
Bayesian Classification Example I

This live-script file simulates the Baysian classification process within the 
context of a binary classification problem between classes  and . 
We asssume that the underlying feature space is one-dimensional and 
that the class-conditional probability distributions are given by the normal 
distribution parameterized by  and .

Let be the a-priori probability for the first class and  
be the a-priori probability for the second class. Moreover, the class-
conditional probability distributions will be given as follows:

 [1]  and  

[2]

Bayesian classification will be conducted by identifying the corresponding 
decision regions in the one-dimensional feature space where the associated 
a-posteriori probabilities are maximimized for each class. Thus, we may 
write:

[3]  and  
[4]

% Clear workspace and command window.
clc
clear 
% Initialize the prior probabilities for each class.
P1 = 0.5;
P2 = 1-P1;
% Initialize the internal parameters for the first Gaussian distribution.
mu_1    =    1;
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sigma_1 =    1;
% Initialize the internal parameters for the second Gaussian distribution.
mu_2     =  -1;
sigma_2  =   1;

% Letting (mu_j,sigma_j) for j in {1,2} to denote the internal parameters 
% of the Gaussian distributions for the two classes, we may define an extra
% variable k that parameterizes the interval in which each class-conditional
% probability density function is defined. In this context, we may define the 
% interval for each class-conditional pdf as:
% X_j = [mu_j - k * sigma_j,mu_j + k * sigma_j] for j in {1,2}.
% In this context, the one-dimensional feaure space X may be defined as:
% X  =  [mu_min - k * sigma_max,mu_max + k * sigma_max]
k = 3;
mu_min = min(mu_1,mu_2);
mu_max = max(mu_1,mu_2);
sigma_max = max(sigma_1,sigma_2);
% Set the dx parameter controlling the x-step.
dx = 0.001;
% Set the dy parameter controlling the y-step.
dy = 0.001;
% Define the one-dimentional feature space X.
X = mu_min-k*sigma_max:dx:mu_max+k*sigma_max;
% Compute the class-conditional probability distribution functions for the
% classes p_x_w1 and p_x_w2 within the previously defined interval.
p_x_w1 = normpdf(X,mu_1,sigma_1);
p_x_w2 = normpdf(X,mu_2,sigma_2);
% Compute the posterior probabilities for each class.
P_w1_x = p_x_w1 * P1;
P_w2_x = p_x_w2 * P2;
% Determine the minimum and maximum values of the X-axis.
Xmin = min(X);
Xmax = max(X);
% Determine the minimum and maximum values of the Y-axis.
Ymin = min([min(P_w1_x),min(P_w2_x)]);
Ymax = max([max(P_w1_x),max(P_w2_x)]);
% Define the Y-axis.
Y = Ymin:dy:Ymax;
% Plot the posterior probabilities for each class.
figure('Name','Bayesian Classfication: Posterior Probablities');
title('Bayesian Classfication: Posterior Class Probablities');
hold on
plot(X,P_w1_x,'-r','Linewidth',2.5);
plot(X,P_w2_x,'-b','LineWidth',2.5);
xlabel('x');
ylabel('P(w|x)');
% Shade the area below each probability density function.
H1=area(X,P_w1_x,'FaceColor','r');
H1.FaceAlpha = 0.2;
H2=area(X,P_w2_x,'FaceColor','b');
H2.FaceAlpha = 0.2;
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In this framework, the Bayesian classification rule may be formulated by the 
following discrimination function:

 [5]

Therefore, the decision boundary 
[6] between the classification 

regions  and  may be computed by solving the following equation:

 [7]

Letting  [8], we may write that 

 [9]
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Moreover, by letting  [10] and  [11], Equation (6) may 

be re-written as:

 [12]

Equation (12) suggests that the decision boundary between classes and 
 will be given by the solutions of the following equation:

 
[13]

By letting  [14], [15]  
and [16], we may write that 

 [17]. Thus, the discriminant for the second degree 
polynomial can be expresse as: .

In this context, we may identify the following cases for the decision 
boundary  [18].

Case I:  ( )

Case II:  

( )
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In fact, we set that and 

Case III: ( )

Case IV: 

Cases III and IV will not be considered since they involve occasions where 
we have either  or  respectively, which, 
in turn, result in the following degenerate cases or .   
% Compute the constant values Lp and Ls.
Lp = log(P2/P1);
Ls = log(sigma_1/sigma_2);
% Compute the coefficients of the polynomial h(x) = A*x^2 + B*x + C whose roots
% determine the boundary region Ro between the two classes.
A = sigma_1^2 - sigma_2^2;
B = 2*(mu_1*sigma_2^2-mu_2*sigma_1^2);
C = (sigma_1*mu_2)^2  - (sigma_2*mu_1)^2 - 2*((sigma_1*sigma_2)^2)*(Lp+Ls);
% Compute the discriminant D of the polynomial h(x).
D = B^2 - 4*A*C;
% Compute the solution points for the quadratic equation: h(x) = 0 and plot
% the corresponding boundary.
if(A==0)
    Xo = - C/B;
    plot(Xo*ones(1,length(Y)),Y,'--k','LineWidth',2.0);
else
    if(D>0)
        Xo_plus = max(((-B + sqrt(D)) / (2*A)),((-B - sqrt(D)) / (2*A)));
        Xo_minus = min(((-B + sqrt(D)) / (2*A)),((-B - sqrt(D)) / (2*A)));
        plot(Xo_plus*ones(1,length(Y)),Y,'--k','LineWidth',2.0);
        plot(Xo_minus*ones(1,length(Y)),Y,'--k','LineWidth',2.0);
    end
end
hold off
legend({'p(w_1|x)','p(w_2|x)'});
grid on
axis([Xmin Xmax Ymin Ymax]);
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According to the previous analysis, decision regions and 
 may be reformulated as:  [19] and 

 [20] 

Thus, we may consider the following cases for the decision regions and 
:

Case I: 

Case IIa: 

Case IIb:  

In this setting, the overall probability of error is given by the following 
formula: 
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Case I: Equation (22) may be rewritten in the following form:

Case IIa: Equation (22) may be rewritten in the following form:

Case IIb: Equation (22) may be rewritten in the following form:

Evaluating the integrals appearing within Equations (23), (24) and (25) 
requires the existence of a computational procedure for estimating the 
cumulative distribution function that corresponds to a given probability 
distribution function. For the case of a normal probability distribution 
function, the associated cumulative distribution function is given by:

Therefore, we may define the following auxiliary integrals as:

and
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In view of Equations (26), (27) and (28) the overall error probabilities for the 
previously identified cases may be given as:

Case I:    [29]

Case IIa: 

[30]

Case IIb:  

[31]
% Compute the overall error probabiliities for each one of the previously
% identified cases.
if(A==0)
    Pe = P1 * normcdf(Xo,mu_1,sigma_1) + P2 * (1  - normcdf(Xo,mu_2,sigma_2))
else
    if (D > 0)
        if (A > 0)
            Pe = P1 * (normcdf(Xo_plus,mu_1,sigma_1) - normcdf(Xo_minus,mu_1,sigma_1)) + P2 * (normcdf(Xo_minus,mu_2,sigma_2) + 1 - normcdf(Xo_plus,mu_2,sigma_2))
        else
            Pe = P1 * (normcdf(Xo_minus,mu_1,sigma_1) + 1 - normcdf(Xo_plus,mu_1,sigma_1)) + P2 * (normcdf(Xo_plus,mu_2,sigma_2) - normcdf(Xo_minus,mu_2,sigma_2))
        end
    end
end

Pe = 0.2267
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