wi0 (linear discriminant)

where

wi = Σ−1 µi

wi0 = −1

2
µT

i Σ−1µi + ln P (wi).
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Case 2: Σi = Σ

I Decision boundaries can be written as

wT (x− x0) = 0

where

w = Σ−1(µi − µj)

x0 =
1

2
(µi + µj)−

ln(P (wi)/P (wj))

(µi − µj)
TΣ−1(µi − µj)

(µi − µj).

I Hyperplane passes through x0 but is not necessarily
orthogonal to the line between the means.

CS 551, Spring 2009 c©2009, Selim Aksoy (Bilkent University) 36 / 46



Case 2: Σi = Σ

Figure 6: Probability densities with equal but asymmetric Gaussian
distributions. The decision hyperplanes are not necessarily perpendicular to
the line connecting the means.
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Case 3: Σi = arbitrary

I Discriminant functions are

gi(x) = xTWix + wT
i x + wi0 (quadratic discriminant)

where

Wi = −1

2
Σ−1

i

wi = Σ−1
i µi

wi0 = −1

2
µT

i Σ−1
i µi −

1

2
ln |Σi|+ ln P (wi).

I Decision boundaries are hyperquadrics.
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Case 3: Σi = arbitrary

Figure 7: Arbitrary Gaussian distributions lead to Bayes decision boundaries
that are general hyperquadrics.
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Case 3: Σi = arbitrary

Figure 8: Arbitrary Gaussian distributions lead to Bayes decision boundaries
that are general hyperquadrics.
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Error Probabilities and Integrals

I For the two-category case

P (error) = P (x ∈ R2, w1) + P (x ∈ R1, w2)

= P (x ∈ R2|w1)P (w1) + P (x ∈ R1|w2)P (w2)

=

∫
R2

p(x|w1) P (w1) dx +

∫
R1

p(x|w2) P (w2) dx.
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Error Probabilities and Integrals

I For the multicategory case

P (error) = 1− P (correct)

= 1−
c∑

i=1

P (x ∈ Ri, wi)

= 1−
c∑

i=1

P (x ∈ Ri|wi)P (wi)

= 1−
c∑

i=1

∫
Ri

p(x|wi) P (wi) dx.
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Error Probabilities and Integrals

Figure 9: Components of the probability of error for equal priors and the
non-optimal decision point x∗. The optimal point xB minimizes the total
shaded area and gives the Bayes error rate.
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Receiver Operating Characteristics

I Consider the two-category case and define
I w1: target is present,
I w2: target is not present.

Table 1: Confusion matrix .

Assigned
w1 w2

True
w1 correct detection mis-detection
w2 false alarm correct rejection

I Mis-detection is also called false negative or Type I error.

I False alarm is also called false positive or Type II error.
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Receiver Operating Characteristics

I If we use a parameter (e.g.,
a threshold) in our
decision, the plot of these
rates for different values of
the parameter is called the
receiver operating
characteristic (ROC) curve.

Figure 10: Example receiver
operating characteristic (ROC) curves
for different settings of the system.
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Summary

I To minimize the overall risk, choose the action that
minimizes the conditional risk R(α|x).

I To minimize the probability of error, choose the class that
maximizes the posterior probability P (wj|x).

I If there are different penalties for misclassifying patterns
from different classes, the posteriors must be weighted
according to such penalties before taking action.

I Do not forget that these decisions are the optimal ones
under the assumption that the “true” values of the
probabilities are known.
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