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Abstract

The course for which these notes are designed is intended for undergraduate

students who have some programming experience and may even have written a

few programs in Prolog. They are not assumed to have had any formal course

in either propositional or predicate logic.

At the end of the course, the students should have enough familiarity with

Prolog to be able to pursue any undergraduate course which makes use of

Prolog.

This is a rather ambitious undertaking for a course of only twelve lectures so the

lectures are supplemented with exercises and small practical projects wherever

possible.

The Prolog implementation used is SICStus Prolog which is closely modelled

on Quintus Prolog (SICS is the Swedish Institute of Computer Science). The

reference manual should also be available for consultation [SICStus, 1988].

cPaul Brna 1988
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Preface

A Warning

These notes are under development. Much will eventually change. Please help

to make these notes more useful by letting the author know of any errors or

missing information. Help future generations of AI2 students!

The Intended Audience

The course for which these notes are designed is intended for undergraduate

students who have some programming experience and may even have written a

few programs in Prolog. They are not assumed to have had any formal course

in either propositional or predicate logic.

The Objective

At the end of the course, the students should have enough familiarity with

Prolog to be able to pursue any undergraduate course which makes use of

Prolog.

The original function was to provide students studying Arti�cial Intelligence

(AI) with an intensive introduction to Prolog so, inevitably, there is a slight

bias towards AI.

The Aims

At the end of the course the students should be:

� familiar with the basic syntax of the language

� able to give a declarative reading for many Prolog programs

� able to give a corresponding procedural reading

� able to apply the fundamental programming techniques

� familiar with the idea of program as data

� able to use the facilities provided by a standard trace package to debug

programs

� familiar with the fundamental ideas of the predicate calculus

� familiar with the fundamental ideas speci�c to how Prolog works

ii



viii

Course Structure

This is a rather ambitious undertaking for a course of only twelve lectures so the

lectures are supplemented with exercises and small practical projects wherever

possible.

Acknowledgements

These notes are based on a previous version used with the students of the AI2

course in Prolog during the session 1985{87 and 1988{89 at the Department of

Arti�cial Intelligence, Edinburgh University. My thanks for the feedback that

they supplied.



Chapter 1

Introduction

Prolog is PROgramming in LOGic

A few points must be cleared up before we begin to explore the main aspects

of Prolog.

These notes are supplemented with exercises and suggestions for simple practi-

cals. It is assumed that you will do most of this supplementary work either in

your own time, for tutorials or during practical sessions.

Each chapter will start with a simple outline of its content and �nish with a

brief description of what you should know upon completion of the chapter and

its exercises.

Important points will be boxed and some technical and practical details which

are not immediately essential to the exposition will be

written in a smaller font.

1.1 Declarative vs Procedural Programming

Procedural programming requires that the programmer tell the computer what

to do. That is, how to get the output for the range of required inputs. The

programmer must know an appropriate algorithm.

Declarative programming requires a more descriptive style. The programmer

must know what relationships hold between various entities.

Pure
1 Prolog allows a program to be read either declaratively or procedurally.

This dual semantics is attractive.

1.2 What Kind of Logic?

Prolog is based on First Order Predicate Logic |sometimes abbreviated to

FOPL.

1Prolog, like LISP, has a pure subset of features. The implication is that some features of

both languages are regarded as impure |these are often provided for eÆciency or for useful,

but strictly unnecessary features. The impure features of Prolog damage the pleasing equality

between the declarative and procedural readings of Prolog programs.

1



2 Prolog Programming

First order predicate logic implies the existence of a set of predicate symbols

along with a set of connectives.

First order predicate logic implies that there is no means provided for \talking

about" the predicates themselves.

Prolog is based on FOPL but uses a restricted version of the clausal form.

Clausal form is a particular way of writing the propositions of FOPL. The

restriction is known as Horn clause form.

Prolog is a so-called logic programming language. Strictly, it is not the only

one but most such languages are its descendents.

We will spend a little time outlining the basic ideas underlying both proposi-

tional and predicate logic. It is not the intention to use Prolog as a vehicle to

teach logic but some appreciation of the issues is invaluable.

1.3 A Warning

Prolog is known to be a diÆcult language to master. It does not have the

familiar control primitives used by languages like RATFOR, ALGOL and PAS-

CAL so the system does not give too much help to the programmer to employ

structured programming concepts.

Also, many programmers have become used to strongly typed languages. Pro-

log is very weakly typed indeed. This gives the programmer great power to

experiment but carries the obvious responsibility to be careful.

Another major di�erence is the treatment of variables |special attention should

be given to understanding variables in Prolog.

Prolog provides a search strategy for free |there is a cost. The programmer

has to develop a methodology to handle the unexpected consequences of a faulty

program. In particular, pay careful attention to the issue of backtracking.

It is usual to assume that telling people how they can go wrong is an encour-

agement to do exactly that |go wrong. The approach taken here is to make

the known diÆculties explicit.

1.4 A Request

These notes are slowly being improved. Many further exercises need to be

added along with more example programs and improvements to the text.

If you have any comments that will help in the development of these notes then

please send your comments to:

Paul Brna

Department of Arti�cial Intelligence

University of Edinburgh

80 South Bridge

Edinburgh EH1 1HN



Chapter 2

Knowledge Representation

We take a very brief and informal look at both the propositional

calculus and �rst order predicate logic.

We then restrict our attention to a form of predicate logic which

translates directly into Prolog.

This requires that we introduce a simple vocabulary that de-

scribes the syntax of Prolog.

Here, we concentrate on an informal description of the funda-

mental units which are:

clause, rule, fact,

goal, subgoal,

logical variable, constant, atom,

functor, argument, arity.

An explanation as to how statements can be represented in

Prolog form is given.

How do we represent what we know? The simplest analysis requires that we

distinguish between knowledge how {procedural knowledge such as how to drive

a car| and knowledge that |declarative knowledge such as knowing the speed

limit for a car on a motorway.

Many schemes for representing knowledge have been advanced |including full

�rst order predicate logic. The strong argument for classical (�rst order predi-

cate) logic is that it has a well understood theoretical foundation.

2.1 Propositional Calculus

The propositional calculus is based on statements which have truth values (true

or false).

The calculus provides a means of determining the truth values associated with

statements formed from \atomic" statements. An example:

If p stands for \fred is rich" and q for \fred is tall" then we may form state-

ments such as:

3



4 Prolog Programming

Symbolic Statement Translation

p _ q p or q

p ^ q p and q

p ) q p logically implies q

p , q p is logically equivalent to q

:p not p

Note that _, ^, ) and , are all binary connectives. They are sometimes

referred to, respectively, as the symbols for disjunction, conjunction, implication

and equivalence. Also, : is unary and is the symbol for negation.

If propositional logic is to provide us with the means to assess the truth value

of compound statements from the truth values of the `building blocks' then we

need some rules for how to do this.

For example, the calculus states that p_q is true if either p is true or q is true

(or both are true). Similar rules apply for all the ways in which the building

blocks can be combined.

A Problem

If p stands for \all dogs are smelly" and p is true then we would like to be

able to prove that \my dog �do is smelly".

We need to be able to get at the structure and meaning of statements. This is

where (�rst order1) predicate logic is useful.

2.2 First Order Predicate Calculus

The predicate calculus includes a wider range of entities. It permits the de-

scription of relations and the use of variables. It also requires an understanding

of quanti�cation.

The language of predicate calculus requires:

Variables

Constants |these include the logical constants

Symbol Meaning

_ or

^ and

: not

) logically implies

, logically equivalent

8 for all

9 there exists

The last two logical constants are additions to the logical connectives of

propositional calculus |they are known as quanti�ers. The non-logical

constants include both the `names' of entities that are related and the

`names' of the relations. For example, the constant dog might be a rela-

tion and the constant �do an entity.

1Do not worry about the term �rst order for now. Much later on, it will become relevant.



Prolog Programming 5

Predicate |these relate a number of entities. This number is usually greater

than one. A predicate with one argument is often used to express a

property e.g. sun(hot) may represent the statement that \the sun has

the property of being hot".

If there are no arguments then we can regard the `predicate' as standing

for a statement �a la the propositional calculus.

Formul� |these are constructed from predicates and formul�2. The logical

constants are used to create new formul�/ from old ones. Here are some

examples:

Formula(e) New Formula

dog(�do) : dog(�do)

dog(�do) and old(�do) dog(�do)_ old(�do)

dog(�do) and old(�do) dog(�do)^ old(�do)

dog(�do) and old(�do) dog(�do)) old(�do)

dog(�do) and old(�do) dog(�do), old(�do)

dog(X) 8X.dog(X)

dog(X) 9X.dog(X)

Note that the word \and" used in the left hand column is used to suggest

that we have more than one formula for combination |and not necessarily

a conjunction.

In the last two examples, \dog(X)" contains a variable which is said to

be free while the \X" in \8X.dog(X)" is bound.

Sentence |a formula with no free variables is a sentence.

Two informal examples to illustrate quanti�cation follow:

8X.(man(X))mortal(X)) All men are mortal

9X.elephant(X) There is at least one elephant

The former is an example of universal quanti�cation and the latter of existential

quanti�cation.

We can now represent the problem we initially raised:

8X.(dog(X))smelly(X))^dog(�do))smelly(�do)

To verify that this is correct requires that we have some additional machinery

which we will not discuss here.

2.3 We Turn to Prolog

Prolog provides for the representation of a subset of �rst order predicate cal-

culus. The restrictions on what can be done will become clearer later. We will

now explain how we can write logical statements in Prolog.

2Note that this is a recursive de�nition.



6 Prolog Programming

If \the capital of france is paris" then we can represent this in predicate calculus

form as3:

france has capital paris

We have a binary relationship (two things are related) written in in�x form.

That is, the relationship is written between the two things related.

The relationship (or predicate) has been given the name \has capital" |hence

we say that the predicate name is \has capital".

And in Prolog form by such as:

has capital(france,paris).

where we write a pre�x form and say that the relationship takes two arguments.

Pre�x because the relationship is indicated before the two related things.

Note that, in Prolog, if the name of an object starts with a lower case letter

then we refer to a speci�c object. Also, there must be no space between the

predicate name and the left bracket \(". The whole thing also ends in a \." as

the last character on the line.

The exact rule for the termination of a clause is that a clause must end

with a \." followed by white space where white space can be any of

fspace,tab,newline,end of �leg. It is safest to simply put \." followed

by newline.

Also note that relations do not need to hold between exactly two objects. For

example,

meets(fred,jim,bridge)

might be read as

fred meets jim by the bridge

Here, three objects are related so it makes little sense to think of the relation

meets as binary |it is ternary.

If we can relate two objects or three then it is reasonable to relate n where

n � 2. Is there any signi�cance to a relationship that relates one or even zero

objects? A statement like

jim is tall

might be represented either as

3The failure to capitalise \france" and \paris" is quite deliberate. In Prolog, named,

speci�c objects (i.e. the atoms) usually start with a lower case letter.
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tall(jim)

or

jim(tall)

It is, perhaps, preferable to see tallness as being a property which is possessed

by jim.

A `relation' that has no arguments can be seen as a single proposition. Thus

the binary relation \france has capital paris" above might be rewritten as the

statement \france has capital paris" |a relation with no arguments.

2.4 Prolog Constants

If we have

loves(jane,jim).

then jane and jim refer to speci�c objects. Both jane and jim are constants.

In particular, in DEC-10 Prolog terminology, both are atoms. Also, \loves"

happens to be an atom too because it refers to a speci�c relationship. Generally

speaking, if a string of characters starts with a lower case letter, the DEC-10

family of Prologs assume that the entity is an atom.

There are constants other than atoms |including integers and real numbers.

A constant is an atom or a number. A number is an integer or a real

number
4
. The rules for an atom are quite complicated:

quoted item 'anything but the single quote character'

word lower case letter followed by any letter, digit or (underscore)

symbol any number of f+, -, *, /, n, ^, <, >, =, ', ~, :, ., ?, @, #, $, &g
special item any of f [], fg, ;, !, %g

So the following are all atoms:

likes chocolate, fooX23, ++*++, ::=, 'What Ho!'

By the way, you can include a single quote within a quoted atom |just

duplicate the single quote. This gives the quoted atom with a single quote

as:

''''

A practical warning: remember to pair o� your (single) quote signs when

inputing a quoted atom or Prolog may keep on swallowing your input

looking for that elusive single quote character. This is one of the most

common syntactic errors for beginners.

While we are on the subject, another common error is to assume that a

double quote (") behaves like a single quote |i.e. that the term "Hello"

is an atom just like 'Hello'. This is not so. When you do �nd out what

sensible things can be done with the double quote then remember to pair

them o�.

4Referred to as a oat in the SICStus Prolog manual [SICStus, 1988].
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Because Prolog is modelled on a subset of �rst order predicate logic, all pred-

icate names must be constants |but not numbers. In particular,

No predicate may be a variable

That is, we cannot have X(jane,jim) as representing the fact that jane and

jim are related in some unknown way.

2.5 Goals and Clauses

We distinguish between a Prolog goal and Prolog clause. A clause is the

syntactic entity expressing a relationship as required by Prolog|note that we

will regard the `.' as terminating a clause (this is not strictly correct).

loves(jane,jim) is a goal

loves(jane,jim). is a unit clause

The adjectives unit and non-unit distinguish two kinds of clause |intuitively,

facts and rules respectively.

Exercise 2.1 Here is the �rst opportunity to practice the representation of

some statement in Prolog form.

1. bill likes ice-cream

2. bill is tall

3. jane hits jimmy with the cricket bat

4. john travels to london by train

5. bill takes jane some edam cheese

6. freddy lives at 16 throgmorton street in london

The failure to capitalise \freddy", \london" etc. is a reminder that the version

of Prolog that we are using requires that constants should not start with an

upper case letter.

Note that there may be several ways of representing each of these statements.

2.6 Multiple Clauses

A predicate may be de�ned by a set of clauses with the same predicate name

and the same number of arguments.

We will therefore informally describe the way in which this is handled through

an example. The logical statement (in �rst order form)

squared(1,1)^squared(2,4)^squared(3,9)

is to be represented as three distinct Prolog clauses.
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squared(1,1).

squared(2,4).

squared(3,9).

Note that this way of turning a conjunctive statement into Prolog is one of

the fundamental restrictions previously mentioned. There are more to follow.

All the above clauses are unit clauses |this is not a necessary requirement. See

section 2.12 for an example with both unit and non-unit clauses.

We now introduce a graphical representation which will be used in a number
of di�erent ways. The idea we use here is to represent a program (in this case,
consisting of a set of unit clauses) as a tree.

�

squared(1,1) squared(2,4) squared(3,9)

(((((((((((((

hhhhhhhhhhhhh

This tree is an example of an OR tree.

It might have been expected that we would call this an AND tree but, when

we are trying to determine whether a statement such as squared(1,1) is true

then we might use either the �rst clause or the second or the third and so on.

Exercise 2.2 Represent each of these statements as a set of Prolog clauses.

1. bill only eats chocolate, bananas or cheese.

2. the square root of 16 is 4 or -4.

3. wales, ireland and scotland are all countries.

2.7 Rules

The format is:

divisible by two:-

even.

This is a non-unit clause.

In general, a clause consists of two parts: the head and the body5.

The head is divisible by two and the body is even |even is sometimes re-

ferred to as a subgoal.

Note that the symbol \:-" is read as if. An informal reading of the clause is

\divisible by two is true if even is true" which is equivalent to \even )

divisible by two".

Any number of subgoals may be in the body of the rule.

5These two body parts are `joined' by the neck. There is an analogous concept in the

Prolog literature.
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No more than one goal is allowed in the head

This is another way in which Prolog is a restriction of full �rst order predicate

calculus. For example, we cannot translate rich(fred)) happy(fred)^powerful(fred)

directly into the Prolog version happy(fred),powerful(fred) :- rich(fred).

See section 2.10 for an example of a clause with more than one subgoal in the

body. A fact is e�ectively a rule with no subgoals.

You may have noticed that, even if it is held that \even" is a relation, it does

not seem to relate anything to anything else.

The rule is not as much use as it might be because it does not reveal the more

interesting relationship that

A number is divisible by two if it is even

We can express this with the help of the logical variable. Here is the improved

rule:

divisible by two(X):-

even(X).

This is also a non-unit clause. The named logical variable is X. This Prolog

clause is equivalent to the predicate calculus statement 8 X. (even(X) )

divisible by two(X)).

2.8 Semantics

Here is an informal version of the procedural semantics for the example above:

If we can �nd a value of X that satis�es the goal even(X) then we

have also found a number that satis�es the goal divisible by two(X).

The declarative semantics.

If we can prove that X is \even" then we have proved that X is

\divisible by two".

Note that there is an implicit universal quanti�cation here. That is, for

all objects those that are even are also divisible by two.

8X.(even(X)) divisible by two(X))

Also note that the head goal is found on the right of the standard logical

implication symbol. It is a common error to reverse the implication.

Two �nal examples of a single rule. The �rst:

all scots people are british
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can be turned into:

british(Person):-

scottish(Person).

Note that Person is another logical variable. Now for the �nal example:

if you go from one country to another they you are a tourist

turns into:

tourist(P):-

move(P,Country1,Country2).

where move(P,A,B) has the informal meaning that a person P has moved

from country A to country B.

There is a problem here. We really need to specify that Country1 and Coun-

try2 are legitimate and distinct countries6.

Exercise 2.3 Represent these statements as single non-unit clauses (rules):

1. all animals eat custard

2. everyone loves bergman's �lms

3. jim likes fred's possessions

4. if someone needs a bike then they may borrow jane's

2.9 The Logical Variable

In the DEC-10 Prolog family, if an object is referred to by a name starting

with a capital letter then the object has the status of a logical variable. In

the above rule there are two references to X. All this means is that the two

references are to the same object |whatever that object is.

The scope rule for Prolog is that two uses of an identical name for a logical

variable only refer to the same object if the uses are within a single clause.

Therefore in

happy(X):-

healthy(X).

wise(X):-

old(X).

6This could be enforced by the move/3 relation (predicate) but this would produce an

unnaturally speci�c version of moving. The real solution is to provide some predicate such as

not same/2 which has the meaning that not same(P1,P2) precisely when P1 is not the

same as P2.
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the two references to X in the �rst clause do not refer to the same object as the

references to X in the second clause. By the way, this example is a sort that is

discussed in section 2.11.

Do not assume that the word logical is redundant. It is used to distinguish

between the nature of the variable as used in predicate calculus and the vari-

able used in imperative languages like BASIC, FORTRAN, ALGOL and so on.

In those languages, a variable name indicates a storage location which may

`contain' di�erent values at di�erent moments in the execution of the program.

The logical variable cannot be overwritten with a new value

Although this needs some further comments, it is probably better to start with

this statement and qualify it later.

For example, in Pascal:

X:= 1; X:= 2;

results in the assignment of 2 to X. In Prolog, once a logical variable has

a value, then it cannot be assigned a di�erent one. The logical statement

X=1 ^ X=2

cannot be true as X cannot be both `2' and `1' simultaneously. An attempt

to make a logical variable take a new value will fail.

2.10 Rules and Conjunctions

A man is happy if he is rich and famous

might translate to:

happy(Person):-

man(Person),

rich(Person),

famous(Person).

The `,' indicates the conjunction and is roughly equivalent to the ^ of predicate

calculus. Therefore, read `,' as `and'7. The whole of the above is one (non-unit)

single clause.

It has three subgoals in its body |these subgoals are `conjoined'.

In this single clause, the logical variable Person refers to the same object

throughout.

By the way, we might have chosen any name for the logical variable other than

Person. It is common practice to name a logical variable in some way that

reminds you of what kind of entity is being handled.

We now describe this clause graphically. In this case, we are going to represent

conjunctions using an AND tree. Here is an AND tree that represents the

above.

7It's meaning is more accurately captured by the procedural `and then'.
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�

man(Person) rich(Person) famous(Person)

(((((((((((((

hhhhhhhhhhhhh

The way in which we discriminate between an OR tree and an AND tree is the

use of a horizontal bar to link the subgoals. We need this distinction because we

are going to represent the structure of a program using a combined AND/OR

tree.

Exercise 2.4 A few more exercises. Each of these statements should be turned

into a rule (non-unit clause) with at least two subgoals |even though some

statements are not immediately recognisable as such:

1. you are liable to be �ned if your car is untaxed

2. two people live in the same house if they have the same address

3. two people are siblings if they have the same parents

2.11 Rules and Disjunctions

Someone is happy if they are healthy, wealthy or wise.

translates to:

happy(Person):-

healthy(Person).

happy(Person):-

wealthy(Person).

happy(Person):-

wise(Person).

Note how we have had to rewrite the original informal statement into something

like:

Someone is happy if they are healthy OR

Someone is happy if they are wealthy OR

Someone is happy if they are wise

We have also assumed that each clause is (implicitly) universally quanti�ed.

i.e. the �rst one above represents 8X.(healthy(X))happy(X)).

The predicate name \happy' is known as a functor.

The functor happy has one argument.

We describe a predicate with name \predname" with arity \n" as predname/n.

It has one argument |we say its arity is 1.

The predicate happy/1 is de�ned by three clauses.
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Exercise 2.5 Each of these statements should be turned into several rules:

1. you are british if you are welsh, english, scottish or northern irish

2. you are eligible for social security payments if you earn less than $ 28 per

week or you are an old age pensioner

3. those who play football, rugger or hockey are sportspeople

2.12 Both Disjunctions and Conjunctions

We combine both disjunctions and conjunctions together. Consider:

happy(Person):-

healthy(Person),woman(Person).

happy(Person):-

wealthy(Person),woman(Person).

happy(Person):-

wise(Person),woman(Person).

This can be informally interpreted as meaning that

A woman is happy if she is healthy, wealthy or wise

We now combine the OR tree representation together with an AND tree repre-
sentation to form an AND/OR tree that shows the structure of the de�nition
of happy/1.

happy(P)

healthy(P) woman(P) wealthy(P) woman(P) wise(P) woman(P)

(((((((((((((
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Note that the logical variable in the diagram has been renamed to P. There is

no signi�cance in this renaming.

2.13 What You Should Be Able To Do

After �nishing the exercises at the end of the chapter:

You should be able to represent any simple fact in legalProlog.

You should be able to split up a disjunctive expression into a

set of Prolog clauses.

You should be able to express a simple conjunctive expression

as a single clause.

You should be able to represent most rules in legal Prolog.

There is no perfect solution to the problem of representing knowledge. You may

generate representations that di�er wildly from someone else's answers. To �nd

out which answer is best and in what context will require some deeper thought.
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Exercise 2.6 Here is a small set of problems that require you to convert propo-

sitions into Prolog clauses. Make sure you explain the meaning of your repre-

sentation:

1. a ) b

2. a _ b ) c

3. a ^ b ) c

4. a ^ (b _ c) ) d

5. :a _ b

Exercise 2.7 A simple collection of problems. Represent each statement as a

single Prolog clause:

1. Billy studies AI2

2. The population of France is 50 million

3. Italy is a rich country

4. Jane is tall

5. 2 is a prime number

6. The Welsh people are British

7. Someone wrote Hamlet

8. All humans are mortal

9. All rich people pay taxes

10. Bill takes his umbrella if it rains

11. If you are naughty then you will not have any supper

12. Firebrigade employees are men over six feet tall



Chapter 3

Prolog's Search Strategy

So far we have concentrated on describing a fact or rule.

Now we have to discover how to make Prolog work for us.

Here, we informally introduce Prolog's search strategy.

This requires introducing the ideas of Prolog's top level, how

to query Prolog, how Prolog copes with searching through a

number of clauses, matching, uni�cation, resolution, binding,

backtracking and unbinding.

Search is a major issue. There are many ways to search for the solution to

a problem and it is necessary to learn suitable algorithms that are eÆcient.

Prolog provides a single method of search for free. This method is known as

depth �rst search.

You should �nd that Prolog enables the programmer to implement other search

methods quite easily.

Prolog's basic search strategy is now going to be outlined. To do this we need

to consider something about the Prolog system.

Prolog is an interactive system. The interactions between the programmer

and the Prolog system can be thought of as a conversation. When the Prolog

system is entered we are at top level. The system is waiting for us to initiate a

`conversation'.

3.1 Queries and Disjunctions

Informally, a query is a goal which is submitted to Prolog in order to determine

whether this goal is true or false.

As, at top level, Prolog normally expects queries it prints the prompt:

?-

and expects you to type in one or more goals. We tell the Prolog system that

we have �nished a query |or any clause| by typing \." followed by typing

the key normally labelled \RETURN".

A very common syntax error for beginners is to press RETURN before \.". This

is not a problem |just type in the missing \." followed by another RETURN.

We look at the case where we only want to solve one goal. Perhaps we would

like to determine whether or not

16
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woman(jane)

In this case we would type this in and see (what is actually typed is emboldened):

?- woman(jane).

Now ?- woman(jane). is also a clause. Essentially, a clause with an empty

head.

We now have to �nd out \if jane is a woman". To do this we must search

through the facts and rules known by Prolog to see if we can �nd out whether

this is so.

Note that we make the distinction between facts and rules |not Prolog. For

example, Prolog does not search through the facts before the rules. Here are

some facts assumed to be known1:

Program Database

woman(jean).

man(fred).

woman(jane).

woman(joan).

woman(pat).

In order to solve this goal Prolog is confronted with a search problem which is

trivial in this case. How should Prolog search through the set of (disjunctive)

clauses to �nd that it is the case that \jane is a woman"?

Such a question is irrelevant at the level of predicate calculus. We just do not

want to know how things are done. It is suÆcient that Prolog can �nd a

solution. Nevertheless, Prolog is not pure �rst order predicate calculus so we

think it important that you face up to this di�erence fairly early on.

The answer is simple. Prolog searches through the set of clauses in the same

way that we read (in the west). That is, from top to bottom. First, Prolog

examines

woman(jean).

and �nds that

woman(jane).

does not match. See �gure 3.1 for the format we use to illustrate the failure to

match.

1At some point we had to input these facts into the system. This is usually done by creating

a �le containing the facts and rules needed and issuing a command that Prolog is to consult

the �le(s). Use the command

consult(�lename).

where �lename is the name of your �le. A command is very like a query. A query is written

something like ?- woman(X). The result (on the screen) is X= something followed by yes

or the word no (if there is no such X). A command is written something like :- woman(X).

The result is that the system will not print the binding for X (if there is one) (or the word

yes) or will print the symbol ? if the query failed. The reason for the distinction between a

query and a command will be explained later.
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We introduce the term resolution table. We use this term to represent the

process involved in matching the current goal with the head goal of a clause

in the program database, �nding whatever substitutions are implied by a

successful match, and replacing the current goal with the relevant subgoals

with any substitutions applied.

We illuminate this using a `window' onto the resolution process (the res-

olution table). If the match fails then no substitutions will apply and no

new subgoals will replace the current goal.

The term substitution is connected with the concept of associating a vari-

able with some other Prolog object. This is important because we are

often interested in the objects with which a variable has been associated

in order to show that a query can be satis�ed.

Resolution Table

woman(jean). (program clause)

@@

woman(jane). (current goal)

2 (indicates failure)

f g (no substitutions)

Figure 3.1: A Failed Match

This failure is fairly obvious to us! Also, it is obvious that the next clause

man(fred). doesn't match either |because the query refers to a di�erent

relation (predicate) than man(fred). From now on we will never consider

matching clauses whose predicate names (and arities) di�er.

Prolog then comes to look at the third clause and it �nds what we want. All

we see (for the whole of our activity) is:

?- woman(jane).

yes

?-

Now think about how the search space
2 might appear using the AND/OR tree

representation. The tree might look like:

2This term is used informally. The basic idea is that a program has an initial structure

which can be represented as a tree. The nodes of the tree are goals and the arcs represent

the rules used to invoke a particular goal or set of goals. A computation can be regarded very

roughly as a path through this tree (really, a subtree).
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woman(jane)

woman(jean) man(fred) woman(jane) woman(joan) woman(pat)

(((((((((((((
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We see that the search would zig zag across the page from left to right |

stopping when we �nd the solution.

Note that we will normally omit facts from the representation of this `search

space'. In this case we would have a very uninteresting representation.

3.2 A Simple Conjunction

Now to look at a goal which requires Prolog to solve two subgoals. Here is our

set of facts and one rule.

Program Database

woman(jean).

man(fred).

wealthy(fred).

happy(Person):-

woman(Person),

wealthy(Person).

We shall ask whether \jean is happy". We get this terminal interaction:

?- happy(jean).

no

?-

Now why is this the case? We said that we would not bother with clauses with

di�ering predicate names. Prolog therefore has only one choice |to try using

the single rule. It has to match:

happy(jean)

against

happy(Person)

We call this matching process uni�cation. What happens here is that the logical

variable Person gets bound to the atom jean. You could paraphrase \bound"

as \is temporarily identi�ed with". See �gure 3.2 for what happens in more

detail.

In this case the match produces a substitution, Person=jean, and two

subgoals replace the current goal. The substitution of Person by jean is

known as a uni�er and often written Person/jean. The process of replacing

a single goal by one or more subgoals |with whatever substitutions are

applicable| is part of the resolution process.
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To solve our problem, Prolog must set up two subgoals. But we must make

sure that, since Person is a logical variable, that everywhere in the rule that

Person occurs we will replace Person by jean.

We now have something equivalent to:

happy(jean):-

woman(jean),

wealthy(jean).

Resolution Table

happy(Person):- woman(Person), wealthy(Person)

happy(jean).

woman(jean), wealthy(jean).

(new subgoals)

Person=jean

Figure 3.2: A Successful Match

So the two subgoals are:

woman(jean)

wealthy(jean)

Here we come to our next problem. In which order should Prolog try to solve

these subgoals? Of course, in predicate logic, there should be no need to worry

about the order. It makes no di�erence |therefore we should not need to know

how Prolog does the searching.

Prolog is not quite �rst order logic yet. So we will eventually need to know

what goes on. The answer is that the standard way to choose the subgoal to

work on �rst is again based on the way we read (in the west)! We try to solve

the subgoal woman(jean) and then the subgoal wealthy(jean).

There is only one possible match for woman(jean): our subgoal is successful.

However, we are not �nished until we can �nd out if wealthy(jean).

There is a possible match but we cannot unify

wealthy(fred)

with

wealthy(jean)
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So Prolog cannot solve our top level goal |and reports this back to us. Things
would be much more complicated if there were any other possible matches. Now
to look at the (non-standard) AND/OR tree representation of the search space.
Here it is:

happy(Person)

woman(Person) wealthy(Person)

woman(jean) wealthy(fred) fman(fred)g

�
�
�

�
�
��

P
P
P
P
P
PP

Note that it becomes very clear that knowing that \fred is a man"

is not going to be of any use. That is why man(fred) is in braces.

From now, we will exclude such from our `search space'.

We can now see that the way Prolog searches the tree for AND choices is to
zig zag from left to right across the page! This is a bit like how it processes
the OR choices except that Prolog must satisfy all the AND choices at a node
before going on.

Zig zagging from left to right is not the whole story for this goal. Once

we reach wealthy(Person) with Person/jean and it fails we move back

(backtracking) to the goal woman(Person) and break the binding for

Person (because this is where we made the binding Person/jean). We

now start going from left to right again (if you like, forwardtracking).

3.3 Conjunctions and Disjunctions

We are now ready for the whole thing: let us go back to the set of rules as

found in section 2.12 and some basic facts.

Program Database

woman(jean).

woman(jane).

woman(joan).

woman(pat).

wise(jean).

wealthy(jane).

wealthy(jim).

healthy(jim).

healthy(jane).

healthy(jean).

happy(P):-

healthy(P),

woman(P).

happy(P):-

wealthy(P),

woman(P).

happy(P):-

wise(P),

woman(P).

and consider the solution of the goal
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happy(jean)

Here is the standard AND/OR tree representation of the search space again:

happy(P)

healthy(P) woman(P) wealthy(P) woman(P) wise(P) woman(P)

(((((((((((((
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and the goal succeeds.

Note that

1. Both the subgoal healthy(jean) and woman(jean) have to

succeed for the whole goal to succeed.

2. We then return to the top level.

Now consider the top level goal of

happy(joan)

The resolution process generates the subgoals healthy(joan) andwoman(joan)

from the �rst clause for happy/1. In all, Prolog tries three times to match

healthy(joan) as there are three clauses for healthy/1. After failing healthy(joan),

however, Prolog does not try to solve woman(joan) |there is no point in

doing so.

There is another way of trying to prove happy(joan) using the second clause of

happy/1. The resolution process again generates subgoals |wealthy(joan)

and woman(joan)| and wealthy(joan) fails. A third attempt is made but

this founders as wise(joan) fails. Now back to top level to report the complete

failure to satisfy the goal.

Now consider

happy(P)

as the top level goal.

happy(P)

healthy(P) woman(P) wealthy(P) woman(P) wise(P) woman(P)

(((((((((((((
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Much more complicated. First, healthy(P) succeeds binding P to jim (P/jim)

but when the conjunctive goal woman(jim) is attempted it fails. Prolog now

backtracks
3. It reverses along the path through the tree until it can �nd a place

where there was an alternative solution.

3See chapter 5 for more details.
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Of course, Prolog remembers to unbind any variables exactly at the places in

the tree where they were bound.

In the example we are using we again try to resolve the goal healthy(P) |

succeeding with P bound to jane. Now the conjunction can be satis�ed as

we have woman(jane). Return to top level with P bound to jane to report

success. What follows is what appears on the screen:

?- happy(P).

P=jane

yes

Prolog o�ers the facility to redo a goal |whenever the top level goal

has succeeded and there is a variable binding. Just type \;" followed

by RETURN |\;" can be read as or. If possible, Prolog �nds another

solution. If this is repeated until there are no more solutions then we get

the sequence of solutions:

jane

jean

jane

jean

It is worth trying to verify this.

Basically, trying to follow the behaviour of Prolog around the text of the

program can be very messy. Seeing how Prolog might execute the search based

on moving around the AND/OR tree is much more coherent but it requires some

e�ort before getting the bene�t.

3.4 What You Should Be Able To Do

After �nishing the exercises at the end of the chapter:

You should be able to load in a Prolog program.

You should be able to issue a legal Prolog query.

You should be able to generate successive solutions to a goal

(provided that any exist).

You should be able to apply a depth-�rst search strategy to

simulate the Prolog execution of a goal in relation to a simple

program.

You should have an idea about the way in which Prolog uses

matching.

You should be aware of the e�ects of backtracking when a goal

fails.

Exercise 3.1 Here is the �rst opportunity to try to follow the execution of some

Prolog query. For each of these problems, the aim is to follow the execution for

a number of di�erent queries. Each query gives rise to a sequence of subgoals

which either fail outright or succeed |possibly binding some variables.

The answers should use a standard format which is illustrated.
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Program Database

a(X):-

b(X,Y),

c(Y).

a(X):-

c(X).

b(1,2).

b(2,2).

b(3,3).

b(3,4).

c(2).

c(5).

Use the following format for your answer:

Subgoals Comment Result

a(5) uses 1st clause new subgoals

b(5,Y) tries 1st clause fails

b(5,Y) tries 2nd clause fails

b(5,Y) tries 3rd clause fails

a(5) using 1st clause fails

a(5) uses 2nd clause new subgoal

c(5) tries 1st clause fails

c(5) tries 2nd clause succeeds

a(5) using 2nd clause succeeds

Note that, if a variable is bound, then indicate with a phrase such as with

Y=2.

Repeat for the following goals:

1. a(1)

2. a(2)

3. a(3)

4. a(4)

Exercise 3.2 As in the previous exercise, for the new program:

Program Database

a(X,Y):-

b(X,Y).

a(X,Y):-

c(X,Z),

a(Z,Y).

b(1,2).

b(2,3).

c(1,2).

c(1,4).

c(2,4).

c(3,4).

1. a(1,X)

2. a(2,X)

3. a(3,X)
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4. a(X,4)

5. a(1,3)



Chapter 4

Uni�cation, Recursion and

Lists

We describe the matching process known as Uni�cation that

has already been met.

We review the basic idea of recursion as a programming tech-

nique.

We apply these ideas to list processing.

4.1 Uni�cation

Uni�cation is the name given to the way Prolog does its matching. We will

not do more than sketch the basic ideas here. Basically, an attempt can be

made to unify any pair of valid Prolog entities or terms.

Uni�cation is more than simple matching. A naive view of the matching process

might be represented by the question \can the target object be made to �t one

of the source objects". The implicit assumption is that the source is not a�ected

|only the target is coerced to make it look like some source object.

Uni�cation implies mutual coercion. There is an attempt to alter both the

target and the current source object to make them look the same.

Consider how we might match the term book(waverley,X) against some clause

for which book(Y, scott) is the head. The naive approach might be that

X/scott is the correct substitution |or even that the matching cannot be done.

Uni�cation provides the substitutions X/scott and Y/waverley. With these

substitutions both terms look like book(waverley,scott).

Uni�cation is a two way matching process

The substitution X/scott and Y/waverley is known as a uni�er |to be

precise, the most general uni�er. If we unify X with Y then one uni�er

might be the substitution X/1 and Y/1 but this is not the most general

uni�er.

Consider the in�x predicate =/2.

Certain `built-in' Prolog predicates are provided that can be written in

a special in�x or pre�x form (there are no post�x ones provided |that is

not because they could not be!) For example, 1=2 is written as =(1,2)

in standard Prolog form.

26
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Prolog tries to unify both the arguments of this predicate. Here are some

possible uni�cations:

X=fred succeeds

jane=fred fails because you can't match two distinct atoms

Y=fred, X=Y succeeds with X=fred, Y=fred

X=happy(jim) succeeds

X=Y succeeds |later, if X gets bound then so will Y and vice versa

It is worth making a distinction here between the textual name of a logical

variable and its run-time name. Consider a query likes(jim,X). Suppose

there is one clause: likes(X,fred) |this has the reading that \everyone

likes fred" and mentions a variable with the textual name of X. The query

also mentions a speci�c variable by the textual name of X. By the scope

rule for variables, we know that these two variables, although textually

the same, are really di�erent. So now consider whether the head of the

clause likes(X,fred) uni�es with the current goal likes(jim,X).

We might then reason like this: the task is to decide whether or not

likes(jim,X)=likes(X,fred) succeeds. If this is so then, matching the

�rst arguments, we get X=jim. Then we try to match the second ar-

guments. Now can X=fred? If X=jim then the answer is no. How is

this? The answer we expect (logically) is that \jim likes fred". We really

ought to distinguish every variable mentioned from each other according

to the scope rules. This means that the query is better thought of as, say,

likes(jim,X1 and the clause is then likes(X2,fred). In the literature the

process of making sure that variables with the same textual name but in

di�erent scopes are really di�erent is known as standardisation apart!

Exercise 4.1 Here are some problems for which uni�cation sometimes succeeds

and sometimes fails. Decide which is the case and, if the uni�cation succeeds,

write down the substitutions made.

1. 2+1=3

2. f(X,a)=f(a,X)

3. fred=fred

4. likes(jane,X)=likes(X,jim)

5. f(X,Y)=f(P,P)

4.2 Recursion

Recursion is a technique that must be learned as programming in Prolog de-

pends heavily upon it.

We have already met a recursive de�nition in section 2.2. Here are some more:

One of my ancestors is one of my parents or one of their ancestors.

A string of characters is a single character or a single character

followed by a string of characters.

A paragraph is a sentence or a sentence appended to a paragraph.

To decouple a train, uncouple the �rst carriage and then decouple

the rest of the train.



28 Prolog Programming

An example recursive program:

talks about(A,B):-

knows(A,B).

talks about(P,R):-

knows(P,Q),

talks about(Q,R).

Roughly translated:

You talk about someone either if you know them or you know some-

one who talks about them

If you look at the AND/OR tree of the search space you can see that

� There is a subtree which is the same shape as the whole tree reecting

the single recursive call to talks about/2.

� The solution of a given problem depends on being able to stop recursing

at some point. Because the leftmost path down the tree is not in�nite in

length it is reasonable to hope for a solution.

talks about(X,Y)

knows(X,Y) knows(X,Z) talks about(Z,Y)

knows(Z,Y) knows(Z,Z1) talks about(Z1,Y)

�
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�
�
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P
P
P
P
P
PP
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�
��

PP
P
P
P
PP

In searching the tree with a number of facts along with the clauses for talks about/1:

Program Database

talks about(A,B):-

knows(A,B).

talks about(P,R):-

knows(P,Q),

talks about(Q,R).

knows(bill,jane).

knows(jane,pat).

knows(jane,fred).

knows(fred,bill).

using the goal

talks about(X,Y)

If we ask for repeated solutions to this goal, we get, in the order shown:
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X= bill Y= jane

X= jane Y= pat

X= jane Y= fred

X= fred Y= bill

X= bill Y= pat

and so on

The search strategy implies that Prolog keep on trying to satisfy the subgoal

knows(X,Y) until there are no more solutions to this. Prolog then �nds that,

in the second clause for talks about/2, it can satisfy the talks about(X,Y)

goal by �rst �nding a third party who X knows. It satis�es knows(X,Z)

with X=bill, Z=jane and then recurses looking for a solution to the goal

talks about(jane,Z). It �nds the solution by matching against the second

knows/2 clause.

The above AND/OR tree was formed by taking the top level goal and, for each

clause with the same predicate name and arity, creating an OR choice leading to

subgoals constructed from the bodies of the matched clauses. For each subgoal

in a conjunction of subgoals we create an AND choice.

Note that we have picked up certain relationships holding between the (logical)

variables but we have had to do some renaming to distinguish between attempts

to solve subgoals of the form talks about(A,B) recursively.

4.3 Lists

Lists, for now, can be regarded as special Prolog structures that can be used

to represent an ordered sequence of Prolog terms. For example, here are some

legal lists:

[ice cream, co�ee, chocolate] a list with three elements (all atoms)

[a, b, c, c, d, e] a list with six elements (all atoms)

[ ] a list with no elements in it (it is an atom)

[dog(�do), cat(rufus), gold�sh(jimmy)] a list with three elements (all Prolog terms)

[happy(fred),[ice cream,chocolate],[1,[2],3]]a list with three elements!

The last example is a little diÆcult to decipher: the �rst element is happy(fred),

the second is [ice cream,chocolate], a list, and the third is [1,[2],3], another

list.

Note that the \," used in the construction of a list is just an argument separator

as in the term foo(a,b). Also note that, because order is preserved, the list

[a,b,c] is not the same as [a,c,b].

How to construct/deconstruct a list

Given an arbitrary list, we need ways of adding to it and taking it apart1.

The basic approach provides a simple way of splitting a list into two bits: the

�rst element (if there is one!) and the rest of the list. The corresponding way of

joining two bits to form a list requires taking an element and a list and inserting

the element at the front of the list.
1We also need ways of accessing an arbitrary element, but this can wait



30 Prolog Programming

List Destruction: �rst, we show how to remove the �rst element from a list.

[XjY] = [f,r,e,d]

will result in

X=f

|the �rst element of the list is known as the HEAD of the list.

Y=[r,e,d]

|the list formed by deleting the head is the TAIL of the list. This list has

been reduced in length and can be further destructed or constructed.

List Construction: the construction of a list is the reverse: take a variable

bound to any old list |say, X=[r, e, d] and add the element, say, b at the

front with:

Result Wanted = [bjX]

Bigger Chunks: it is possible to add (or take away) bigger chunks onto

(from) the front of a list than one element at a time. The list notation allows

for this. Suppose you want to stick the elements a, b and c onto the front of

the list X to make a new list Y. then this can be done with Y=[a,b,cjX].

Conversely, suppose you want to take three elements o� the front of a list X in

such a way that the remaining list, Y, is available for use. This can be done

with X=[A,B,CjY]

A limitation of this approach is that there is no direct way of evading

specifying how many elements to attach/rip o�. Using the list notation,

there is no way of saying \rip o� N elements of this list X and call the

remainder Y". This has to be done by writing a program and since this is

very straightforward, this limitation is not a severe one |but, see later.

The Empty List

Simply written

[ ]

This list ([ ]) has no elements in it: it cannot therefore be destructed. An

attempt to do this will fail.

The empty list ([ ]) is an atom.
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Some Possible Matches

We now illustrate how two lists unify and in what circumstances two lists fail

to unify.

1. [b,a,d]=[d,a,b] fails |as the order matters

2. [X]=[b,a,d] fails |the two lists are of di�erent lengths

3. [XjY]=[he,is,a,cat] succeeds with

X=he, Y=[is,a,cat]

4. [X,YjZ]=[a,b,c,d] succeeds with

X=a, Y=b, Z=[c,d]

5. [XjY]=[] fails |the empty list

can't be deconstructed

6. [XjY]=[[a,[b,c]],d] succeeds with

X=[a,[b,c]], Y=[d]

7. [XjY]=[a] succeeds with X=a], Y=[]

Exercise 4.2 Here are some more problems for which uni�cation sometimes

succeeds and sometimes fails. Decide which is the case and, if the uni�cation

succeeds, write down the substitutions made.

1. [a,bjX]=[A,B,c]

2. [a,b]=[b,a]

3. [aj[b,c]]=[a,b,c]

4. [a,[b,c]]=[a,b,c]

5. [a,X]=[X,b]

6. [aj[]]=[X]

7. [a,b,X,c]=[A,B,Y]

8. [HjT]=[[a,b],[c,d]]

9. [[X],Y]=[a,b]

A Recursive Program Using Lists

We make use of a built-in predicate called write/1 to write out all the elements
of a list in order. Note that the argument of write/1 must be a legal Prolog
term.

write/1 is a side-e�ecting predicate. It captures the logical relation of

always being true but it also produces output which has no part to play

in the logical interpretation. It is therefore hard to produce a declarative

reading for this predicate despite its utility from the procedural point of

view. There are a fair number of other predicates which su�er from this

problem including consult/1 and reconsult/1.

To write out a list of terms, write out the �rst element and then write out the

remainder (the tail).
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print a list([]).

print a list([HjT]):-

write(H),

print a list(T).

Note that this can be improved by printing a space between elements of the list.

This requires you to add the subgoal write(' ') into the body of the second

clause and before the recursive call to print a list/1.

This will write the elements out on a single line. If you wanted to write each

element on a di�erent line then you would need the built-in predicate nl/0.

The second clause of print a list/1 roughly captures the meaning above.

Then what does the �rst clause achieve? Without the �rst clause, print a list/1

would produce the required output and then fail because it would have

to handle the empty list ([]) which cannot be deconstructed. Although

print a list/1 is a side-e�ecting predicate, the natural (procedural) read-

ing is that it succeeds once it has printed the list of terms. The �rst clause

handles the case of the empty list so that the predicate will always succeed

if it is given a list of terms to print. Quite reasonably, it will fail if given

a non-list.

4.4 What You Should Be Able To Do

After �nishing the exercises at the end of the chapter:

You should be able to determine whether or not two Prolog

terms unify.

You should be able to identify programs that are recursive.

You should be able to build and take apart list structures.

You should be able to write simple list processing programs

using recursion.

Exercise 4.3 For each of these problems, the aim is to de�ne a predicate using

one or two clauses. Each of the problems is a list processing problem.

1. Write a predicate print every second/1 to print every other element in

a list, beginning at the second element |i.e. the 2nd, 4th, 6th elements

etc. It should always succeed provided it is given a list as its argument.

2. Write a predicate deconsonant/1 to print any element of a list that isn't

a consonant (i.e. we want to print out the vowels fa,e,i,o,ug). It should

always succeed provided it is given a list as its argument (we assume that

the input list only contains vowels and consonants).

3. Write a predicate head/2 which takes a list as its �rst argument and

returns the head of the list as its second argument. It should fail if there

is no �rst element.

4. Write a predicate tail/2 which takes a list as its �rst argument and re-

turns the tail of the list as its second argument. It should fail if there is

no �rst element.
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5. Write a predicate vowels/2 which takes a list as its �rst argument and

returns a list (as its second argument) which consists of every element of

the input list which is a vowel (we assume that the input list only contains

vowels and consonants).

6. Write a predicate �nd every second/2 which takes a list as its �rst

argument and returns a list (as its second argument) which consists of

every other element of the input list starting at the second element.

You should note that we have turned the side-e�ecting predicates of the

�rst two problems above into predicates which do not make use of side-

e�ects and can now be given a declarative reading.



Chapter 5

The Box Model of Execution

We describe the Byrd box model of Prolog execution.

We illustrate backtracking in relation to the Byrd box model of

execution and then in relation to the AND/OR execution and

proof trees.

5.1 The Box Model

As this model is a model of Prolog execution, we can think in terms of proce-

dures rather than predicates.

We represent each call to a procedure by a box. Note that, as a procedure may

be executed thousands of times in a program, we need to distinguish between

all these di�erent invocations. In the diagram in �gure 5.1 a box represents

the invocation of a single procedure and which is therefore associated with a

speci�c goal. The top level query is parent(X,Y), X=f.

We regard each box as having four ports: they are named the Call, Exit, Fail

and Redo ports. The labelled arrows indicate the control ow in and out of a

box via the ports. The Call port for an invocation of a procedure represents

parent(a,b).

parent(c,d).
X = f.

Call- Call-Exit- Exit-

Fail� Fail�Redo� Redo�

Figure 5.1: The Byrd Box Model Illustrated

the �rst time the solution of the associated goal is sought. Control then `ows'

into the box through the Call port.

We then seek a clause with a head that uni�es with the goal. Then, we seek

solutions to all the subgoals in the body of the successful clause.

If the uni�cation fails for all clauses (or there are no clauses at all) then control

would pass out of the Fail port. There are also other ways to reach the Fail

port.

34
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Control reaches the Exit port if the procedure succeeds. This can only occur if

the initial goal has been uni�ed with the head of one of the procedure's clauses

and all of its subgoals have been satis�ed.

The Redo port can only be reached if the procedure call has been successful

and some subsequent goal has failed. This is when Prolog is backtracking to

�nd some alternative way of solving some top-level goal.

Basically, backtracking is the way Prolog attempts to �nd another solution for

each procedure that has contributed to the execution up to the point where

some procedure fails. This is done back from the failing procedure to the �rst

procedure that can contribute an alternative solution |hence, backtracking.

When backtracking is taking place, control passes through the Redo port.
We then, with the clause which was used when the procedure was previously
successful, backtrack further back through the subgoals that were previously
satis�ed. We can reach the Exit port again if either one of these subgoals
succeeds a di�erent way |and this leads to all the subgoals in the body of the
clause succeeding| or, failing that, another clause can be used successfully.
Otherwise, we reach the Fail port. Note that, for this to work out, the system
has to remember the clause last used for each successful predicate.

The system can throw this information away only if it can convince itself

that we will never revisit a procedure that succeeds. We can always force

this to happen by using the cut (!/0) (which is explained in chapter 9)

|but this is a last resort as most implementations of Prolog can do some

sensible storage management. An understanding of this mechanism can

help you avoid the use of cut.

We reach the Fail port

� When we cannot �nd any clauses such that their heads match with the

goal

� If, on the original invocation, we can �nd no solution for the procedure

� On backtracking, we enter the box via the Redo port but no further

solution can be found

5.2 The Flow of Control

We illustrate the above with a textual representation of the simple program
found in �gure 5.1 using the Byrd box model. The ow of control is found in
�gure 5.2. The indentation is used here only to suggest an intermediate stage
in the mapping from the visual representation of the boxes into their textual
sequence.

Many Prolog trace packages that use this box model do no indenting

at all and those that use indentation use it to represent the `depth' of

processing. This depth is equivalent to the number of arcs needed to go

from the root of the AND/OR execution tree to the current node.

Below, we have a snapshot of how the execution takes place |\taken" at the
moment when Prolog backtracks to �nd another solution to the goal par-
ent(X,Y). We show the backtracking for the same program using an AND/OR
execution tree.
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Call: parent(X,Y)

Exit: parent(a,b)

Call: a=f

Fail: a=f

Now backtracking

Redo: parent(X,Y)

Exit: parent(c,d)

Call: c=f

Fail: c=f

Now backtracking

Redo: parent(X,Y)

Fail: parent(X,Y)

Figure 5.2: Illustrating Simple Flow of Control

parent(X,Y), X=f

parent(X,Y) X =f

parent(a,b) parent(c,d)
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Redo

Call Exit Call Fail

5.3 An Example using the Byrd Box Model

We use a simple program with no obvious natural interpretation to contrast

the Byrd box model with the AND/OR execution tree. See �gure 5.3 for the

program and for a graphical representation of the program's structure using

the Byrd box model. Figure 5.4 shows the same program's structure as an

AND/OR tree.

We consider how the goal a(X,Y) is solved.
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Program Database

a(X,Y):-

b(X,Y),

c(Y).

b(X,Y):-

d(X,Y),

e(Y).

b(X,Y):-

f(X).

c(4).

d(1,3).

d(2,4).

e(3).

f(4).

a(X,Y)

c(4)

c(Y)b(X,Y)

d(1,3)

d(2,4)

d(X,Y)

e(3)

e(Y)

f(4)

f(X)

Figure 5.3: Program Example with Byrd Box Representation

Call: a(X,Y)

Call: b(X,Y)

Call: d(X,Y)

Exit: d(1,3)

Call: e(3)

Exit: e(3)

Exit: b(1,3)

Call: c(3)

Fail: c(3)

Now backtracking

Redo: b(X,Y)

Redo: e(3)

Fail: e(3)

Redo: d(X,Y)

Exit: d(2,4)

Call: e(4)

Fail: e(4)

Now backtracking

Call: f(X)

Exit: f(4)

Exit: b(4,Y)

Call: c(Y)

Exit: c(4)

Exit: a(4,4)

5.4 An Example using an AND/OR Proof Tree

We now use the same example program to show how the proof tree grows. We

choose a proof tree because we can delete any parts of the tree which do not

contribute to the �nal solution (which is not the case for the execution tree).

The search space as an AND/OR tree is shown in �gure 5.4. We now develop

the AND/OR proof tree for the same goal. We show ten stages in order in

�gure 5.5. The order of the stages is indicated by the number marked in the

top left hand corner.

The various variable bindings |both those made and unmade| have not been

represented on this diagram.
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a(X,Y)
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d(X,Y) e(Y) f(X)

Figure 5.4: The AND/OR Tree for the Goal a(X,Y)

5.5 What You Should Be Able To Do

After �nishing the exercises at the end of the chapter:

You should be able to describe the execution of simple programs

in terms of the Byrd box model.

You should be able to follow backtracking programs in terms

of the Byrd box model.

You should also be construct the AND/OR execution and proof

trees for programs that backtrack.

Exercise 5.1 We use the same two programs as found at the end of chapter 3.

For each of these problems, the aim is to predict the execution �rst using the

development of the AND/OR proof tree and then using the Byrd box model for

each of the di�erent queries.
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Note that  - indicates the start of backtracking.

Figure 5.5: The Development of the AND/OR Proof Tree

1. Predict the execution behaviour |developing the AND/OR proof tree and

then using the Byrd box model| for the following goals:

(a) a(1)

(b) a(2)

(c) a(3)

(d) a(4)

Program Database

a(X):-

b(X,Y),

c(Y).

a(X):-

c(X).

b(1,2).

b(2,2).

b(3,3).

b(3,4).

c(2).

c(5).

2. As in the previous exercise, for the new program:
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(a) a(1,X)

(b) a(2,X)

(c) a(3,X)

(d) a(X,4)

(e) a(1,3)

Program Database

a(X,Y):-

b(X,Y).

a(X,Y):-

c(X,Z),

a(Z,Y).

b(1,2).

b(2,3).

c(1,2).

c(1,4).

c(2,4).

c(3,4).



Interlude: Practical Matters

We describe some matters relating to the practical use of Pro-

log.

We show how to invoke Prolog and also how to exit.

We describe how to load programs as �les

We show how to develop a program and avoid some common

errors.

We outline the Input/Output features provided by Prolog.

We then illustrate the use of the debugger and provide some

information about the debugging process.

Exiting and Leaving Prolog

The Prolog system you will be using is known as SICStus Prolog and you

are using it within the UNIX environment (DYNIX(R) V3.0.17.9) provided on

a Sequent computer. All that follows is intended for this context only.

Prolog is entered with the command:

unix prompt: prolog1

The most reliable way to exit Prolog is with the command:

j ?- halt.

Note that the prompt is really j ?- for this Prolog. For simplicity, we have

assumed this is ?- in the main body of the notes.

In passing, there is a small problem associated with pressing the Return

key before typing the `.'. This is what happens:

j ?- halt
j:

Prolog is still waiting for the `.'. All you have to do is type in the `.' and

then press Return.

This is guaranteed to work but the other ways can fail depending on circum-

stances. Here are two other ways of exiting Prolog from the top level.

1This is supposed to produce a banner a variant on

SICStus 0.6 #11: Tue Jul 3 15:40:37 BST 1990

If the system produces some other system, contact the course organiser.

41
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j ?- ^D

j ?- end of �le.

Note that ^D is the keyboard character obtained by holding down the Control

key, pressing the Shift key and then the d key. This character is the default

character to signal that the end of a �le has been encountered. It can be

changed.

The reason why these last two ways are not general depends on one of

the sophisticated features of the Prolog system: viz., that the command

break initiates a new incarnation of the Prolog interpreter. Repeated

breaks will generate further levels. The command halt exits Prolog

from any level while the above two commands only exit one level at a time

and only exit Prolog if at top level.

Loading Files

A program should normally be considered as a sequence of �les. Consequently,

it is usually necessary for Prolog to read in one or more �les at the beginning

of a session.

The standard command is

j ?- consult(�lename).

where \�lename" is some legal unix �lename. Because some legal unix �le-

names contain characters that Prolog may �nd syntactically illegal it is often

necessary to `protect' the �lename using single quotes. Here are some arbitrary

examples:

j ?- consult(foo).

j ?- consult('/u/ai/s2/ai2/aifoo/program').

j ?- consult('foo.pl').

It is also possible to consult a set of �les as in:

j ?- consult([foo,baz,'foobaz.pl']).

There is a shorthand for the command consult which can be confusing.

The abbreviation overloads the symbols associated with list notation. The

command consult(foo) can be abbreviated to [foo] and the command

consult([foo,baz]) can be rewritten [foo,baz]. There is quite a subtle

syntax error that can cause diÆculties when the �le you want to read in

needs to be protected with single quotes. Consider:

j ?- ['foo.pl].
j:

Prolog is still waiting for the closing single quote. All you have to do

is type in the closing single quote and then the ]. and press Return.

Prolog will produce an error message because you have asked to load a

very strangely named �le.

Another error is to use double quotes instead of single quotes.
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j ?- ["foo.pl"].

fERROR: absolute �le name(102, 45) - invalid �le specg

This weird error will not be explained here |just note that double quotes

have a special interpretation in Prolog which results in the above com-

mand being interpreted as the desire to consult three �les: 102, 111 and

111. Can you guess the meaning of double quotes?

Each syntactically correct clause that is found on reading the �le will be loaded.

On encountering a syntactically incorrect clause then an error message will

be printed. We now illustrate some common syntax errors together with the

error messages generated. You will notice that the error messages can be quite

obscure.

foo (X). % space between functor and left bracket

* bracket follows expression **

foo

* here **

( X ) .

fooX). % missing left bracket

* operator expected after expression **

fooX

* here **

foo(X. % missing right bracket

* , or ) expected in arguments **

foo ( X

* here **

foo(X Y). % missing argument separator

* variable follows expression **

foo ( X

* here **

foo([a,b). % missing right square bracket

* , j or ] expected in list **

foo ( [ a , b

* here **
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foo(a) % missing `.'

foo(b).

* atom follows expression **

foo ( a )

* here **

foo ( b ) .

foo(a), % used `,' for `.'

foo(b).

fERROR: (,)/2 - attempt to rede�ne built in predicateg

This latter error message is caused because the input is equivalent the the logical

statement foo(a) ^ foo(b) which is not in Horn clause form and therefore not

legal Prolog. Here is another related error:

foo;- baz. % ; instead of :

fERROR: (;)/2 - attempt to rede�ne built in predicateg

We suggest that, if you have made a syntax error and pressed Return (so

you cannot delete the error) then type in `.' followed by Return. This will

probably generate a syntax error and you can try again. Of course, there are

situations for which this will not work: you cannot use this method to get out

of the problem with:

j ?- ['foo.pl].

j:

or the equivalent problem with double quotes.

Now SICStus does one nice thing: consult(foo) will �rst try to �nd a �le \foo.pl". If

it does not �nd one, it will look for \foo".

Interactive Program Development

We want to be able to develop a program interactively. This suggests that

we will edit our program using one of the editors provided (such as vi, ex,

gnu emacs or microemacs), enter Prolog, load our program, �nd a bug, exit

Prolog and repeat.

This is clumsy, so we describe two methods that should aid interactive pro-

gram development. In both cases, however, we must be aware of a problem in

connection with consult/1.

A Problem with consult/1

Consider the query:
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j ?- consult([foo1,foo2]).

where both foo1 and foo2 contain clauses for, say, baz/1. We get the following:

The procedure baz/2 is being rede�ned.

Old �le: /u/user5/ai/sta�/paulb/foo1.pl

New �le:/u/user5/ai/sta�/paulb/foo2.pl

Do you really want to rede�ne it? (y, n, p, or ?) ?

Therefore, as far as is possible, avoid splitting your predicate de�nitions between

�les.

The command reconsult(foo) is equivalent to consult(foo). The com-

mand reconsult(foo) can be rewritten as [-foo] and the command re-

consult([foo1,foo2]) can be rewritten as [-foo1,-foo2].

Some Prolog systems distinguish these commands. For these systems,

the command consult([foo1,foo2]) has the consequence of loading the

syntactically correct clauses found both in foo1 and in foo2|if they share

the de�nition of baz/2 then both parts of the de�nition will be loaded.

Finally, if you really have to distribute your predicate de�nitions between

�les with a command like consult([foo1,foo2]) then there must be a

declaration that the predicate is a multi�le predicate before SICStus en-

counters the �rst clause. So, if baz/2 is shared between �les, we need to

place

:- multi�le baz/2.

before the �rst clause for baz/2.

Even though mostly you won't need to do this, there are occasions when

it does make sense to distribute a predicate across several �les.

Two Variations on Program Development

The �rst variation depends on whether or not you are using a unix shell that

allows for job suspension. This can be checked by getting into Prolog and

issuing the character ^Z which is the usual default for suspending a job. You

then �nd yourself at the unix level where you can edit your �le in the normal

way. When you have �nished editing, get back into Prolog with the command:

unix prompt: fg

which stands for bringing a suspended job into the foreground. Now you are

back in Prolog and you have to reload your program using consult/12.

The second, more satisfactory variation depends on de�ning a predicate which

can be used to edit a �le without explicitly leaving Prolog. This can be done

because there is a built-in predicate shell/1 which takes as its argument a unix

command as a list of the ASCII codes associated with the characters forming

the command. Here is a simple program that, if loaded, can be used to edit a

�le and automatically reconsult it after the edit is �nished.

2In SICStus anyway |if you are using a Prolog system that distinguishes between con-

sult/1 and reconsult/1 then you must use reconsult/1 or you can get into trouble.
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Program Database

edit(File):-

editor(Editor),

name(Editor,EditorList),

name(File, FileList),

append(EditorList,[32jFileList],CommandList),
name(Command,CommandList),

unix(shell(Command)),

reconsult(File).

editor(emacs).

append([],L,L).

append([HjL1],L2,[HjL3]):-
append(L1,L2,L3).

Now you have to remember to load this each time you enter Prolog. One way

this can be done is by having a �le called prolog.ini in your home directory.

This �le will then be automatically consulted each time you enter Prolog. Put

the above program in such a �le and try it out. Note also that you can change

the editor of your choice by rede�ning editor/1. The predicate append/3 is

very useful: it `glues' two lists together |e.g. the goal append([a,b],[c,d],X)

results in X=[a,b,c,d]. It is so useful that you will probably want it around

all the time.

Avoiding Various Kinds of Trouble

There is a problem connected with a missing predicate de�nition. In SICStus

Prolog, the default behaviour is to place you into the tracer. This is roughly

what happens:

fWarning: The predicate foo/1 is unde�nedg

1 1 Fail: foo( 22) ?

Sometimes, however, we simply want to assume that if a call is made to a missing

predicate then this is equivalent to not being able to solve the goal and the call therefore

fails. This is connected with the closed world assumption which is outlined in chapter 7.

One way in which this can be controlled is to declare that the predicate, say foo/1 is

dynamic with the declaration:

?- dynamic foo/1.

This has the e�ect that, if there are no clauses for a dynamic predicate then the program

will quietly fail.

A `missing' predicate can be caused in a number of ways which will now be

listed.

� A �le that should have been loaded has not been loaded

� A subgoal has been misspelled |e.g. a call to f00 instead of to foo.

� The name of a predicate has been misspelled in all the clauses of the

de�nition. |e.g. the call is to foo but every de�nition is for foo0.

� A subgoal has the wrong number of arguments |e.g. there is a call

foo(1) when the de�nition for foo has two arguments.
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� The de�nition for a predicate consistently has the wrong number of argu-

ments.

� Finally, you just may have really forgotten to de�ne some predicate.

One way of dealing with all of these |even if it is hard to locate the cause| is

to set a system ag to regard every call to an unde�ned predicate as some sort

of error and to invoke the tracer. This is exactly what SICStus does. If you are

using some other Prolog system that does not have this default behaviour, it

may allow for you to use the following (perhapse even in your prolog.ini �le):

?- unknown(X,trace).

The call unknown(X,trace) will change the behaviour from whatever the

current setting is to `trace' (the only other behaviour is `fail'). To �nd the

current setting without changing it you can use the query unknown(X,X)

(SICSTUS can be reset to quietly fail with the command unknown(X,fail)).

Another problem can be caused by misspelling variables. For example, the

de�nition:

mammal(Animal):-

dog(Aminal).

probably features a misspelled variable. However, SICStus version 0.6 does

not report such a de�nition. Some other Prolog systems, such as Edinburgh

Prolog, provide something akin to:

Warning: singleton variable Animal in procedure mammal/1

Warning: singleton variable Aminal in procedure mammal/1

A singleton variable occurs in a clause if a variable is mentioned once and once

only. Such a variable can never contribute a binding to the �nal result of the

computation. Even though there are occasions when this does not matter, a

singleton variable is an indication that there might be a misspelling.

Consider the clause member(X,[XjY]). This has a legitimate singleton

variable, Y. If you need to mention a singleton variable, then you can use

the anonymous variable. This is a special symbol for a variable for which

you don't want to know any binding made. It is written as an underscore

( ). Consequently, the above clause becomes member(X,[Xj ]).

This is fair enough and there will be no warning given when the clause

is read in. It is, however, good practice to give meaningful names to

variables |as much for program maintenance as for any other reason.

The way round this can be achieved with a variable that begins with

an underscore ( ). For example, the above clause could be rewritten as

member(X,[Xj Tail]). The anonymous variable is also described in sec-

tion 10.2.
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Input/Output Facilities

We now mention, in passing, some of the I/O facilities built into Prolog. We

have already met a way of inputting multiple clauses via consult/1 (and re-

consult/1). We have already met predicates that produce output |write/1

and nl/0| in chapter 4. Much more information can be found in chapter 10.10.

For now, we will not show how to output to a �le |see chapter 10.10 for the

details. In passing, we mention that a single Prolog term can be read in using

read/1. Input using this predicate must be terminated by the standard `.'

followed by white space.

Here are some low level I/O predicates:

get0(X) uni�es X with next non blank printable character

(in ASCII code) from current input stream

get(X) uni�es X with next character (in ASCII) from

current input stream

put(X) puts a character on to the current output stream.

X must be bound to a legal ASCII code

Note that they do not have a declarative reading. They �t poorly into the

theoretical structure underlying Prolog |but other languages su�er from this

problem (e.g. ML).

The Debugging Issue

Once we have loaded our syntactically correct program and tried it out we may

realise that things aren't the way we want. We may come to realise that we did

not (informally) specify the problem correctly or that we must have coded the

speci�cation wrongly.

We may come to realise that we have an error in our code through executing

some query which produces an unexpected result. We regard such evidence

as a symptom description. The kinds of symptom description that may result

include:

� (apparent) non-termination

� unexpected Prolog error message(s)

� unexpected failure (or unexpected success)

� wrong binding of one of the variables in the original query

There is also the possibility of unexpected side-e�ects (or an unexpected

failure to produce a side-e�ect).

Di�erent strategies exist for pinning down the cause(s) of these symptoms. We

will not give a complete account here |just sketch in ways in which the tracer

can be used.

The idea of using the tracer is to unpack the program's response to the query

which produced a symptom description. This is done by examining the pro-

gram's behaviour in the hope that we can track down subcomponents which
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`misbehave'. Hence we search for a program misbehaviour description. Once

this has been found we then need to track the fault to an error in the code and

generate a program code error description. Finally, underlying the error in the

code may be a number of misunderstandings about the way Prolog executes

a program, the generality of the code written and so on. Tracking this down

would produce a misconception description.

The Tracer Outlined

The description of the tracer's features that follows is intentionally brief. A

more complete account can be found in appendix B. Note that the tracer uses

the Byrd box model.

Full tracing only applies to non-compiled (i.e. interpreted) code but some

limited tracing can be done for compiled code. The behaviour is similar to the

treatment of system predicates.

Activating the Tracer

First, we outline the facilities for altering the behaviour of the system with

regard to the tracer.

spy(predicate name) Mark any clause with the given predicate name as \spyable".

Does not work for built-in predicates.

debug If a spied predicate is encountered, switch on the tracer.

nodebug Remove all spypoints. The tracer will therefore not be invoked.

nospy(predicate name) Undo the e�ect of spy |i.e. remove the spy point.

debugging Shows which predicates are marked for spying plus some other

information.

trace Switches on the tracer.

notrace Switches the tracer o�. Does not remove spypoints.

Note that both spy/1 and nospy/1 can also take a list of predicates for their

argument. The predicates can also be speci�ed as, for example, foo/1. This al-

lows for the distinction between (distinct) de�nitions for two or more predicates

all with di�erent arities.

There is also the concept of leashing. The tracer provides for the possibility

of various decisions to be made by the user at each of the four ports. There is

also a facility for stopping interactions at the ports. This is done via leash/1.

This predicate can take one of �ve arguments: full, tight, half, loose and o�.

Argument Consequence

full Call, Exit, Redo and Fail interactive

tight Call, Redo and Fail interactive

half Call and Redo interactive

loose Call interactive

The default is full.
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The system is set up to default to full leashing: to change this, You can

set your system up using the prolog.ini �le by putting a line such as ?-

leash([call,exit]). in it.

Note that the ports of spy-points are always leashed (and cannot be un-

leashed).

Interacting with the Tracer

Now we outline the actions that the user can take at one of the interactive

ports. In all, there are about 22 di�erent actions that can be taken. We will

describe a useful subset of 6 commands.

creep This is the single stepping command. Use Return to creep. The tracer

will move on to the next port. If this is interactive then the user is queried

|otherwise, the tracer prints out the results for the port and moves on.

skip This moves from the Call or Redo ports to the Exit or Fail ports. If

one of the subgoals has a spypoint then the tracer will ignore it.

leap Go from the current port to the next port of a spied predicate.

retry Go from the current Fail or Exit port back to the Redo or Call port

of the current goal |i.e. replay the execution over again.

unify This provides for the user giving a solution to the goal from the terminal

rather than executing the goal. This is available at the Call port. This

is of use in running programs which are incomplete (providing a form of

\stub" for a predicate that has not yet been written). Enter a term that

should unify with the current goal.

(re)set subterm This provides the facility to examine a subterm of a complex

term. This provides a means for focussing on the part of the datastructure

which is of interest. Consider the display at the Call port.

1 1 Call:foo(a(1,baz),[q,w,e,r,t])?

By selecting the set subterm option with ^ 1 we would see

1 1 Call:̂ 1 a(1,baz)?

Then we can further select with ^ 2 :

1 1 Call:̂ 2 baz?

To go back to the parent of a term requires the reset subterm command

(^).

Debugging

We now sketch a simple strategy for using the tracer which copes with several

of the symptoms described above. First, we handle (apparent) non-termination.
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There may be several reasons why a program appears not to terminate.

These include factors outside of Prolog |e.g. the system is down, the

terminal screen is frozen and the keyboard is dead. Another factor might

be a `bug' in the Prolog system itself. We have four more possibilities:

some built-in predicate may not have terminated (e.g. you are trying

to satisfy a read/1 goal but not terminated input properly), you may

accidently be writing to a �le instead of to the terminal, the program

might just be extremely ineÆcient or, �nally, the program is never going

to terminate |real non-termination| but it is hard to be sure of this!

During the execution of the goal:

^C Raise an interrupt

t Return Switch on tracing

^C If no trace output, raise another interrupt

Return or . . . creep (or some other choice)

If the trace reveals a sequence of repeated, identical subgoals then this suggests

that the program will not terminate.

Now, we look at a top-down way of debugging a program for terminating pro-

grams. The idea is to examine a goal by looking at each of its subgoals in turn

until an error is detected. The subgoal containing the error is then explored in

the same way. The basic schema is to

trace,goal. Turn on the tracer and issue the goal

s skip over each subgoal

r If an incorrect result is detected, redo the last subgoal

Return creep

repeat . . . Repeat the process for the new set of subgoals

All we suggest is that you examine whether or not a goal succeeds (or fails)

when it should, whether or not it binds (or does not bind) those variables which

you expect, and whether the bindings are the ones you intended.

We illustrate with a simple program found in �gure 5.6. If the predicate

for yuppies/1 is taken to mean \a country is suitable for yuppies to live

in if it is near Austria and wealthy" then we might intend that the query

for yuppies(austria) should succeed |but it does not. We make sure that

leash(full) (the default), turn on the tracer with trace and then issue the goal

for yuppies(austria). Using the box model, we should get (in a simpler form

than that produced by most tracers):

Call: for yuppies(austria) ? creep

Call: near austria(austria) ? skip

Fail: near austria(austria) ? retry

Call: near austria(austria) ? creep

Call: country(austria) ? skip

Exit: country(austria) ? creep

Call: neighbouring(austria,austria) ? skip

Fail: neighbouring(austria,austria) ?

At this point we know that there is no clause for neighbouring(austria,austria)

and we can change the program.
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Program Database

for yuppies(X):-

near austria(X),

rich(X).

near austria(X):-

country(X),

neighbouring(X,austria).

country(austria).

country(switzerland).

country(england).

country(france).

country(west germany).

neighbouring(switzerland,austria).

neighbouring(west germany,austria).

neighbouring(leichtenstein,austria).

neighbouring(czechoslovakia,austria).

rich(X):-

average income(X,Y),

loadsamoney(Y).

average income(austria,10000).

average income(switzerland,20000).

average income(czechoslovakia,5000).

loadsamoney(X):-

X>8000.

Figure 5.6: Yuppies on the Move

Note that this is what the Byrd box model predicts, what SICSTUS does but not what

Edinburgh Prolog produces. Consequently this strategy, although eminently sensible,

will not work well for Edinburgh Prolog.



Chapter 6

Programming Techniques and

List Processing

We introduce the idea of calling patterns |the ways in which

a predicate may be used.

We then present some standard schemata for list processing.

We then apply these ideas to the construction of a simple-

minded dialogue handler.

6.1 The `Reversibility' of Prolog Programs

Consider the program:

Program Database

square(1,1).

square(2,4).

square(3,9).

square(4,16).

square(5,25).

square(6,36).

This has the reading that the second argument is the square of the �rst argu-

ment. There are four kinds of query: we can ask what is the square of a speci�c

number, what number has a speci�c square and what entities are related by

the square relation. We can also ask whether two speci�c numbers are in the

relation to each other of one being the square of the other. The queries would

look like this:

?- square(2,X).

?- square(X,5).

?- square(X,Y).

?- square(2,3).

Unlike many other programming languages, we do not need di�erent procedures

to calculate each of these results. This is a consequence of the declarative read-

ing of Prolog. Sometimes we say that the program for square/2 is reversible.

This is a very desirable property for programs. For example, if we could write a

program to determine that a given string of words was a legitimate sentence then

53
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we could use the same program to generate arbitrary grammatical sentences.

Unfortunately, it not always possible to give a declarative reading to a Prolog

program.

6.1.1 Evaluation in Prolog

Unlike many programming languages, Prolog does not automatically evaluate

`expressions'. For example, in Pascal,

Y := 2 + 1;

the term 2 + 1 is automatically evaluated and Y is assigned the value 3. Here

is an attempt to do `the same thing' in Prolog using =/2:

Y = 2 + 1.

with the consequence that the term 2+1 is unevaluated and the term Y is
uni�ed with the term 2+1 with the result that Y is bound to 2+1.

Similar problems arise in relation to LISP. LISP will generally seek to

evaluate expressions. For example, in

(foo (+ 1 2) 3)

LISP evaluates the term (s-expression) (foo (+ 1 2) 3) by evaluating (+

1 2) to 3 and then evaluating (foo 3 3). A naive attempt to construct a

similar expression in Prolog might look like:

foo(1+2,3)

but Prolog does not try to evaluate the term 1+2.

Of course, there are times when evaluation is exactly what is wanted. Some-

times, particularly with arithmetic expressions, we want to evaluate them. A

special predicate is/2 is provided. This predicate can be used as in:

Y is 2 + 1.

In this case, the term 2+1 is evaluated to 3 and Y is uni�ed with this term

resulting in Y being bound to 3.

We can use is/2 to implement a successor relation:

successor(X,Y):-

Y is X + 1.

where it is intended that successor/2 takes the �rst argument as input and

outputs the second argument which is to be the next largest integer.

In the above, note that X + 1 is intended to be evaluated.

This means that you must use the stated calling pattern as to try to solve the

goal successor(X,7) will lead to trying to evaluate X + 1 with X unbound.

This cannot be done. The result is an error message and the goal fails.
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Consider the query

?- 3 is X+1.

This results in a failure and an error message.

*** Error: uninstantiated variable in arithmetic expression:

Yet the logical statement that we might associate with the query is

9 X 3 is one more than X

This requires that we can search for the integer that, when added to 1 gives

3. Quite reasonable, but the arithmetic evaluator used is non-reversible.

So the evaluation of arithmetic expressions is a one-way process.

Therefore is/2 must always be called with its second argument as an arithmetic

expression which has any variables already bound. So successor/2 is not

`reversible'. For these queries,

1. successor(3,X).

2. successor(X,4).

3. successor(X,Y).

4. successor(3,5).

The 1st and 4th goals result in correct results (success and failure respectively)

while the 2nd and 3rd goals produce error messages and fail.

6.2 Calling Patterns

For any given predicate with arity greater than 0, each argument may be in-

tended to have one of three calling patterns:

� Input |indicated with a +

� Output |indicated with a -

� Indeterminate |indicated with a ? (+ or -)

For example, successor/2 above requires a calling pattern of

1st argument must be +

2nd argument can be + or - and is therefore ?

We write this as

mode successor(+,?).

The notation used here is consistent with the mode declarations found in many

Prolog libraries. For a further example, the mode declaration of is/2 ismode

is(?,+).

Because of the discrepancy between the declarative and the procedural aspects

of Prolog we often need to think carefully about the intended usage of a predi-

cate. It is good practice to comment your code to indicate a predicate's intended

usage.
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6.3 List Processing

Many programs will be easiest to write if lists are used as the basic data struc-

ture. Therefore, we will need to process lists in a number of di�erent ways. We

are going to look at four di�erent kinds of task and then loosely describe the

schemata which can be utilised.

6.3.1 Program Patterns

One way in which experienced Prolog programmers di�er from beginners is

that they have picked up a wide variety of implementation techniques from

their previous programming experience and are able to bring this to bear on

new problems. Here, we consider four schemata for handling a large number

of list processing tasks. This not intended to cover all possible list processing

programs. Rather, the intention is to give some guidance about how to think

about the problem of constructing a program.

Test for Existence

We want to determine that some collection of objects has at least one object

with a desired property. For example, that a list of terms has at least one term

which is also a list. Here is the general schema:

list existence test(Info,[HeadjTail]):-

element has property(Info,Head).

list existence test(Info,[HeadjTail]):-

list existence test(Info,Tail).

The expression Info stands for a speci�c number of arguments (including zero)

that carry information needed for the determination that a single element has

the desired property. The arguments represented by Info are parameters while

the remaining argument is the recursion argument. The functors in italics are

in italics to indicate that these can be replaced by `real' functors.

We outline two examples. The �rst has 0 parameters. We test whether a list

contains lists using nested list/1|e.g. we want the goal nested list([a,[b],c])

to succeed.

nested list([HeadjTail]):-

sublist(Head).

nested list([HeadjTail]):-

nested list(Tail).

sublist([]).

sublist([HeadjTail]).

Note that, for any non-empty list, a goal involving nested list/1 can be

matched using either the �rst or the second clause. This produces the

possibility that, if the goal is redone then it may once again succeed (if

there is more than one occurrence of a sublist). This may not be what is

wanted. You can test this with the query:
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?- nested list([a,[b],c,[],[d],e]),write(y),fail.

which produces the output yyyno because the �rst subgoal succeeds, the

second writes y and the third fails (fail/0 always fails!). Then backtrack-

ing occurs to write/1 which fails.

We then backtrack into nested list/1 which can be resatis�ed. Basically,

the �rst success had terminated with the subgoal sublist([b]) succeeding

for the goal nested list([[b],c,[],[d],e]). We can resatisfy this goal using

the second clause which then sets up the goal nested list([c,[],[d],e])

which will eventually succeed. This will result in another y being written

and, after a while, another attempt to resatisfy nested list/1 etc.

The point is that you are safe when no goal can be satis�ed via di�erent

clauses. We could repair the above using an extralogical feature which is

described in chapter 9 (the cut).

The program formember/2 �ts into this pattern when used withmode mem-

ber(+,+).

member(Element,[ElementjTail]).

member(Element,[HeadjTail]):-

member(Element,Tail).

where there is one parameter |viz the �rst argument.

In case you are wondering where the element has property item has

gone then we can rewrite member/2 to the logically equivalent:

member(Element,[HeadjTail]):-
Element = Head.

member(Element,[HeadjTail]):-
member(Element,Tail).

Now we can see how this de�nition �ts the above schema.

Test All Elements

In this situation we require that the elements of a list all satisfy some property.

Here is the general schema:

test all have property(Info,[]).

test all have property(Info,[HeadjTail]):-

element has property(Info,Head),

test all have property(Info,Tail).

Again, the expression Info stands for a speci�c number of parameters that

carry information needed for the determination that an individual element has

the desired property. The remaining argument is the recursion argument. We

illustrate with a predicate digits/1 for testing that a list of elements consists

of digits only. We assume that we have mode all digits(+).
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all digits([]).

all digits([HeadjTail]):-

member(Head,[0,1,2,3,4,5,6,7,8,9]),

all digits(Tail).

plus de�nition of member/2.

This predicate has a declarative reading that a list has the property of consisting
of digits if the �rst element is a digit and the tail of the list has the property of
consisting of digits.

Note that we can make this �t the schema better if the term [0,1,2,3,4,5,6,7,8,9]

is passed in as a parameter.

Return a Result |Having Processed One Element

Now we turn to the idea that we can return a result. This requires an extra

argument to be carried around |termed the result argument. We will now

outline two further schemata that can be seen as developments of the two

above. The �rst is intended to work through a list until an element satis�es

some condition whereupon we stop and return some result. The schema is:

return after event(Info,[HjT],Result):-

property(Info,H),

result(Info,H,T,Result).

return after event(Info,[HeadjTail],Ans):-

return after event(Info,Tail,Ans).

We will illustrate this with a predicate everything after a/2 that takes a list

and returns that part of the list after any occurrence of the element a. We

assume that the mode is mode everything after a(+,-).

everything after a([HeadjTail],Result):-

Head = a,

Result = Tail.

everything after a([HeadjTail],Ans):-

everything after a(Tail,Ans).

Again, there are no parameters. There is one input (also the recursion argu-

ment) and one output argument (also the result argument).

The �rst clause can be rewritten to:

everything after a([ajTail],Tail).

Again, there is the same problem with this program as with the test for

existence schema. The goal everything after a([d,a,s,a,f ],X) will suc-

ceed with X=[s,a,f ]. On redoing, the goal can be resatis�ed with X=[f].

This suggest that we have to be very careful about the meaning of this

predicate.
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Return a Result |Having Processed All Elements

We now deal with a very common task: taking a list of elements and trans-

forming each element into a new element (this can be seen as a mapping). The

schema for this is:

process all(Info,[],[]).

process all(Info,[H1jT1],[H2jT2]):-

process one(Info,H1,H2),

process all(Info,T1,T2).

where process one/1 takes Info and H1 as input and outputs H2

The reading for this is that the result of transforming all the elements in the
empty list is the empty list otherwise, transform the head of the list and then
transform the rest of the list.

The second clause can be rewritten to:

process all(Info,[H1jT1],Ans):-
process one(Info,H1,H2),

process all(Info,T1,T2),

Ans = [H2jT2].

Understanding the way in which this program works is quite diÆcult.

An example program is one that takes a list of integers and `triples' each of

them. The goal triple([1,12,7],X would result in X=[3,36,21]. We assume

the mode of mode triple(+,-).

triple([],[]).

triple([H1jT1],[H2jT2]):-

H2 is 3*H1,

triple(T1,T2).

This has the reading that the two arguments lie in the relation that the head

of the second argument is 3 times that of the head of the �rst argument and

the tails lie in the same relation. The declarative reading is easier to construct

than exploring the way in which a goal is executed.

6.3.2 Reconstructing Lists

We now elaborate on a feature of the schema for return a result |having pro-

cessed all elements. Looking at the structure of the head of the 2nd clause for

triple/2, we see that the recursive call is structurally simpler than the head

of the clause |viz triple(T1,T2) is `simpler' than triple([H1jT1],[H2jT2]).

The input variable for the recursive call, a list, is structurally smaller and so is

the output variable.

Many students try to write triple/2 as:
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triple([],[]).

triple([H1jT1],T2):-

H2 is 3*H1,

triple(T1,[H2jT2]).

This does not work at all. Looking at the trace output, it is tempting to think

the program is nearly right. Consider this trace output from SICStus Prolog

for the goal triple([1,2],X).

1 1 Call: triple([1,2], 95) ?

2 2 Call: 229 is 3*1 ?

2 2 Exit: 3 is 3*1 ?

3 2 Call: triple([2],[3j 95]) ?

4 3 Call: 520 is 3*2 ?

4 3 Exit: 6 is 3*2 ?

5 3 Call: triple([],[6,3j 95]) ?

5 3 Fail: triple([],[6,3j 95]) ?

4 3 Redo: 6 is 3*2 ?

4 3 Fail: 520 is 3*2 ?

3 2 Fail: triple([2],[3j 95]) ?

2 2 Redo: 3 is 3*1 ?

2 2 Fail: 229 is 3*1 ?

1 1 Fail: triple([1,2], 95) ?

At one point, we have a term triple([],[6,3j 95]) which, if only it succeeded,

might provide the result we want (even though it seems to be back to front).

The �rst observation is that, since its �rst argument is [] it can only match

the �rst clause for triple and this has a second argument of [] |so, this call

must fail. The second observation is that each recursive call is called with an

increasingly complex second argument |but, when the call is over, there is no

way in which this complex argument can be passed back to the original query.

For example, we start by trying to show that

triple([1,2],X) is true if triple([2],[3jX]) is true

Even if triple([2],[3jX]) were true, that only means that triple([1,2],X) is

true |where has the 3 gone?

We now describe the original schema for return a result |having processed all

elements and an alternative way.

Building Structure in the Clause Head

This is the same as the previous return a result |having processed all elements.

The following version of predicate triple/2 is described as building structure

in the clause head:

triple([],[]).

triple([H1jT1],[H2jT2]):-

H2 is 3*H1,

triple(T1,T2).
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We can see this if we think of the output argument as a structure which is to

be constructed out of two parts: a bit we can calculate easily (H2) and another

bit which requires a recursive call to determine its structure (T2). The term

[H2jT2] just shows how the result is constructed out of these bits.

Building Structure in the Clause Body

Now we produce a variant which achieves a similar (but not identical) e�ect.

We introduce a new kind of variable: the accumulator. Consider the example:

triple([],Y,Y).

triple([H1jT1],X,Y):-

H2 is 3*H1,

triple(T1,[H2jX],Y).

We still have the �rst argument as the recursion argument but now the third

argument is the result argument and the second argument is the accumulator.

Now, we can see that the recursive call reverse(T,[HjX],Y) is simpler in the

�rst argument than the head reverse([HjT],X,Y) and more complex in the

second argument (the accumulator).

Note that the third argument is unchanged. If this is so, how can it take a value

at all? Well, the recursion stops once we reach a call with its �rst argument as

the empty list. This means that we will need to unify the goal with the head of

the �rst clause. This will result in the second argument (the accumulator) being

uni�ed with the third argument (the result) which, at this point, is an unbound

variable. We establish that this up-to-now unchanged variable is bound to the

term in the accumulator. Following back along the path of recursive calls, we

see that (more or less) the result we want is returned.

The goal triple([1,2,3],[],X) will result in X=[9,6,3]. Note two things: the

expected order is reversed and that the accumulator has to be initialised in the

original call. Sometimes, however, the order is not too important.

Here is the schema:

process all(Info,[],Acc,Acc).

process all(Info,[H1jT1],Acc,Ans):-

process one(Info,H1,H2),

process all(Info,T1,[H2jAcc],Ans).

where process one/1 takes Info and H1 as input and outputs H2

6.4 Proof Trees

For an illustration of the di�erence between building structure in the clause head

and building structure in the clause body, we construct an AND/OR proof tree

for the goal triple([1,2],Y) using the code described previously for the building

structure in the clause head case in �gure 6.1 and, in �gure 6.2, an AND/OR

proof tree for the goal triple([1,2],[],Y) for the case of building structure in

the clause body.
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The method used to rename the variables is to use an superscript to indicate
di�erent instances of a variable.

There is a slight cheat because the di�erent instances of Y have not been

distinguished. Really, there should be a succession of instances |Y1
,Y2

and so on. They are, however, all established as equivalent (via uni�ca-

tion).

You will notice that they are extremely similar in shape. The di�erence lies in

the order of the construction of the variable bindings. Note that, in �gure 6.1,

the binding for Y is achieved after computing T21 and the binding for T21 is

achieved after computing T22 which is done through the clause triple([],[]).

In the other case, in �gure 6.2, the binding for Y is achieved through the clause

triple([],L,L).

The main point is that one computation leaves incomplete structure around

(which is eventually completed) while the other does not do so.

triple([1,2],Y)
H
H
H
H
H
H
H

�
�

�
�
�

�
�

Y=[H21jT21](=[3,6])

[1,2]=[H11jT11]

H11=1

T11=[2]

H21 is 3*H11

2

triple(T11,T21)
H
H
H
H
H
H
H

�
�
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T21=[H22jT22](=[6])

[H12jT12]=[2]

H12=2

T12=[]

H21=3

triple(T12,T22)
�
�
�
�

�
�
�

H22 is 3*H12

2

T22=[]H22=6

triple([],[])

2

Figure 6.1: The Proof Tree for triple([1,2],Y)
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triple([1,2],[],Y)
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[H11jT11]=[1,2]

H11=1

T11=[2]
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triple(T11,[H21jAcc1],Y)
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[H12jT12]=[2]

H12=2

T12=[]

Acc2=[H21jAcc1](=[H21]=[3])
H21=3

triple(T12,[H22jAcc2],Y)
�
�
�
�

�
�
�

H22 is 3*H12

2

T22=[]

Acc3=[H22jAcc2](=[6,3])

H22=6

triple([],Acc3,Y)

2

Y=Acc3(=[6,3])

Figure 6.2: The Proof Tree for triple([1,2],[],Y)

6.5 What You Should Be Able To Do

After �nishing the exercises at the end of the chapter:

You should be aware of some standard techniques for processing

lists and be able to identify programs that use these techniques.

Exercise 6.1 We will now work on the four basic list schemata that we have

suggested:

1. The Schema test for existence

2. The Schema test all elements

3. The Schema return a result |having processed one element

4. The Schema return a result |having processed all elements

1. The Schema test for existence

(a) De�ne a predicate an integer/1 which checks to see if a list has at

least one integer in it. Use the built-in predicate integer/1.

?- an integer([a,fred,5,X]).

yes

(b) De�ne a predicate has embedded lists/1 which checks to see if a

list is an element which is itself a list. Assume that the input list

contains no variables and that the empty list is not a member of this

input list.

?- has embedded lists([a,[b],c,d,e]).

yes
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2. The Schema test all elements

(a) De�ne a predicate all integers/1 that succeeds if and only if the

(one) argument contains a list of integers.

?- all integers([1,fred,23]).

no

(b) De�ne a predicate no consonants/1 which checks to see if a list of

lower-case alphabetic characters has no consonants in it. Make up

your own predicate to check whether an atom is a consonant.

?- no consonants([a,e,i,t]).

no

?- no consonants([a,e,e,i]).

yes

3. The Schema return a result |having processed one element

(a) Write a predicate nth/3 which takes two inputs: the �rst a positive

integer and the second a list. The output (initially, an uninstantiated

variable) will be the element that occurs at the nth position in the list.

So

?- nth(3,[this,is,[an,embedded,list]],X).

X=[an,embedded,list]

(b) De�ne a predicate next/3 which again takes two inputs: a possible

member of a list and the list. The output should be the element of

the list that immediately follows the named list element (if it exists

|if not, the predicate should fail).

?- next(a,[b,r,a,m,b,l,e],X).

X=m

(c) de�ne del 1st/3 which takes a possible element of a list and a list as

inputs and "returns" the list with the �rst occurence of the named

element removed. (If the named element is not in the list then the

predicate is to fail)

?- del 1st(a,[b,a,n,a,n,a],X).

X=[b,n,a,n,a]

This one can also be solved using an accumulator with the help of

append/3.

4. The Schema return a result |having processed all elements All these can

be done in two ways. One uses the idea of building structure in the clause

head and the other building structure in the clause body.

Remember that the latter requires one more argument than the former |

the accumulator. As this usually needs initialising it is customary to do

this by such as:
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foo(a,X):-

foo(a,[],X).

Do each problem both ways.

(a) De�ne nple/3 to take two inputs |an integer and a list of integers.

The result is to be a list of integers formed by multiplying each integer

in the list by the input integer.

?- nple(5,[1,2,3],X).

X=[5,10,15]

(b) De�ne del all/3 which takes a possible element of a list and a list as

inputs and returns the list with all occurences of the named element

removed. (If the named element is not in the list then the result is,

of course, the whole list with no deletions)

?- del all(a,[b,a,n,a,n,a],X).

X=[b,n,n]

(c) De�ne sum/2 to take a list of integers as input and return the output

as their sum. This one is slightly unusual with regard to the base case.

?- sum([1,32,3],X).

X=36



Chapter 7

Control and Negation

We introduce a number of facilities for controlling the execution

of Prolog.

We outline the problem of trying to represent logical negation

and one solution.

We introduce some more programming techniques.

7.1 Some Useful Predicates for Control

true/0

Always succeeds.

father(jim,fred).

is logically equivalent to

father(jim,fred):-

true.

That is, any unit clause is equivalent to a non-unit clause with a single subgoal

true in the body.

fail/0

Always fails.

lives forever(X):-

fail.

is intended to mean that any attempt to solve the goal lives forever(X) will

fail.

66
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repeat/0

If it is asked to Redo then it will keep on succeeding.

test:-

repeat,

write(hello),

fail.

The goal test produces the output:

hellohellohellohellohellohellohellohellohello...

repeat/0 behaves as if it were de�ned in Prolog as:

repeat.

repeat:-

repeat.

call/1

The goal call(X) will call the interpreter as if the system were given the goal

X. Therefore X must be bound to a legal Prolog goal.

?- call(write(hello)).

hello

yes

To handle a query which has multiple goals then:

?- call((write(hello),nl)).

hello

yes

Note that we cannot write call(write(hello),nl) as this would be taken to

be a usage of call/2 with the �rst argument write(hello) and the second

argument nl) |and most systems do not have a call/2.

Note that call/1 is unusual in that its argument must be a legitimate Prolog

goal. Also note that call(X) will be legal if and only if X is bound to a legal

goal.

7.2 The Problem of Negation

To maintain the connection with predicate logic, we would like to be able to

represent the negation of a statement. This, however, proves to be problematic.

Consider
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man(jim).

man(fred).

?- man(bert).

no

To say that man(bert) is not true we have to assume that we known all that

there is to know about man/1. The alternative is to say the the no indicates

don't know and this is not a possible truth value!

Turning to Prolog, If we try to solve a goal for which there is no clause (as

in the case above) then we assume that we have provided Prolog with all

the necessary data to solve the problem. This is known as the Closed World

Assumption.

This enables us to stick to the desirable property that a goal can have only two

outcomes.

n+/1

This strangely named predicate isProlog's equivalent to the not (often written

as : which stands for negation) of predicate logic. It is not named not/1

because we it turns out that we cannot easily implement classical negation in

Prolog.

The predicate \+/1 takes a Prolog goal as its argument. For example:

?- \+( man(jim) ).

will succeed if man(jim) fails and will fail if man(jim) succeeds.

7.2.1 Negation as Failure

Negation as failure is the term used to describe how we use the closed world as-

sumption to implement a form of negation in Prolog. We now give an example

which uses a rule to de�ne women in terms of them not being men. Logically,

8 x 2 people ( : man(x) =) woman(x)).

man(jim).

man(fred).

woman(X):-

\+( man(X) ).

?- woman(jim).

no

The strategy is: to solve the goal woman(jim) try solving man(jim). This

succeeds |therefore woman(jim) fails. Similarly, woman(jane) succeeds.

But there is a problem. Consider:
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?- woman(X).

It succeeds if man(X) fails |but man(X) succeeds with X bound to jim. So

woman(X) fails and, because it fails, X cannot be bound to anything.

We can read ?- woman(X) as a query \is there a woman?" and this

query failed. Yet we know that woman(jane) succeeds. Therefore, this

form of negation is not at all like logical negation.

The problem can be highlighted using predicate logic. The querywoman(X)

is interpreted as

9 x : man(x)

which, logically, is equivalent to

: 8 x man(x)

Now Prolog solves this goal in a manner roughly equivalent to

: 9 x man(x)

The only time we get something like the desired result if there is no exis-

tentially quanti�ed variable in the goal. That is, whenever \+/1 is used

then make sure that its argument is bound at the time it is called.

Also, note that \+(\+(man(X))) is not identical to man(X) since the former
will succeed with X unbound while the latter will succeed with X bound, in the
�rst instance, to jim.

This is the basis of a well known Prolog programming `trick' |i.e. it is a

technique which is frowned upon by purists. The idea is to test whether, for

example, two terms will unify without the e�ect of binding any variables.

The goal \+(\+(X=2)) will succeed without bindingX to 2. The meaning

is roughly X would unify with 2.

7.2.2 Using Negation in Case Selection

We can use \+/1 to de�ne relations more carefully than previously. To illus-

trate, consider

parity(X,odd):-

odd(X).

parity(X,even).

together with the set of facts de�ning odd/1.

The goal parity(7,X) is intended to succeed using the �rst clause. Suppose

that some later goal fails forcing backtracking to take place in such a way that

we try to redo parity(7,X). This goal uni�es with the rest of the second clause!

This is not desirable behaviour. We can �x this using \+/1.

parity(X,odd):-

odd(X).

parity(X,even):-

\+(odd(X)).
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Thus \+/1 provides extra expressivity as we do not need a set of facts to de�ne
even/1.

If we go back to a previous example found in section 6.3.1 then we can

now resolve the problem about how to deal with unwanted backtracking

in programs like:

nested list([HeadjTail]):-
sublist(Head).

nested list([HeadjTail]):-
nested list(Tail).

sublist([]).

sublist([HeadjTail]).

The problem is caused by the fact that a goal like nested list([a,[b],c,[d]])

will succeed once and then, on redoing, will succeed once more. This hap-

pens because the goal uni�es with the heads of both clauses |i.e. with

nested list([HeadjTail]) (the heads are the same). We can now stop

this with the aid of \+/1:

nested list([HeadjTail]):-
sublist(Head).

nested list([HeadjTail]):-
\+(sublist(Head)),

nested list(Tail).

sublist([]).

sublist([HeadjTail]).

Note that this is at the price of often solving the identical subgoal twice

|the repeated goal is sublist(Head). Note also that there is never more

than one solution for sublist(X).

Finally, we can de�ne \+/1 using call/1 and the cut (!/0:

\+(X):-

call(X),

!,

fail.

\+(X).

This is a de�nition which essentially states that \if X, interpreted as a

goal, succeeds then \+(X) fails. If the goal X fails, then \+(X) succeeds.

To see this is the case, you have to know the e�ect of the cut | fail

combination ((!,fail). See later on in this chapter for more details of this.

7.3 Some General Program Schemata

We have already introduced some list processing schemata. Now we discuss

some further, very general, program schemata.

Generate | Test

One of the most common techniques in Prolog is to use the backtracking in

�rst generating a possible solution, then testing the possible solution to see if it

is acceptable. If not, backtracking takes place so that another possible solution

can be generated.
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generate and test(Info,X):-

. . .

generate(Info,X),

test(Info,X),

. . .

In the above schema, the ellipsis (. . . ) indicates a number of subgoals (0 or

more).

We can distinguish two kinds of generator: a �nite generator and an in�nite

generator. We will illustrate with two di�erent versions of a non-negative integer

generator which we will call int/1 |we cannot name this integer/1 since

this is already de�ned (as a built-in predicate) and it only works with mode

integer(+) and we want int/1 to work with mode int(-).

Finite and In�nite Generators

We de�ne a predicate integer with two digit square/1 to produce a posi-

tive integer that has a square which is greater than or equal to 10 and less than

100.

integer with two digit square(X):-

int(X),

test square(X).

test square(X):-

Y is X*X,

Y >= 10,

Y < 100.

Here is the de�nition of int/1 which is a �nite generator |because there are

only a �nite number of unit clauses (containing no variables) used to de�ne

int/1.

int(1).

int(2).

int(3).

int(4).

int(5).

The goal integer with two digit square(X) eventually fails because the gen-

erator runs out of potential solutions. Now we de�ne a version of int/1 which

is an in�nite generator (verifying this is left as an `exercise for the reader' !).

int(1).

int(N):-

int(N1),

N is N1 +1.
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On backtracking, this will generate a new solution for integer with two digit square(X)
until we test 10. From then on, we will keep generating with int/1 and failing
with test square/1. We are trapped in a generate|test cycle with no way
out.

The usual way out is to ensure that once we have found the solution we

want then we commit ourselves to that solution and forbid backtracking

from ever seeking another solution. Again, the usual solution is to place a

cut (!/0) after the test. This results in:

integer with two digit square(X):-

int(X),

test square(X),!.

and the example demonstrates the (usually necessary) �x to stop a pro-

gram using the generate | test schema from overgenerating. However, our

solution now provides for only one solution to be generated!

Test | Process

Now we look at another fundamental schema. The idea with test | process is

to guarantee that some inputs will only be `processed' if the input passes a test.

test process(Info,X,Y):-

test(Info,X),

process(Info,X,Y).

where we assume that the Info is 0 or more arguments which are all input argu-
ments, the last but one argument is an input argument and the last argument
is a output argument. Although this gives a very procedural view it is often
possible to give a declarative reading.

We usually want to make sure that

1. test does not have alternative ways of con�rming that the generated

element is ok

2. process does not have alternative ways of `processing' the input

In short, we often want only one way of �nding an output.

We have already met a program that satis�es this schema |one for parity/2

(which is slightly rewritten here).

parity(X,Y):-

odd(X),

Y=odd.

parity(X,Y).

\+(odd(X)),

Y=even.

plus set of facts de�ning odd/1
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This example illustrates that if the input argument is an integer then we see

two cases: either the integer is even or it is odd. There is no third case. Nor

can any integer be both even and odd.

As in the above example, the usage of test | process is closely coupled with

the idea of writing all the clauses for a predicate in this form |each clause is

designed to handle one `class' of input. The whole scheme falls down if we do

not design the `classes' of input to be disjoint {i.e. no input falls into more

than one category. We also require that each input falls in at least one category

|to summarise, each input falls in one and only one class.

We can show a previous example which does not properly use the test | process

schema (for good reasons). Modifying the code using this schema results in a

di�erent and useful program.

member(Element,[ElementjTail]).

member(Element,[HeadjTail]):-

member(Element,Tail).

Now member/2 can be used as a generator if the �rst argument is a variable

and its second argument is a list |as in the goalmember(X,[a,b,c,d,e,f ]. The

�rst solution for X is the �rst element of the list [a,b,c,d,e,f ]. On redoing, we

get, in succession, X bound to the di�erent elements in the list.

We now rewrite using the test | process schema. We also rename the predicate

to the standard name of memberchk/2 (this is its usual name in libraries of

Prolog code).

memberchk(Element,[HeadjTail]):-

Element = Head.

memberchk(Element,[HeadjTail]):-

\+(Element = Head),

memberchk(Element,Tail).

This will no longer generate alternative solutions on backtracking for the goal

memberchk(X,[a,b,c,d,e,f ]) (because there are no alternative ways of resat-

isfying it). If the mode of use is mode memberchk(+,+) then the meaning

is that we check that the �rst argument is an element of the list (which is the

second argument).

Failure-Driven Loop

We now introduce an extremely procedural programming technique for simu-

lating a kind of iteration. The idea is deliberately generate a term and then

fail. This suggests the useless schema

failure driven loop(Info):-

generate(Info,Term),

fail.

failure driven loop(Info).
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Provided that the generator eventually fails any version of this schema will

always succeed |i.e. it will be equivalent to true.

We now use side e�ecting predicates to do something useful with the generated

term.

A side-e�ecting predicate is one that is (often) logically equivalent to true but

also does something else that is non-logical. For example, write/1 and nl/0

have the side-e�ect of writing material onto the terminal screen (usually). Also,

consult/1 and reconsult/1 have the side-e�ect of changing the program. The

predicate read/1 has the side-e�ect of destructively reading input from the

terminal (or whatever).

To illustrate the problem: if we queryProlog with the goal (write(hello),fail)

then write/1 will be used to write hello on (we assume) the terminal screen

and the call to fail/0 will fail. Now, logically, we have a statement with the

truth value of false |so we have proved that the goal cannot succeed and

therefore there should be no message (hello) on the screen.

Here is another example: if we try the goal (read(X),fail) then read/1 will

be used to read some input from the user (we assume) and the call to fail/0

will fail. Again, we have a statement with the truth value of false |so the

input should still be available for consideration. Yet we taken input from the

keyboard (or somewhere) and we do not put that input back so that it can be

reconsidered. The input has been consumed.

We can see that any predicate succeeds generating an e�ect that cannot be

undone on backtracking must be a side-e�ecting predicate.

The complete failure-driven loop schema can be taken as:

failure driven loop(Info):-

generate(Info,Term),

side e�ect(Term),

fail.

failure driven loop(Info).

This can be elaborated by having several side-e�ecting predicates, replacing the

fail/0 with some other predicate that fails and so on.

We illustrate with a simple example. We will use int/1 as a �nite generator

and then print out the valid arguments for this relation on the screen.

int(1).

int(2).

int(3).

int(4).

int(5).

print int:-

int(X),

write(X),nl,

fail.

print int.

This programming technique can be very useful. In the early days, it was

overused because it was space-eÆcient.
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Some Practical Problems

We now come to some needs that cannot easily be satis�ed and still retain a

clean declarative reading. We look at three problems that are interconnected.

Commit

We have outlined the use of test | process to do case analysis but it was

necessary to have one clause for each case. If we have a goal which can be

satis�ed via two di�erent clauses then, on redoing, the same goal may generate

a di�erent solution.

In reality, this situation can arise quite often |i.e. the tests we do on the input

do not divide the input into non-overlapping classes. Essentially, we have two

problems. We often want to make sure that only one clause is legitimate |once

it has been determined that the input passes some test. We think of this as

a statement of commitment to the solution(s) derived through `processing' the

input.

test process(Info,X,Y):-

test(Info,X),

commit,

process(Info,X,Y).

When we backtrack and try to �nd another way of satisfying some program

that makes use of the test | process schema then we �rst try to �nd another

way of satisfying the process part. If that fails, then we try to resatisfy the test

part. We do not want this to happen.

Then, assuming that we cannot resatisfy the test part, we try to resatisfy the

goal making use of this program by trying di�erent clauses.

Therefore there are two senses in which we may want to be `committed': we

want to commit to using a single clause and we want to commit to the result

of a test |we do not want to run the risk that the test can be successful (with

the same input) twice.

Satisfy Once Only

Sometimes, we would like a way of stopping Prolog looking for other solutions.

That is, we want some predicate to have only one solution (if it has one at all).

This is the requirement that the predicate be determinate.

Naturally, predicates which do not have this property are indeterminate. This

is a desirable property sometimes |e.g. the generate | test schema makes

use of the generator being indeterminate. On the other hand, it can cause

major problems when a program has many predicates which are unintentionally

indeterminate. Our aim is to make sure that those predicates which should be

determinate actually are determinate.

We have already met an example of a predicate (memberchk/2) that might

have been written with this situation in mind. We recall that member/2

used with mode member(-,+) behaves as a generator. Perhaps it is worth

pointing out thatmember/2withmode member(+,+) is also, under certain
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circumstances, resatis�able |precisely when there are repetitions of the sought

element in the list which constitutes the second argument.

Of course, if we are dealing with lists{as{sets, we should have arranged it so

that the second argument does not have repeated elements. Anyway, it is very

desirable to have a determinate version of member/2 available.

memberchk(X,[XjY]):-

make determinate.

memberchk(X,[YjZ]):-

memberchk(X,Z).

Note this isn't quite what we had before. Previously, we arranged for mem-

berchk/2 to be determinate with the help of \+/1. Stating our requirement

as above, we seem to be going outside of logic in order to tell the Prolog inter-

preter that, once we have found the element sought, we never want to consider

this predicate as resatis�able.

Fail Goal Now

We often search for the solution to a goal using several clauses for some pred-

icate. For example, we might have a social security calculation which tries to

assign how much money to give a claimant. Here is a fragment of program:

calculate bene�t(Claim Number,Nationality,Age,Other Details):-

Nationality = british,

calculate british entitlement(Age,Other Details).

calculate bene�t(Claim Number,Nationality,Age,Other Details):-

Nationality = martian,

give up.

calculate bene�t(Claim Number,Nationality,Age,Other Details):-

Nationality = french,

calculate french entitlement(Age,Other Details).

If we reach the situation where we realise that the whole search is doomed

then we may want to say something informally like `stop this line of approach

to the solution and any other corresponding line'. In the above, if we �nd

we are trying to assign bene�t to a martian then we make the decision that

calculate bene�t/4 should fail and therefore that there is no point in trying

to use any remaining clauses to �nd a solution.

In practice, we need to make use of this kind of action. Again, we are potentially

asking Prolog to behave abnormally.

In fact, in all these situations, we are askingProlog to behave in a non-standard

way. Whatever the complications, it is hard top make do without ways to:

� Commit

� Make Determinate

� Fail Goal Now
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7.4 What You Should Be Able To Do

You should be able to make use of the `predicates' true/0,

fail/0, repeat/0 and call/1.

You should be able to describe the di�erence between the open

and closed world assumptions.

You should be able to describe the di�erence between classical

negation and negation as failure.

You should be able to distinguish side-e�ecting from non side-

e�ecting predicates.

You should be able to use Prolog negation to achieve the

e�ect of case selection.

You should be able to use the techniques of generate | test,

test | process and failure-driven loop. You should also be

aware of the needs for the techniques commit | process,

satisfy{only{once and fail{goal{now.



Chapter 8

Parsing in Prolog

We introduce the facilities that Prolog provides for parsing.

This is done through the idea of a parse tree as applied to a

simple model for the construction of English sentences.

Three ways of parsingProlog are described: the �rst illustrates

the ideas, the second is more eÆcient and the third provides

an easy way of coding a parser via Grammar Rules.

We then explain how to extract the parse tree and show how

to extend a parser using arbitrary Prolog code.

Later on in the course, you will be involved in trying to face up to the problem

of parsing ordinary english language sentences. For this lecture, we shall also be

interested in parsing sentences but we will look at the very simplest examples.

First, what do we want the parser to do? We would like to know that a sentence

is correct according to the (recognised) laws of english grammar.

The ball runs fast

is syntactically correct while

The man goes pub

is not as the verb \go" (usually) does not take a direct object.

Secondly, we may want to build up some structure which describes the sentence

|so it would be worth returning, as a result of the parse, an expression which

represents the syntactic structure of the successfully parsed sentence.

Of course, we are not going to try to extract the meaning of the sentence so

we will not consider attempting to build any semantic structures.

8.1 Simple English Syntax

The components of this simple syntax will be such categories as sentences,
nouns, verbs etc. Here is a (top down) description:

78
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Unit: sentence

Constructed from: noun phrase followed by a verb phrase

Unit: noun phrase

Constructed from: proper noun or determiner followed by a noun

Unit: verb phrase

Constructed from: verb or verb followed by noun phrase

Unit: determiner

Examples: a, the

Unit: noun

Examples: man, cake

Unit verb:

Examples: ate

8.2 The Parse Tree

Figure 8.1 shows the parse tree for the sentence:

the man ate the cake

with some common abbreviations in brackets. We must remember that many

sentence

(s)

nounphrase

(np)

  
  

  
  

verbphrase

(vp)

```````̀

determiner

(det)

��
��

��

noun

H
H
H

nounphrase

(np)

XXXXXX

verb

��
��

��

the man ate
determiner

(det)

��
��

��

noun

H
H
H

the cake

Figure 8.1: A Parse Tree

sentences are ambiguous |i.e. they result in di�erent parse trees.
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8.3 First Attempt at Parsing

We assume that we will parse sentences converted to list format. That

is, the sentence \the man ate the cake" will be represented by the list

[the,man,ate,the,cake].

We use append/3 to glue two lists together. The idea is that append/3

returns the result of gluing takes input as lists in the �rst and second argument

positions and returns the result in the third position.

sentence(S):-

append(NP,VP,S),

noun phrase(NP),

verb phrase(VP).

noun phrase(NP):-

append(Det,Noun,NP),

determiner(Det),

noun(Noun).

verb phrase(VP):-

append(Verb,NP,VP),

verb(Verb),

noun phrase(NP).

determiner([a]).

determiner([the]).

noun([man]).

noun([cake]).

verb([ate]).

Here is what happens to the query:

?- sentence([the,man,ate,the cake]).

append/3 succeeds with NP=[], VP=[the,man,ate,the,cake]

noun phrase/1 fails

append/3 succeeds with NP=[the], VP=[man,ate,the,cake]

noun phrase/1 fails

append/3 succeeds with NP=[the,man], VP=[ate,the,cake]

noun phrase/1 succeeds

. . .

verb phrase/1 succeeds

This is all very well but the process of parsing with this method is heavily non

deterministic.

Also, it su�ers from not being a very exible way of expressing some situations.

For example, the problem of adjectives:

the quick fox
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is also a noun phrase.

We might try to parse this kind of noun phrase with the extra clause:

noun phrase(NP):-

append(Det,Bit,NP),

determiner(Det),

append(Adj,Noun,Bit),

adjective(Adj),

noun(Noun).

A little ungainly.

8.4 A Second Approach

We now try an approach which is less non-deterministic. We will start by

looking at:

sentence(In,Out)

The idea is that sentence/2 takes in a list of words as input, �nds a legal

sentence and returns a result consisting of the input list minus all the words

that formed the legal sentence.

We can de�ne it:

sentence(S,S0):-

noun phrase(S,S1),

verb phrase(S1,S0).

Here is a rough semantics for sentence/2.

A sentence can be found at the front of a list of words if there is a

noun phrase at the front of the list and a verb phrase immediately

following.

This declarative reading should help to bridge the gap between what we want

to be a sentence and the procedure for �nding a sentence.

Here is the rest of the parser:

noun phrase(NP,NP0):-

determiner(NP,NP1),

noun(NP1,NP0).

verb phrase(VP,VP0):-

verb(VP,VP1),

noun phrase(VP1,VP0).

determiner([ajRest],Rest).

determiner([thejRest],Rest).

noun([manjRest],Rest).

noun([cakejRest],Rest).

verb([atejRest],Rest).
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As you can see, there is a remarkable sameness about each rule which, once you

see what is going on, is fairly tedious to type in every time. So we turn to a

facility that is built in to Prolog.

8.5 Prolog Grammar Rules

Prolog, as a convenience, will do most of the tedious work for you. What

follows, is the way you can take advantage of Prolog.

This is how we can de�ne the simple grammar which is accepted `as is' by

Prolog.

sentence --> noun phrase, verb phrase.

noun phrase --> determiner, noun.

verb phrase --> verb, noun phrase.

determiner --> [a].

determiner --> [the].

noun --> [man].

noun --> [cake].

verb --> [ate].

It is very easy to extend if we want to include adjectives.

noun phrase --> determiner, adjectives, noun.

adjectives --> adjective.

adjectives --> adjective, adjectives.

adjective --> [young].

This formulation is sometimes known as a De�nite Clause Grammar (DCG).

We might later think about the ordering of these rules and whether they really

capture the way we use adjectives in general conversation but not now.

Essentially, the Prolog Grammar Rule formulation is syntactic sugaring. This

means that Prolog enables you to write in:

sentence --> noun phrase, verb phrase.

and Prolog turns this into:

sentence(S,S0):-

noun phrase(S,S1),

verb phrase(S1,S0).

and

adjective --> [young].

into
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adjective(A,A0):-

'C'(A,young,A0).

where 'C'/3 is a built in Prolog Predicate which is de�ned as if:

'C'([HjT],H,T).

8.6 To Use the Grammar Rules

Set a goal of the form

sentence([the,man,ate,a,cake],[])

and not as

sentence.

or

sentence([the,man,ate,a,cake])

8.7 How to Extract a Parse Tree

We can add an extra argument which can be used to return a result.

sentence([[np,NP],[vp,VP]]) --> noun phrase(NP), verb phrase(VP).

noun phrase([[det,Det],[noun,Noun]]) --> determiner(Det), noun(Noun).

determiner(the) --> [the].

and so on

What we have done above is declare predicates sentence/3, noun phrase/3,

verb phrase/3, determiner/3 and so on. The explicit argument is the �rst

and the two others are added when the clause is read in by Prolog. Basically,

Prolog expands a grammar rule with n arguments into a corresponding clause

with n+2 arguments.

So what structure is returned from solving the goal:

sentence(Structure,[the,man,ate,a,cake],[])

The result is:

[[np,[[det,the],[noun,man]]],[vp,[...

Not too easy to read!
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We can improve on this representation if we are allowed to use Prolog

terms as arguments. For example, in foo(happy(fred),12) the term

happy(fred) is one of the arguments of foo/2. Such a term is known

as a compound term. We discuss this at greater length in chapter 10.

With the help of compound terms, we could tidy up our representation of

sentence structure to something akin to:

sentence([np([det(the),noun(man)]),vp([...

8.8 Adding Arbitrary Prolog Goals

Grammar rules are simply expanded to Prolog goals. We can also insert arbi-

trary Prolog subgoals on the right hand side of a grammar rule but we must

tell Prolog that we do not want them expanded. This is done with the help

of braces |i.e. f g. For example, here is a grammar rule which parses a single

character input as an ASCII code and succeeds if the character represents a

digit. It also returns the digit found.

digit(D) -->

[X],

{ X >= 48,

X =< 57,

D is X-48 }.

The grammar rule looks for a character at the head of a list of input characters

and succeeds if the Prolog subgoals

{ X >= 48,

X =< 57,

D is X-48 }.

succeed. Note that we assume we are working with ASCII codes for the char-

acters and that the ASCII code for \0" is 48 and for \9" is 57. Also note the

strange way of signifying \equal to or less than" as \=<".

8.9 What You Should Be Able To Do

After �nishing the exercises at the end of the chapter:

You should be able to write a simple parser for a small subset

of English.

You should be able to use Prolog's grammar rules to de�ne

the grammar of a simple language.

You should be able to describe how Prolog rewrites the gram-

mar rules into `standard' Prolog.

You should be able to use the grammar rules to extract a parse

tree.

Exercise 8.1 Here is a De�nite Clause Grammar:



Draft of January 24, 2001 85

s --> np,vp.

np --> det,noun.

np --> det,adjs,noun.

vp --> verb,np.

det --> [a].

det --> [the].

adjs --> adj.

adjs --> adj,adjs.

adj --> [clever].

noun --> [boy].

noun --> [sweet].

verb --> [buys].

1. Give some examples of sentences that this grammar could parse.

2. Modify this DCG so that the parse returns information about the structure

of the sentence.

3. Suppose that the DCG is given a sentence to parse containing a misspelled

word -say \boy". Modify the DCG so that the information about the struc-

ture of the sentence will include some information about any unrecognised

component.

4. Suppose now that the DCG is given a sentence to parse missing a word

or two. Modify the DCG so that it will identify the missing component.

The last two parts of this exercise are hard |it is essentially the problem of

robust parsing. We try to do the best we can to identify gaps, misspellings and

redundant information.
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Modifying the Search Space

We describe solutions to various problems of control raised in

chapter 7.

We detail other useful Prolog built-in predicates that are non-

logical.

9.1 A Special Control Predicate

We now present a solution to the practical problems posed in chapter 7 about

how to control Prolog's search strategy. We summarised these issues as ones

of:

� Commit

� Make Determinate

� Fail Goal Now

In each of these cases the solution is to make use of a built-in predicate which

always succeeds |but with a very unpleasant side-e�ect. This notorious pred-

icate is known as the cut and written !/0.

The reason why cut (!/0) is so unpleasant are that it e�ects Prolog's search

tree. Consequently, by adding a cut, the program's meaning may change rad-

ically. We sometimes say that a cut that does this is a red cut. On the other

hand, the placing of a cut may not change the intended meaning but simply

junk a part of the search tree where it is known that there is no legal solution.

Such a cut is termed a green cut. The Art of Prolog by Sterling and Shapiro

has a nice section on the cut [Sterling & Shapiro, 1986].

We now go over how to solve the three control problems.

9.1.1 Commit

Assume we want to make Social Security payments. That is, pay(X,Y) means

\pay the sum X to Y". Assume that we also have this code fragment.

pay(X,Y):-

british(X),

entitled(X,Details,Y).

86



Draft of January 24, 2001 87

pay(X,Y):-

european(X),

entitled(X,Details,Y).

In each clause, the �rst subgoal in the body is acting as a test in a program

using the test | process schema. We also assume that, for some reason, we have

not been able to apply the disjoint (and exhaustive) case analysis technique.

Consequently, if we have successfully checked that a person is British and, for

some reason, the subgoal entitled(X,Details,Y) fails (or some later computa-

tion forces backtracking back to redo the call to pay/2 that we are considering)

then there may be no point in

� checking if they are \european" (assuming that there are no regulations

under which British people can qualify for payment as being European

when they fail to qualify as British citizens).

� checking to see if there is more than one entry for the person in some

database accessed by british/1.

In the immediate situation, we want to be committed to telling Prolog not to

redo the british/1 subgoal and not to consider other clauses for pay/2 that

might contribute an alternative.

The truth is, of course, that we may want these two consequences whether or

not entitled/3 fails.

If this is so, then we insert a cut as shown below and highlighted by a box .

pay(X,Y):-

british(X),

! ,

entitled(X,Details,Y).

pay(X,Y):-

european(X),

! ,

entitled(X,Details,Y).

We want to be committed to the choice for the pay/2 predicate. We can see

the use of !/0 as a guard that has two e�ects.

� On backtracking through the list of subgoals: a cut can be thought of

as indicating that all attempts to redo a subgoal to the left of the cut

results in the subgoal immediately failing. We sometimes say that any

uni�cations taking place prior to the cut have been frozen and cannot be

remade.

� On backtracking into the predicate once the call had exited: if one of

the clauses de�ning the predicate had previously contained a cut that

had been executed then no other clauses for that predicate may be used

to resatisfy the goal being redone. We sometimes say that, once a cut is

executed, later clauses have been chopped out of the search space.
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Note that, with the cut in the position it is above, it is still possible that

entitled/3 could be resatis�ed. We have to guarantee that we have made

entitled/3 determinate before we can guarantee that pay/2 is determinate.

We have to do some more on this issue.

Also note that the e�ect of cut (!/0) prunes the search space only until the

parent goal of the cut fails. If we leave the Fail port of pay/2 and some

previous goal leads to another call to pay/2 then the cut (!/0) has no e�ect

until it is executed.

We also have to remember that cut (!/0) has two distinct e�ects: backtracking
cannot redo any subgoals to the left of the cut and clauses in the program
database for the same predicate that are textually after the current clause are
unreachable. See �gure 9.1 for a graphic representation of these e�ects on a
rather arti�cial program.

a(X):- b(X),c(X).

b(1).

b(4).

c(X):- d(X),!,e(X).

c(X):- f(X).

d(X):- g(X).

d(X):- h(X).

e(3).

f(4).

g(2).

h(1).
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Figure 9.1: The E�ect of cut on the AND/OR Tree

9.1.2 Make Determinate

We now go onto the key problem of making our programs determinate. That

is, if they succeed, then they succeed precisely once unless we really want them

to generate alternative solutions. Many programmers �nd taming backtracking

to be a major problem.
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Consider the problem raised by this program:

sum(1,1).

sum(N,Ans):-

NewN is N-1,

sum(NewN,Ans1),

Ans is Ans1+N.

together with the goal

?- sum(2,X).

The meaning of sum/2 is that, for the �rst argument N (a positive integer),

there is some integer, the second argument, which is the sum of the �rst N

positive integers.

We know that, for the mode sum(+,-), there is only one such result. There-

fore, if we try to redo a goal such as sum(2,Ans) it should fail. We could test

that this is so with:

?- sum(2,Ans),write(Ans),nl,fail.

We would like the result:

3

no

Alas, here is the result using Edinburgh Prolog.

3

(a very very long wait)

We have a runaway recursion. Figure 9.2 shows the execution tree for the goal

sum(2,Ans). Now look at the goal:

?- sum(2,X),fail.

and the resulting fragment of the execution tree which is shown in �gure 9.3.

Prolog goes into a non terminating computation. We want to make sure that,

having found a solution, Prolog never looks for another solution via Redoing

the goal. Figure 9.4 shows the consequence when the cut (!/0) is used.

sum(1,1):-

! .

sum(N,Ans):-

NewN is N-1,

sum(NewN,Ans1),

Ans is Ans1+N.
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sum(2,Ans1)
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sum(NewN1,Ans11) Ans1 is Ans11+2

Ans1=3

NewN1 is 2-1

NewN1=1

sum(1,1)

Ans11=1

sum(1,1)

Figure 9.2: The First Solution to the Goal sum(2,Ans)

9.1.3 Fail Goal Now

We are trying to solve the problem that arises when we realise, in the middle

of satisfying subgoals for some goal, that the goal will never succeed |even if

we try other clauses which have heads that unify with the goal.

Here is a way of de�ning woman/1 in terms of man/1 where we base the idea

that, in trying to establish that someone is a \woman", we prove that they are

actually a \man" and there is therefore no point in trying to �nd some other

proof that this person is a woman.

woman(X):-

man(X),

! ,

fail.

woman(X).

Putting it a slightly di�erent way, to solve for woman(jim) we tryman(jim).

If that succeeds then we want to abandon the attempt to prove woman(jim)

without trying any other clauses for woman/1.

Note that the use of the cut (!/0) stops any attempt to resatisfy man/1 once

backtracking is forced through fail/1 failing. Note also that the second clause

for woman/1 will not be used after the cut|fail combination has been met.

We call this use of cut in conjunction with fail/0 the cut|fail technique.

The above code for woman/1 is a special case of Prolog's implementation of
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sum(2,Ans1)
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NewN2 is N2-1

NewN2=0

sum(1,1)

Ans11 6=1

sum(1,1)

Figure 9.3: Resatisfying the Goal sum(2,Ans)

negation as failure. Here is a possible de�nition of \+/1 using cut (!/0) and

call/1.

\+(Goal):-

call(Goal),

!,

fail.

\+(Goal).

9.2 Changing the Program

The use of cut (!/0) changes the search space while the program is running.

We now introduce a family of predicates that can be used to change the search

space during program execution. We do this with the strongest request:

Never use these predicates unless you really have to do so

9.2.1 Do Not Do It!

The Prolog database is the set of clauses loaded into Prolog via consult/1 or

reconsult/1 (these predicates can also be used at run-time so they are subject

to the same strictures as the rest described below).

If, during run-time, a new clause is introduced into the Prolog database then

this can change the behaviour of the program as, often, the program's meaning

changes.
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This part of the seach tree pruned by the cut!

Figure 9.4: The E�ect of the cut on the Goal sum(2,Ans)

The predicates that we refer to are as follows:

Program Modifying Predicates

assert(C) Assert clause C

asserta(C) Assert C as �rst clause

assertz(C) Assert C as last clause

retract(C) Erase the �rst clause of form C

abolish(Name,Arity) Abolish the procedure named F with arity N

Note that all the predicates except retract/1 are determinate. They are not

resatis�able. The predicate abolish/2 has mode abolish(+,+) while the

predicate retract/1 can be used with mode retract(-). This latter predicate

can therefore be used to `wipe out' a complete program as in:

?- retract(X),fail.

This will fail with the side-e�ect of removing all the clauses loaded. We can

remove just some clauses as in:

?- retract(foo(1,X)).

will remove all clauses whose heads unify with foo(1,X).

Note that to add a clause which is also a rule you will need to write assert((a:-

b)) and not assert(a:-b). See chapter 10 for an explanation.
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Together, these predicates can be used to implement global ags and a form of

global variable. This almost always makes it harder to understand individual

parts of the program |let alone the disastrous e�ect such changes have on the

declarative reading of programs.

All these predicates are side-e�ect ing. Therefore, backtracking will not undo

these side-e�ects. For example, if assert/1 is used to maintain a database of

results found so far then, on backtracking, Prolog will not remove these results.

Further, the program becomes sensitive to interupts. It has been known for

someone to abort a program (using ^C and then a for abort) between the

asserting of a new clause and the retracting of an old clause |leaving an

unexpected old clause around which interfered badly with the subsequent exe-

cution of the program.

If a problem seems to require the use of assert/1 then, usually, there is another

way of doing things.

9.2.2 Sometimes You have To!

There are one or two occasions when you might want to use these predicates.

The main one is when you have de�nitely proved that something is the case.

That is, there is no way in which some statement (added to the program as a

clause) can be false. Sometimes, of course, a program is supposed to modify

the Prolog database. For example, consult/1 and reconsult/1.

Often, we do not want to modify the program itself|rather, we want to change

the data the program accesses. There is a facility in Edinburgh Prolog known

as the recorded database. This is a way of storing Prolog terms under a key.

Such terms are hidden from the listing/0 program. The predicates that access

this recorded database are:

Program Modifying Predicates

erase(R) Erase the record with reference R.

record(K,T,R) Record term T under key K, reference R.

recorda(K,T,R) Make term T the �rst record under key K, reference R.

recorded(K,T,R) Term T is recorded under key K, reference R.

recordz(K,T,R) Make term T the last record under key K, reference R.

These can be used to squirrel away information to be used by the program

itself. An example is the predicate random/2:

random(Range,Num):- % to choose random number in range

recorded(seed,Seed,Ref), % get seed from database

erase(Ref), % delete old value of seed

Num is (Seed mod Range) + 1, % �t seed into range

NewSeed is (125*Seed+1) mod 4093,% calculate new value

record(seed,NewSeed, Ref). % and assert it into database

This shows how we can maintain information about the seed used to generate

the next pseudo-random number. Note that, unless we want to delete an entry

(using erase/1) we usually use an anonymous variable for the record reference.

Using this family of predicates is more elegant (and sometimes more eÆcient)

but su�ers from the same problems as the assert family.
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9.3 What You Should Be Able To Do

After �nishing the exercises at the end of the chapter:

You should be able to use the cut (!) to implement the

techniques of commit, make{determinate and fail{goal{now

(cut|fail).

You should know how to change the program at run-time and

understand the dangers in doing so. You should know some of

the circumstances when it is acceptable to do so.

You should know how to use the recorded database.

Exercise 9.1 1. Given the following clauses, it is required to place cut(s)

in the program to achieve the given outputs: First, determine what the

output will be without placing any cuts in the program.

female author:-

author(X),

write(X),

write(' is an author'),

nl,

female(X),

write(' and female'),

nl.

female author:-

write('no luck!'),

nl.

author(X):-

name(X).

author(X):-

write('no more found!'),

nl,

fail.

name(sartre).

name(calvino).

name(joyce).

female(murdoch).

female(bembridge).

and here are the desired outputs. Make sure that you use only one cut to

get the desired output.

(a) sartre is an author

no more found!

no luck!

(b) sartre is an author

calvino is an author
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joyce is an author

no more found!

(c) sartre is an author

no luck!

(d) sartre is an author

(e) sartre is an author

calvino is an author

joyce is an author

no luck!

2. Here is an example of code taken from one of the standard Prolog libraries

|only all the cuts have been removed! Try to put them back.

delete([], , []).

delete([KilljTail], Kill, Rest) :-

delete(Tail, Kill, Rest).

delete([HeadjTail], Kill, [HeadjRest]):-

delete(Tail, Kill, Rest).

The semantics is roughly \remove the element named in the second ar-

gument from the list in the �rst argument to produce the list in the third

argument (which does not contain any copies of the element to be re-

moved)".

Therefore, the �rst two arguments are supposed to be inputs and the third

an output. Note that the predicate must be determinate so that, if asked

to Redo, it will fail.

3. De�ne a predicate disjoint/1 which is true only when the argument to

disjoint/1 contains no repeated elements. Make sure that the predicate

is determinate.

Now use the cut|fail method to de�ne the same predicate.

4. Try writing plus/3 which declares that \the �rst two arguments add up to

the third argument provided all the instantiated arguments are integers".

If, however, less than two argument are not integers then the predicate

should fail and print out some pleasing error message.

Note that this is not equivalent to \Z is X + Y" and get the cuts in!



Chapter 10

Prolog Syntax

We describe Prolog syntax more formally.

We introduce the concept of a Prolog term, a variation of the

logical variable and arbitrarily nested terms.

We explain how two Prolog terms are uni�ed and demonstrate

the need for a special check to ensure that we do not get in�nite

datastructures.

We show that lists are also terms and illustrate how to con-

catenate two lists together.

We also show that the structure of every Prolog clause is also

a Prolog term.

Prolog Terms are one of:

� Constant

� Variable

� Compound Term

10.1 Constants

A Constant is one of:

� Atom

� Integer

� Real Number

Atoms are made up of:

� letters and digits: AB...Zab...z01...9 and (underscore)

� symbol: any number of +, -, *, /, n, ^, <, >, =, ~, :, ., ?, @, #, $ &

� quoted strings: 'any old character' |but the single quote character is

handled specially

Normally, atoms start with a lower case letter. Note that, in a quoted atom,

you can include a \ ' " by pre�xing it with another \ ' ". So, to print a \ ' " on

the screen you will need a goal like write(' ' ' ').

96
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10.2 Variables

Variables usually start with a capital letter. The only interesting exception is

the special anonymous variable written and pronounced \underscore". In the

rule

process(X,Y):-

generate( ,Z),

test( ,Z),

evaluate(Z,Y).

the underscores refer to di�erent unnamed variables. For example, here are two

versions of member/2.

member(X,[XjY]).

member(X,[YjZ]):-

member(X,Z).

member(X,[Xj ]).

member(X,[ jZ]):-

member(X,Z).

Note that, in the clause,

know both parents(X):-

mother( ,X),

father( ,X).

the underscores do not refer to the same object. The reading is roughly that \we

know both the parents of X if someone(name unimportant) is the mother of X

and someone else (unimportant) is the father". Note that Prolog regards the

two occurrences of the anonymous variable in the above as di�erent variables.

10.3 Compound Terms

A Compound Term is a functor with a (�xed) number of arguments each of

which may be a Prolog term.

This means that we can arbitrarily nest compound terms. For some examples:

happy(fred)

principal functor = happy

1st argument = a constant (atom)

sum(5,X)

principal functor = sum

1st argument = constant (integer)

2nd argument = variable
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not(happy(woman))

principal functor = not

1st argument = compound term

Nesting compound terms may be of use to the programmer. For example, the

clause

fact(fred,10000).

is not as informative as

fact(name(fred),salary(10000)).

which can be thought of as de�ning a PASCAL-type record structure.

10.4 (Compound) Terms as Trees

Take the compound term

sentence(np(noun(fred)),vp(verb(swims)))

and construct a tree. Start by marking the root of the tree with the principal

functor and draw as many arcs as the principle functor has arguments. For

each of the arguments, repeat the above procedure.

sentence
!
!

!
!

!!

a
a
a
a
aa

np vp

noun verb

fred swims

10.5 Compound Terms and Uni�cation

Consider

?- happy(X)=sad(jim).

|fails, because we know that it is necessary that the principal functors and

their arities are the same for uni�cation to succeed.

?- data(X,salary(10000))=data(name(fred),Y).
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|succeeds, because, having matched the principal functors (and checked that

the arities are the same) we recursively try to match corresponding arguments.

This generates two subgoals:

X = name(fred)

salary(10000) = Y

which both succeed.

10.6 The Occurs Check

This is an aside. If we try to unify two expressions we must generally avoid

situations where the uni�cation process tries to build in�nite structures. Con-

sider:

data(X,name(X)).

and try:

?- data(Y,Y).

First we successfully match the �rst arguments and Y is bound to X. Now we

try to match Y with name(X). This involves trying to unify name(X) with X.

What happens is an attempt to identify X with name(X) which yields a new

problem |to match name(X) against name(name(X)) and so on. We get a

form of circularity which most Prolog systems cannot handle.

To avoid this it is necessary, that, whenever an attempt is made to unify a

variable with a compound term, we check to see if the variable is contained

within the structure of the compound term.

This check is known as the occurs check. If we try to unify two terms and we

end up trying to unify a variable against a term containing that variable then

the uni�cation should fail.

Most Prolog implementations have deliberately missed out the occurs check

|mostly because it is computationally very expensive.

Consequently, the goal X=f(X) will usually succeed where it should really fail.

The most common way in which this error might manifest itself is when the

system tries to print out the binding for X. This usually results in an attempt

to print an in�nite term.

?- X=f(X).

X=f(f(f(f(f(f(f(f(f(f(f(f(f(f(f...

10.7 Lists Are Terms Too

If a list is a term then it must be a compound term. What, then is its principal

functor? Predicates have a �xed arity but lists can be any length |so what is

the arity of the principle functor?
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For the moment only, let us suppose we have a gluing agent which glues an

element onto the front of a list. We know this is a reasonable supposition

because we already have a list destructor/constructor that works like this.

[a,b,c,d] = [HeadjTail]

|results in Head=a, Tail=[b,c,d]

We might think of this constructor as a predicate cons/2. We have to build

lists like this. Note, however, that there is no built-in predicate named cons/2

|the real name for the list constructor function is ./2!

In Prolog, the empty list is represented as []. In some implementations, the

empty list is named \nil" |but the Prolog you will use does not use this name.

Familiar Intermediate Compound Term

List Notation Form Form

[ ] []

[a] cons(a,[])

[b,a] cons(b,[a]) cons(b,cons(a,[]))

[c,b,a] cons(c,[b,a]) cons(c,cons(b,cons(a,[])))

Now to represent the lists as trees |but we will distort them a little:

r []

[]

r []

[a]

a

r r []

[a,b]

b a

You will have noticed that we could have written cons where we have written .

|well, remember that Prolog doesn't use a meaningful name for the construc-

tor cons/2. Really, the constructor is ./2. For (textual) explanation purposes,

we shall stick to using cons/2.

Now we will show how to unpack the structure of a non-at list. We do this by

building up the structure from left to right.

[a,[b,c],d]

goes to

cons(a,[[b,c],d])

goes to

cons(a,cons([b,c],[d])

goes to

now [b,c] is cons(b,[c])

that is, cons(b,cons(c,[]))

cons(a,cons(cons(b,cons(c,[])),[d])

goes to

cons(a,cons(cons(b,cons(c,[])),cons(d,[])))

As this is diÆcult to read, we construct a tree using the method for drawing

trees of compound terms.
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r

a

r

r

b

r

c

[]

r

d

[]

10.8 How To Glue Two Lists Together

We want to `glue', say, [a,b] to [c,d,e] to give the result [a,b,c,d,e]. That

is, we want a predicate append/3 taking two lists as input and returning the

third argument as the required result.

Here are the two lists as trees:

r r r []

c d e

r r []

a b

You might think of checking to see whether cons([a,b],[c,d,e]) correctly rep-

resents the list [a,b,c,d,e]. Look at this `solution' as a tree.

r r r r []

c d e

r r []

a b

It is not the required

r r r r r []

a b c d e

Let's try again:
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r r r []

c d e

r r []

a b

We could solve our problem in a procedural manner using our list deconstructor

as follows:

Lop o� the head a of the �rst list [a,b]

Solve the subproblem of gluing [b] to [c,d,e]

Put the head a back at the front of the result

But we have a subproblem to solve:

Lop o� the head b of the �rst list [b]

Solve the subproblem of gluing [] to [c,d,e]

Put the head a back at the front of the result

But we have a subproblem to solve:

Gluing [] to [c,d,e] is easy..the result is [c,d,e]

First thing to note is that there is a recursive process going on. It can be read

as:

Take the head o� the �rst list and keep it until we have solved the

subproblem of gluing the rest of the �rst list to the second list. To

solve the subproblem simply apply the same method.

Once we are reduced to adding the empty list to the second list,

return the solution |which is the second list. Now, as the recursion

unwinds, the lopped o� heads are stuck back on in the correct order.

Here is the code:

append([],List2,List2).

append([HeadjList1],List2,[HeadjList3]):-

append(List1,List2,List3).

10.9 Rules as Terms

Consider:

happy(X):-

rich(X).

If this is a term then it is a compound term. Again, what is its principal functor

and its arity?
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1 Principal Functor is

:-

Usually, the functor is written in in�x form rather than the more usual pre�x

form.

2 Arity is

2

3 The above rule in pre�x form

:-(happy(X),rich(X)).

But what about

happy(X):-

healthy(X),

wealthy(X),

wise(X).

Trying to rewrite in pre�x form:

:-(happy(X),whatgoeshere?).

Note that the comma `,' in this expression is an argument separator. In the

de�nition of happy/1 above, the commas are read as \and".

Yes,

healthy(X),wealthy(X),wise(X).

is also a compound term with principal functor

,

and arity 2. Since we have to represent three subgoals and the arity of `,' is 2 we

again have a nested compound term. The correct pre�x form for the example

is:

','(healthy(X),','(wealthy(X),wise(X))).

Note: try the goal display((healthy(X),wealthy(X),wise(X))) to see the

\truth". Also, note that, for a reason as yet unexplained, you need an extra

pair of brackets around the goal you want printed via display/1.

Here is the tree:
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,
�
�

�
�
�
�

wealthy(X)

H
H
H
H
H
H

wise(X)

,
�
�

�
�

�
�

healthy(X)

H
H
H
H
H
H

:-
�

�
�
�

�
�

happy(X)

H
H
H
H
H
H

10.10 What You Should Be Able To Do

You should be able to use the anonymous variable correctly.

You should know how to form Prolog atoms.

You should be able to construct a tree to represent any com-

pound term |including lists and rules.

You should be able to determine whether or not two Prolog

terms unify.

You should know what the occurs check is for and when it

should be used.



Another Interlude:

Input/Output

We describe how to make use of input and output streams.

We show how to read from �les and write to �les.

We describe how to read individual Prolog terms and how to

build a `consult' predicate.

We illustrate the development of several example programs to

demonstrate how to write Prolog programs.

We discuss a number of practical issues.

Testing a Predicate

Suppose that we want to test the predicate double/2 to see if it works for its

intended inputs.

double(X,Y):-

Y is 2*X.

To do this, we write a test predicate:

test:-

read(X),

double(X,Y),

write(Y),

nl.

Here is a transcription of executing the query test:

?- test.

j: 2.

4

yes

Note that, since we are using read/1 which only accepts valid Prolog terms

terminated by a \." followed by Return (in this case), we have to enter input

integers as 2.!
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Now to make this into a loop. The easy way is to recursively call test/0. We

would prefer, however, to put in a test so that we can abort the loop. This

requires an end-of-input marker.

test:-

read(X),

\+(X = -1),

double(X,Y),

write(Y),

nl,

test.

When we input the end-of-input marker (-1) we backtrack to read/1 which fails

(for thisProlog implementation!) and test/0 fails as there are no other clauses.

We could always add a second clause (after |not before) which guaranteed that

the goal test succeeded once the end-of-input marker was met.

Note that it is up to us to make sure that read/1 is never asked to

process non-integer inputs. We could always de�ne and use our own

read integer/1 to catch non-integer input.

Input/ Output Channels

The standard input stream is taken from the keyboard and is known as \user".

Think of the stream of characters typed in as issuing from a �le called \user".

The standard output stream is directed to the terminal screen and is known

as \user" too.

Think of the stream of characters issuing from Prolog as going to a �le called

\user".

Input/ Output and Files

Let us take our input data from a �le called \in".

go:-

see(in),

test,

seen.

We wrap the test/0 predicate into a predicate go/0 which takes input from

the speci�ed �le \in". This �le should contain legal Prolog terms |for the

predicate double/2 we want something like:

2.

23.

-1.
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Facilities for Redirecting Input

see/1 Take input from the named �le

seen/0 Close the current input stream and take input from user

How do you �nd out what the current input stream is?

seeing/1 Returns name of current input stream

Now to redirect output to a �le named \out":

go:-

tell(out),

see(in),

test,

seen,

told.

Using the same �le \in" as previously, \out" will contain:

4

46

Facilities for Redirecting Output

tell/1 Send output to the named �le

told/0 Close the current output stream and send output to user

How do you �nd out what the current output stream is?

telling/1 Returns name of current output stream

The End of File Marker

When read/1 encounters the end of a �le it returns the Prolog atom

end of �le

So we can rewrite test/0:

test:-

read(X),

\+(X = end of �le),

double(X,Y),

write(Y),

nl,

test.

and now we have our end-of-input marker as the atom end of �le.
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Input of Prolog Terms

Both consult/1 and reconsult/1 have been described in chapter 5.5. Prolog

will try to read a clause at a time from the named �le. So any error message

only refers to the current term being parsed.

Of course, if Prolog cannot �nd the end properly then we have problems. The

Prolog you are using will load all clauses that parse as correct and throw away

any ones that do not parse.

Some example problems: the �rst is where we have typed a `,' instead of a `.'.

a:- a:-

b, b,

c, is read as c,

d:- d:-e.

e.

There are problems with this reading which will be reported by Prolog. Here

is another problem caused by typing a `.' for a `,'.

a:- a:-

b. b.

c, is read as c,d:-e.

d:-

e.

This is basically illegal as we are seen to be trying to insert a clause de�ning

,/2 into the Prolog database.

De�ning Your Own Consult

For this, we need some additional information about the side-e�ecting predicate as-

sert/1. Note that you should make use of this predicate as little as possible. If tempted

to use it, think again.

The predicate assert/1 takes a legal Prolog clause as its argument. A call with a legal

argument will always succeed with the side-e�ect of inserting the clause in the database

|usually, at the end of any clauses with the same principle functor and arity (there

is a variant, asserta/1, which can be used to position a new clause for a predicate at

the beginning).

Essentially, we redirect input to a named �le, read a clause, assert it and recurse.

my consult(File):-see(File),

my read(X),

my process(X),

seen.

my process(X):-

\+(X=end of �le),

my assert(X),!,

my read(Y),

my process(Y).

my process(X):-
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\+(X=end of �le),

my read(Y),!,

my process(Y).

my process(end of �le).

my read(X):-

read(X),!.

my read(X):-

my read(X).

my assert(X):-

assert(X).

There are some subtleties here. We have to consider various problems with, inevitably,

di�erent treatments.

The �rst problem is that of syntactically incorrect input. To handle this, we have

de�ned a resatis�able form of read/1. The predicate my read/1 is designed so that,

if read/1 fails, we just try again. Since read/1 has the side-e�ect of throwing away

the o�ending input, we can have a go with another chunk of input. This mimics the

behaviour of consult/1.

The second problem is to make sure that end of �le is treated properly |we do

not want to insert it into our database nor do we want to force backtracking to take

place back into my read/1! The simplest solution is to realise that we only want to

keep resatisfying my read/1 if read/1 fails owing to a syntactic error. Once read/1

succeeds we would like to be committed. Hence we use case selection inmy process/1

making use of \+/1. This means that, on encountering end of �le, we will use the

third clause of my process/1.

There is a third problem which this procedure can handle. There are syntactically

correct Prolog terms which are not legal Prolog clauses. For example, a,b:-c. is a

legal term but not a legal clause. The predicatemy assert/1 will fail and we will then

try the second clause ofmy process/1 which will pick up some more input and try to

handle that. The cut (!/0) is needed in the �rst and second clauses of my process/1

because we are certain that if we have successfully `processed' a clause then we are

committed from there on.

There is a fourth problem. If there is a query (or directive) in the �le consulted such

as ?- write(hello) then we do not want to assert this clause |we want to issue

some goal to the Prolog interpreter. This could be handled by two extra clauses for

my assert/1. One of these would be my assert((?- X)):- !,call(X). Fixing this

program to deal with this fourth diÆculty can be left as an exercise for the reader

(again).

The �fth problem is to write your own version of reconsult/1. This is a little trickier.

The sixth problem is not immediately obvious |but remember that Prolog converts a

grammer rule like s --> np,vp into something like s(S,S0):- np(S,S1), vp(S1,S0).

Therefore, we ought to arrange to handle this.

In reality there is one further problem. It is possible to write one's own transformation

rule to turn some legal Prolog clause into another one using term expansion/2.

This, however, can be hidden inside the call to the predicate that transforms grammar

rules.

What You Should Be Able To Do

After �nishing the exercises at the end of the chapter:
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You should be able to write a program to read input from one

�le and write output to another �le.

You should also understand something of how the Prolog consult-

loop works and (possibly) be able to write your own version.



Chapter 11

Operators

We describe some familiar operators.

We de�ne the three forms which they may take.

We introduce and describe the notions of operator precedence

and operator associativity.

We then describe how to de�ne new operators and then how to

parse complex terms containing several user-de�ned operators.

An operator is a predicate which has some special properties.

Here is a list of ones we have met already:

+ � � =

< =< > >=

= is \+

; �� > : � ?�

Note that \+/1 is an operator. So we can write \+(man(jim)) as \+

man(jim).

11.1 The Three Forms

11.1.1 In�x

Here are some examples of arithmetic expressions that use in�x operators:

3 + 2 23� 2 8 � 2 30=2 2 < 7 6 > 2 Y is 23

All the in�x operators used in the above are necessarily binary operators |i.e.

they have an arity of 2. Each of the above terms can be rewritten in `regular'

Prolog syntax as

+(3; 2) �(23; 2) �(8; 2) =(30; 2) < (2; 7) > (6; 2) is(Y; 23)

Remember that the use of the inequality operators requires that both arguments

are evaluated before uni�cation is applied. For is/2, only the second argument

is evaluated before uni�cation is applied.

Here are some examples of in�x operators used in the basic syntax of Prolog

clauses.
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healthy(jim), wealthy(fred) adjective --> [clever] a:- b

These in�x operators are also binary. Here are their regular forms.

','(healthy(jim), wealthy(fred)) -->(adjective, [clever]) :-(a,b)

Note how the functor ,/2 has to be `protected' with single quotes as in ','.

11.1.2 Pre�x

Some expressions using pre�x operators:

\+ man(jane) + 23 - 12

and here are the equivalent regular expressions:

\+(man(jane)) +(23) -(12)

Inevitably, pre�x operators are associated with unary predicates |-i.e. they

have an arity of 1.

11.1.3 Post�x

There are no prede�ned post�x operators but this one might have existed!

X is a factorial

If it had then it would have been writable in the regular form is a factorial(X).

As with pre�x operators, post�x operators have an arity of 1.

11.2 Precedence

We will now look at the structure of some Prolog expressions:

happy(jim):-

healthy(jim),

wealthy(jim).

We assume that it is always possible to represent a Prolog expression as a tree

in an unambiguous way. Is this

wealthy(jim)

,
�
�

�
�

�
�

healthy(jim)

H
H
H
H
H
H

:-
�

�
�
�

�
�

happy(jim)

H
H
H
H
H
H
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which corresponds to happy(jim):- (healthy(jim),wealthy(jim)) or

wealthy(jim)

:-
�

�
�
�

�
�

happy(jim)

H
H
H
H
H
H

,
�
�
�

�
�
�

healthy(jim)

H
H
H
H
H
H

which corresponds to (happy(jim):- healthy(jim)),wealthy(jim). We can

see that the �rst version is the one we have taken for granted. We describe this

situation by saying that ,/2 binds tighter than :-/2.

This relates to the way we are taught to calculate arithmetical expressions in

that we are told that we do multiplication before addition (unless brackets

are used to override this). But there is another way to think of things: how to

construct the expression tree. In this case, we choose the root to be the operator

that is `loosest' (in opposition to `tightest' for computational purposes).

The issue is decided by operator precedence.

To construct a tree which describes a Prolog expression we �rst look for the

operator with the highest precedence (this is in some sense the opposite of the

way we compute a function). If this operator is an in�x one, we can divide

the expression into a left hand one and a right hand one. The process is then

repeated, generating left and right subtrees.

Operator Precedence

:- 1200

--> 1200

, 1000

\+ 900

is 700

< 700

= 700

=< 700

> 700

>= 700

+ 500

- 500

* 400

/ 400

We still need to decide what to do with two operators of the same precedence.

Should we regard

3 - 2 - 1
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as one or the other of:

1
-
�

�
�

3

H
H
H

-
�

�
�

2

H
H
H

1

-
�
�
�

2

H
H
H

-
�
�
�

3

H
H
H

and, remember, that we are not yet talking about arithmetic evaluation!

We can use brackets to distinguish

(3 - 2) -1

from

3 - (2 - 1)

but we have a special way of distinguishing which interpretation we wishProlog

to make. In the above arithmetic example, the left hand tree has two subtrees

hanging from the root \-". The left hand one has \-" as its root while the

right hand one is not so allowed. We say that this interpretation of \-" is left

associative.

The normal interpretation of \-" is left associative. The common left associative

operators are:

* / + - div 1

Are there any right associative operators? Yes |consider how we are to dis-

ambiguate

a,b,c

where \a", \b" and \c" are all legal Prolog subgoals.

c

,
�

�
�

a

H
H
H

,
�

�
�

b

H
H
H

(a,b),c

(left associative)

c

,
�
�
�

b

H
H
H

,
�
�
�

a

H
H
H

a,(b,c)

(right associative)

The answer is that ,/2 is right associative. Usually, we do not have to concern

ourselves with the details of this.

In all the previous cases we have allowed exactly one subtree to have, as its

root, the same operator as the \principal" root. We can extend this to permit

operators of the same precedence. Thus, since \+" and \-" have the same

precedence, we know that both operators in

1div/2 is integer division. It is a synonym for ///2 |read this as an in�x operator of

arity 2 written //.
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3 - 2 + 1

are left associative (and legal) and therefore the expression represents

(3 - 2) +1.

Sometimes, we do not wish to permit left or right associativity. For example,

obvious interpretations of:

a:- b :- c

Y is Z+1 is 3

a --> b --> c

do not readily spring to mind. Therefore we make it possible to forbid the

building of expressions of this sort.

11.3 Associativity Notation

11.3.1 In�x Operators

Left Associative yfx

Right Associative xfy

Not Associative xfx

Note that \x" indicates that the indicated subtree must have, as its root, an

operator of lower precedence than that of the root.

The \y" indicates that the root of the subtree may have the same precedence

as the operator that is the root of the tree.

The \f" indicates the operator itself.

11.3.2 The Pre�x Case

Here are a number of unary, pre�x operators:

Operator Precedence

:- 1200

?- 1200

\+ 900

(unary) + 500

(unary) - 500

We regard a pre�x operator as having only a right hand subtree. We must

decide which of the above may be right associative. That is, which of the

following make sense:

+ + 1

\+ \+ happy(jim)

:- :- a

Of these possibilities, we only accept \+/1 as right associative.
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11.3.3 Pre�x Operators

Right Associative fy

Not Associative fx

11.3.4 Post�x Operators

As we have no examples here at the moment, here is the table:

Left Associative yf

Not Associative xf

11.4 How to Find Operator De�nitions

It is possible to �nd out the associativity and precedence of any operator

|whether it is a built-in one or a user-de�ned one| with the help of cur-

rent op/3. For example, here is how to �nd out about +:

?- current op(X,Y,+).

X=500

Y=fx ;

X=500

Y=yfx

produces two solutions (if we ask for a further solution after the �rst one is

found). The �rst solution is the precedence and associativity for unary + (in

that order) and the second is for binary +. Note that you can get all the

operators currently known with the help of a failure-driven loop:

?- current op(X,Y,Z),write op(X,Y,Z),fail.

write op(Precedence,Associativity,Operator):-

write('Operator '),write(Operator),

write(' has precedence '),write(Precedence),

write(' and associativity '),write(Associativity),

nl.

You will �nd some strange things amongst the 45 di�erent operator declarations.

11.5 How to Change Operator De�nitions

We will illustrate with an in�x operator and/2 and another or/2. We will

choose the precedence of and/2 to be greater than that of or/2. This means

that we interpret:

she is clever and rich or healthy

as
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healthy

or
�

�
�

��

rich

H
H
H
HH

and
�

�
�

��

she is clever

H
H
H
HH

Since and/2 reminds us of ,/2 we will give it the same precedence and asso-

ciativity:

Precedence Associativity

1000 xfy

The required command is

op(1000,xfy,and).

The predicate op/3 takes a precedence as its �rst argument, a legal associa-

tivity for its second argument and an operator name for its third argument.

If given legal arguments, it succeeds with the side-e�ect of adding or changing

an operator de�nition. You can even change the existing de�nitions |but, be

warned, this can be dangerous.

We could also make it like ,/2 by de�ning and/2 as in:

X and Y :-

call(X),

call(Y).

Note that we have to have de�ned and/2 as an operator before we can write

the head of this clause as X and Y.

For or/2 we choose precedence of 950 (less than and/2) and associativity of

xfy (the same as and/2) with:

op(950,xfy,or)

and de�ne it as equivalent to:

X or Y :-

call(X).

X or Y :-

call(Y).
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11.6 A More Complex Example

We now try to represent data structures that look like:

if a and b or c then d

As we already have a representation for \a and b or c", this reduces to repre-

senting

if a then b

We will make \then" an in�x operator of arity 2. Because both subtrees might

contain and/2 we will need to make then/2 of higher precedence than and/2

|say,1050 and not associative. Hence:

op(1050,xfx,then).

This means that \if" must be a pre�x operator. As we do not wish expressions

of the form

if if a

we must make if/1 of higher precedence than then/2 (say, 1075) and if/1 must

be non associative:

op(1075,fx,if).

We can now represent

if a and b or c then d

as the tree

if
H
H
H
HH
then
�
�

�
��

H
H
H
HH

d

c

or
�
�

�
��

b

H
H
H
HH

and
�

�
�
��

a

H
H
H
HH
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or, as the Prolog term

if(then(and(a,or(b,c)),d))

This Prolog term is diÆcult to read but unambiguous while the representation

using operators is easy to read but depends heavily on your understanding the

precedences and associativities involved. All right if you wrote the code but the

code is harder for someone else to read.

11.7 What You Should Be Able To Do

After �nishing the exercises at the end of the chapter:

You should be able to parse a complex Prolog term that in-

cludes several built-in operators.

You should be able to do the same thing with user-de�ned

operators.

You should be able to de�ne your own in�x, pre�x and post�x

operators.

Exercise 11.1 Given the following declarations of precedence and associativity,

express this clause as a tree.

rule31: if colour of wine =white

and body of wine =light or body of wine=medium

and sweetness of wine =sweet or sweetness of wine=medium

then wine =riesling con�dence factor 1000.

Operator Precedence Associativity

: 975 xfy

if 950 fx

then 949 xfy

and 800 xfy

or 750 xfy

con�dence factor 725 xfy

= 700 xfx

of 595 xfy
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Advanced Features

We describe predicates provided for examining terms.

We show how to �nd all the solutions to a goal.

We describe di�erence lists and illustrate their use

We describe some aspects of good Prolog programming style.

We summarise the extent to which programming Prolog

is logic programming and mention some interesting develop-

ments.

We discuss some powerful features that Prolog o�ers then the important sub-

ject of programming style. Finally, some aspects of Prolog are mentioned that

demonstrate that the development of Logic Programming is by no means over.

12.1 Powerful Features

12.1.1 Powerful Features |Typing

Prolog is a very weakly typed language. In some sense, the only type is the

term.

Not all these features are �rst order predicate logic. Nevertheless they give

great power into the hands of the programmer.

predicate/arity succeeds if the argument is

atom/1 atom

integer/1 integer

number/1 integer or real

atomic/1 atom or integer or real

var/1 uninstantiated variable

nonvar/1 not an uninstantiated variable

We demonstrate their use �rst by de�ning type/2 which has mode type(+,-

). It takes a term as its �rst argument and returns a type for the term. On

redoing, it will attempt to �nd another type. To complicate the matter, we

have specially distinguished lists |which are compound terms.

type(X,variable):-

var(X),!.

type(X,atom):-

120
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atom(X).

type(X,integer):-

integer(X).

type(X,real):-

number(X),

\+(integer(X)).

type(X,list):-

nonvar(X),

X=[ j ].

type(X,compound term):-

\+(atomic(X)),

nonvar(X).

We have to use cut !/0 in the �rst clause because, otherwise, we can generate

spurious solutions for the goal type(X,Y). There is one bug in the above |

the goal type(X,X) succeeds with X=atom! This is not really wanted. How

would you guard against this?

12.1.2 Powerful Features |Splitting Up Clauses

The �rst predicate we look at is good for `picking up' clauses from the current

Prolog database. The remainder are useful for destructing and constructing

arbitrary Prolog terms.

clause/2

happy(X):-

healthy(X),

wealthy(X).

happy(jim).

The goal clause(happy(X),Y) produces

Y = healthy(X), wealthy(X)

on redoing,

Y = true

Note the second answer returns a body of true for the clause happy(jim).

For SICStus (and Quintus), the �rst argument of clause/2 must specify at

least the principle functor. That is, a call such as clause(X,Y) will fail.

However, for many Prolog systems, any calling pattern can be used: this

means that we can also extract all the clauses which are facts with the goal

clause(X,true).

Before we show how to get round this limitation in SICSTUS, we illustrate with

a simpli�ed version of listing/0 which we name list/0:
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list:-

clause(X,Y),

write clause(X,Y),

fail.

list.

write clause(X,Y):-

write((X:-Y)),

nl.

Now this can be made to work for SICStus by using predicate property/2.

This predicate can be called as in:

?- predicate property(X,interpreted).

and X will be bound to the head of the �rst clause found that is \interpreted"1.

So the amended code for list/0 is:

list:-

predicate property(X,interpreted),

clause(X,Y),

write clause(X,Y),

fail.

list.

Note however that this fails to print the �nal `.' of a clause and that it also

prints facts as if they were rules with their body equal to true. We can improve

on this a little by changing write clause/2.

write clause(X,true):-

write(X),

write('.'),nl.

write clause(X,Y):-

\+(Y=true),

write(X),

write((:-)),nl,

write body(Y).

write body(Y):-

write(' '),

write(Y),

write('.'),nl.

Note that we have used \+/1 to make the code determinate. If we wanted to

put each subgoal on a separate line then we could rewrite write body/1.

1If you have compiled your program then you now have a problem!
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functor/3

?- functor(fact(male(fred),23),F,N).

F=fact

N = 2

The predicate functor/3 can be used to �nd the principal functor of a com-

pound term together with its arity. It can also be used to generate structures:

?- functor(X,example,2).

X = example(A,B)

except that the variables will be shown di�erently.

arg/3

?- arg(1,fact(male(fred),23),F).

F = male(fred)

The predicate arg/3 is used to access a speci�ed argument for some Prolog

term.

As an example we will provide a predicate that uses side-e�ects, while taking

apart an arbitrary Prolog term, to print some information about the term. It

uses type/2 as de�ned previously.

analyse(Term):-

type(Term,Type),

\+(Type=compound term),

\+(Type=list),

write(Term,Type).

analyse(Term):-

type(Term,compound term),

write(Term,compound term),

functor(Term,N,A),

analyse bit(0,A,Term).

analyse bit(Counter,Counter, ):-

!.

analyse bit(Counter,Terminator,Term):-

NewCounter is Counter +1,

arg(NewCounter,Term,SubTerm),

analyse(SubTerm),

analyse bit(NewCounter,Terminator,Term).

write(Term,Type):-

write(Term),

write(' is of type '),

write(Type),nl.



124 Another Interlude

The predicate analyse/1 uses both functor/3 to �nd the arity of a term and

then uses arg/3 to work through the various argument of the term one at a

time. Note how we dive down into the substructure of a term before �nishing

the description of each of the arguments in the term. Lists, by the way, are not

treated specially by analyse/1.

=../2

Now =.. is pronounced \univ". It can be used to map a term onto a list in

this way:

Term ! [ Functor, Arg1, Arg2, . . . Argn]

For example, =../2 can be used with mode =..(+,+) and mode =..(+,-):

?- foo(12,fred)=.. [foo,12,fred].

yes

?- fact(male(fred),23)=.. X

X= [fact,male(fred),23]

The predicate can also be used with mode =..(-,+).

?- X=.. [fact,male(fred),23].

X = fact(male(fred),23)

Here are some more examples:

?- (a + b) =.. X.

X = [+, a, b]

?- [a,b,c] =.. X.

X = ['.',a,[b,c]]

We demonstrate a real application where we have a predicate triple one/2

which takes as input an integer (�rst argument) and outputs (second argument)

its triple. We are going to use =../2 to triple each element of an input list.

This will mimic the behaviour of a predicate triple/2 previously used as an

example. We de�ne a predicate map/3 which takes a predicate name as its

�rst argument, the input list as the second argument and returns the output

list as the third argument as in:

?- map(triple,[1,2,3],X).

X=[3,6,9]

We give the special case with the �rst argument as triple and then generalise

it.
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map(triple,[],[]).

map(triple,[H1jT1],H2jT2]):-

X=.. [triple,H1,H2],

call(X),

map(triple,T1,T2).

The main trick is to assemble a term looking like triple(H1,H2) using =../2

and then use call/1 to execute the goal.

Now we replace the speci�c reference to triple and provide a more general

version that can handle the task for arbitrary predicates of arity 2 |provided

that they are de�ned to work with mode predname(+,-).

map(Functor,[],[]).

map(Functor,[H1jT1],H2jT2]):-

X=.. [Functor,H1,H2],

call(X),

map(Functor,T1,T2).

The next task is to allow for an even more general version that can do the same

sort of thing for predicates with an arity of more than two!

For example, de�ne a predicate npl/3 that takes a positive integer as �rst

argument and a number as its second argument, returning the third argument

as the second argument `npled' as in:

?- nple(7,5,X).

X=35

We de�ne nple/3:

nple(Multiplier,In,Out):- Out is Multiplier*In.

Now to look at the code. Now, we need to give the new version ofmap/3 a �rst

argument which contains the necessary info | viz the name of the predicate

and the constant multiplier.

We can do this as the term nple(N) where N is the multiplier. We transform

the term nple(N) into a list [nple,N] and then append the two arguments H1

and H2 using the standard append/3. This list is then rebuilt as the term

nple(N,H1,H2) and then executed via call/1.

map(nple(N),[],[]).

map(nple(N),[H1jT1],[H2jT2]):-

nple(N)=.. List,

append(List,[H1,H2],NewList),

X=.. NewList,

call(X),

map(nple(N),T1,T2).
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Nowhere does this really depend on the arity of nple(N) |so we just replace

the term nple(N) by Term.

map(Term,[],[]).

map(Term,[H1jT1],[H2jT2]):-

Term=.. List,

append(List,[H1,H2],NewList),

X=.. NewList,

call(X),

map(Term,T1,T2).

12.1.3 Powerful Features |Comparisons of Terms

There is a standard order de�ned on Prolog terms |i.e. one Prolog term

can be compared with another and we can reach a decision about which comes

before which. The predicates that achieve this are not part of the �rst order

predicate logic. We only list them briey here.

==/2

If you do not want to unify two Prolog terms but you want to know if the

terms are strictly identical:

?- X == Y.

no

?- X=Y, X == Y.

yes

n==/2

This is equivalent to the Prolog de�nition

X \== Y:-

\+ (X == Y).

@>/2, @>=/2, @</2 and @=</2

These are the predicates that can be used to decide on the ordering of terms.

12.1.4 Powerful Features |Finding All Solutions

Remember that a query foo(X) is really asking something akin to whether (in

predicate logic) 9 X foo(X). How do we ask 8 X foo(X)? The answer, for

situations where there are (obviously) a �nite set of solutions is to use one of

two special built-in predicates.
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setof/3

The semantics for setof/3 are unpleasant. It has to be used with care. We

take this in three stages.

Stage 1

Suppose that we have these (and only these) facts about knows/2.

knows(jim,fred).

knows(alf,bert).

How do we �nd all the solutions of the form knows(X,Y)? Now the goal

knows(X,Y) is equivalent to asking \does there exist some X and some Y

such that knows(X,Y)". For all solutions we want to ask something like \for

what set of values of X and set of values of Y is it true that for all X and all

Y then knows(X,Y)".

setof([X,Y],knows(X,Y),Z).

Z = [[jim,fred],[alf,bert]]

where Z is the set of all solution pairs [X,Y] such that knows(X,Y).

Stage 2

Now suppose we only want to gather the �rst element of the pairs.

?- setof(X,Y^knows(X,Y),Z).

Z = [jim, alf]

Wait a minute . . . what is that Y^ bit? You have to existentially quantify any

variables in which you are not interested if you are to get the set of all solutions

and a reasonably clean semantics.

You have to read this as \�nd the set Z consisting of all values of X for which

there exists a valueY for which knows(X,Y)". TheY^ is interpreted as \there

exists a Y" and is vital.

Stage 3

If you leave o� the existential quanti�cation the semantics of setof/3 becomes

conditional on the status of Y at the time the predicate is called.

foo(2,3).

foo(3,4).

foo(4,3).

?- setof(X,foo(X,Y),Set).

Set = [2,4]
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In this case, Set is the set of all X for which there is a speci�c (but somewhat

arbitrary) Y such that foo(X,Y).

Note that the �rst argument is really a variable pattern which speci�es which

variables get put into the list of solutions and how they are to appear. For

example:

?- setof(�rstbit(X),Y^foo(X,Y),Set).

Set = [�rstbit(2),�rstbit(3),�rstbit(4)]

Note also that any repeated solutions are removed and all the solutions are

placed in a standard ordering.

bagof/3

The only di�erence between bagof/3 and setof/3 is that bagof/3 leaves

repeated solutions in the answer. Note that bagof/3 is less expensive than

setof/3.

Also note that, if there are no solutions then both bagof/3 and setof/3 fail!

If you want a predicate that behaves like setof/3 (or bagof/3) but succeeds

with an empty list if there are no solutions then write something like:

all(X,Y,Z):-

setof(X,Y,Z),

!.

all(X,Y,[]).

which will behave in the desired way.

12.1.5 Powerful Features |Find Out about Known Terms

It is occasionally useful to �nd out various aspects of the system's knowledge

|e.g. the known atoms that are not used by the system, the predicates de�ned

by the user or the predicates de�ned by the system. We only mention these

facilities in passing.

current atom/1

?- current atom([]).

yes

current functor/2

Many Prolog systems implement this feature |but not SICStus.

?- current functor(atom,atom(fred)).

yes
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current predicate/2

knows(fred).

?- current predicate(knows,knows(fred)).

yes

current op/3

?- current op(1200,xfx,(:-)).

yes

Note the use of brackets around :- to allow the term to be parsed correctly.

All the above can be used to generate information as well!

12.2 Open Lists and Di�erence Lists

We now briey describe a valuable technique for programming in Prolog.

Consider the list [a,b,cjX]. We know the structure of the list up to a point.

r r r X

a b c

If, at some point, we know that X is unbound then we say that we have an

open list. We also say (informally) that X is a `hole'.

Note that we are already familiar with what happens if we unify X with, say,

[d]:

?- List=[a,b,cjX], X=[d].

List=[a,b,c,d]

Here, we started with an open list and `�lled' in the hole with the structure:

r []

d

This results in a proper list (say) |the normal representation for a list. We

generally think of a list processing procedure as taking a proper list as input

and returning a proper list as output.

Now suppose that we realise that we do not have to represent the idea of a list

as a proper list. There is nothing to stop us saying that we will represent a list

of things as an open list. That is, we do this instead:
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?- List=[a,b,cjX], X=[djX1].

List=[a,b,c,djX1]

and partially `�ll in' the `hole' at the end of the list.

r X

d

Now we can think of open list processing where we take an open list as input

and return an open list as output.

Of course, if we have an open list as output we can always convert it into a

proper list by `�lling in' the hole with the empty list (note that, in this case,

we could �ll in the hole with any proper list) |as in:

?- List=[a,b,cjX], X=[d,e,f].

List=[a,b,c,d,e,f]

Hang on a minute! We seem to be doing what append/3 does here (with

mode append(+,+,-))! There is a di�erence, however, as the �rst argument

is `input' partially instantiated and is `output' wholly instantiated!

If we had the �rst list expressed as an open list then all we have to do is to de�ne

a predicate that �lls in the hole with the second list. Here is a very naive (and

limited) de�nition of this sort of append/3|we shall call it open append/2.

open append([H1,H2,H3jHole],L2):-

Hole=L2.

?- X=[a,b,cjHo],open append(X,[d,e,f]).

X=[a,b,c,d,e,f]

We have turned an open list into a proper list alright but in a limited way

because our de�nition of open append/2 assumes that we have a list with

three elements and the hole. We must improve on this.

If we want to reason about open lists then we often want to say something like

\take the open list and �ll in the hole with . . . ". Consequently, we would like to

say that a certain term is an open list with such-and-such a hole. This suggests

a new representation for the idea of a list |we represent a list of terms as an

open list together with the hole.

This representation is known as a di�erence list |for a reason that will become

apparent. Such a representation might be that the list of the terms a, b and

c taken in order are represented by two terms |[a,b,cjHole] and Hole. Now

let us rewrite open append/2 as di�erence append/3. We input the open

list, the hole and the list to be appended.

di�erence append(OpenList,Hole,L2):-

Hole=L2.
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?- X=[a,b,cjHo],di�erence append(X,Ho,[d,e,f]).

X=[a,b,c,d,e,f]

This is better but we now will introduce a notation for di�erence lists. Since

the list we are really interested in is always the open list without the hole we

will represent di�erence lists like this:

[a,b,c,djHole] - Hole

Do not worry about the use of the minus operator |it carries connotations

of subtraction but it is just a convenient uninterpreted (in this context) in�x

operator. We could easily de�ne an operator of our own. Now the above can

be rewritten as:

di�erence append(OpenList-Hole,L2):-

Hole=L2.

?- X=[a,b,cjHo]-Ho,di�erence append(X,[d,e,f]).

X=[a,b,c,d,e,f]-[d,e,f]

Whoops! Now we have returned a di�erence list but we are only really inter-

ested in the open list part |we want to lop o� the hole. We rede�ne di�er-

ence append/2 to be di�erence append/3.

di�erence append(OpenList-Hole,L2,OpenList):-

Hole=L2.

?- X=[a,b,cjHo]-Ho,di�erence append(X,[d,e,f],Ans).

Ans=[a,b,c,d,e,f]

We are nearly there now. We have a strange version of append/3 which takes

a di�erence list as its �rst argument, a proper list as its second argument and

returns a proper list.

We could live with this but let us be systematic and produce a version that

appends a di�erence list to a di�erence list to return a di�erence list. Here is

the �rst attempt to return a proper list given two di�erence lists:

di�erence append(OpenList1-Hole1,OpenList2-Hole2,OpenList1):-

Hole1=OpenList2.

?- X=[a,b,cjHo]-Ho,di�erence append(X,[d,e,fjHole2]-Hole2,Ans).

Ans=[a,b,c,d,e,fjHole2]

Note that we had to change the form of the second argument in order to rep-

resent the proper list [d,e,f ] as a di�erence list.

We have returned an open list but we want a di�erence list. The �rst list has

gained the hole of the second list. All we need to ensure is that we return the

hole of the second list. Here we go again!
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di�erence append(OpenList1-Hole1,OpenList2-Hole2,OpenList1-Hole2):-

Hole1=OpenList2.

?- X=[a,b,cjHo]-Ho,di�erence append(X,[d,e,fjHole2]-Hole2,Ans).

Ans=[a,b,c,d,e,fjHole2] - Hole2

Now we can recover the proper list we want this way:

?- X=[a,b,cjHo]-Ho,di�erence append(X,[d,e,fjHole2]-Hole2,Ans-[]).

Ans=[a,b,c,d,e,f]

One more transformation can be made: you will note that all we are saying in

the body of di�erence append/3 is that the hole of the �rst di�erence list

has to be the open list of the second di�erence list.

di�erence append(OpenList1-Hole1,Hole1-Hole2,OpenList1-Hole2).

We now have an extremely neat way of appending two di�erence lists together

to get a di�erence list. Now, why bother?

Consider the question about how to add an element to the front of a list. This

is easy because you can, for example, add X=a to the list Y=[b,c,d] as in

[XjY]. Now try to write a predicate add to back/3 to take an element and

add it to the end of a list. This does not work.

add to back(El,List,Ans):-

Ans=[ListjEl].

?- add to back(a,[b,c,d],X).

X=[[b,c,d]ja]

Not only is this not even a proper list (it does not end in []) but it is not equal

to [b,c,d,a]! What we have to do is something like:

add to back(El,[],[El]).

add to back(El,[HeadjTail],[HeadjNewTail);-

add to back(El,Tail,NewTail).

This is an expensive procedure. We have to do many computations before

getting to the back of the list. We can, however, use di�erence lists to do this:

?- di�erence append([b,c,djHole1]-Hole1,[ajHole2]-Hole2,Ans-[]).

Ans=[b,c,d,a]

This is a cheap computation. Now we could de�ne a version of add to back/3

for di�erence lists:
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add to back(El,OpenList-Hole,Ans):-

di�erence append(OpenList-Hole,[EljElHole]-ElHole,Ans-[]).

?- add to back(a,[b,c,djHole]-Hole,Ans).

Ans=[b,c,d,a]

Exercise 12.1 This is a set of exercises on di�erence lists. The �rst two ex-

ercises should be a rehearsal of examples from the previous notes.

1. Just for practice, de�ne di� append/3 which takes two di�erence lists

and returns a third di�erence list which is the second appended to the

third. That is, you should get:

?- di� append([a,bjX]-X,[c,d,ejY]-Y,Answer).

Answer = [a,b,c,d,ejY] - Y

2. Again, just for practice, de�ne add at end/3 which adds the �rst argu-

ment to the end of a di�erence list (the second argument) and returns the

result (the third argument). That is, you should get:

?- add at end(e,[a,b,c,djX]-X,Answer).

Answer = [a,b,c,d,ejY] - Y

3. Now de�ne a predicate di� reverse/2 which reverses the �rst list (1st

argument) to produce the second argument. That is:

?- di� reverse([a,b,cjX]-X,Answer).

Answer = [c,b,ajY] - Y

The idea is that a di�erence list is both input and output.

4. Now write di� atten/2 to atten a proper list which consists of integers

or constants or lists of these.

?- di� atten([1,2,[3,4,[5,4,[3],2],1],7],Ans).

Ans=[1,2,3,4,5,4,3,2,1,7jZ]-Z

5. Now write di� quicksort/2. This should take a di�erence list as its �rst

argument basically consisting of integers and return a di�erence list as its

second argument with the integers in order smallest to largest.

?- di� quicksort([3,1,2jX]-X,Ans).

Ans=[1,2,3jY]-Y

Here is a version of quicksort in Prolog.
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quicksort([],[]).

quicksort([HeadjTail],Sorted):-

split(Head,Tail,Small,Big),

quicksort(Small,SortedSmall),

quicksort(Big,SortedBig),

append(SortedSmall,[HeadjSortedBig],Sorted).

split( ,[],[],[]).

split(X,[YjTail],[YjSmall],Big):-

X > Y,

split(X,Tail,Small,Big).

split(X,[YjTail],Small,[YjBig]):-

X =< Y,

split(X,Tail,Small,Big).

6. Now try to use a di�erence list to simulate a queue. The queue is repre-

sented by a di�erence list. Arrivals are stuck on the back of the list using

add at end/3 and departures are removed from the front of the list in

the obvious way. You will have to write other predicates to control the

number of arrivals and the number of departures in some suitable way.

You might use the previously de�ned random number generator.

Try to think about what happens if you try to remove the �rst element of

an empty queue!

12.3 Prolog Layout

We now make some comments on some aspects of good programming practice

with particular reference to program layout.

12.3.1 Comments

All programs should be carefully commented. This is for the standard rea-

sons of making program maintenance easier. As Prolog has such a regular

underlying syntax, super�cially similar programs can behave very di�erently.

Consequently, program comments can be very helpful in aiding program com-

prehension.

Program Headers It is sensible that a large program is divided up into self

contained chunks |or, at least, chunks with explicit references made to the

other chunks necessary for the program to run.

The main program is then built out of the various chunks. In SICStus Prolog,

the programmer has to use �les to represent `program chunks'. Indeed, it is

quite common for a large program to be described by a single �le which loads

all the necessary �les in the right order.

Therefore, it is sensible to provide headers for each �le as in:

% Program: pract2.pl

% Author: aidai

% Updated: 27 October 1988
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% Purpose: 2nd AI2 Practical

% Uses: append/3 from utils.pl

% De�nes:

% foo(+,-)

% baz(+,+)

This header has several advantages which need no elaboration.

Section Comments There is a special form of comment which should be

used with great care. Here is an illustration:

\*

we now de�ne append/3 so that

it can be used as a generator

*\

Everything between the \/* ... */" will be ignored by Prolog. It is best to put

this just before the code discussed.

The danger is that the programmer might forget to close o� an opened comment

which normally has disastrous consequences. On the positive side, it can be used

to comment out chunks of code during program development.

End of Line Comments The use of the % sign to indicate a comment is

generally safer because the comment is terminated automatically by an end of

line. Consequently, this form of comment is preferred.

There are two forms of usage: as a descriptor for a predicate and as comments

on individual clauses and subgoals in a clause. As an illustration of comments

on predicate de�nitions:

Now for the use of % for clauses and subgoals:

append([],L,L). % the base case

append([HjL1],L2,[HjL3]) :-

append(L1,L2,L3). % recurse on the �rst argument

Everything on the line after \%" will be ignored by Prolog.

Code Layout Generally, separate di�erent predicate de�nitions by at least

one blank line. The general structure is:

File Header

(space)

Predicate Header

Head of Clause1 :-

Indented Subgoal1



136 Another Interlude

. . .

Indented Subgoaln
Head of Clause2 :-

. . .

Head of Clausen :-

Indented Subgoal1
. . .

Indented Subgoaln
(space)

Predicate Header

. . .

12.4 Prolog Style

Now for some very short comments on improving your style. For more detail,

read [Bratko, 1986, pp184{186].

12.4.1 Side E�ect Programming

Avoid (where possible). Most of the time it is possible to avoid the worst

o�ences. If forced to use side-e�ect ing predicates then try to limit their distri-

bution throughout the code. It is a good idea to have one user-de�ned predicate

within which a clause is asserted, one in which a clause is retracted, one to

write out a term on the screen etc.

Modifying the Program at Runtime

Prolog permits this but it is bad programming style |unless you are intending

to write programs to modify themselves.

It is usually better to consider carrying around the wanted information as an

extra argument in all the relevant clauses.

The cut (!/0)

Where possible (and reasonable), use \+/1 instead.

Use cuts with great care.

Think about every cut (!/0) you want to place in terms of the e�ect you are

trying to achieve.

Always try to put them \as low as possible" in the structure of the program.

;/2

The predicate ;/2 is de�ned as an in�x operator. It is used to express disjunctive

subgoals. For example, member/2 can be rewritten as:

member(X,[HjT]):-

(

X=H
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;

member(X,T)

).

The semantics of ;/2 are roughly equivalent to logical or. Best to avoid its use.

The predicate de�nition

a:- b ; c.

is better written as:

a:- b.

a:- c.

If you do use this construct then avoid nesting it deeply as this makes code very

hard to read and understand.

if . . . then & if . . . then . . . else

Prolog can be made to obey control structures of this form.

The if . . . then form makes use of the in�x operator ->/2.

The extension to if . . . then . . . else is achieved with the help of the ;/2

predicate.

You may be comfortable with such constructs but it is usually better, if more

cumbersome, to avoid them. Here is how one might de�ne Prolog's \if ...then

...else".

(A -> B ; C) :-

call(A),

!,

call(B).

(A -> B ; C) :-

call(C).

There are great dangers in using this construction in conjunction with the cut

(!/0)

Just to illustrate its application, we can rewrite the predicate analyse/1 used

earlier.

analyse(Term):-

type(Term,Type),

( (Type=compound term ; Type = list) ->

(write(Term,Type),

functor(Term,N,A),

analyse bit(0,A,Term))

;

write(Term,Type)).
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To repeat, it can be very diÆcult to understand programs using nested ;/2 or

the if . . . then (. . . else) construct.

It is almost always preferable to use auxillary predicates to tidy up the `mess'.

analyse(Term):-

type(Term,Type),

( non simple(Type) ->

analyse non simple(Term,Type)

;

write(Term,Type)).

non simple(compound term):-

!.

non simple(list).

analyse non simple(Term,Type):-

write(Term,Type),

functor(Term,N,A),

analyse bit(0,A,Term).

12.5 Prolog and Logic Programming

12.5.1 Prolog and Resolution

There are many di�erent Prologs but they are all based on a technique from

theorem proving known as SLD Resolution.

SLD resolution can be guaranteed to be complete in that if a solution exists

then it can be found using some search strategy.

SLD resolution can be guaranteed to be sound in that if an answer is obtained

then it is a solution to the original problem for some search strategy.

It is a research goal to study Prolog implementations and check that their

search strategy preserves the completeness and soundness of the underlying

method of SLD resolution.

Note that the cut can a�ect completeness but not soundness.

Note also that there is no theoretical way of determining whether or not an

attempt to solve a problem will terminate. If there is a solution then it can be

shown that it can be found in a �nite number of steps.

12.5.2 Prolog and Parallelism

Various people are working on strategies for parallel execution of Prolog.

This includes Clarke and Gregory at Imperial College, London where much

work has been done in developing PARLOG.

Ehud Shapiro of the Weizmann Institute, Israel has produced Concurrent Pro-

log (CP).
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12.5.3 Prolog and Execution Strategies

John Lloyd and others have produced MU-Prolog at the University of Mel-

bourne in an attempt, inter alia, to replace the standard Prolog left-right

execution strategy for subgoals with a strategy which can reorder the execu-

tion sequence depending on which subgoals have enough information to proceed

with their execution. Their new implementation is called NU-Prolog.

12.5.4 Prolog and Functional Programming

Many attempts are being made to combine Prolog with functional program-

ming features.

12.5.5 Other Logic Programming Languages

Prolog is not a pure logic programming language. It may be the best we have

but there is some interest in building better languages.

As Prolog is less expressive than �rst order predicate calculus, a fair amount

of work is going on to produce systems that permit the user to exploit the

expressivity of full �rst order predicate logic |and other logics too!

12.6 What You Should Be Able To Do

You should be able to determine the type of a term (using the

basic types provided by Prolog).

You should be able to take a Prolog term and transform it.

You should be able to construct arbitrary terms.

You should be able to determine whether two terms have iden-

tical bindings.

You should be able to �nd all the solutions of a goal.

You should understand the rudiments of good programming

style.

You should know something about the notion of logic pro-

gramming and the ways in which progress has been made with

Prolog towards meeting the goal of using logic to develop

programs.

You should be ready to read [Sterling & Shapiro, 1986].



Appendix A

A Short Prolog Bibliography

At the moment of writing, the most suitable books to use in conjunction with

these notes are [Clocksin & Mellish, 1984] and [Bratko, 1986] (both now ex-

ist in new versions). The manual for the version of Prolog actually used is

[SICStus, 1988] which is very similar to [Bowen, 1981].

For those with a more ambitious turn of mind then [Sterling & Shapiro, 1986]

must be very highly recommended. The book by Richard O'Keefe is also highly

recommended but quite hard work [O'Keefe, 1990]. Slightly less useful but

worth a read is [Klu�zniak & Szpakowicz, 1985].

A simpler approach can be found in [Burnham & Hall, 1985].

A number of books exist outlining the Imperial College variant ofProlog known

as micro-Prolog. Generally, it is wiser to stay with the DEC-10 family of Pro-

logs until you are more con�dent. The useful books are [Ennals, 1982] for a

very simple introduction and [Clark & McCabe, 1984] for a more ambitious and

determined student. The best book on the market is probably [Conlon, 1985].

For reading further a�eld then [Kowalski, 1979] is probably the classic. Also,

[Hogger, 1984] is a very worthwhile introduction to logic programming. The

work of Lloyd provides those interested in theory with a very thorough analysis

of the foundations of logic programming [Lloyd, 1987]. Further ideas for reading

can be gleaned from [Balbin & Lecot, 1985].
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Appendix B

Details of the SICStus Prolog

Tracer

The description of the SICStus Prolog tracer follows closely the description of

the Quintus Prolog tracer since these two Prolog systems are very similar. We

consider version 0.6 here as de�ned in [SICStus, 1988].

The SICStus debugger is a development of the DEC-10 debugger. It is described

in terms of the so-called four port model of Prolog execution. The four ports

are call, exit, redo and fail. Full tracing only applies to non-compiled code

but some limited tracing can be done for compiled code. The behaviour is

similar to the treatment of system predicates.

Monitor Execution: Di�erent kinds of control are provided. The di�erence

between debug and trace is that trace goes into creep mode directly

whereas debug waits for some decision from the user to start o�ering the

standard range of debugging options. Both otherwise cause the system to

save relevant information.

The predicate nodebug/0 switches o� debugging and the predicate de-

bugging/0 shows the action on �nding an unknown predicate, whether

debugging is in action or not, which predicates are spied and what mode

of leashing is in force.

Control of Information Shown:

Controlling Amount of Execution Information:

Spypoints can be set for any number of relations via the pred-

icate spy/1. The argument of spy might be a predicate name

or a name/arity or a list of such. Unde�ned predicates can be

spied by using the name/arity form of argument.

Controlling Amount of Interaction: The leash/1 predicate is

provided to control the amount of interaction with the program-

mer. The options are: full (prompt on call, exit redo and fail),

tight (prompt on call, redo and fail), half (prompt on call and

redo), and loose (prompt on call)1.

Controlling Amount of Term Visible: Representing a complex

term by ellipsis is done automatically in the debugger but the

user can control the complexity of displayed terms. There do not

1The o� (no prompt) choice provided by Quintus does not seem to be supported.
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appear to be any supplied procedures to manage the depth when

using write/1 etc. There is also a way of examining subterms

via the set subterm option within the debugger.

Going Forwards: There are several di�erent versions of the `next in-

teresting event'.

A Step at a Time: The user is able to single step through the

code using the creep option.

On to Next Spy Point: The user is able to jump to the next

predicate that is spied using the leap option.

Skip: The skip option jumps to the exit/fail port of the procedure

or the �rst procedure encountered that has a spy-point. Only

available at the call/redo ports. It does not stop at spy points.

Going Backwards: Single stepping backwards versus jumping back to

the last choice point.

Retry a Previous Goal: The retry command transfers control

back to the call port of the current box. Everything is as it was

unless any assert/retracts have taken place. It is possible to

give an argument to retry the computation from much further

back |this gets messed up usually by cut (!). Side e�ects are,

inevitably, not undone. This includes clauses asserted etc.

Interfering with Execution: Di�erent ways of handling this.

Forcing Failure: While tracing, the programmer is able to force a fail-

ure even though a goal would succeed. This can be done via the

unify option. Just try to unify the current goal with some impossi-

ble term.

Forcing Success: This feature is provided via the unify choise at the

Call port for a goal. This could be badly abused.

Find Another Solution: This does not seem to be possible.

Examining a Goal: Di�erent ways of looking at Prolog terms.

Writing a Goal: Printing the goal with the syntax obtained by apply-

ing any operator declarations in force.

Pretty Printing a Goal: Printing the goal possibly using the user de-

�ned portray/1, if possible.

Displaying Underlying Syntax: Showing the regular syntax of some

goal using display/1

Showing Context: Details of the execution in terms of what has happened,

what has yet to be done and the source code.

Ancestors: Looking at some possibly user-de�ned number of ancestor

goals. Equivalent to the ancestors/0 command.

Breaking Out: Providing the facility to access Prolog while tracing |with

sometimes irreversible consequences.

Single Command: A single command can be executed.

New Interpreter: A new incarnation of Prolog is initiated via a call

to break which will be in force until either another break command

is given, or an abort or an end of �le character.
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Aborting Execution Calls the command abort/0 which aborts the

execution back to top level, throwing all incarnations of the inter-

preter away.



Appendix C

Solutions and Comments on

Exercises for Chapter 2

C.1 Exercise 2.1

1. likes(bill,ice cream).

The predicate likes has the declarative reading that the �rst named object

(�rst argument) `likes' the second named object.

We could, of course, have de�ned likes in the reverse way. This would

lead to the representation likes(ice cream,bill) and the reading, in this

case, that `ice cream' is `liked' by `bill'.

Note that we have renamed ice-cream systematically to ice cream.

The term ice-cream is a syntactically correct Prolog term but it is

not an atom since the rules for atoms do not allow for the use of the -

character.

This could be got round in other ways than the above |e.g. 'ice-

cream'.

Also note that we could get away with a one argument `relation' |

viz likes ice cream(bill). Or even a zero argument `relation' |

bill likes ice cream.

We could try the representation that bill(likes,ice cream). Usually,

predicates are associated with verbs.

2. is(bill,tall).

This might be chosen but there is are problems: �rst, with the word `is'.

Here, it is associated with the idea that bill possesses an attribute which

has the value `tall'.

We could represent this as height(bill,tall).

Another reason for not using is(bill,tall) is that there may be many

such statements in a database. Prolog would then have to sort through

a large number of is/2 clauses such as is(bill,rich). If we choose

height(bill,tall) then we only search through the clauses that deal with

height.

Finally, the predicate is/2 is a system predicate and cannot be rede�ned

by the user!
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By the way, after all this, note that tall(bill) is quite acceptable and

probably the one most people will prefer. However, we should note

that this representation will make it harder to pick up any relation be-

tween tall(bill) and, for example, short(fred) whereas this is easy for

heigh(bill,tall) and height(fred,short).

3. hits(jane,jimmy,cricket bat).

The declarative reading for hits/3 is that the `hit' action is carried out

by the �rst named object on the second named object with the aid of the

third object.

Note that nowhere in this reading is there any sense in which there is

insistence on the �rst (or second) object being the identi�er for a person,

nor that the third object should be a `blunt instrument' etc. We could be

much more rigid about the meaning.

As before, there are many variants as to how this could be done. The

main point is to stick to one reading throughout the development of a

program.

And again, we have mapped `cricket-bat' to `cricket bat'.

4. travels(john,london,train).

The declarative reading is that the `travels' relation holds for the �rst ob-

ject travelling to the second object with the means of transport described

by the third object.

5. takes(bill,jane,cheese,edam).

This is a fairly unattractive way to do things |but is easiest for now.

The reading is that the `takes' relation holds for the �rst object trans-

porting a specimen of the third object (which is or sort described by the

fourth object) to the second object.

(Later we will see that

we can tidy this up by writing takes(bill,jane,cheese(edam)) where

cheese(edam) is a legitimate Prolog term.)

6. lives at(freddy,16,throgmorton,street,london).

Again, the reading is that the `lives at' relation holds for the �rst object

`living' at an address described by the second, third, fourth and �fth

objects.

This is ugly but is needed if we want to access bits of the address. If

we don't want to access bits of the address then we can get away with

lives at(freddy,'16 throgmorton street, london'). Now we have a

simpler relation and the second argument stands for the whole address.

The �rst representation of lives at/5 has its own problems. For example,

what happens if someone doesn't require a descriptor such as street or

road? This has not been speci�ed.

C.2 Execise 2.2

1. eats(bill,chocolate).

eats(bill,bananas).

eats(bill,cheese).
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Here, eats/2 is read as being a relation that holds when the �rst named

object is willing to consume samples of the second named object.

2. square root(16,-4).

square root(16,4).

3. country(wales).

country(ireland).

country(scotland).

The reading is that the one-place `relation' holds when the named object

has the status of a country. Here, in our informal description of the

semantics of the predicate, we have said nothing about the meaning of

what it is to be a country.

C.3 Exercise 2.3

1. eat(X,custard):- animal(X).

This can be paraphrased as `if X is an animal then X eats custard'.

We ought also to provide the informal semantics for eat/2 and animal/1.

Let us assume that this can be done.

By the way, we could also, but less satisfactorily, write cus-

tard eater(X):- animal(X).

2. loves(X,Y):- directed by(bergman,Y).

The relation `loves' holds between any two objects if the second object is

related to bergman via the directed by relation.

Note that nowhere have we said that the �rst argument of the loves/2

relation should be a person. This is implicit in the original statement and,

strictly, ought to be enforced.

3. likes(jim,X):- belongs to(X,fred).

The relation `likes' holds between `jim' and some other object if this object

is related to `fred' through the `belongs to' relation.

Again note that the declarative readings for both likes/2 and be-

longs to/2 are not provided by this statement.

4. may borrow(X,bike,jane):- need(X,bike).

The relation `may borrow' holds between the �rst argument and the sec-

ond (where the third is the owner of the second) if these two arguments

are related via the `need' relation.

C.4 Exercise 2.4

1. liable for �ne(X):- owns car(X,Y), untaxed(Y).

We assume that liable for �ne/1 holds when its argument is (a person)

liable for a �ne, that owns car/2 holds when the �rst argument possesses

the object named in the second argument (and this object is a car), and

that untaxed/1 holds for all those objects that are required by law to

be taxed and are not!
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2. same house(X,Y):- address(X,Z), address(Y,Z).

The same house/2 relation holds between two arguments (people) if the

address/2 relation holds between one of these arguments and a third

object and between the other and the same third object.

Note that this makes same house(fred,fred) true.

3. siblings(X,Y):- mother(X,M), mother(Y,M), father(X,P), fa-

ther(Y,P).

The siblings/2 relation holds between the two arguments when each

is related via the mother/2 relation to a common object and via the

father/2 relation to a (di�erent) common object.

This is not correct if the intended meaning is to prevent one person being

their own sibling. We would revise this by adding a subgoal such as

not same(X,Y).

Note that we could have designed a parents/3 predicate (relation) such

that, for example, the second argument is the mother and the third is

the father of the �rst argument. This would result in siblings(X,Y):-

parents(X,M,P), parents(Y,M,P).

C.5 Exercise 2.5

1.

british(X):- welsh(X).

british(X):- english(X).

british(X):- scottish(X).

british(X):- northern irish(X).

Note that we have preserved the order of nationalities as described in the

statement. This has no logical signi�cance.

2. eligible social security(X):- earnings(X,Y), less than(Y,28).

eligible social security(X):- oap(X).

In the �rst part of the disjunction, we have introduced an additional

predicate less than/2 which has the reading that the relation holds when

the �rst argument is less than the second.

Also, note that the original statement does not make it clear whether

or not someone could qualify both as an old age pensioner (oap) and as

someone earning very little. This could become an important issue.

3. sportsperson(X):- plays(X,football).

sportsperson(X):- plays(X,rugger).

sportsperson(X):- plays(X,hockey).

C.6 Exercise 2.6

1. b:- a.

Note that b is true if a is true.



150 Another Interlude

2. c:- a.

c:- b.

Here we have a straight use of disjunction.

3. c:- a, b.

Here is a straightforward example of a conjunction.

4. d:- a, b.

d:- a, c.

This is a hard one. We cannot (yet) write what we want to write: that

is, d:- a, (b or c). Here, we can use de Morgan's law: this is the equiv-

alence: a ^ (b _ c) ) d , (a ^ b) _ (a ^ c) ) d.

5. b:- a.

This is hard too. The obvious solution is:

not a.

b.

but this is not allowed. Consequently, we have to transform the expression

using the logical equivalence : a _ b , b ) a.

C.7 Exercise 2.7

1. studies(bill,ai2).

We have revised `AI2' to `ai2'. We could have simply put quotes around

as in studies(bill,'AI2').

2. population(france,50).

where the reading is that the population of the �rst object in the relation

population/2 is the second object expressed in millions of people.

Note we have changed `France' to `france'.

3. rich country(italy).

Here, the statement has been expressed as a unary `relation' of something

being a rich country.

4. height(jane,tall).

We have covered a similar example previously.

5. prime(2).

We have asserted that the attribute of primeness belongs to the number

2.

6. british(X):- welsh(X).

The statement has been turned into the equivalent `everybody who

is welsh is british'. This is an alternative to the statement sub-

set(welsh,british). We read this as meaning that the subset/2 relation

holds between the set of welsh people and the set of british people.

As usual, we have lower-cased the words `Welsh' and `British'.
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7. author(hamlet,someone).

This is a trick question. You cannot answer this one from the notes.

Why not? Well, let me give the meaning of the above: the author/2

relation holds between `hamlet' (which stands for the famous play called

\Hamlet: Prince of Denmark") and the unique atom `someone' which

has been conjured from thin air.

The problem lies in expressing existential statements such as \someone

likes ice-cream" and so on. This is informally recast as there exists some

person such that this person likes ice-cream. In �rst order predicate logic,

we would formalise this as 9 x likes(x,ice cream). This can be turned

into likes(whatshisname,ice cream) (this is known as Skolemisation).

Without going into technicalities, we give a legitimate context when this

`trick' can be done |whenever we have no universal quanti�ers (i.e. in-

dicated by words such as all, everyone, etc) then we may introduce a

unique atom (we should be able to guarantee its uniqueness) to stand for

the `someone'.

8. mortal(X):- human(X).

This is an example of a universally quanti�ed statement. It is equivalent

to 8 x human(x) ) mortal(x).

Note that, in theProlog version, this `universal quanti�cation' is implicit.

9. pays taxes(X):- person(X), rich(X).

Again, the universal quanti�cation is implicit in the Prolog version.

Here, we have a body with a conjunction of two goals. This could be

avoided with pays taxes(X):- rich person(X). Which you prefer de-

pends on the way other relevant information is to be used or, how it is

provided.

10. takes(bill,umbrella):- raining.

This is a version where it is true that `Bill' takes his umbrella whenever

it is raining.

Note that in many of these examples, there is no mention of how the truth

of various statements change with time.

11. no supper(X):- naughty(X).

Here, we might have tried to write : supper(X):- naughty(X). This

is, however, illegal in Prolog but not for syntactic reasons.

Another way of doing this might be eats supper(X,false):-

naughty(X). This allows for a more uniform treatment of both those

who are `naughty' and those who aren't.

12. employs(�rebrigade,X):- man(X), height(X,Y),

more than(Y,6.0).

Again, we have gone for the representation `most likely' to be useful.

We could hide much of this as

�rebrigade employs(X):- over six foot(X).
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Solutions and Comments on

Exercises for Chapter 3

D.1 Exercise 3.1

In this set of exercises, the solutions are slightly abbreviated. Even so, it is

likely that your solution is a subset of the solutions proposed here. The most

diÆcult issue is what happens on failure.

1.

Subgoals Comment Result

a(1) uses 1st clause new subgoals

b(1,Y) uses 1st clause succeeds with Y=2

c(2) uses 1st clause succeeds

a(1) using 1st clause succeeds

The goal is solved in a very straightforward way. There is no backtracking.

2.

Subgoals Comment Result

a(2) uses 1st clause new subgoals

b(2,Y) uses 1st clause fails

b(2,Y) uses 2nd clause succeeds with Y=2

c(2) uses 1st clause succeeds

a(2) using 1st clause succeeds

Here, we have a simple case where a failure forces the use of the second

half of the de�nition for b/2.

3.
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Subgoals Comment Result

a(3) uses 1st clause new subgoals

b(3,Y) tries 1st clause fails

b(3,Y) tries 2nd clause fails

b(3,Y) tries 3rd clause succeeds with Y=3

c(3) tries 1st clause fails

c(3) tries 2nd clause fails

b(3,Y) tries 4th clause succeeds with Y=4

c(4) tries 1st clause fails

c(4) tries 2nd clause fails

b(3,Y) no more clauses fails

a(3) uses 2nd clause new subgoal

c(3) tries 1st clause fails

c(3) tries 2nd clause fails

a(3) no more clauses fails

This is much harder because in trying to solve b(3,Y),c(Y) we have the

�rst subgoal succeed then the second fail twice over before running out of

options. We then backtrack to try the remaining option for solving the

top level goal which is the subgoal c(3) but this also fails.

4.

Subgoals Comment Result

a(4) uses 1st clause new subgoals

b(4,Y) tries 1st clause fails

b(4,Y) tries 2nd clause fails

b(4,Y) tries 3rd clause fails

b(4,Y) tries 4th clause fails

a(4) uses 2nd clause new subgoal

c(4) tries 1st clause fails

c(4) tries 2nd clause fails

a(4) no more clauses fails

A little simpler because no subgoal succeeds at all.

D.2 Exercise 3.2

1.

Subgoals Comment Result

a(1,X) uses 1st clause new subgoals

b(1,X) tries 1st clause succeeds with X=2

a(1,X) using 1st clause succeeds with X=2

Another straightforward solution.

2.

Subgoals Comment Result

a(2,X) uses 1st clause new subgoals

b(2,X) tries 1st clause fails

b(2,X) tries 2nd clause succeeds with X=3

a(2,X) using 1st clause succeeds with X=3
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Again, not too diÆcult.

3.

Subgoals Comment Result

a(3,X) uses 1st clause new subgoal

b(3,X) tries 1st clause fails

b(3,X) tries 2nd clause fails

a(3,X) uses 2st clause new subgoals

c(3,X1) tries 1st clause fails

c(3,X1) tries 2nd clause fails

c(3,X1) tries 3rd clause fails

c(3,X1) tries 4th clause succeeds with X1=4

a(4,X) uses 1st clause new subgoal

b(4,X) tries 1st clause fails

b(4,X) tries 2nd clause fails

a(4,X) uses 2nd clause new subgoals

c(4,X2) tries 1st clause fails

c(4,X2) tries 2nd clause fails

c(4,X2) tries 3rd clause fails

c(4,X2) tries 4th clause fails

a(4,X2) no more clauses fails

a(3,X) no more clauses fails

This is a challenging one. First, because we get involved with the un-

pleasant second clause for a/2. In general, when using the second clause

for a/2, the goal a(X,Y) requires that we set up two new subgoals

c(X,Z),a(Z,Y). This introduces a new variable. Textually, it is the `Z'

but every time we introduce a variable we have to use a di�erent name.

Here, we have provided a suÆxed `X' each time we introduce the new

variable.

4.
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Subgoals Comment Result

a(X,4) uses 1st clause new subgoal

b(X,4) tries 1st clause fails

b(X,4) tries 2nd clause fails

a(X,4) uses 2st clause new subgoals

c(X,X1) tries 1st clause succeeds with X=1, X1=2

a(2,4) uses 1st clause new subgoal

b(2,4) tries 1st clause fails

b(2,4) tries 2nd clause fails

a(2,4) uses 2nd clause new subgoals

c(2,X2) tries 1st clause fails

c(2,X2) tries 2nd clause succeeds with X2=4

a(4,4) uses 1st clause new subgoal

b(4,4) tries 1st clause fails

b(4,4) tries 2nd clause fails

a(4,4) uses 2nd clause new subgoals

c(4,X3) tries 1st clause fails

c(4,X3) tries 2nd clause fails

c(4,X3) tries 3rd clause fails

c(4,X3) tries 4th clause fails

a(4,4) no more clauses fails

a(2,4) no more clauses fails

c(X,X1) tries 2nd clause succeeds with X=1, X1=4

a(4,4) uses 1st clause new subgoal

b(4,4) tries 1st clause fails

b(4,4) tries 2nd clause fails

a(4,4) uses 2nd clause new subgoals

c(4,X3) tries 1st clause fails

c(4,X3) tries 2nd clause fails

c(4,X3) tries 3rd clause fails

c(4,X3) tries 4th clause fails

a(4,4) no more clauses fails

c(X,X1) tries 3rd clause succeeds with X=2, X1=4

a(4,4) uses 1st clause new subgoal

b(4,4) tries 1st clause fails

b(4,4) tries 2nd clause fails

a(4,4) uses 2nd clause new subgoals

c(4,X3) tries 1st clause fails

c(4,X3) tries 2nd clause fails

c(4,X3) tries 3rd clause fails

c(4,X3) tries 4th clause fails

a(4,4) no more clauses fails

c(X,X1) tries 4th clause succeeds with X=3, X1=4

a(4,4) uses 1st clause new subgoal

b(4,4) tries 1st clause fails

b(4,4) tries 2nd clause fails

a(4,4) uses 2nd clause new subgoals

c(4,X3) tries 1st clause fails

c(4,X3) tries 2nd clause fails

c(4,X3) tries 3rd clause fails

c(4,X3) tries 4th clause fails

a(4,4) no more clauses fails

c(X,X1) no more clauses fails

a(X,4) no more clauses fails

This is even worse |mainly because the �rst time we use the second

clause for a/2 we get involved in a subgoal c(X,X1. This can be solved

in four di�erent ways |but in each case the next subgoal (a(X1,4)) fails.

Hence c(X,X1) fails and therefore, because there are no more clauses for
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a/2, a(X,4) fails as well.

Note that each time we attempted a new subgoal c/2 we said we would

creat a new variable: we do not need a new name for a variable if we are

trying to resatisfy a goal. Look at the references to c(...,X3): there are

three di�erent places in the above where we try to solve such a goal and

fail.

5.

Subgoals Comment Result

a(1,3) uses 1st clause new subgoal

b(1,3) tries 1st clause fails

b(1,3) tries 2nd clause fails

a(1,3) uses 2st clause new subgoals

c(1,X1) tries 1st clause succeeds with X1=2

a(2,3) uses 1st clause new subgoal

b(2,3) tries 1st clause fails

b(2,3) tries 2nd clause succeeds

a(2,3) using 1st clause new subgoal

a(1,3) using 2nd clause succeeds

So, with this example, we end with a simpler case.



Appendix E

Solutions and Comments on

Exercises for Chapter 4

E.1 Exercise 4.1

1. 2+1=3 fails.

We can tell immediately that 3 is an atom but what about 2+1? This

does not look like an atom |indeed it is not. The only way that 2+1=3

is if Prolog were to automatically try to evaluate any `sum' it �nds before

trying to do the uni�cation. Prolog does not do this.

2. f(X,a)=f(a,X) succeeds with X=a.

Here, the predicates are the same (so far so good). Now we match the

�rst arguments: they can be made the same if X=a (so far so good). Now

we look at the second argument: does a match with X? yes.

3. fred=fred succeeds.

4. likes(jane,X)=likes(X,jim) fails.

Here, the predicates are the same (so far so good). Now we match the

�rst arguments: they can be made the same if X=jane (so far so good).

Now we look at the second argument: does X match with jim? Well, X

is bound to jane and jane does not match with jim. So the uni�cation

fails.

5. f(X,Y)=f(P,P) succeeds with X=Y=P.

Here, the predicates are the same. Now we match the �rst arguments:

they can be made the same if X=P. Now we look at the second argument:

does Y match with P? yes, and since X=P we get our �nal result.

E.2 Exercise 4.2

1. [a,bjX]=[A,B,c] succeeds with A=a, B=b and X=[c].

First, the left and right hand terms are both lists. Now to match their

1st elements: A matches with a. The second elements B matches with

b. What happens now? Let us discard the �rst two elements of each list.

We are left with matching X=[c] |this succeeds.

157
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Quite a few think the result should be X=c. Remember that the syntax

[HjT] means that the term following the j symbol is a list |so, the X in

the problem is a list. Therefore we cannot have X=c.

2. [a,b]=[b,a] fails.

Look at the �rst elements: does a match with b? No |so the uni�cation

fails. Some may see lists as `bags' of things where the order of occurrence

is immaterial. This is not so.

3. [aj[b,c]]=[a,b,c] succeeds.

The �rst elements of the two lists are identical. Throw them away and we

are left with [b,c]=[b,c] which succeeds. The main point to note is again

that the term following the j symbol is a list and that it is speci�cally

[b,c].

4. [a,[b,c]]=[a,b,c] fails.

We can tell quickly that the uni�cation must fail because the �rst list has

two elements and the second has three. Therefore they cannot unify.

If we discard the (equal) heads we have [[b,c]]=[b,c]. The left hand side

is a list consisting of a single element (which just happens to be a list

itself). The right hand side is a list of two elements. Going on, what is

the �rst element of each of these two lists? On the left we have [b,c] and

on the right we have b. These terms are not uni�able.

5. [a,X]=[X,b] fails.

The �rst element of each list (the heads) can be uni�ed |with X=a.

Looking at the second elements, we need to unify X with b |but X=a

so the process fails.

6. [aj[]]=[X] succeeds with X=a.

The list [aj[]] is exactly equivalent to [a]. Therefore the problem becomes

[a]=[X]. This uni�es with X=a.

7. [a,b,X,c]=[A,B,Y] fails.

The simple answer is that the left hand list has four elements and the

right has three |therefore these two lists will not unify.

To see why, we match the head elements |we get A=a. Throwing away

the heads, we end up with [b,X,c]=[B,y]. Repeating, we have B=b.

Again, discarding the heads, we have [X,c]=[y]. Repeating we get X=y.

We now end up with [c]=[]. Fails.

8. [HjT]=[[a,b],[c,d]] succeeds with H=[a,b] and T=[[c,d]].

The right hand list has two elements: the �rst (head) is [a,b] and the

second element is [c,d]. The head elements unify with H=[a,b]. If we

now discard the head elements we are left with deciding whether T uni�es

with [[c,d]]. Succeeds with T=[[c,d]].

9. [[X],Y]=[a,b] fails.

If we try to unify the head elements of these lists we have the problem

[X]=a. This fails.



Draft of January 24, 2001 159

E.3 Exercise 4.3

1.

print every second([]).

print every second([X]).

print every second([X,YjT]):-

write(Y),

print every second(T).

The trick is to realise that the notation for the general list actually allows

a �xed number of elements to be ripped o�/stuck on the front of a list.

Here, we destruct the list by specifying that we take the �rst two elements

o� the front of any list with more than one element and then print the

second of these two elements.

Note that this does not do anything clever with nested lists: i.e.

print every second([a,[b],c,[d]]) will print [b][d]!

2.

deconsonant([]).

deconsonant([AjB]):-

vowel(A),

write(A),

deconsonant(B).

deconsonant([AjB]):-

deconsonant(B).

vowel(a).

vowel(e).

vowel(i).

vowel(o).

vowel(u).

Note that we need three clauses to cover the three basic cases: either the

list has no elements or we want to print the �rst element (because it is a

vowel) or we don't want to print the �rst element.

Provided the list is not empty then, for either of the remaining cases, we

want to take o� the �rst element and process the remaining list |we have

described this procedurally as there is no good declarative reading.

Observant readers will note that the logic of the case analysis is none

too good. The third clause should really be something like

deconsonant([AjB]:-
consonant(A),

deconsonant(B).

But it would be very tedious to write out all the clauses for conso-

nant/1 |e.g. consonant(b) etc. There is another way of doing this,

however, which we meet in chapter 7.
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3.

head([HjT],H).

The reading is that the second argument is related to the �rst via the

`head' relation if the �rst element of the �rst argument (a list) is the

second argument.

4.

tail([HjT],T).

A straightforward adaption of the previous case.

5.

vowels([],[]).

vowels([HjT],[HjRest]):-

vowel(H),

vowels(T,Rest).

vowels([HjT],Rest):-

vowels(T,Rest).

vowel(a).

vowel(e).

vowel(i).

vowel(o).

vowel(u).

This is quite a di�erent style of program from the very procedural de-

consonant/1.

The same case analysis has been done but now we have to think what

these clauses mean. Procedurally, we can tell quite similar story: the �rst

case is that whenever we encounter an empty list then we will return an

empty list.

The second case is that whenever we have a list with a vowel at the front

then we return a list with that vowel at the front |the rest of the list

has to be determined by gathering up all the vowels from the tail of the

input list.

The third case is that whenever the previous two cases fail then we discard

the �rst element and go o� to pick up all the vowels in the tail.

The second clause could have been written as:

vowels([HjT],Ans):-

vowel(H),

vowels(T,Rest),

Ans=[HjRest].
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if you really wanted to do so. You might �nd this easier to understand

but the two versions are logically identical here.

The declarative reading runs something like this: for the �rst clause, the

list of vowels in the empty list is the empty list.

The second case has the meaning that the list of vowels in another list

with a vowel at the front has that vowel at the front and its tail is the list

of vowels found in the other list.

The third case has the meaning that the list of vowels in another list with

a consonant at the front is the list of vowels in the tail of that list.

6.

�nd every second([],[]).

�nd every second([X],[]).

�nd every second([X,YjT],[YjRest]):-

write(Y),

�nd every second(T,Rest).

The �rst clause states that the list of every second element in the empty

list is the empty list. The second states the corresponding thing for a list

with a single element.

The third clause is the interesting one: the list of every second element of

another list is the second element together with the list of every second

element of the remainder of the other list.



Appendix F

Solutions and Comments on

Exercises for Chapter 6

F.1 Exercise 6.1

All the programs in these examples can be done by selecting the right schema

and then instantiating it correctly.

1. We now produce solutions making use of the schema Test For Existence.

list existence test(Info,[HeadjTail]):-

element has property(Info,Head).

list existence test(Info,[HeadjTail]):-

list existence test(Info,Tail).

(a) We discard all the parameters from the schema (Info). We rename

list existence test to an integer and element has property to inte-

ger. We will not show how the others programs are written using

the schema.

an integer([HjT]):-

integer(H).

an integer([HjT]):-

an integer(T).

If the head of the list is an integer then the list contains an integer

(this describes the �rst clause) |otherwise we require that the tail

of the list has an integer somewhere (the second clause).

Note that the second clause does not strictly have to be second.

The two clauses could be the other way round.

an integer([HjT]):-
an integer(T).

an integer([HjT]):-
integer(H).

If this were so, however, the program would execute much less

eÆciently. You could try de�ning the program both ways round

and look at what happens using the trace command. What is

162
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going on? Either way round, we have the same declarative reading

but the procedural reading is not so straight forward.

For the �rst way, it goes roughly like this: examine the head of the

list and stop with success if this is an integer |otherwise discard

the head of the list and examine the remainder for whether it

contains an integer. For the second way: throw away the head

of the list and examine the remainder to see whether it has an

integer in it |otherwise look at the head of the list to see whether

it is an integer. This sounds very peculiar but it works. What

happens is that Prolog throws away all the elements, gets to

the empty list and then fails. Backtracking now leads it to try

showing that the list consisting of the last element in the original

list is an integer: if this is not so then further backtracking will

lead Prolog to try the list consisting of the last two elements of

the original list has an integer at the front of the list. This keeps

on until either an integer is found (working back through the list)

or there is no way to backtrack.

(b) has embedded lists([HjT]):-

H=[Embeddedheadj Tail].

has embedded lists([HjT]):-

has embedded lists(T).

A list has an element which is itself a (non-empty) list if the head of

the list is a non-empty list (the �rst clause) or else the list's tail has

an element in it that is a (non-empty) list (the second clause).

We can also rewrite this to perform implicit uni�cation rather than

the explicit uni�cation H=[Embeddedheadj Tail]:

has embedded lists([[Embeddedheadj Tail]jT]).

has embedded lists([HjT]):-

has embedded lists(T).

Does the order of these clauses matter? The same issues apply as

with the previous example.

Note that if we want to �x the problem of extending the code to

handle the empty list as well we need:

has embedded lists([HjT]):-
H=[].

has embedded lists([HjT]):-
H=[Embeddedheadj Tail].

has embedded lists([HjT]):-
has embedded lists(T).

That is, another clause to handle the case where the head of the

list is an empty list.

By the way, this can be rewritten as:

has embedded lists([[]jT]).
has embedded lists([[Embeddedheadj Tail]jT]).
has embedded lists([HjT]):-

has embedded lists(T).

That is, we can

rewrite the explicit uni�cation (H=[Embeddedheadj Tail] as
an implicit uni�cation.

Why does this solution become dubious for e.g. the query

?- has embedded lists([a,X,b])? The check that the head
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element is a list will eventually encounter the equivalent of

X=[Embeddedheadj Tail] (or X=[]) |which will succeed! Is

this what is wanted? For then, a list containing a variable will al-

ways have an embedded list in it. This may be OK but we would

want to know a little more before making a decision.

2. We now produce solutions for the schema Test All Elements.

test all have property(Info,[]).

test all have property(Info,[HeadjTail]):-

element has property(Info,Head),

test all have property(Info,Tail).

(a) We discard all the parameters from the schema (Info). We rename

test all have property to all integers and element has property to

integer. We will not show how the others programs are written

using this schema.

all integers([]).

all integers([HjT]):-

integer(H),

all integers(T).

We now require that every member of the input list has a common

property |viz that of being an integer.

We note that the reading of the �rst clause is that every element of

the empty list is an integer. The second clause states that for every

list, every element is an integer if the head of the list is an integer

and every element of the remaining list is an integer.

(b) no consonants([]).

no consonants([HjT]):-

vowel(H),

no consonants(T).

vowel(a).

vowel(e).

vowel(i).

vowel(o).

vowel(u).

Again, the empty list is such that every element in it is not a con-

sonant. And, again, a list has no consonants if the head of the list

(�rst element) is not a consonant and the remainder (tail) of the list

has no consonants in it.

We could have done this a little di�erently with the help of the

predicate \+/1.

no consonants([]).

no consonants([HjT]):-

\+ consonant(H),

no consonants(T).
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consonant(b).

consonant(c).

(etc.)

The need to specify 26 consonants is a little tedious but acceptable.

3. We now produce the solutions that make use of the schema Return a

Result |Having Processed One Element.

We use this schema:

return after event(Info,[HjT],Result):-

property(Info,H),

result(Info,H,T,Result).

return after event(Info,[HeadjTail],Ans):-

return after event(Info,Tail,Ans).

(a) This one can be shown to be an example of the schema but the

`obvious' solution doen't �t exactly.

nth(1,[HjT],H).

nth(N,[HjT],Ans):-

NewN is N-1,

nth(NewN,T,Ans).

The �rst clause has the declarative reading that the �rst element of

the list is its head. The second clause has the declarative reading

that the nth element of the list is the n-1th element of the list's tail.

It can be diÆcult to appreciate how this works. So the procedural

reading for the second clause can be taken as: to �nd the nth element

of the list, lop o� the �rst element (the head) and then look for the

n-1th element in the remainder of the list (the tail).

Note that the order of the subgoals is important here. If an attempt

is made to write this as:

nth(1,[HjT],H).

nth(N,[HjT],Ans):-

nth(NewN,T,Ans),

NewN is N-1.

then we get into trouble: when the �rst subgoal (assuming the �rst

argument is an integer greater than 1) is executed then the variable

NewN will not be bound to an integer. This will mean that once we

have recursed down the list until the �rst clause succeeds then we will

have a number of subgoals awaiting execution |the �rst of which

will be 1 is Variable -1. This fails with an error message as the

is/2 predicate requires that the right hand side (second argument)

be an arithmetical expression and it is not.

We can generate another solution with a little bit of trickery.

nth2(N,[HjT],H):-
1 is N.

nth2(N,[HjT],Ans):-
nth2(N-1,T,Ans).



166 Another Interlude

This, if you trace the execution, generates a series of subgoals

of the form nth2(somenumber-1-1-1-1-1...,list,variable. The �rst

clause succeeds when the �rst argument evaluates to 1. Note that

the second clause is much neater as a consequence.

The observant will notice that these various versions of nth/3 do

not �t the schema that well. This is partly because the recursion

variable is the �rst argument and is on the natural numbers rather

than lists.

(b) next(PossibleElement,[PossibleElement,NextElementjT],NextElement).

next(PossibleElement,[HjT],Ans):-

next(PossibleElement,T,Ans).

This program has a straightforward (declarative) reading: the �rst

clause states that the next element (third argument) after the named

one (�rst argument) is when the list (second argument) begins with

the named element and followed by the desired next element. Note

the exible use of the list notation which allows the user to specify

a �xed number of elements at the front of a list (here, two).

(c)

This solution �ts the desired schema exactly (and also makes use of

the schema Building Structure in the Clause Head).

We use one parameter from the schema (Info). We rename re-

turn after event to del 1st1, property to =, result to =. This results

in:

del 1st1(ToGo,[HjT],Ans):-H=ToGo,

Ans=T.

del 1st1(ToGo,[HjT],[HjNewT]):-

del 1st1(ToGo,T,NewT).

which can be rewritten to

del 1st1(ToGo,[ToGojT],T).

del 1st1(ToGo,[HjT],[HjNewT]):-

del 1st1(ToGo,T,NewT).

The declarative reading is that when the �rst argument is the head

of the list (which is the second argument) then the third argument

is the tail (remainder) of the list |otherwise, the third argument is

a list with the �rst element the same as that of the second argument

and the tail is the list with the desired element deleted.

We can also describe this procedurally, but we will assume that it

is intended that the third argument is output and the other two are

inputs.

When we �nd the desired element at the head of the input list (the

second argument) then we return the tail of that list. When we

do not �nd this, we copy over the head into the output list and

go looking for the result of deleting the desired element from the

remainder (tail) of the input list.

Now here is a `solution' using the schema Building Structure in the

Clause Body.
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del 1st2(ToGo,L,Ans):-

del 1st2(ToGo,L,[],Ans).

del 1st2(ToGo,[ToGojT],Acc,Ans):-

append(Acc,T,Ans).

del 1st2(ToGo,[HjT],Acc,Ans):-

del 1st2(ToGo,T,[HjAcc],Ans).

append([],L,L).

append([HjL1],L2,[HjL3]):-

append(L1,L2,L3).

Note that we have de�ned a predicate del 1st2/3 which interfaces

to del 1st2/4 and initialises the accumulator (third argument) to

the empty list.

The two clauses have a procedural reading: when we �nd the desired

element then we glue the accumulator onto the front of the remainder

(tail) of the list found in the second argument using append/3 |

otherwise, we copy the head of the list to the head of the accumulator

and then try to delete the desired element from the tail of the list

using the new accumulator.

4. For each of these examples, we use the schema Return a Result |Having

Processed All Elements. We have, however, two ways of writing each with

each way corresponding to a di�erent (list processing) schema. These are,

namely, Building Structure in the Clause Head and Building Structure in

the Clause Body.

Here is the schema making use of the Building Structure in the Clause

Head:

process all(Info,[],[]).

process all(Info,[H1jT1],[H2jT2]):-

process one(Info,H1,H2),

process all(Info,T1,T2).

where process one/1 takes Info and H1 as input and outputs H2

(a) We keep one parameter from the schema (Info). We rename pro-

cess all to nple1 and process one to is. We will not show how the

others programs are written using the schema.

nple1(N,[],[]).

nple1(N,[HjT],[NewHjNewT]):-

NewH is N*H,

nple1(N,T,NewT).

The declarative reading: every element in the empty list (third ar-

gument) is the given multiple (�rst argument) of the corresponding

element in the empty list (second argument) |otherwise, the list

found in the third argument position is in the desired relation to

the list found in the second argument position if the head of one list



168 Another Interlude

is the desired multiple of the head of the other list and the desired

relation holds between the tails of these two lists.

nple2(N,L,Ans):-

nple2(N,L,[],Ans).

nple2(N,[],Ans,Ans).

nple2(N,[HjT],Acc,Ans):-

NewN is N*H,

nple2(N,T,[NewNjAcc],Ans).

Again, when using the schema Building Structure in the Clause Body

together with an accumulator, we de�ne a predicate nple2/3 which

initialises the accumulator for nple2/4.

Now we have the procedural reading for nple2/4 assuming that the

output list is the fourth argument, and the other argument positions

are inputs.

We return the result found in the accumulator once the input list

is empty |otherwise we remove the head from the input list, mul-

tiply it by the desired amount, place the result in the accumulator

and repeat the process for the tail of the input list and the new

accumulator.

(b)

For this predicate, we need three cases to handle: the empty list,

when the head of the list matches the element to be deleted and the

case where these two elements do not match.

The �rst clause results from the observation that the empty list with

all the occurrences of the named element removed is the empty list.

del all1(ToGo,[],[]).

del all1(ToGo,[ToGojT],Ans):-

del all1(ToGo,T,Ans).

del all1(ToGo,[HjT],[HjAns]):-

del all1(ToGo,T,Ans).

The second clause is read declaratively as being true when the ele-

ment to be deleted uni�es with the head of the list (second argument)

then the result of deleting all occurrences will be the same as deleting

all occurrences from the tail of that list.

The third clause is the \otherwise" case: the result of deleting all

occurrences from the list will is the head of the list together with the

result of deleting all undesired occurrences from the tail of that list.

There is a serious problem here. If a program which makes use

of del all1/3 backtracks to redo the call to del all1/3 then we

will get some undesirable behaviour as this de�nition will generate

false solutions (we assume here that we always call del all1/3

with the second argument a list, the �rst argument some ground

term (i.e. a term containing no variable) and the third argument

a variable).

Consider the query del all1(a,[b,a,n,a,n,a],X). The �rst solu-

tion will result in X=[b,n,n]. Fine. But the last `a' was re-

moved through a use of the second clause |the subgoal would

be del all1(a,[a],X 1) and originally produced X=[]. Now, on
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redoing, we try to satisfy the goal with the third clause. The

query del all1(a,[a],X 1) matches with the head of the clause |

del all1(ToGo,[HjT],[HjAns])| resulting in ToGo=a, H=a,

T=[] and X 1=[HjAns] with a subgoal of del all1(a,[],Ans)..

This gets satis�ed withAns=[] and therefore we have another so-

lution for the query del all1(a,[a],X 1) |viz X 1=[a] and this

is wrong.

The problem arises because any query for which the second ar-

gument is a non-empty list such that its head is the element-to-

be-deleted will also be guaranteed to match the head of the third

clause. This means that there are ways of resatisfying the query

which result in undesired (and wrong) solutions.

How do we solve this? There are two basic ways |one of which

is fairly easy to read and the other relies on the use of the `cut'.

i. add an extra test condition to the third clause to ensure that

attempts to backtrack will fail. We make it impossible for a

goal to simultaneously match against the same goal.

del all1(ToGo,[],[]).

del all1(ToGo,[ToGojT],Ans):-
del all1(ToGo,T,Ans).

del all1(ToGo,[HjT],[HjAns]):-
\+(H=ToGo),

del all1(ToGo,T,Ans).

This is straightforward but does e�ectively require that uni�-

cation between the element-to-be-deleted and the head of the

list is done twice. Fine for simple checks but this rapidly gets

more expensive in more complex situations. Now for the cut.

ii. a cut (!/0) can be placed to say that once clause 2 has been

used then never look for another match...this means:

del all1(ToGo,[],[]).

del all1(ToGo,[ToGojT],Ans):-
del all1(ToGo,T,Ans),!.

del all1(ToGo,[HjT],[HjAns]):-
del all1(ToGo,T,Ans).

This is much less easy to read but is generally more eÆ-

cient. Beginners, however, tend to spray cuts around produc-

ing code like this:

del all1(ToGo,[],[]):-!.

del all1(ToGo,[ToGojT],Ans):-
del all1(ToGo,T,Ans),!.

del all1(ToGo,[HjT],[HjAns]):-
del all1(ToGo,T,Ans),!.

They do this because they do not understand the way the

cut works. Because of this, the code written has e�ects they

can't predict or understand. Extra, useless cuts also means a

loss of eÆciency. Therefore, we strongly recommend the �rst

version.

Every program you write that is intended to succeed once and

once only should be checked to make sure that this will happen

at the time you write the predicate.

The second version making use of the schema Building Structure in

the Clause Body:

del all2(ToGo,L,Ans):-

del all2(ToGo,L,[],Ans).
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del all2(ToGo,[],Ans,Ans).

del all2(ToGo,[ToGojT],Acc,Ans):-

del all2(ToGo,T,Acc,Ans).

del all2(ToGo,[HjT],Acc,Ans):-

del all2(ToGo,T,[HjAcc],Ans).

Again, we use del all2/3 to initialise the accumulator for

del all2/4.

Again, note that we would need protection against unexpected

backtracking if this program is to be used in another program.

Again, we would want a cut in the second clause of del all2/4.

(c)

Here we have the version making use of the schema Building Struc-

ture in the Clause Head:

sum1([X],X).

sum1([HjT],Ans):-

sum1(T,RestAns),

Ans is RestAns+H.

In this �rst version, we have a straightforward declarative reading.

The �rst clause reads that the sum of integers in a list with a single

(assumed) integer is that single integer. The second clause states

that the sum of integers in a list is found by summing the integers in

the tail of the list and then adding the head of the list to the result.

Now for the version making use of an accumulator.

sum2(X,Y):-

sum2(X,0,Y).

sum2([],Ans,Ans).

sum2([HjT],Acc,Ans):-

NewAcc is Acc+H,

sum2(T,NewAcc,Ans).

The second version uses an accumulator. Here, we make use of

sum2/2 to call sum3 with the accumulator initialised to 0. In this

case, the �rst clause can br read procedurally as saying that once

we have an empty list then the answer desired (third argument) is

the accumulated total (second argument). The second clause states

that we �nd the answer (third argument) by adding the head of

the list (�rst argument) to the accumulator (second argument) and

then repeating the process on the remainder of the list (with the

accumulator set appropriately).



Appendix G

Solutions and Comments on

Exercises for Chapter 8

G.1 Exercise 8.1

1.

[the,clever,boy,buys,a,sweet]

[the,clever,sweet,buys,a,clever,clever,boy]

(etcetera)

These are legitimate inputs produced by the query

?- s([the,clever,boy,buys,a,sweet],[]).

?- s([the,clever,sweet,buys,a,clever,clever,boy],[]).

(etcetera)

It is not so immediately apparent that this grammar can generate sen-

tences as well. What is the order in which sentences are generated?

[a,boy,buys,a,boy]

[a,boy,buys,a,sweet]

[a,boy,buys,the,boy]

[a,boy,buys,the,sweet]

[a,boy,buys,a,clever,boy]

[a,boy,buys,a,clever,sweet]

[a,boy,buys,a,clever,clever,boy]

[a,boy,buys,a,clever,clever,sweet]

[a,boy,buys,a,clever,clever,clever,boy]

(and so on)

2. Here is just one example |there are various ways of doing this.

s(sentence(NP-VP)) --> np(NP),

vp(VP).

np(nounphrase(Det-N)) --> det(Det),

noun(N).
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np(nounphrase(Det-Adjs-N)) --> det(Det),

adjs(Adjs),

noun(N).

vp(verbphrase(V-NP)) --> verb(V),

np(NP).

det(determiner(a)) --> [a].

det(determiner(the)) --> [the].

adjs(adjectives(Adj)) --> adj(Adj).

adjs(adjectives(Adj-Adjs)) --> adj(Adj),

adjs(Adjs).

adj(adjective(clever)) --> [clever].

noun(noun(boy)) --> [boy].

noun(noun(sweet)) --> [sweet].

verb(verb(buys)) --> [buys].

which produces (in a much less readable form than the following):

X = sentence(

nounphrase(

determiner(a)

-

adjectives(adjective(clever))

-

noun(boy))

-

verbphrase(

verb(buys)

-

nounphrase(

determiner(a)

-

adjectives(adjective(clever)-adjectives(adjective(clever)))

-

noun(boy))))

3. This is very hard to do in general. The issue here is one of `robust parsing'

and it is a major research topic. Consequently, there is no complete answer

but a �rst attempt might look like:

s(sentence(NP-VP)) --> np(NP),

vp(VP).

np(nounphrase(Det-N)) --> det(Det),

noun(N).

np(nounphrase(Det-Adjs-N)) --> det(Det),

adjs(Adjs),

noun(N).

vp(verbphrase(V-NP)) --> verb(V),

np(NP).

det(determiner(a)) --> [a].

det(determiner(the)) --> [the].

det(unknown det(X)) --> [X],
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f\+(known(X))g.

adjs(adjectives(Adj)) --> adj(Adj).

adjs(adjectives(A-Adjs)) --> adj(A),

adjs(Adjs).

adj(adjective(clever)) --> [clever].

adj(unknown adj(X)) --> [X],

f\+(known(X))g.

noun(noun(boy)) --> [boy].

noun(noun(sweet)) --> [sweet].

noun(unknown noun(X)) --> [X],

f\+(known(X))g.

verb(verb(buys)) --> [buys].

verb(unknown verb(X)) --> [X],

f\+(known(X))g.

known(X):-noun(noun(X), , ).

known(X):-verb(verb(X), , ).

known(X):-det(determiner(X), , ).

known(X):-adj(adjective(X), , ).

Some points to note:

(a) It cannot cope with missing words so this goal fails badly. We could

try to extend it to meet this problem. For example, we might like

the following query to succeed:

s(X,[the,clever,buys,a,sweet],[]).

(b) It does cope quite well with more than one misspelling provided the

sentence structure is acceptable |as in the query:

s(X,[the,clever,silly,buoy,buys,a,sweet],[]).

(c) The known/1 predicate is not at all clever.



Appendix H

Solutions and Comments on

Exercises for Chapter 9

H.1 Exercise 9.1

1. First, we examine the execution of the query female author. We take the

�rst clause for female author/0 and solve for author(X). We use the

�rst clause of author/1 and solve the resulting subgoal, name(X), using

the �rst clause of name/1 to get X=sartre. The subgoals write(X),

write(' is an author') and nl succeed with the side-e�ect of writing:

sartre is an author

on the screen. Then we solve the subgoal female(X) with X still bound

to sartre. Neither of the heads of the clauses for female/1match the goal

female(sartre) so Prolog fails and backtracks. We keep backtracking

until we get to redo the subgoal author(X). This means that we now

try to redo name(X) and we satisfy this with X=calvino. Again, we

generate the side-e�ect on the screen of

calvino is an author

and try to satisfy female(X) with X bound to calvino. Again, this fails

and we backtrack. Again, the subgoal name(X) can be satis�ed |this

time, for the last time, with X=joyce. On the screen we get

joyce is an author

and another attempt to prove that female(X) with X=joyce (which

fails). This time, on backtracking, there are no more solutions for

name(X). We now move on to resatisfy author(X) by using its sec-

ond clause. This generates, on the screen,

no more found!

then fails. We now backtrack and, since there are no more ways of satisfy-

ing author(X), we are through with the �rst clause of female author/0.

The second succeeds by writing
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no luck!

and succeeds.

We now explain how to place the cuts to get the desired outputs.

(a) The �rst solution requires the use of one cut to produce the side-

e�ect:

sartre is an author

no more found!

no luck!

Note that, compared with before, we have much the same but we

infer that there is only one solution for name(X). This suggests

that we place the cut so that name(X) succeeds once only. This

can be done by rewriting the �rst clause of name/1 as

name(sartre):-!.

(b) The next solution requires the use of one cut to produce the side-

e�ect:

sartre is an author

calvino is an author

joyce is an author

no more found!

Compared with the original output, we observe that the phrase `no

luck!' is not generated. This suggests that we want to commit our-

selves to the �rst clause of female author and not use the second

at all. Hence we have the solution:

female author:- !,author(X),write(X),and so on

but note that now the original query fails after producing the desired

side-e�ect.

Also note that we have to put the cut before the call to author/1

|otherwise we would only generate one of the names rather than all

three.

(c) The next solution requires the use of one cut to produce the side-

e�ect:

sartre is an author

no luck!

This time we observe that we only get one name and we don't gen-

erate the phrase `no more found!'. This suggest that we want au-

thor(X) to succeed once and once only |and go on to use the

second clause of female author (this suggests that the cut cannot

be one of the subgoals in the �rst clause of female author). We

don't want to generate the phrase `no more found' |so this suggests

that we commit to the �rst clause of author/1. We will put a cut

in the body of this clause |but where? If we put it thus:

author(X):- !,name(X).

then we would generate all three names by backtracking. Hence the

desired solution is:
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author(X):- name(X),!.

We can read this as being committed to the �rst, and only the �rst,

solution for name(X).

(d) The next solution requires the use of one cut to produce the side-

e�ect:

sartre is an author

Now we don't want to generate either `no more found!' or `no luck!'

|and we only want one of the names generated.

So we de�nitely want to be committed to the �rst clause of fe-

male author/0. This suggests putting the cut in the body of the

�rst clause of this predicate |but where? If we put it after the sub-

goal female(X) then we would get all three solutions to name(X)

and their associated side-e�ects. If we put it before author(X) we

also get roughly the same. Therefore we want something like:

female author:- author(X),!,write(X),and so on

(e) The next solution requires the use of one cut to produce the side-

e�ect:

sartre is an author

calvino is an author

joyce is an author

no luck!

Now we don't get the message `no more found!'. This suggests that

we want to commit to the �rst clause of author/1. If we put the cut

after the subgoal name(X) then we will commit to the �rst solution

and not be able to generate the other two. Hence we must put the

cut before as in:

author(X):- !,name(X).

2. We will assume a mode of mode delete(+,+,?). i.e. the �rst two

arguments are always completely instantiated and the third argument

can be either instantiated or a variable.

delete([], , []).

delete([KilljTail], Kill, Rest) :-

delete(Tail, Kill, Rest),!.

delete([HeadjTail], Kill, [HeadjRest]):-

delete(Tail, Kill, Rest).

The cut is placed in the body of the second clause. This is needed because,

in the code given in the probem, any usage of the second clause to delete

an element allows the query to be resatis�ed on redoing. This is caused

by the fact that any query matching the head of the second clause will

also match the head of the third clause.

3. To de�ne disjoint/2, here is the solution found in the standard DEC-10

library.
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% disjoint(+Set1, +Set2)

% is true when the two given sets have no elements in common.

% It is the opposite of intersect/2.

disjoint(Set1, Set2) :-

member(Element, Set1),

memberchk(Element, Set2),

!, fail.

disjoint( , ).

member(X,[XjRest]).

member(X,[YjRest]):-

member(X,Rest).

memberchk(X,[XjRest]):- !.

memberchk(X,[YjRest]):-

memberchk(X,Rest).

Note the de�nition is quite interesting: First, note that we make use of the

generate|test schema: the �rst clause of disjoint/2 uses member/2 as

a (�nite) generator to generate each of the elements in the �rst list one by

one. Next, the solution is tested usingmemberchk/2 for the second set.

Second, if the element is in both sets then we meet the cut|fail schema.

This means the call to disjoint/2 fails. If the generated element never

passes the test, then the attempt tosatisfy the call to disjoint/2 using

the �rst clause fails and we use the second clause which makes use of a

catch-all condition.

Other solutions are possible:

disjoint(Set1, Set2) :-

\+(member(Element, Set1), member(Element, Set2)).

Here, disjoint succeeds whenever it is impossible to �nd a common element

for both lists. If such an element exists then it fails.

4. To de�ne plus/3:

plus(A, B, S) :-

integer(A),

integer(B),

!,

S is A+B.

plus(A, B, S) :-

integer(A),

integer(S),

!,

B is S-A.

plus(A, B, S) :-

integer(B),

integer(S),

!,
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A is S-B. plus(A, B, S) :-

plus error message(A, B, C).

The �rst three clauses cope with the cases where two or more of the

arguments to plus/3 are instantiated to integers.

We need the cut to implement a commit schema as we don't have disjoint

cases.

The last clause is intended to point out to the programmer that an in-

stantiation fault has occurred. The exact form of the message is up to

you.



Appendix I

Solutions and Comments on

Exercises for Chapter 11

I.1 Exercise 11.1

1. Here is the answer in Prolog Form:

:(rule31,

if(then(and(=(of(colour,wine),white),

and(or(=(of(body,wine),light), =(of(body,wine),medium)),

or(=(of(sweetness,wine),sweet),=(of(sweetness,wine),medium)))),

then con�dence factor(=(wine,riesling),1000))))

The tree is up to you!
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Solutions and Comments on

Exercises for Chapter 12

J.1 Exercise 12.1

1. We want the following behaviour:

?- di� append([a,bjX]-X,[c,d,ejY]-Y,Answer).

Answer = [a,b,c,d,ejY] - Y

Here is the solution:

di� append(List1-Tail1,Tail1-Tail2,List1-Tail2).

2. We want the following behaviour:

?- add at end(e,[a,b,c,djX]-X,Answer).

Answer = [a,b,c,d,ejY] - Y

Here is the solution:

add at end(X,List-Tail,List-NewTail):-

Tail=[XjNewTail],!.

add at end(X,List-[XjNewTail],List-NewTail).

Note the need to add the cut (!/0) to prevent unwanted behaviour on

backtracking to redo a call to this predicate.

3. We want the following behaviour:

?- di� reverse([a,b,cjX]-X,Answer).

Answer = [c,b,ajY] - Y
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There are two cases: the �rst covers the case where we have the di�erence

list equivalent of the empty list.

The second case covers every other situation: we have to take o� the head

element, reverse the remaining di�erence list and then stick the element

at the end of the di�erence list. We use add at end/3 that we have

already de�ned.

Here is a solution:

di� reverse(X-X,Y-Y):-

var(X),!.

di� reverse([HjList]-Tail,Answer):-

di� reverse(List-Tail,NewDi�List),

add at end(H,NewDi�List,Answer).

Note that, for the �rst clause, we state that the tail of the input is a

variable (via var/1). The use of cut (!/0) is necessary to stop unwanted

behaviour if we ever backtrack to redo this goal.

Also note that we will get nasty behaviour if the predicate add at end/3

has not been de�ned to prevent unwanted behaviour on backtracking.

4. We want the following behaviour |assuming that the list is composed

of integers or atoms or lists of these. This means that every element is

either the empty list, a list or some Prolog term that is atomic. i.e. the

term satis�es atomic/1.

?- di� atten([1,2,[3,4,[5,4,[3],2],1],7jX]-X,Ans).

Ans=[1,2,3,4,5,4,3,2,1,7jZ]-Z

We have three cases: we are going to atten the empty list by outputting

the di�erence list version of []|i.e. X-X. We atten an `atomic' element

other than the empty list by returning a di�erence list with a single el-

ement |viz [someelementjX]-X. The third case is designed to handle

the case where the head of the �rst argument is a list. In this case, we

atten the head, and then atten the tail.

Here is a solution:

di� atten([HjT],X-Y):-

di� atten(H,X-Z),

di� atten(T,Z-Y).

di� atten(X,[XjT]-T):-

atomic(X),

\+(X=[]).

di� atten([],X-X).

Note how the result of attening the head is a di�erence list with a hole.

We get the same for attening the tail and join the lists together by

identifying the hole for the attened head with the open list resulting

from attening the tail.

5. We want the following behaviour:
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?- di� quicksort([3,1,2jX]-X,Ans).

Ans=[1,2,3jZ]-Z

We should note that the obvious advantage in using di�erence lists here is

in avoiding the various calls to append/3 which can get very expensive.

On the other hand, we have to realise that there is an overhead in carrying

di�erence lists around in this form.

Here is a solution:

di� quicksort(X-X,Y-Y):-

var(X).

di� quicksort([HjT]-Hole1,Ans-Hole2):-

di� split(H,T-Hole1,SmallDi�List,BigDi�List),

di� quicksort(SmallDi�List,Ans-[HjZ]),

di� quicksort(BigDi�List,Z-Hole2).

di� split( ,X-X,Y-Y,Z-Z):-

var(X).

di� split(X,[YjTail]-Hole1,[YjSmall]-Hole2,BigDi�List):-

X > Y,

di� split(X,Tail-Hole1,Small-Hole2,BigDi�List).

di� split(X,[YjTail],SmallDi�List,[YjBig]-Hole2):-

X =< Y,

di� split(X,Tail,SmallDi�List,Big-Hole2).

The correspondence between the di�erence and proper list versions is

close.

Wherever we have an empty list ([]) we introduce the di�erence list ver-

sion (X-X). We have to be careful to distinguish unrelated empty lists.

For example, consider the �rst clause of quicksort/2 in the notes: quick-

sort([],[]). The correspondence might suggest di� quicksort(X-X,X-

X). But in this case, there can be very unpleasant consequences as we

are forcing certain variables to be identical that might have been distinct

up to the point of solving the goal di� quicksort(A,B). Consequently,

we introduce di�erent version of the di�erence list `empty list' and write

di� quicksort(X-X,Y,Y).

Note that the `stopping condition' is that we have run out of elements to

sort by reaching the `hole'. This means the test is for having encountered

a variable. So the procedural reading of the �rst clause is e�ectively:

return a di�erence list equivalent to the `empty list' when we �nd that

we have consumed all the non-variable elements from the front of the list.

To do this, we use var/1 which takes a Prolog term as input and is

true whenever that term is an uninstantiated variable (it can be bound

to another uninstantiated variable though).

The remaining two clauses are structurally very similar to the last two

clauses for quicksort/2 as in the notes. The main di�erence is the loss

of the call to append/3 and the means by which we can partially `�ll

in' the hole of the Small di�erence list with the result of sorting the Big

di�erence list.
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As for, di� split/4, we have a very similar situation which we not explain

further here.

What about the eÆciency? Is di� quicksort/2 faster than quick-

sort/2? And are we comparing like with like? The empirical answer

is that quicksort/2 is faster (there are ways of improving the eÆciency

of the above version of di� quicksort/2 but they are not suÆcient)!

One reason why this version of di� quicksort/2 is slower than quick-

sort/2 is that the former predicate transforms a di�erence list into a

di�erence list while the latter transforms a proper list to a proper list.

An improvement is achieved by writing a version that takes a proper list

to a di�erence list as with:

di� quicksort v2([],[]).

di� quicksort v2([HjT],Ans-Hole2):-

split(H,T,SmallProperList,BigProperList),

di� quicksort v2(SmallProperList,Ans-[HjZ]),

di� quicksort v2(BigProperList,Z-Hole2).

Note that we can now use the same split/4 as for quicksort/2.

The eÆciency of this version is now better than the performance of quick-

sort/2.

6. This one is up to you!


