
Bayesian Classification Example I 
 
This live-script file simulates the Baysian Classification process within 
the context of a binary classification problem between classes  
and . We asssume that the underlying feature space is one-
dimensional and that the class-conditional probability distributions 
are given by the normal distribution parameterized by  and . 

Let be the a-priori probability for the first class and 
 be the a-priori probability for the second class. 

Moreover, the class-conditional probability distributions will be given 
as follows: 

 [1]  and  

[2] 

Bayesian classification will be conducted by identifying the 
corresponding decision regions in the one-dimensional feature space 
where the associated a-posteriori probabilities are maximimized for each 
class. Thus, we may write: 
 

 [3]   

and  
  [4] 

% Clear workspace and command window. 
clc 
clear  
% Initialize the prior probabilities for each class. 
P1 = 0.7; 



P2 = 1-P1; 
% Initialize the internal parameters for the first Gaussian distribution. 
mu_1    =    1; 
sigma_1 =    1; 
% Initialize the internal parameters for the second Gaussian distribution. 
mu_2     =  -1; 
sigma_2  =   2; 
 
% Letting (mu_j,sigma_j) for j in {1,2} to denote the internal parameters  
% of the Gaussian distributions for the two classes, we may define an extra 
% variable k that parameterizes the interval in which each class-conditional 
% probability density function is defined. In this context, we may define the  
% interval for each class-conditional pdf as: 
% X_j = [mu_j - k * sigma_j,mu_j + k * sigma_j] for j in {1,2}. 
% In this context, the one-dimensional feaure space X may be defined as: 
% X  =  [mu_min - k * sigma_max,mu_max + k * sigma_max] 
k = 3; 
mu_min = min(mu_1,mu_2); 
mu_max = max(mu_1,mu_2); 
sigma_max = max(sigma_1,sigma_2); 
% Set the dx parameter controlling the x-step. 
dx = 0.001; 
% Set the dy parameter controlling the y-step. 
dy = 0.001; 
% Define the one-dimentional feature space X. 
X = mu_min-k*sigma_max:dx:mu_max+k*sigma_max; 
% Compute the class-conditional probability distribution functions for the 
% classes p_x_w1 and p_x_w2 within the previously defined interval. 
p_x_w1 = normpdf(X,mu_1,sigma_1); 
p_x_w2 = normpdf(X,mu_2,sigma_2); 
% Compute the posterior probabilities for each class. 
P_w1_x = p_x_w1 * P1; 
P_w2_x = p_x_w2 * P2; 
% Determine the minimum and maximum values of the X-axis. 
Xmin = min(X); 
Xmax = max(X); 
% Determine the minimum and maximum values of the Y-axis. 
Ymin = min([min(P_w1_x),min(P_w2_x)]); 
Ymax = max([max(P_w1_x),max(P_w2_x)]); 
% Define the Y-axis. 
Y = Ymin:dy:Ymax; 
% Plot the posterior probabilities for each class. 
figure('Name','Bayesian Classfication: Posterior Probablities'); 
title('Bayesian Classfication: Posterior Class Probablities'); 
hold on 
plot(X,P_w1_x,'-r','Linewidth',2.5); 



plot(X,P_w2_x,'-b','LineWidth',2.5); 
xlabel('x'); 
ylabel('P(w|x)'); 
% Shade the area below each probability density function. 
H1=area(X,P_w1_x,'FaceColor','r'); 
H1.FaceAlpha = 0.2; 
H2=area(X,P_w2_x,'FaceColor','b'); 
H2.FaceAlpha = 0.2; 

In this framework, the Bayesian classification rule may be formulated by 
the following discrimination function: 

 [5] 

Therefore, the decision boundary 
[6] between the 

classification regions  and  may be computed by solving the 
following equation: 
  

 

 

 

 

 

 [7] 

Letting  [8], we may write that  



 [9] 

Moreover, by letting  [10] and  [11], Equation 

(6) may be re-written as: 

[12] 

Equation (12) suggests that the decision boundary between classes 
and  will be given by the solutions of the following equation: 

 

 [13] 
 

By letting  [14], [15]  and 

[16], we may write that 

 [17]. Thus, the discriminant for the second 
degree polynomial can be expresse as: . 

In this context, we may identify the following cases for the decision 
boundary  [18]. 

Case I:  ( ) 

Case II:  

 

( ) 



In fact, we set that  

and  

 

Case III:   

( ) 

Case IV:  

Cases III and IV will not be considered since they involve occasions 
where we have either  or  
respectively, which, in turn, result in the following degenerate cases 

or .    

% Compute the constant values Lp and Ls. 
Lp = log(P2/P1); 
Ls = log(sigma_1/sigma_2); 
% Compute the coefficients of the polynomial h(x) = A*x^2 + B*x + C whose roots 
% determine the boundary region Ro between the two classes. 
A = sigma_1^2 - sigma_2^2; 
B = 2*(mu_1*sigma_2^2-mu_2*sigma_1^2); 
C = (sigma_1*mu_2)^2  - (sigma_2*mu_1)^2 - 2*((sigma_1*sigma_2)^2)*(Lp+Ls); 
% Compute the discriminant D of the polynomial h(x). 
D = B^2 - 4*A*C; 
% Compute the solution points for the quadratic equation: h(x) = 0 and plot 
% the corresponding boundary. 
if(A==0) 
    Xo = - C/B; 
    plot(Xo*ones(1,length(Y)),Y,'--k','LineWidth',2.0); 
else 
    if(D>0) 
        Xo_plus = max(((-B + sqrt(D)) / (2*A)),((-B - sqrt(D)) / (2*A))); 
        Xo_minus = min(((-B + sqrt(D)) / (2*A)),((-B - sqrt(D)) / (2*A))); 
        plot(Xo_plus*ones(1,length(Y)),Y,'--k','LineWidth',2.0); 
        plot(Xo_minus*ones(1,length(Y)),Y,'--k','LineWidth',2.0); 
    end 



end 
hold off 
legend({'p(w_1|x)','p(w_2|x)'}); 
grid on 
axis([Xmin Xmax Ymin Ymax]); 

 



 



 

According to the previous analysis, decision regions and  may be 
reformulated as:  [19] and 

 [20]  

Thus, we may consider the following cases for the decision regions 
and : 

Case I:  

Case IIa: 
 

Case IIb:  
 



In this setting, the overall probability of error is given by the following 
formula:  

 

Case I: Equation (22) may be rewritten in the following form: 

 

Case IIa: Equation (22) may be rewritten in the following form: 

 

Case IIb: Equation (22) may be rewritten in the following form: 

 

Evaluating the integrals appearing within Equations (23), (24) and (25) 
requires the existence of a computational procedure for estimating the 
cumulative distribution function that corresponds to a given probability 
distribution function. For the case of a normal probability distribution 
function, the associated cumulative distribution function is given by: 

 

Therefore, we may define the following auxiliary integrals as: 

 

and 



 

In view of Equations (26), (27) and (28) the overall error probabilities for 
the previously identified cases may be given as: 
Case I:    
[29] 
Case IIa: 

 [30] 

Case IIb:  

[31] 
% Compute the overall error probabiliities for each one of the previously 
% identified cases. 
if(A==0) 
    Pe = P1 * normcdf(Xo,mu_1,sigma_1) + P2 * (1  - normcdf(Xo,mu_2,sigma_2)) 
else 
    if (D > 0) 
        if (A > 0) 
            Pe = P1 * (normcdf(Xo_plus,mu_1,sigma_1) - 
normcdf(Xo_minus,mu_1,sigma_1)) + P2 * (normcdf(Xo_minus,mu_2,sigma_2) + 1 - 
normcdf(Xo_plus,mu_2,sigma_2)) 
        else 
            Pe = P1 * (normcdf(Xo_minus,mu_1,sigma_1) + 1 - 
normcdf(Xo_plus,mu_1,sigma_1)) + P2 * (normcdf(Xo_plus,mu_2,sigma_2) - 
normcdf(Xo_minus,mu_2,sigma_2)) 
        end 
    end 
end 

Pe =  
   0.162176548836534 

  


