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Preface

These notes arose as a result of lectures I gave in Ma 121C at Cal Tech in Spring, 2010,
and 2011. The material is very much restricted to material that interested me, to start
with. The Probabilistic Method has now become one of the most important and indis-
pensable tools for the Combinatorist. There have been several hundred papers written
which employ probabilistic ideas and some wonderful monographs - the ones by Alon-
Spencer, Spencer, Bollobás, Janson et al, and the more recent one by Molloy-Reed, spring
readily to mind.

One of the main reasons this technique seems ubiquitous is because it provides a
simpler tool to deal with the ‘local-global’ problem. More specifically, most problems
of a combinatorial nature ask for a existence/construction/enumeration of a finite set
structure that satisfies a certain combinatorial structure locally at every element. The
fundamental problem of design theory, for instance, considers the ‘local’ condition at ev-
ery t-element subset of a given set. The difficulty of a combinatorial problem is to ensure
this property of ‘locally good’ everywhere. The probabilistic paradigm considers all these
‘local’ information simultaneously, and provides what one could call ‘weaker’ conditions
for building a global patch from all the local data. Over the past 2 decades, the explosion
of research material, along with the wide array of very impressive results demonstrates
another important aspect of the Probabilistic method; some of the techniques involved
are subtle, one needs to know how to use those tools, more so than simply understand the
theoretical underpinnings.

Keeping that in mind, I decided to emphasize more on the methods involved. Another
very important feature of probabilistic arguments is that they sometimes seem to crop up
in situations that do not (outwardly) seem to involve any probability arguments per se.
Most of the material covered in these notes primarily discuss combinatorial results which
do not involve the notions of probability at the outset. Hence, gadgets such as Random
graphs appear as tools required to prove/disprove a deterministic statement; these notes
do not study random graphs and related phenomena such as threshold functions, and the
Erdős-Rényi phase transitions.

One possible difference between these notes and existing literature on this subject
is in the treatment of the material. I have attempted to address some well-known re-
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sults (following probabilistic methods) along the lines of what Tim Gowers calls ‘The
Exposition Problem’. Many results that prove or disprove a (probably hastily stated)
conjecture often evoke a sense of awe at the ad-hoc nature of the proof and the brilliance
of the solver. One thing I wished to outline in my lectures was a sense of ‘naturality’
in thinking of such a proof. I do not claim that my deconstruction explains the inner
workings of some brilliant minds; rather the emphasis is upon the notion,“What if I had
to come up with this result? What would be a ‘valid’ point of view to address this problem?

Another aspect of the Probabilistic Method is that these techniques often end up
proving asymptotic results rather than exact ones, and so, when one adopts the prob-
abilistic paradigm, one is essentially looking for the best possible result through such a
line of argument. Hence, the precise nature of the result proven is only known once the
result is obtained. While this is true of all of matehmatical research, the very nature of
some of these results using probabilistic techniques, makes this a stand-out feature. In
trying to pass on the spirit of the principle, I worked most of these results backwards.
i.e., trying to work with certain ideas, and then shave off the best asymptotics one can
manage under such considerations. This approach is not completely new in these notes.
The monograph by Spencer (which is again a transcript of lectures) too does something
similar. But these notes contain certain results which have not appeared outside of the
original paper, in a deconstructed form. So at least that much is new.

I thank all my students of this course who very actively and enthusiastically acted as
scribes for the lectures for this course over the two years.
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1 The Probabilistic Method: Some First
Examples

1.1 Lower Bounds on the Ramsey Number R(n, n)

Ramsey theory, roughly stated, is the study of how “order” grows in systems as their size
increases. In the language of graph theory, the central result of Ramsey theory is the
following:

Theorem 1. (Ramsey, Erdös-Szekeres) Given a pair of integers s, t, there is an integer
R(s, t) such that if n ≥ R(s, t), any 2-coloring of Kn’s edges must yield a red Ks or a
blue Kt.

A fairly simple recursive upper bound on R(s, t) is given by

R(s, t) ≤ R(s, t− 1) +R(s− 1, t),

which gives us

R(s, t) ≤
(
k + l − 2

k − 1

)
and thus, asymptotically, that

R(s, s) ≤ 22s · s−1/2.

A constructive lower bound on R(s, s), discovered by Nagy, is the following:

R(s, s) ≥
(
s

3

)
.

(Explicitly, his construction goes as follows: take any set S, and turn the collection of all
3-element subsets of S into a graph by connecting subsets iff their intersection is odd.)

There is a rather large gap between these two bounds; one natural question to ask,
then, is which of these two results is “closest” to the truth? Erdös, in 1947, introduced
probabilistic methods in his paper “Some Remarks on the Theory of Graphs” to answer
this very question:
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Theorem 2. R(s, s) > b2s/2c.

Proof. Fix some value of n, and consider a random uniformly-chosen 2-coloring of Kn’s
edges: in other words, let us work in the probability space (Ω, P r) = (all 2-colorings of

Kn’s edges, Pr(ω) = 1/2(n2).)
For some fixed set R of s vertices in V (Kn), let AR be the event that the induced

subgraph on R is monochrome. Then, we have that

P(AR) = 2 ·
(

2(n2)−(s2)
)
/2(n2) = 21−(s2).

Thus, we have that the probability of at least one of the AR’s occuring is bounded by

P(
⋃
|R|=s

AR) ≤
∑

R⊂Ω,|R|=s

P(AR) =

(
n

s

)
21−(k2).

If we can show that
(
n
s

)
21−(s2) is less that 1, then we know that with nonzero probability

there will be some 2-coloring ω ∈ Ω in which none of the AR’s occur! In other words, we
know that there is a 2-coloring of Kn that avoids both a red and a blue Ks.

Solving, we see that(
n

s

)
21−(s2) <

ns

s!
· 21+(s/2)−(s2/2) =

21+s/2

s!
· ns

2s2/2
< 1

whenever n = b2s/2c, s ≥ 3.

1.2 Tournaments and the Sk Property

Definition 3. A tournament is simply an oriented Kn; in other words, it’s a directed
graph on n vertices where for every pair (i, j), there is either an edge from i to j or from
j to i, but not both.

Definition 4. A tournament T is said to have property Sk if for any set of k vertices in
the tournament, there is some vertex that has a directed edge to each of those k vertices.

One natural question to ask about the Sk property is the following:

Question 5. How small can a tournament be if it satisfies the Sk property, for some k?

We can calculate values of Sk for the first three values by hand:

• If k = 1, a tournament will need at least 3 vertices to satisfy Sk (take a directed
3-cycle.)

• If k = 2, a tournament will need at least 5 vertices to satisfy Sk .

6



• If k = 3, a tournament will need at least 7 vertices to satisfy Sk (related to the
Fano plane.)

For k = 4, constructive methods have yet to find an exact answer; as well, construc-
tive methods have been fairly bad at finding asymptotics for how these values grow.
Probabilistic methods, however, give us the following useful bound:

Proposition 6. (Erdős) There are tournaments that satisfy property Sk on O(k22k)-
many vertices.

Proof. Consider a “random” tournament: in other words, take some graph Kn, and
for every edge (i, j) direct the edge i → j with probability 1/2 and from j → i with
probability 1/2.

Fix a set S of k vertices and some vertex v /∈ S. What is the probability that v has
an edge to every element of S? Relatively simple: in this case, it’s just 1/2k.

Consequently, the probability that v fails to have a directed edge to each member of
S is 1− 1/2k. For different vertices, these events are all independent; so we know in fact
that

P(for all v /∈ S, v 6→ S) =
(
1− 1/2k

)n−k
.

There are
(
n
k

)
-many such possible sets S; so, by using a naive union upper bound, we

have that

P(∃S such that ∀v /∈ S, v 6→ S) ≤
(
n

k

)
·
(
1− 1/2k

)n−k
.

Thus, it suffices to force the right-hand side to be less than 1, as this means that there
is at least one graph on which no such subsets S exist – i.e. that there is a graph that
satisfies the Sk property.

So, using the approximation
(
n
k

)
·
(
1− 1/2k

)n−k ≤ ( en
k

)k
, we calculate:(

e−1/2k
)n−k

< 1

⇔
(en
k

)k
< e(n−k)/2k

⇔k(1 + log(n/k)) · 2k + k < n

Motivated by the above, take n > 2k · k; this allows us to make the upper bound

k(1 + log(n/k)) · 2k + k < k(1 + log(k2k/k)) · 2k + k

= 2k · k2 · log(2) ·
(

1 +
1

k log(2)
+

1

k2k log(2)

)
= k22k log(2) · (1 +O(1));
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so, if n > k22k log(2) · (1 +O(1)) we know that a tournament on n vertices with property
Sk exists.

1.3 Dominating Sets

Definition 7. Let G = (V,E) be a graph. A set of vertices D ⊆ V is called dominating
with respect to G if every vertex in V \D is adjacent to a vertex in D.

Theorem 8. Suppose that G = (V,E) is a graph with n vertices, and that δ(G) = δ, the
minimum degree amongst G’s vertices, is strictly positive. Then G contains a dominating
set of size less than or equal to

n · log(1 + δ)

1 + δ

Proof. Create a subset of G’s vertices by choosing each v ∈ V independently with prob-
ablity p; call this subset X. Let Y be the collection of vertices in V \ X without any
neighbors in X; then, by definition, X ∪ Y is a dominating set for G.

What is the expected size of |X ∪Y |? Well; because they are disjoint subsets, we can
calculate |X ∪ Y | by simply adding |X| to |Y |:

E(|X|) =
∑
v∈V

E
(
1{v is chosen}

)
= p · n, while

E(|Y |) =
∑
v∈V

E
(
1{v is in Y }

)
=
∑
v∈V

E
(
1{v isn’t in X, nor are any of its neighbors}

)
=
∑
v∈V

E (1− p)deg(v)+1 , (b/c we’ve made deg(v) + 1 choices independently)

≤
∑
v∈V

(1− p)δ+1

= n(1− p)δ+1.

This tells us that

E(|X ∪ Y |) ≤ np+ n(1− p)δ+1

≤ np+ ne−p(δ+1),

which has a minimum at

p =
log(1 + δ)

1 + δ
.
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Thus, for such p, we can find a dominating set of size at most

n · log(1 + δ)

1 + δ
,

as claimed.

1.4 Sum-Free Sets of Integers

This is another gem of an theorem originally due to Erdős. Another interpretation of
this was due to Alon and Kleitman.

Proposition 9. Every set of B = {b1, . . . bn} of n nonzero integers contains a sum-free1

subset of size ≥ n/3.

Proof. Pick some prime p = 3k+ 2 that’s larger than twice the maximum absolute value
of elements in B, and look at B modulo p – i.e., look at B in Z/pZ. Because of our choice
of p, all of the elements in B are distinct mod p.

Now, look at the sets

xB := {xb : b ∈ B} in Z/pZ,

and let

N(x) = |[k + 1, 2k + 1] ∩ xB| .

We are then looking for an element x such that N(x) is at least n/3. Why? Well, if this
happens, then at least a third of xB’s elements will lie between p/3 and 2p/3; take those
elements, and add any two of them to each other.This yields an element between 2p/3and
p, and thus one that’s not in our original third; consequently, this subset of over a third
of xB is sum-free. But this means that this subset is a sum-free subset of B, because p
was a prime; so we would be done.

So: using the probabilistic method, we examine the expectation of N(x):

E(N(x)) =
∑
b∈B

(
1x·b∈[k+1,2k+1]

)
= n · k + 1

3k + 1
≥ n/3.

Thus, some value of x must make N(x) exceed n/3, and thus insure that a sum-free
subset of size n/3 exists.

1A subset of R is called sum-free if adding any two elements in the subset will never give you an
element of the subset.
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2 The Linearity of Expectation and small
tweakings

One of the most useful tools in the Probabilistic method is the Expectation. One of the
prime reasons the expectation appears a very natural tool is because most combinatori-
ally relevant functions can be regarded as random variables that tend to get robust with
a larger population, so the expected value gives a good idea of where a ‘typical’ obser-
vation of the random variable lies. And that is often a very useful start. Later, we will
see results where certain random variables tend to concentrate around the expectation.
Computationally, this is a very useful tool since it is easy to calculate. In the examples
that we shall consider here, the linearity of expectation wil turn out to be key when it
comes to calculations and estimations.

2.1 Revisiting the Ramsey Number R(n, n)

2.2 List Chromatic Number and minimum degree

Definition 10. Let G be a graph, and let L = {Lv|v ∈ V (G)}, where Lv is a set of colors
for vertex v ∈ G. An L-coloring of G is an assignment of a color in Lv to v for each
v ∈ G, such that no two adjacent vertices are assigned the same color.

Definition 11. Let G be a graph. The list chromatic number of G, denoted χl(G), is the
smallest k such that there exists L with |Lv| ≥ k and G is L-colorable.

If χ(G) is the chromatic number of G, then χ(G) ≤ χl(G) by taking L as Lv = [χ(G)]
for all v ∈ G. The next result shows that the reverse inequality need not hold.

Theorem 12 (Erdős, Rubin, Taylor, 1978). χl(Kn,n) > k if n ≥
(

2k−1
k

)
.

Proof. We want to show there is some L = {Lv|v ∈ V (G)} with |Lv| = k for each
v ∈ V (G) such that Kn,n is not L-colorable. Let A and B denote the two partition
classes of Kn,n, i.e., the two sets of vertices determined by the natural division of the
complete bipartite graph Kn,n into two independent subgraphs.

Now we construct L. Take the set of all colors from which we can construct Lv’s
to be {1, 2, ..., 2k − 1}. Since n ≥

(
2k−1
k

)
, which is the number of possible k-subsets
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of {1, 2, ..., 2k − 1}, we can choose our Lv’s for the v’s in B so that each k-subset of
{1, 2, ..., 2k − 1} is Lv for some v ∈ B, and similarly we choose lists for vertices of A.

If S is the set of all colors that appear in some Lv with v ∈ B, then S intersects every
k-element subset of {1, 2, ..., 2k − 1}. Then we must have that |S| ≥ k (since otherwise
its complement has size ≥ k and thus contains a subset of size k disjoint from S). But
then since |S| ≥ k, by choice of lists there exists a ∈ A with La ⊂ S. Since a is adjacent
to every vertex in B, so no L-coloring is possible.

Now we state and prove another result due to Alon that provides a bound on the
growth of χl(G). But first we introduce some notation and a lemma.

Definition 13. We say “f is Big Omega of g” and write f = Ω(g) if there is a constant
K > 0 such that for n sufficiently large, |f(n)| ≥ K|g(n)|.

Lemma 14. For any graph G, there exists a subgraph H of G with V (H) = V (G) such
that H is bipartite and degH(v) ≥ 1

2
degG(v) for all v ∈ V (G).

Proof. Partition G into two subsets A0 and B0, and let J0 denote the corresponding
bipartite subgraph of G, i.e. the subgraph containing all vertices of G and edges between
vertices in different partition classes. Pick any vertex v ∈ G with degJ0(v) < 1

2
degG(v),

and move v to the other partition class of J0. Let A1 and B1 be the resulting partition
classes and J1 the corresponding bipartite subgraph, and repeat this process.

Since for each i, Ji+1 has strictly more edges than Ji, this process eventually terminates
at some finite stage n, and the resulting graph H = Jn is a bipartite subgraph with
degH(v) ≥ 1

2
degG(v) for all v ∈ V (G).

Theorem 15 (Alon).

χl(G) = Ω

(
log d

log log d

)
,

where d = δ(G).

Proof. By the previous lemma, we can assume without loss of generality that G is bi-
partite with partition classes A and B, and |A| ≥ |B|. Let the set of available colors be
{1, 2, ...., L}. We want to show that there is a collection of lists L = {Lv}, |{Lv}| = s,
for which there is no L-coloring of G, given certain conditions on the number s.

Call a vertex a ∈ A critical if among its neighbors, all possible s-subsets of {1, 2, ...., L}
appear. For each b ∈ B, assign Lb to be an s-subset of [L] uniformly at random and
independently. Note that the probability that a is not critical is equal to the probability
that there exists some s-subset T of [L] such that no neighbor of a is assigned T as its
list. Since there are

(
L
s

)
possible T ’s and each neighbor of a is assigned any given one of

them with probability 1

(Ls)
, it follows that

P (a is not critical) ≤
(
L

s

)
(1− 1(

L
s

))d ≤
(
L

s

)
e−d/(

L
s).
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Now assume that d �
(
L
s

)
. Then by the above, P (a is not critical) < 1

2
. So if N

denotes the number of critical vertices of A,

E(N) =
∑
a∈A

(P (a is critical) >
|A|
2
.

Thus there exists an assignment of lists for vertices in B, {Lv|v ∈ B}, such that the

number of critical vertices is greater than |A|
2

.
Now pick an actual color choice for each b ∈ B from these assigned lists, i.e., a choice

function for {Lv|v ∈ B}. There are s|B| different ways of coloring the vertices in B. Fix
one such coloring, and denote it as w. Denote as W the set of all colors chosen by w for
some vertex in B, i.e., the set of all colors in the range of w. Since there exists a critical
a ∈ A, W has nonempty intersection with all s-subsets of [L].

Now note that |W | ≥ L − s + 1. Otherwise, |W c| ≥ s, and since W intersects all
s-subsets of [L], this would imply that W ∩W c 6= ∅, a contradiction. So if (an extension
of) a coloring exists, La must contain an element of W c, with |W c| ≤ s − 1. Now let’s
pick color lists for vertices of A uniformly at random from the s-subsets of [L]. Then we
have the following upper bound on the probability that we can extend w to B ∪ {a}:

P (an extension to a exists) ≤
(s− 1)

(
L−1
s−1

)(
L
s

) <
s2

L
.

For an extension of w to G to exist, we need an extension of w to all critical vertices
of A. Since there are s|B| possible w’s and the number of critical vertices is greater than
|A|
2

, we have that

P (an extension to a coloring of G exists) ≤ s|B|(
s2

L
)|A|/2 ≤ (s(

s2

L
)
1
2 )|B|,

which is less than 1 if s
√

s2

L
< 1, if s2

L
< 1. So take L > s2. Recall the assumption made

earlier that d �
(
L
s

)
. We needed this to make

(
L
s

)
e−d/(

L
s) < 1

2
, which is equivalent to

d >
(
L
s

)
log(2

(
L
s

)
). It follows that if

d > 4

(
s4

s

)
log(2

(
s4

s

)
),

then there is a collection of lists L = {Lv|v ∈ G} with |{Lv}| = s for all v ∈ G such that
no L-coloring of G exists, i.e., χl(G) > s.

Alon later improved his bound to χl(G) > (1
2
− o(1)) log d with d = δ(G). It is not

known if this is best possible.

2.3 The Daykin-Erdős conjecture

******************************************
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2.4 An Example from Combinatorial Geometry

*********************************************

2.5 Graphs with High Girth and High Chromatic Number

Theorem 16. There are graphs with arbitarily high girth and chromatic number.

Proof. So: let Gn,p denote a random graph on n vertices, formed by doing the following:

• Start with n vertices.

• For every pair of vertices {x, y}, flip a biased coin that comes up heads with prob-
ability p and tails with probability 1− p. If the coin is heads, add the edge {x, y}
to our graph; if it’s tails, don’t.

Our roadmap, then, is the following:

• For large n and well-chosen p, we will show that Gn,p will have relatively “few”
short cycles at least half of the time.

• For large n, we can also show that G will have high chromatic number at least half
the time.

• Finally, by combining these two results and deleting some vertices from our graph,
we’ll get that graphs with both high chromatic number and no short cycles exist in
our graph.

To do the first: fix a number l, and let X be the random variable defined by X(Gn,p) =
the number of cycles of length ≤ l in Gn,p.

We then have that

X(Gn,p) ≤
l∑

j=3

∑
allj−tuplesx1...xj

Nx1...xj ,

where Nx1...xj is the event that the vertices x1 . . . xj form a cycle.
Then, we have that

E(X) ≤
l∑

j=3

∑
j−tuples x1...xj

Pr(Nx1...xj)

=
l∑

j=3

∑
j−tuples x1...xj

pj

=
l∑

j=3

njpj.
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To make our sum easier, let p = nλ−1, for some λ ∈ (0, 1/l); then, we have that

E(X) =
l∑

j=3

njpj

=
l∑

j=3

njnjλ−j

=
l∑

j=3

njλ

<
nλ(l+1)

nλ − 1

=
nλl

1− n−λ

We claim that this is smaller than n/c, for any c and sufficiently large n. To see this,
simply multiply through; this gives you that

nλl

1− n−λ
< n/c,

⇔ nλl < n/c− n1−λ/c,

⇔ nλl + n1−λ/c < n/c,

which, because both λl and 1− λ are less than 1, we know holds for large n.
So: to recap: we’ve shown that

E(|X|) < n/4.

So: what happens if we apply Markov’s inequality? Well: we get that

Pr(|X| ≥ n/2) ≤ E(|X|)
n/2

<
n/4

n/2
= 1/2;

in other words, that more than half of the time we have relatively “few” short cycles! So
this is the first stage of our theorem.

Now: we seek to show that the chromatic number of our random graphs will be
“large,” on average. Doing this directly, by working with the chromatic number itself,
would be rather ponderous. Rather, we will work with the independence number
α(G) of our graph, the size of the independent set of vertices1 in our graph. Why do we

1A set of vertices is called independent if their induced subgraph has no edges. in it
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do this? Well, in a proper k-coloring of a graph, each of the colors necessarily defines
an independent set of vertices, as there are no edges between vertices of the same color;
ergo, we have that

χ(G) ≥ |V (G)|
α(G)

,

for any graph G.
So: to make the chromatic number large, it suffices to make α(G) small! So: look at

Pr(α(G) ≥ m), for some value m. We then have the following:

Pr(α(G) ≥ m) = Pr(there is a subset of G of size m with no edges in it)

≤
∑

S⊂V,|S|=m

Pr(there are no edges in S’s induced subgraph)

=

(
n

m

)
· (1− p)(

m
2 )

< nm · e−p·(
m
2 )

= nm · e−p·m·(m−1)/2.

So: motivated by a desire to make the above simple, let m =
⌈

3
p

ln(n)
⌉
. This then

gives us that

Pr(α(G) ≥ m) < nm · e−p·d
3
p

ln(n)e·(m−1)/2

= nm · n−3(m−1)/2,

which goes to 0 as n gets large. So, in particular, we know that for large values of n and
any m, we have

Pr(α(G) ≥ m) < 1/2.

So: let’s combine our results! In other words, we’ve successfully shown that for large
n,

Pr(G has more than (n/2)-many cycles of length ≤ l, or α(G) ≥ m) < 1.

So: for large n, there is a graph G so that neither of these things happen! Let G be such
a graph. G has less than n/2-many cycles of length ≤ l; so, from each such cycle, delete
a vertex. Call the resulting graph G′.

Then, we have the following:

• By construction, G′ has girth ≥ l.

16



• Also by construction, G′ has at least n/2 many vertices, as it started with n and
we deleted ≤ n/2.

• Because deleting vertices doesn’t decrease the independence number of a graph, we
have that

χ(G′) ≥ |V (G′)|
α(G′)

≥ n/2

α(G)

≥ n/2

3 ln(n)/p

=
n/2

3n1−λ ln(n)

=
nλ

6 ln(n)
,

which goes to infinity as n grows large.

Thus, for large n, this graph has arbitrarily large girth and chromatic number.
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3 2-colorability of Uniform Hypergraphs

Colorability of hypergraphs is a much more difficult problem in comparision to the corre-
sponding problem for graphs. In fact, even determining if a hypergraph can be 2-colored
is a very hard problem. In this chapter, we look at two celebrated theorems due to Jozsef
Beck, and Radhakrishnan and Srinivasan, respectively on 2-colorability of hypergraphs
which improve upon an earlier result of Erdős. The general situation is still wide open.
Both these theorems illustrate the subtle technique of making alterations to a probabilis-
tic argument.

3.1 Introduction

Definition 17. A hypergraph is a pair H = (V, E), where V denotes a collection of
vertices and E denotes a collection of subsets of V (the “hyperedges” of H.) If all of E’s
elements have cardinality n, we say that H is a n-uniform hypergraph.

Definition 18. A k-coloring of a hypergraph H is a way of assigning k distinct colors to
all of H’s vertices, so that every edge has at least 2 colors.

Given these definitions, a natural question we can ask is the following:

Question 19. When is a given hypergraph H 2-colorable?

(Hypergraphs that are 2-colorable are often said to possess “Property B” – this bit
of nomenclature is due to Felix Bernstein, who was one of the first people to investigate
this property of hypergraphs. )

Given the current trend of these notes, it should come as no surprise that Erdős found
a way to use the probabilistic method to answer some of this question:

Theorem 20. (Erdős) If H = (V, E) is a n-regular hypergraph and |E| ≤ 2n−1, then H
is 2-colorable.

Proof. Independently and randomly color every vertex v ∈ V either red or blue with
probability 1/2. Then, if we let N denote the number of monochrome edges created
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under this coloring, we have that

E(N) =
∑
e∈E

E
(
1{e is monochrome}

)
=
∑
e∈E

E
(
1{e is entirely red or e is entirely blue}

)
=
∑
e∈E

E
(
1{e is entirely red + 1{e is entirely blue}

)
=
∑
e∈E

1

2n
+

1

2n

=
|E|

2n−1
.

Thus, if |E| ≤ 2n−1, we have that E(N) ≤ 1. Then there are two potential cases:

• P(N = 0) = 0. In this case, we have that N = 1 with probability 1; but this is
clearly impossible, as in any graph with more than one edge there are colorings
under which multiple monochrome edges exist. So this cannot occur.

• P(N = 0) > 0. In this case, there is a nonzero probability that N = 0; thus, we
can simply take some coloring that witnesses this event. This gives us a 2-coloring
of H, which is what we sought to find.

One quick corollary of the above result is the following:

Corollary 21. Let m(n) denote the smallest number of edges needed to form a n-uniform
hypergraph that is not 2-colorable. Then m(n) ≥ 2n−1.

So: our above results have given us a lower bound on the quantity m(n). Can we find
an upper bound?

3.2 Upper bound for m(n)

One rather trivial upper bound on m(n) we can get is the following:

Proposition 22.

m(n) ≤
(

2n

n

)
.

Proof. Let V = {1, . . . 2n}, and let E =
(
V
n

)
, all of the n-element subsets of V . Because

any 2-coloring of V must yield at least n vertices all of the same color, there is always a
monochrome edge in this coloring.
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Using constructive methods, it is hard to realistically improve on the rather simple
bound above, which is asymptotically growing somewhat like 4n – a long ways from our
lower bound of 2n−1!. Probabilistic methods, as it turns out, can offer a much better
estimate as to what m(n) actually is:

Theorem 23. (Erdős)

m(n) ≤ O(n22n).

Proof. Let V be some set of vertices, with |V | = v.
Choose m edges from the collection

(
V
n

)
independently at random: specifically, pick

an edge E with probability 1/
(
v
n

)
, and repeat this process m times. (Notice that we

are allowing repetitions.) Take this chosen collection of edges, E , to be the edges of our
hypergraph.

Pick a 2-coloring χ of V , and let a denote the number of red vertices and b denote
the number of blue vertices. Then, for any edge E ∈ E , we have that

P(E is monochrome under χ) =

(
a
n

)
+
(
b
n

)(
v
n

) ≥
(
v/2
n

)
+
(
v/2
n

)(
v
n

) .

For simplicity’s sake, denote the quantity
(v/2n )+(v/2n )

(vn)
by P : then we have that

P(E is monochrome under χ) ≥ P

⇒ P(E is not monochrome under χ) ≤ 1− P
⇒ P(χ is a proper 2-coloring) ≤ (1− P )m.

Therefore, if we look at the collection of all possible colorings of our graph, we have
that

P

( ∨
χ a 2-coloring

χ is a proper 2-coloring

)
≤

∑
χ a 2-coloring

P (χ is a proper 2-coloring)

≤ (# of 2-colorings of V ) · (1− P )m

= 2v · (1− P )m

≤ 2v · e−Pm

= ev ln(2)−Pm.

So: this quantity is less than 1 – and thus a choice of edge-set exists for which the
associated graph is not 2-colorable – if

m ≥ v ln(2)

P
.
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Finding the optimal choice of v to maximize this lower bound on m is then just a
matter of manipulating a few inequalitites. First, let’s create an upper bound for P :

P =
2 ·
(
v/2
n

)(
v
n

)
= 2

(v/2) · . . . · (v/2− (n− 1))

v · . . . · (v − (n− 1))

=
2

2n
· v · (v − 2) · . . . · (v − 2(n− 1))

v · . . . · (v − (n− 1))

=
1

2n−1
·
n−1∏
i=0

(
v − 2i

v − i

)

=
1

2n−1
·
n−1∏
i=0

(
1− i

v − i

)

=
1

2n−1
·
n−1∏
i=0

(
1− i

v
· 1

1− i/v

)

=
1

2n−1
·
n−1∏
i=0

(
1− i

v

(
1 +

i

v
+
i2

v2
+ . . .

))

=
1

2n−1
·
n−1∏
i=0

(
1− i

v
+O

((
i

v

)2
))

≤ 1

2n−1
·
n−1∏
i=0

exp

(
− i
v

+O

((
i

v

)2
))

≤ 1

2n−1
exp

(
−n(n− 1)

v
+O

(
n3

v2

))

Using this, we then have that

m ≥ v ln(2)

P

≥ v ln(2) · 2n−1 · exp

(
n(n− 1)

v
+O

(
n3

v2

))
.

If we pick v = n2/2 and n sufficiently large such that the O(n3/v2)-portion above is
negligible, we then have that there is a non-2-colorable n-uniform hypergraph on m edges
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if

m ≥ n2

2
ln(2) · 2n−1 · e1+O(1).

In other words, we’ve shown that

m(n) ≤ O(n22n),

which is what we claimed.

For an integer n ≥ 2, an n−uniform hypergraph H is an ordered pair H = (V , E),
where V is a finite non-empty set of vertices and E is a family of distinct n−subsets of
V . A 2-coloring of H is a partition of its vertex set hv into two color classes, R and B
(for red, blue), so that no edge in E is monochromatic. A hypergraph is 2-colorable if it
admits a 2-coloring. For an n−uniform hypergraph, we define

m(n) := arg min
|E|

{H = (V , E) is 2-colorable} (3.1)

2-colorability of finite hypergraphs is also known as “Property B”. In [?], Erdős showed

that 2n−1 < m(n) < O(n22n). In [?], Beck proved that m(n) = Ω(n
1
3 2n) and this

was improved to m(n) = Ω

(
2n
√

n
logn

)
by Radhakrishnan et al in [?]. In fact, Erdős-

Lovaśz conjecture that m(n) = Θ(n2n). Here, we outline the proofs of both Beck’s
and Radhakrishnan’s results. We will begin with some notation, if an edge S ∈ E is
monochromatic, we will denote it as S ∈ M, in addition, if it is red (blue), we write
S ∈ RED (S ∈ BLUE). Also for a vertex v ∈ V , v ∈ RED and v ∈ BLUE have a
similar meaning.

3.3 Beck’s result

Theorem 24 ([?]).

m(n) = Ω(n
1
3 2n)

Proof. We will show that m(n) > cn
1
3
−o(1)2n, getting rid of o(1) will need some asymp-

totic analysis which is not relevant to the class and hence is not presented here. Let
m := |E| = k2n−1, we will show that k > cn

1
3
−o(1). The hypergraph will be colored in two

steps.
Step 1: Randomly color all vertices with red or blue with probability 1/2 and indepen-
dently.
Step 2: Randomly re-color vertices that belong to monochromatic edges independently
with probability p.
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For an edge S, S(1) denotes its status after step 1 and S(2) its status after step 2. For
a vertex v ∈ V , v(1) and v(2) have similar meanings. Let N1 denote the number of
monochromatic edges after step 1, then note that E(N1) = k. Also let N denote the
number of monochromatic edges after step 2. For an appropriately chosen p, we will
show that E(N) < 1.

E(N) =
∑
S∈E

P(S(2) ∈M) =
∑
S∈E

(P(S(2) ∈ RED) + P(S(2) ∈ BLUE))

= 2
∑
S∈E

P(S(2) ∈ RED)

P(S(2) ∈ RED) = P(S(1) ∈M, S(2) ∈ RED)︸ ︷︷ ︸
P1

+P(S(1) /∈M, S(2) ∈ RED)︸ ︷︷ ︸
P2

It is easy to bound P1

P1 = P(S(1) ∈ RED,S(2) ∈ RED) + P(S(1) ∈ BLUE, S(2) ∈ RED) =
pn + (1− p)n

2n

≤ 2(1− p)n

2n
(3.2)

In (3.2), we used the fact that p is small, in particular p < 0.5, this will be validated in
the following analysis. Towards analyzing P2, note that, for the vertices that were blue
after step 1 to have turned red, they must belong to blue monochromatic edges, i.e., for
each v ∈ S that is blue, there is an edge T such that T ∩ S 6= Φ and T ∈ BLUE. Define

EST := event S(1) /∈M, T (1) ∈ BLUE, S ∩ T 6= Φ and S(2) ∈ RED

Then we have

P2 ≤
∑
T 6=S

P(EST ) (3.3)

Let U := {v ∈ S \ T | v(1) ∈ BLUE} and ESTU := event S ∩ T 6= Φ, T (1) ∈ BLUE,
U ∈ BLUE and S(2) ∈ RED, then

P(EST ) = P

 ∨
U⊆S\T

ESTU

 ≤ ∑
U⊆S\T

P(ESTU)

For a fixed triple (S, T, U), for U to even flip it must belong to some other edge which is
blue after step 1. But for an upper bound, let is just flip to red.

P(ESTU) ≤ 1

22n−|S∩T |p
|S∩T |+|U | =

p

22n−1
(2p)|S∩T |−1p|U |

≤ p

22n−1
p|U |

24



Using this in (3.3), we have

P(EST ) ≤
∑

U⊆S\T

p

22n−1
p|U | ≤ p

22n−1

n−1∑
|U |=0

(
n− 1

|U |

)
p|U |

=
(1 + p)n−1p

22n−1
≤ 2p(1 + p)n

22n
≤ 2p exp(np)

22n

=⇒
∑
S 6=T

P(EST ) ≤ 2mp exp(np)

22n
(3.4)

Using (3.2),(3.3),(3.4), we get (recall that m = k2n)

E(N) ≤ 2
∑
S

(
m2p exp(np)

22n
+

(1− p)n

2n

)
= 2

(
k2p exp(np) + k(1− p)n

)
(3.5)

For an arbitrary ε > 0, let p = (1+ε) log k
n

, then k(1 − p)n ≤ k exp(−np) = k−ε and

k2p exp(np) = k3+ε(1+ε) log k
n

. So, (3.5) gives

E(N) ≤ 2k−ε +
2k3+ε(1 + ε) log k

n
(3.6)

So, if k ∼ n1/3−2ε/3, then (3.6) will be less than 1, so that P(N = 0) > 0.

3.4 An improvement by Radhakrishnan-Srinivasan

Theorem 25 ([?]).

m(n) = Ω

(
2n
√

n

log n

)
(3.7)

(R-S) take Beck’s recoloring idea and improve it. Their technique is motivated by the
following observation

Observation 26. Suppose S is monochrome after step 1, then it suffices to recolor just
one vertex in S, the rest can stay as is. So, after the first vertex in S changes color, the
remaining vertices can stay put unless they belong to other monochromatic edges.

This motivates the following modification, do not recolor all vertices simultaneously,
put them in an ordered list and recolor one vertex at a time. Here is the modified step 2.
Step 2: For a given ordering, if the first vertex lies in a monochromatic edge, flip its
color with probability p. After having colored vertices 1, . . . , i − 1, if vertex i is in a
monochromatic edge after having modified the first i− 1 vertices, then flip its color with
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probability p.
The analysis proceeds along similar to that in the previous section until (3.2). Consider
P2. The last blue vertex v of S changes color to red because there is some T 6= S such
that T was blue after step 1 and |(|S ∩ T ) = 1, we shall say that S blames T , i.e.,
S 7−→ T , if this happens. Also, none of the vertices in T that were considered before v
change their color to red. To summarize,

Lemma 27. S 7−→ T iff

1. |S ∩ T | = 1, call this vertex v.

2. T (1) ∈ BLUE and v is the last blue vertex in S.

3. All vertices before v in S change color to red.

4. No vertex of T before v changes color to red.

Then,

P2 ≤ P

(∨
T 6=S

S 7−→ T

)
≤
∑
T 6=S

P(S 7−→ T ) (3.8)

Fix an ordering π on the vertices. With respect to this ordering, let v be the (iπ + 1)th

vertex in S and the (jπ + 1)th vertex in T . If the index of w is less than that of v, we
write is as π(w) < π(v). Also define,

S−v := {w ∈ S |π(w) < π(v)}
S+
v := {w ∈ S |π(w) > π(v)}

T−v and T+
v have similar meanings. To compute P(S 7−→ T ), we will need to list some

probabilities

1. P(v(1) ∈ BLUE, v(2) ∈ RED) =
p

2

2. P ((T \ v)(1) ∈ BLUE) =
1

2n−1

3. P(S+
v (1) ∈ RED) =

1

2n−iπ−1

4. P(T−v (2) /∈ RED |T (1) ∈ BLUE) = (1− p)jπ

5. For w ∈ S | π(w) < π(v), P((w(1) ∈ RED) or (w(1) ∈ BLUE,w(2) ∈ RED) |S /∈
M) =

1 + p

2
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So,

P(S 7−→ T |π) ≤ p

2

1

2n−1

1

2n−iπ−1
(1− p)jπ

(
1 + p

2

)iπ
=

p

22n−1
(1− p)jπ(1 + p)iπ (3.9)

Let the ordering be random, then P(S 7−→ T ) = EπP (S 7−→ T |π). A random ordering
is determined as follows. Each vertex picks a real number uniformly at random from the
interval (0, 1), this real number is called its delay. Then the ordering is determined by
the increasing order of the delays.

Lemma 28.

P(S 7−→ T ) = E (P(S 7−→ T |π)) ≤ p

22n−1
(3.10)

Proof. Let the delay of a vertex w be denoted by `(w). Let U := {w ∈ S \ v|w(1) ∈
BLUE}, then `(w) ≤ `(v), since v, by definition, is the last blue vertex in S. Also for
each w ∈ T , either `(w) > `(v) or w did not flip its color in step 2. So, for w ∈ T
P(`(w) ≤ `(v),w flips color) = px, so P(`(w) > `(v) or w did not flip) = (1 − px). Now,
conditioning on `(v) ∈ (x, x+ dx) and with some abuse of notation, we can write

P (S 7−→ T, |U | = u | `(v) = x) =
1

22n−1︸ ︷︷ ︸
coloring after step 1

xu︸︷︷︸
`(U)≤x

p1+u︸︷︷︸
U ∪ {v} flip to red

(1− px)n−1

=⇒ P(S 7−→ T ) ≤
n−1∑
u=0

(
n− 1

u

)∫ 1

0

1

22n−1
p1+uxu(1− px)n−1dx

=
p

22n−1

∫ 1

0

(
n−1∑
u=0

(
n− 1

u

)
(px)u

)
(1− px)n−1dx

=
p

22n−1

∫ 1

0

(1− p2x2)n−1dx

≤ p

22n−1
(3.11)

Proof of theorem 25. Using (3.11) in (3.8), we get P2 ≤ mp
22n−1 . Recall that P1 ≤ 2(1−p)n

2n
,

summing over all edges S, we get

E(N) ≤ k(1− p)n

2
+
k2p

2
(3.12)

Compare (3.12) with (3.5) and note that exp(np) is not present in (3.12). For an arbitrary

ε > 0, setting p = (1+ε) log k
n

and approximating (1− p)n ≈ exp(−np), we get

E(N) ≤ 0.5

(
k−ε + (1 + ε)

k2 log k

n

)
(3.13)
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Clearly k ∼
√

n
logn

makes E(N) < 1 giving the result.

Spencer’s proof of lemma 28. Aided by hindsight, Alon-Spencer give an elegant combi-
natorial argument to arrive at (3.11). Given the pair of edges S, T with |S ∩ T | = 1,
fix a matching between the vertices S \ {v} and T \ {v}. Call the matching µ :=
{µ(1), . . . , µ(n− 1)}, where each µ(i) is an ordered pair (a, b), a ∈ S \ {v} and b ∈ \{v},
define µs(i) := a and µt(i) := b. We condition on whether none, one or both vertices of
µ(i) appear in S−v ∪ T−v , for each 1 ≤ i ≤ n− 1. Let Xi = |µ(i) ∩ (S−v ∪ T−v )|. Since the
ordering is uniformly random, Xi and Xj are independent for i 6= j. From (3.9), consider

E ((1− p)jπ(1 + p)iπ).

E
(
(1− p)jπ(1 + p)iπ |µ ∩ S−v ∪ T−v

)
= E

(
(1− p)

∑n−1
i=1 I(µ(i)∩S−v 6=Φ)(1 + p)

∑n−1
i=1 I(µ(i)∩T−v 6=Φ)

)
= E

(
n−1∏
i=1

(1− p)I(µs(i)∈S
−
v )(1 + p)I(µt(i)∈T

−
v )

)

=
n−1∏
i=1

E
(

(1− p)I(µs(i)∈S
−
v )(1 + p)I(µt(i)∈T

−
v )
)

=
n−1∏
i=1

(
1

4
(1− p+ 1 + p+ 1 + 1− p2)

)

=
n−1∏
i=1

(
1− p2

4

)
< 1

=⇒ E
(
(1− p)jπ(1 + p)iπ

)
= E

(
E
(
(1− p)jπ(1 + p)iπ |µ ∩ S−v ∪ T−v

))
< 1

=⇒ P(S 7−→ T ) <
p

22n−1
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4 Dependent Random Choice and embeddings
of graphs

4.1 Introduction

The premise for some of the investigations in this chapter is the following question: Given a
’small’ graph H, if a graph G is dense on a large vertex set, can we find a copy of H in G? We
say G is dense if e(Gn) ≥ εn2 for some ε > 0, where ε is independent of n. More formally, we
make the following definition.

Definition 29. For any graph H, by ex(n;H) we mean the maximal number of edges in a graph
on n vertices without a copy of H.

As it turns out, this need not always be true. Indeed, if H = K3, G = Kn,n, e(Kn,n) = n2,
then clearly, there is no copy of H in G. Turán’s theorem which is considered the foundation
of extremal graph theory, says that if G has no copy of Kr+1, then e(Gn) ≤ (1 − 1

r )n
2

2 , or

more precisely, ex(n,Kr+1) = (1− 1
r )n

2

2 . This was extended enormously by what is considered
the fundamental theorem in extremal graph theory, in the following theorem of Erdős-Stone-
Simonovits:

Theorem 30. (Erdős-Stone-Simonovits) Suppose H is a ’small’ graph, and χ(H) = r+1, r ≥ 2.

For any ε > 0, ∃ n(ε), s.t. ∀ n ≥ n(ε), if e(Gn) ≥ (1− 1
r )n

2

2 + εn2, then H ⊂ Gn.

In particular, if a graph H has chromatic number at least 3, then ex(n,H) is determined
asymptotically to a factor by its chromatic number.

Erdős-Stone-Simonovits: If χ(H) ≥ 3, then ex(n;H) ≈ (1− 1
r )n

2

2 .
But note that if r = 1, i.e., if the graph H is bipartite then the Erdő-Stone-Simonovits

theorem tells us the following: If e(Gn) ≥ εn2, then H ⊂ Gn. Thus we only know that in such
cases, ex(n;H) = o(n2). This begs the following question:

Question 31. For H bipartite, what is the correct value of α s.t. ex(n;H) = Θ(nα(H)), 1 ≤
α < 2?

The asymptotics for ex(n;H) are known for very few bipartite graphs. Thus, one is curious
to know if we can find a ‘better power’ α such that ex(n;H) = O(nα)? More generally, given a
bipartite graph H, and a large graph G, how may we find a copy of H in G?
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4.2 A graph embedding lemma and Dependent Random Choice

Let V (H) = A ∪ B, |A| = a, |B| = b, let A0 be subset of V (G) containing all the vertices of A.
Consider the following scenario: Every vertex in B has degree ≤ r. If every r-subset of A0 has
’many’ common neighbors, then heuristically, our chances of embedding each vertex of B get
better.

Proposition 32. Let H be bipartite, H = (A ∪B, t) with |A| = a, |B| = b, any vertex in B has
degree ≤ r. Suppose there is a set A0 ⊂ V (G), |A0| ≥ a, s.t. every r-subset of A0 has at least
a+ b common neighbors in G. Then H can be embedded in G.

Proof: Suppose we embed the vertices of A into A0 arbitrarily. We shall now try to embed
each vertex of B into G, one at a time. Let B = {v1, v2, · · · vb}. Suppose we have already
embedded v1, · · · vi−1. Now let V= neighbors of vi in A (in H). Since A has been embedded into
A0, this gives a set U ⊂ A0 of size ≤ r which should be the neighbor set for vi. Since |U | ≤ r,
it has ≥ a+ b common neighbors in G =⇒ there is some available choice for vi. �

So, how does one find such an A0?
Here is a heuristic: Pick a small subset T of V(G) over t rounds, at random (with repetition).

Consider the set of common neighbors of T. Heuristically, denote the common neighbors of T
by N∗(T ).

E(|N∗(T )|) =
∑
v∈V

P(v ∈ N∗(T ))

=
∑
v∈V

(
d(v)

n
)t

≥ 1

nt−1
(
1

n

∑
v∈V

d(v))t

=
(d̄)t

nt−1

The inequality follows from Jensen’s inequality for convex functions.
Let Y= number of r-subsets U of N∗(T ) s.t. U has fewer than m common neighbors. Then

E(Y ) ≤
∑

U⊂V (G),|U |=r
|N∗(T )|<m

P(U ⊂ N∗(T )).

If U ⊂ N∗(T ), it means that every choice for T was picked from among the common
neighbors of U.

P(U ⊂ N∗(T )) ≤ (
m

n
)t

=⇒E(Y ) ≤
(
n

r

)
(
m

n
)t

=⇒E(|N∗(T )| − Y ) ≥ (d̄)t

nt−1
−
(
n

r

)
(
m

n
)t

=⇒ ∃ A0 ⊂ N∗(T ) of size ≥ (d̄)t

nt−1 −
(
n
r

)
(mn )t, s.t. every r-subset of A0 has ≥ m common

neighbors.
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Theorem 33. (Alon, Krivelevich, Sudakov; 2003) H is bipartite with vertex partition (A ∪B,

and if every vertex of B has degree ≤ r, then ex(n;H) = O(n2− 1
r ).

Proof: Note that
e(G) ≥ Cn2− 1

r =⇒ d̄ ≥ 2Cn2− 1
r

where C = CH is some constant depending on H. To apply the lemma, we need that

(d̄)t

nt−1
−
(
n

r

)
(
a+ b

n
)t ≥ a

LHS ≥ ((2C)tnt−
t
r )t

nt−1
− nr

r!
(
a+ b

n
)t

= (2C)r − (a+ b)r

r!
(if t = r)

> a

=⇒C >
1

2
(a+

(a+ b)r

r!
)
1
r

4.3 An old problem of Erdős

Firstly we need a definition.

Definition 34. A topological copy of a graph H is formed by replacing every edge of H by a
path such that paths corresponding to distinct edges are internally disjoint, i.e., have no common
internal vertices.

Erdős conjectured that if e(Gn) ≥ cp2n, then there is a topological copy of Kp in G. This
was proved in 1998 by Bollabás and Hind. Erdős’ conjecture implies that there is a topological
copy of K√n in Gn if e(Gn) ≥ cn2.

Definition 35. A t-subdivision where each edge is replaced by a path with ≤ t internal vertices.

Erdős had in fact asked the following question as well: Is there a 1-subdivision of Kδ
√
n in a

dense graph for some absolute δ > 0? This was settled in the affirmative by Alon, Krivelevich,
and Sudakov.

Theorem 36. (Alon, Krivelevich, Sudakov) If e(Gn) ≥ εn2, then G has a 1-subdivision of
Kε3/2

√
n.

Proof: Firstly note that a 1-subdivision of the complete graph Ka with every edge getting
subdivided corresponds to a bipartite graph with parts of size a,

(
a
2

)
, respectively. Furthermore,

every vertex in the part of size
(
a
2

)
has degree 2 since each of these vertices is placed in an edge

of the original Ka, and hence has degree 2.
If we think along the lines of the embedding lemma we have proved we want the following:
(d̄)t

nt−1 −
(
n
r

)
(mn )t ≥ a, here r = 2,m = a+

(
a
2

)
< 2
(
a
2

)
< a2, d̄ ≥ 2εn

LHS > (2ε)tn− n2

2

a2t

nt
≥ a
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If a = δ
√
n, and set δ = ε3/2, then

LHS > εt[(2)tn− n2

2
ε2t]

If the second term in the square bracket becomes n then we may factor out n from both
these terms. This basically means setting t = logn

2 log( 1
ε

).

LHS >

√
n

2
(2t+1 − 1) >

√
n

2
2t =

√
n

2
n

log 2
−2 log ε

As n goes large, this beats a = δ
√
n. �
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5 The Second Moment Method

The method of using expectation of random variablesis a very useful and powerful tool, and
its strength lies in its ease. However, in order to prove stronger results, one needs to obtain
results which prove that the random variable in concern takes values close to its expected value,
with sufficient (high) probability. The method of the second moment, as we shall study here
gives one such result which is due to Chebyshev. We shall outline the method, and illustrate
a couple of examples. The last section covers one of the most impressive applications of the
second moment method - Pippenger and Spencer’s theorem on coverings in uniform almost
regular hypergraphs.

5.1 Variance of a Random Variable and Chebyshev’s theorem

For a real random variable X, we define Var(X) := E(X −E(X))2 whenever it exists. It is easy
to see that if Var(X) exists, then Var(X) = E(X2)− (E(X))2.

Theorem 37 (Chebyshev’s Inequality). Suppose X is a random variable, and suppose E(X2) <
∞. The for any positive λ,

P(|X − E(X)| ≥ λ) ≤ Var(X)

λ2
.

Proof. Var(X) = E[(X − E(X))2] ≥ λ2P(|X − E(X)| ≥ λ).

The use of Chebyshev’s inequality, also called the Second Moment Method, applies in a very
wide context, and it provides a very basic kind of ‘concentration about the mean’ inequality.
The applicability of the method is most pronounced when the variance is of the order of the
mean, or smaller. We shall see in some forthcoming chapters that concentration about the mean
can be achieved with much greater precision in many situations. What, however still makes
Chebyshev’s inequality useful is the simplicity of its applicability.

If X = X1 + X2 + · · · + Xn, then the following simple formula calculates Var(X) in terms
of the Var(Xi). For random variables X,Y, define the Covariance of X and Y as

Cov(X,Y ) := E(XY )− E(X)E(Y ).
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For X = X1 +X2 + · · ·+Xn, we have

Var(X) =
∑
i

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj).

This is a simple consequence of the definition of Variance and Covariance. In particular, if the
Xi’s are pairwise independent, then Var(X) =

∑
i Var(Xi).

5.2 Applications

We first present a theorem due to Hardy-Ramanujan in Number theory, with a probabilistic
proof by Turán.

Theorem 38. Let ω(n) → ∞. Let ν(n) denote the number of primes dividing n not counting
multiplicity. Then the number of positive integers x in {1, 2, . . . , n} such that

|ν(x)− log logn| > ω(n)
√

log log n

is o(n).

Proof. The idea of the proof germinates from the following simple device. Suppose we pick
an integer x uniformly at random from {1, 2, .., n}. For a prime p, denote by Xp the following
random variable:

Xp := 1 if p|x
:= 0 otherwise.

Note that ν(X) =
∑

pXp, where the sum is over all primes p less than n. Now, note that

E(Xp) = bn/pc
n = 1/p + O(1/n). Hence, E(ν(X)) =

∑
p≤n

(
1
p +O( 1

n

)
= log log n + O(1). The

last equality follows from a standard exercise in analytic number theory and is an application
of the Abel Summation formula.

Thus, to ‘estimate’ ν(x) we could approximate ν(x) by its average. Chebyshev’s inequality
now gives a ‘reasonable’ interval of estimation. In order to do that, it remains to first calculate
Var(Xp), Cov(Xp, Xq).
It is easy to see that Var(Xp) = 1

p(1− 1
p) +O( 1

n), so
∑

p Var(Xp) = log log n+O(1).

Now in order to calculate the covariances, note that for distinct primes p, q, we have XpXq

= 1 if and only if pq|x. So,

Cov(Xp, Xq) = E(XpXq)− E(Xp)E(Xq)

=
bn/pqc
n

− bn/pc
n

bn/qc
n

≤ 1

pq
− (

1

p
− 1

n
)(

1

q
− 1

n
) ≤ 1

n
(
1

p
+

1

q
).
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Hence ∑
p 6=q

Cov(Xp, Xq) ≤
1

n

∑
p 6=q

1

n
(
1

p
+

1

q
) ≤ O(1)

log n

∑
p≤n

1

p
≤ O(1) log log n

log n
= o(1).

Here, we use a well known (but relatively non-trivial) result that π(x) = O( x
log x), where

π(x) denotes the arithmetic function that counts the number of primes less than or equal to
x. This result of Chebyshev, is much weaker than the Prime number theorem which actually
says that the constant in question is asymptotically equal to 1. A similar calculation also gives∑

p 6=q Cov(Xp, Xq) ≥ −o(1).

Hence, Chebyshev’s inequality gives

P(|ν(X)− log logn| > ω(n)
√

log log n) ≤ 1

ω2(n)
= o(1).

Turán’s proof makes the argument simpler by letting x be chosen at random in {1, 2, ..,M}
where M = n1/10, say. This avoids using that π(x) = O( x

log x); on the other hand it gives
an interval estimate for ν(n) − 10. But asymptotically this result is the same as that of the
statement in the Hardy-Ramanujan theorem.

The (usually) difficult part of using the second moment method arises from the difficulty of
calculating/estimating Cov(X,Y ) for random variables X,Y . One particularly pleasing aspect
of the second moment method is that this calculation becomes moot if for instance we have
pairwise independence of the random variables, which is much weaker than the joint indepen-
dence of all the random variables.

The preceding example illustrates one important aspect of the applicability of the second mo-
ment method: If Var(Xn) = O(E(Xn)) and E(Xn) goes to infinity then Chebyshev’s inequality
gives us

P(|Xn − E(Xn)| > εE(Xn)) = o(1).

In particular, Xn is of the ‘around E(X)’ with very high probability.

For the next application, we need a definition.

Definition 39. We say a set of positive integers {x1, x2, . . . , xk} is said to have distinct sums
if
∑

xi∈S xi are all distinct for all subsets S ⊆ [k].

For instance, if xk = 2k, then we see that {x1, x2, . . . , xk} has distinct sums. Erdős posed
the question of estimating the maximum size f(n) of a set {x1, x2, . . . , xk} with distinct sums
and xk ≤ n for a given integer n. The preceding example shows that f(n) ≥ blog2 nc+ 1.

Erdős conjectured that f(n) ≤ blog2 nc + C for some absolute constant C. He was able to
prove that f(n) ≤ log2 n+ log2 log2 n+O(1) by a simple counting argument. Indeed, there are
2f(n) distinct sums from a maximal set {x1, x2, . . . , xk}. On the other hand, since each xi is at
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most n, the maximum such sum is at most nf(n). Hence 2f(n) < nf(n). Taking logarithms
and simplifying gives us the aforementioned result.
As before, here is a probabilistic spin. Suppose {x1, x2, . . . , xk} has distinct sums. Pick a ran-
dom subset S of [k] by picking each element of [k] with equal probability and independently.
This random subset gives the random sum XS :=

∑
xi∈S xi. Now E(XS) = 1

2(x1 +x2 + · · ·+xk).
Similarly, Var(XS) = 1

4(x2
1 + x2

2 + · · ·+ x2
k) ≤

n2k
4 , so by Chebyshev we have

P(|XS − E(XS)| < λ) ≥ 1− n2k

4λ2
.

Now the key point is this: since the set has distinct sums and there are 2k distinct subsets of
{x1, x2, . . . , xk}, for any integer r we have that P(XS = r) ≤ 1

2k
; in fact it is either 0 or 1

2k
. This

observation coupled with Chebyshev’s inequality gives us

1− n2k

4λ2
≤ P(|XS − E(XS)| < λ) ≤ 2λ+ 1

2k
.

Optimizing for λ we get

Proposition 40. f(n) ≤ log2 n+ 1
2 log2 log2 n+O(1).

5.3 Resolution of the Erdős-Hanani Conjecture: The Rödl ‘Nibble’

The Rödl ‘Nibble’ refers to a probabilistic paradigm (discovered by Vojtech Rödl) for a host of
applications in which a desirable is constructed by random means, not in one shot, but rather,
by several small steps, with a certain amount of ‘control’ over each step. Subsequent researchers
realized that Rödl’s methodology extended to a host of applications, particularly for coloring
problems in graphs and matchings/coverings in hypergraphs. Indeed, the Erdős-Hanani conjec-
ture is an instance of a covering problem of a specific hypergraph. We present here, a version
of a theorem that resolves the conjecture proved by Pippenger and Spencer.

Definition. Consider the set [n] = {1, . . . , n}, and let n ≥ r ≥ t be positive integers.
1. An r-uniform covering of [n] for

(
[n]
t

)
is a collection A of r-subsets of [n] such that for each

t-subset T ∈
(

[n]
t

)
, there exists an A ∈ A such that T ⊂ A.

2. An r-uniform packing of [n] for
(

[n]
t

)
is a collection A of r-subsets of [n] such that for each

t-subset T ∈
(

[n]
t

)
, there exists at most one A ∈ A such that T ⊂ A.

When t = 1, if r|n, then there obviously exists a collection A of r-subsets of [n], |A| = n
r ,

such that A is both an r-uniform covering and packing for
(

[n]
1

)
= [n]. In general, there exists

a covering of size dnr e and a packing of size bnr c.

Let M(n, r, t) be the size of a minimum covering, and m(n, r, t) be the size of a maximum
packing. Idealistically, there exists a collection A of r-subsets of [n], |A| =

(
n
t

)
/
(
r
t

)
, such that

A is both an r-uniform covering and packing for
(

[n]
t

)
. This is called a t-(n, r, 1) design. The

number
(
n
t

)
/
(
r
t

)
comes from the observation that for each t-subset, there is a unique r-subset
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containing it, and for each r-subset, it contains
(
r
t

)
t-subsets. Hence, we have the inequality

m(n, r, t) ≤
(
n
t

)
/
(
r
t

)
≤M(n, r, t).

When t = 2, Erdős-Hanani (1960’s) proved that

lim
n→∞

M(n, r, t)(
n
t

)
/
(
r
t

) = lim
n→∞

m(n, r, t)(
n
t

)
/
(
r
t

) = 1.

They further conjectured that this is true for all positive integers r ≥ t. This conjecture was
settled affirmatively by Vojtech Rödl in 1985.

Here, we consider a more general problem. Given an r-uniform hypergraph H on n vertices
which is D-regular for some D, i.e. deg(x) = D ∀x ∈ V , where deg(x) = |{E ∈ E : E 3 x}|,
and E = set of hyperedges in H, we want to find a covering and a packing out of H, both of
sizes ≈ n

r . This is more general since we can treat the t-subsets in the conjecture as vertices in
this problem, and all the degrees of these vertices are equal.

Note that in this new problem, if we can find a packing of size (1−ε)n
r , then there are at most

εn vertices uncovered. Hence, we can find a covering of size ≤ (1−ε)n
r +εn = (1−ε+rε)nr

ε→0−−→ n
r .

On the other hand, if we can find a covering A of size (1+ε)n
r , then for every x which is cov-

ered by deg(x) hyperedges, we delete deg(x) − 1 of them. The number of deleted hyperedges

≤
∑
x∈V

(deg(x)− 1) =
∑
x∈V

deg(x)−
∑
x∈V

1 = |{(x,E) : E ∈ A}| − n = (1+ε)n
r × r− n = εn. Hence,

we can find a packing of size ≥ (1+ε)n
r − εn = (1+ ε−rε)nr

ε→0−−→ n
r . Therefore, finding a covering

of size ≈ n
r is equivalent to finding a packing of size ≈ n

r .

In the following, we try to obtain a covering A of size ≤ (1 + ε)nr for all large n when an
ε > 0 is given.

Rödl’s idea. First, pick a small number of hyperedges, so that the rest of H is as close as
possible to the original one. If, by taking T such “nibbles”, we are left with δn vertices for some
small δ, we cover each of these vertices with a hyperedge to finish the problem.

As H is D-regular, r|E| = |{(x,E) : x ∈ E ∈ E}| = nD ⇒ |E| = nD
r . So if we want to pick

around εn
r edges in each nibble, then we can use P(E is picked) = ε

D .

Probability Paradigm. Each edge E ∈ E is picked independently with probability p = ε
D . Let

E∗ be the set of picked edges. By the choice of p, E[|E∗|] = εn
r .

Notation. x = a± b⇔ x ∈ (a− b, a+ b).

After a “nibble”, the rest of the hypergraph is no longer regular, so we modify the problem.
Given an r-uniform hypergraph H on n vertices such that deg(x) = D(1± δ) ∀x ∈ V for some
small δ > 0, we want to find a covering of size ≈ n

r .
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We further modify the problem. Given an r-uniform hypergraph H on n vertices such that
except at most δn vertices, deg(x) = D(1 ± δ) for other vertices x ∈ V , suppose that ∀x ∈ V ,
deg(x) < kD for some constant k. We want to find a collection of hyperedges E∗ such that
(i) |E∗| = εn

r (1 + δ′) for some δ′ > 0;

(ii) |V ∗| = ne−ε(1± δ′′) for some δ′′ > 0, where V ∗ := V \
( ⋃
E∈E∗

E
)

.

Let 1x = 1{x/∈ any edge of E∗}. The motivation of (ii) is |V ∗| =
∑
x∈V

1x ⇒ E[|V ∗|] =
∑
x∈V

(1 −

ε
D )deg(x) ≈ n(1−δ)(1− ε

D )D(1±δ) ≈ n(1−δ)e−ε(1±δ) ≈ ne−ε(1±δ′′). Var(|V ∗|) = Var
( ∑
x∈V

1x

)
=∑

x∈V
Var(1x) +

∑
x 6=y

Cov(1x,1y). If deg(x) = D(1± δ) and deg(y) = D(1± δ), then

Cov(1x,1y) = E[1x,y]− E[1x]E[1y]

=
(

1− ε

D

)deg(x)+deg(y)−deg(x,y)
−
(

1− ε

D

)deg(x)+deg(y)

=
(

1− ε

D

)deg(x)+deg(y)
((

1− ε

D

)− deg(x,y)
− 1

)
≈ e−2ε(1±δ)(e−

ε
D

deg(x,y) − 1).

Note that e−
ε
D

deg(x,y) − 1 is very small provided that deg(x, y) � D. This is true in the orig-
inal Erdös-Hanani problem, where V =

(
[n]
t

)
, since D =

(
n−t
r−t
)

= O(nr−t), while deg(x, y) =(n−|T1∪T2|
r−|T1∪T2|

)
≤
(
n−t−1
r−t−1

)
= O(nr−t−1) � D, where x and y corresponds to t-subsets T1 and T2

respectively. This motivates the following theorem (or the “Nibble” Lemma).

Theorem. (Pippenger-Spencer) Suppose r ≥ 2 is a positive integer, and k, ε, δ∗ > 0 are
given. Then there exist δ0(r, k, ε, δ∗) > 0 and D0(r, k, ε, δ∗) such that for all n ≥ D ≥ D0 and
0 < δ ≤ δ0, if H is an r-uniform hypergraph on n vertices satisfying
(i) except at most δn vertices, deg(x) = D(1± δ) for other vertices x ∈ V ;
(ii) ∀x ∈ V , deg(x) < kD;
(iii) deg(x, y) < δD,
then there exists E∗ ⊂ E such that
(a) |E∗| = εn

r (1± δ∗);
(b) |V ∗| = ne−ε(1± δ∗), where V ∗ = V \

( ⋃
E∈E∗

E
)

;

(c) except at most δ∗|V ∗| vertices, deg∗(x) = De−ε(r−1)(1± δ∗), where deg∗ is the degree on the
induced hypergraph on V ∗.

We say that H is an (n, k,D, δ)-hypergraph when (i), (ii) and (iii) are true. This lemma, in
short, says that H is (n, k,D, δ) ⇒ there exists an induced hypergraph H∗ which is (ne−ε(1±
δ∗), keε(r−1), De−ε(r−1), δ∗). The parameter k∗ is due to deg∗(x) ≤ deg(x) < kD = k∗D∗ ⇒
k∗ = kD

De−ε(r−1) = keε(r−1), and the parameter δ follows deg∗(x, y) ≤ deg∗(x, y) < δD = δ∗D∗ ⇒
δ = δ∗De−ε(r−1)

D = δ∗e−ε(r−1). In other words, δ∗ = δeε(r−1).

Repeat the “nibble” t times (t to be determined) will give δ = δ0 < δ1 < · · · < δt with
δi = δi−1e

ε(r−1), and H = H0 ⊃ H1 ⊃ · · · ⊃ Ht. Note that this establishes a cover of size
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t−1∑
i=1
|Ei|+ |Vt|. By

|Vi| = |Vi−1|e−ε(1± δi) ≤ n−εiPodij=1(1 + δj)

and

|Ei| =
ε|Vi−1|
r

(1± δi) ≤
εne−ε(i−1)

r

i
Pod
j=1

(1 + δj),

the size of this cover is

t−1∑
i=1

|Ei|+ |Vt| ≤

(
t−1∑
i=1

εne−ε(i−1)

r

)
Podti=1(1 + δi) + ne−εtPodti=1(1 + δi)

=
(
Podti=1(1 + δi)

) n
r

(
t∑
i=1

εe−ε(i−1) + re−εt

)

≤
(
Podti=1(1 + δi)

) n
r

(
ε

1− e−ε
+ re−εt

)
.

Pick t such that e−εt < ε. For this t, pick δ small enough such that
t

Pod
i=1

(1 + δi) ≤ 1 + ε. Then

the size of the cover
ε→0−−→ n

r from above. Therefore, it leaves to prove the “Nibble” Lemma.

Proof of “Nibble” Lemma.

Probability Paradigm. Each edge of H is picked independently with probability ε
D . Let E∗ be

the set of picked edges.

We say x ∈ V is good if deg(x) = (1± δ)D, else x is bad. Note that

|{(x,E) : x ∈ E}| ≥ |{(x,E) : x good}| > (1− δ)D · (1− δ)n = (1− δ)2Dn.

On the other hand,

|{(x,E) : x ∈ E}| = |{(x,E) : x good}|+ |{(x,E) : x bad}|
≤ (1 + δ)D · n+ kD · δn.

So (1−δ)2Dn
r ≤ |E| ≤ Dn

r (1 + (k + 1)δ)⇒ |E| = Dn
r (1± δ(1)).

E[|E∗|] =
∑
E∈E

P(E is picked) = ε
D
Dn
r (1 ± δ(1)) = εn

r (1 ± δ(1)). Let 1E = 1{E is picked}.

By independence, Var(|E∗|) =
∑
E∈E

Var(1E) ≤ E[|E∗|]. By Chebyshev’s inequality, we get

P
(∣∣∣|E∗| − E[|E∗|]

∣∣∣ > δ(2)E[|E∗|]
)
≤ Var(|E∗|)

δ2
(2)

E[|E∗|]2 . So if n � 0, then |E∗| = εn
r (1 ± δ(1))(1 ± δ(2)) =

εn
r (1± δ∗) with high probability, yielding (a).

Let 1x = 1{x/∈ any edge of E∗}. Note that

E[|V ∗|] =
∑
x∈V

(
1− ε

D

)deg(x)
≥
∑
x good

(
1− ε

D

)D(1+δ)
≥ e−ε(1− δ(3)) · (1− δ)n.

39



On the other hand,

E[|V ∗|] =
∑
x good

(
1− ε

D

)deg(x)
+
∑
x bad

(
1− ε

D

)deg(x)

≤
∑
x good

(
1− ε

D

)D(1−δ)
+ δn

≤ e−ε(1 + δ(4)) · n+ δn

So ne−ε(1− δ(3))(1− δ) ≤ E[|V ∗|] ≤ ne−ε(1 + δ(4) + δeε), implying E[|V ∗|] = ne−ε(1± δ(5)).

Var(|V ∗|) =
∑
x∈V

Var(1x) +
∑
x 6=y

Cor(1x,1y) ≤ E[|V ∗|] +
∑
x 6=y

Cor(1x,1y), where

Cov(1x,1y) = E[1x,y]− E[1x]E[1y]

=
(

1− ε

D

)deg(x)+deg(y)−deg(x,y)
−
(

1− ε

D

)deg(x)+deg(y)

=
(

1− ε

D

)deg(x)+deg(y)
((

1− ε

D

)− deg(x,y)
− 1

)
≤ 1 ·

((
1− ε

D

)−δD
− 1

)
≤ eεδ − 1 which is small.

This implies Var(|V ∗|) = o(E[|V ∗|]2). By Chebyshev’s inequality, we get

P
(∣∣∣|V ∗| − E[|V ∗|]

∣∣∣ > δ(6)E[|V ∗|]
)
≤ Var(|V ∗|)
δ2

(6)E[|V ∗|]2
.

So if n� 0, |V ∗| = ne−ε(1± δ(5))(1± δ(6)) = ne−ε(1± δ∗) with high probability, yielding (b).

Suppose x survives after the removal of E∗, and let E 3 x. We want to estimate P(E survives | x survives).
Let FE = {F ∈ E : x /∈ F, F ∩ E 6= ∅}. Then E survives if and only if FE ∩ E∗ = ∅.

Recall that x is good if deg(x) = (1± δ)D, else x is bad. Call E ∈ E bad if E contains some
bad vertices. Suppose x is good, and E is good. Then

P(E survives | x survives) =
(

1− ε

D

)(r−1)(1±δ)D−(r−1
2 )δD

(1± δ(7))

=
(

1− ε

D

)(r−1)D
(1± δ(8)).

Let Bad(x) = {E 3 x : E is bad}. If |Bad(x)| < δ(9)D, then E[deg∗(x)] = De−ε(r−1)(1± δ(10)).

So now, the question is, how many x have |Bad(x)| ≥ δ(9)D? Call x very bad if x is bad or
if |Bad(x)| ≥ δ(9)D. We now want to find the size of Vvery bad := {x ∈ V : x is very bad}. Note
that

|{(x,E) : |Bad(x)| ≥ δ(9)D}| ≥ δ(9)D · |Vvery bad|.
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On the other hand,

|{(x,E) : |Bad(x)| ≥ δ(9)D}| ≤ |{(x,E) : E is bad}|
≤ r|{(x,E) : x is bad}| ≤ r(kD)(δn).

Hence, |Vvery bad| ≤ r(δn)k
δ(9)

= δ∗n. Therefore, except at most |δ∗n| vertices, the remaining very

good vertices x satisfy E[deg∗(x)] = De−ε(r−1)(1± δ(10)).

Let 1E = 1{E survives}. For those very good vertices x,

Var(deg∗(x)) =
∑
E∈E

Var(1E) +
∑
E 6=F

Cov(1E ,1F )

≤E[deg∗(x)] +
∑

E 6=F good

Cov(1E ,1F ) + δ(9)D · (1 + δ)D · 1

≤E[deg∗(x)] +
∑

E 6=F good
E∩F={x}

Cov(1E ,1F ) +
∑

E 6=F good
|E∩F |>1

Cov(1E ,1F )

+ δ(9)(1 + δ)D2

≤E[deg∗(x)] +
∑

E 6=F good
E∩F={x}

Cov(1E ,1F ) + (r − 1)δD · (1 + δ)D · 1

+ δ(9)(1 + δ)D2,

where

Cov(1x,1y) = E[1x,y]− E[1x]E[1y]

=
(

1− ε

D

)|FE∪FF |
−
(

1− ε

D

)|FE |+|FF |
=
(

1− ε

D

)|FE |+|FF |((
1− ε

D

)−|FE∩FF |
− 1

)
≤
(

1− ε

D

)−|FE∩FF |
− 1

≤
(

1− ε

D

)−(r−1)2δD
− 1 ≤ eε(r−1)2δ which is small.

All these together imply Var(deg∗(x)) = o(E[deg∗(x)]2). By Chebyshev’s inequality, deg∗(x) =
De−ε(r−1)(1± δ∗) with high probability.

Let N = |{x good : deg∗(x) 6= e−ε(r−1)D(1± δ∗)}|. Then we can use Markov’s inequality to
show that E[N ] < δ(11)n, so all except δ∗n vertices satisfy (c).
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6 Bounding Large Deviations - The Chernoff
Bounds

It is often the case that the random variable of interest is a sum of independent random variables.
In many of those cases, the theorem of Chebyshev is much weaker than what can be proven.
Under reasonably mild conditions, one can prove that the random variable is tightly concentrated
about its mean, i.e., the probability that the random variable is ‘far’ from the mean decays
exponentially. We consider a few prototypes of such results and a few combinatorial applications.
One of the first such results is the following:

Proposition 41 (Chernoff Bound). Let Xi ∈ {±1} be independent random variables, with
P[Xi = −1] = P[Xi = 1] = 1

2 , and let Sn =
∑n

i=1Xi. For any a > 0 and any n, P[Sn > a] <

e−a
2/2n.

Proof. Consider eλXi , with λ to be optimized. Then E[eλXi ] = (eλ + e−λ)/2 = cosh(λ). Taking
the Taylor expansion, we see that

E
[
eλXi

]
=

∞∑
k=0

λ2k

(2k)!
<

∞∑
k=0

(λ2/2)k

k!
= eλ

2/2

Since the Xi are independent,

E
[
eλSn

]
= E

[
e
∑
λXi
]

=
∏
i

E[eλXi ] = cosh(λ)n < eλ
2n/2

By Markov’s Inequality,

P
[
eλSn > eλa

]
≤ E[eλSn ]

eλa
< eλ

2n/2−λa

Since P[Sn > a] = P[eλSn > eλa], we see that P[Sn > a] < eλ
2n/2−λa. Optimizing this bound by

setting λ = a/n, we see that P[Sn > a] < eλ
2n/2, as desired.

Proposition 41 can be generalized and specialized in various ways. We state two such
modifications here.

Proposition 42 (Chernoff Bound (Generalized Version)). Let p1, . . . , pn ∈ [0, 1], and let Xi be
independent random variables such that P[Xi = 1− pi] = pi and P[Xi = −pi] = 1− pi, so that

E[Xi] = 0 for all i. Let Sn =
∑n

i=1Xi. Then

P[Sn > a] < e−2a2/n and P[Sn < −a] < 2e−2a2/n
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Letting p = 1
n(p1 + . . .+ pn), this can be improved to

P[Sn > a] < e−a
2/pn+a3/2(pn)2

Proposition 43 (Chernoff Bound (Binomial Version)). Let X ∼ Binomial(n, p), and let 0 ≤
t ≤ np. Then P[|X − np| ≥ t] < 2e−t

2/3np.

In all three cases, the independence assumption can be removed while preserving the expo-
nential decay (although with a worse constant).

6.1 Projective Planes and Property B

Given a hypergraph H = (V, E), we say that H has property B if there exists S ⊆ V such that
for all E ∈ E (i) S ∩ E 6= ∅ and (ii) E 6⊆ S.

Note that any 2-colorable hypergraph has property B, by letting S be the set of blue vertices.

Observation 44 (Lovász). If H is such that |E1 ∩ E2| 6= 1 for all E1, E2 ∈ E, then H is
2-colorable, and therefore has property B.

Proof. Number the vertices 1, . . . , n. Color each vertex, in order, avoiding monochromatic
edges. It is easily seen that by the assumptions on H, this must yield a valid coloring.

We now consider the opposite assumption. Suppose that every pair of edges meet at exactly
1 vertex. The Fano Plane, shown here with each edge represented as a line, shows that such a
hypergraph need not be 2-colorable. The Fano Plane is an example of a projective plane.

Definition 45 (Projective Plane ¶n). The projective plane of order n, denoted ¶n = (P,L),
is an n+ 1-uniform hypergraph such that

1. For all x ∈ P, #{L ∈ L |x ∈ L} = n+ 1
2. For all L1, L2 ∈ L, L1 6= L1, |L1 ∩ L2| = 1
3. For all x, y ∈ P, x 6= y, there exists a unique L ∈ L such that x ∈ L and y ∈ L.
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The elements of P are referred to as “points” and the elements of L are referred to as “lines”.
Using this terminology, we see that requirements (2) and (3) in the definition can be rephrased
as (2) Any two lines meet at unique point and (3) Any two points define a line.

We now define a strengthening of Property B, which we will refer to as Property B(s).

Definition 46 (Property B(s)). A hypergraph H = (V, E) has property B(s) if there exists
S ⊆ V such that for every E ∈ E, 0 < |E ∩ S| ≤ s.

For n-uniform hypergraphs, we obtain the original property B by letting s = n− 1.

Conjecture 47 (Erdös). There exists a constant c such that for all n, ¶n has property B(s).

Theorem 48 (Erdös, Silverman, Steinberg). There exist constants k,K such that for all n
there exists S ⊆ ¶n with k log n ≤ |L ∩ S| ≤ K log n for all L ∈ L.

Proof. Choose S at random, with each point x placed in S with probability p = f(n)
n+1 , for some

f(n) to be determined later.
Fix a line L, and let SL = |S ∩ L|. Note that E[SL] = (n + 1)p = f(n). By the Chernoff

Bound, P[|SL − f(n)| > f(n)] < 2e−f(n)/3. Since ¶n contains n2 + n+ 1 lines,

P[∃L st |Sl − f(n)| > f(n)] < (2e−f(n)/3)(n2 + n+ 1) < 4e−f(n)/3n2

Therefore, if ef(n)/3 > 4n2, the desired S exists.
Solving for f(n), we see that f(n) = 3 log 4n2 ≈ 6 log n, as desired.

6.2 Graph Coloring and Hadwiger’s Conjecture

Definition 49 (Graph Minor). Given a graph G, H is a minor of G if H can be obtained from
G by

1. Deleting edges and vertices

2. Contracting an edge

Definition 50 (Subdivision). A graph H is a subdivision of G if H can be made isomorphic
to a subgraph of G by inserting vertices of degree 2 along the edges of H.

One can think of H as a subgraph of G in which disjoint paths are allowed to act as edges.
Note that if H is a subdivision of G, then H is also a minor of G; however, the converse is false
in general.

Conjecture 51 (Hadwiger’s Conjecture). Let G be a graph with χ(G) ≥ p. Then G contains
Kp as a minor.

By the Robertson-Seymour Theorem, the property of being p-colorable is exactly charac-
terized by a finite set of forbidden minors. Hadwiger’s Conjecture therefore says that the sole
forbidden minor is Kp.

Hadwiger’s Conjecture is notoriously diffcult. Indeed, the special case of p = 5 implies the
four-color theorem. To see this, suppose that χ(G) ≥ 5. Then by the conjecture, G contains K5
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and is therefore nonplanar. With more work, the case of p = 5 can be shown to be equivalent
to the four-color theorem.

The conjecture is currently open for p > 6. Although p ≤ 4 can be proven directly, all
known proofs for p = 5, 6 use the four-color theorem.

Due to the apparent difficulty of Hedwiger’s Conjecture, Hajós strengthened the conjecture
to state that G contains Kp as a subdivision. This strengthened conjecture was shown to be
false by Catlin via an explicit counterexample. Erdös and Fajtlowicz then showed that for large
n, with probability approaching 1, a random graph has chromatic number almost quadraticly
larger than the size of its largest complete minor.

Theorem 52 (Erdős, Fajtlowicz). There exist graphs G such that χ(G) ≥ n
3 lgn and G has no

K3
√
n subdivision.

Proof. Let G = (V,E) be a random graph on n vertices, with each edge placed in the graph
with probability 1/2. We first show that G has large chromatic number, and then show that G
has no large Kp subdivision.

Bounding the Chromatic Number It is known that χ(G) ≥ n/α(G), where α(G) is the
size of the largest independent set in G. As a result, it suffices to upper-bound α(G) in order
to lower-bound χ(G).

We have

P[α(G) ≥ x] = P[∃ a set of x vertices which form an independant set]

≤
(
n

x

)
1

2
(x2)
≤
(

n

2
x−1
2

)x
Let x = 2 lg n+ 3. Then 2

x−1
2 = 2n, and so

P[α(G) ≥ x] ≤
(

1

2

)2 lgn+3

=
1

8n2

So with high probability, α(G) ≤ 2 lg(n) + 3 < 3 lg n.

Bounding the Complete Subdivisions Now suppose that G contains Kc
√
n as a subdi-

vision. Since Kc
√
n contains (3

√
n)(3
√
n−1)

2 > 4n edges, G must contain that many disjoint paths.
However, a vertex of G must either be a vertex of the K3

√
n subdivision, or else be contained

in at most one of the paths. Since there are only n vertices in G, at least 3n of the paths must
be single edges of G.

Fix a set U ⊂ V , |U | = 3
√
n, and let e(U) =

∑
u,v∈U J(u, v) ∈ EK. If U forms the vertices of

a K3
√
n subdivision, then e(U) ≥ 3n. Since

E[e(U)] =
1

2

(3
√
n)(3
√
n− 1)

2
=

9n− 3
√
n

4

by the Chernoff Bound we have

P[|e(U)− E[e(U)]| ≥ 1

4
E[e(U)]] ≤ 2e−E[e(U)]/48
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Therefore
P[e(U) ≥ 3n] ≤ 2e−(9n−3

√
n)/192 < e−n/25

which means that

P[U forms the vertices of a K3
√
n subdivision] < e−n/25

Since there are
(
n

3
√
n

)
choices of U ,

P[∃ a K3
√
n subdivision] <

(
n

3
√
n

)
e−n/25 <

( e√n
3

)3√n
e−n/25

which approaches 0 as n→∞. So with high probability, G does not contain a K3
√
n subdivision.

Taking a union bound, we see that with high probability, χ(G) ≥ n
3 lgn and G has no K3

√
n

subdivision, as desired.

Note that the counterexamples constructed here require n > 105 vertices, highlighting the
difficulty in constructing such counterexamples explicitly.

This result shows that the chromatic number of a graph is a global property of the graph.
As further evidence of this fact, Erdős also proved the following.

Theorem 53 (Erdős). Given ε > 0, and an integer k, there exist graphs G = Gn (for n
sufficiently large) such that χ(G) > k, while every induced subgraph H on εn vertices satisfies
χ(H) ≤ 3.
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7 Bounds for R(3, k): 2 results

The first non-trivial problem of evaluating the Ramsey numbers is that of evaluating R(3, k)
for a fixed integer k. Far from determining these numbers precisely, it was apparent that even
determining the asymptotic order of these integers was going to be a highly non-trivial problem.
In this chapter, we shall consider two results - an upper bound and a lower bound. The upper
bound is of the ‘correct’ order - a fact that was established later and is considerably more
difficult. The lower bound we shall discuss here is weaker than the best result known, and was
proved by Erdős in 1960.

7.1 Upper bound for R(3, k)

Note that R(3, k) is the smallest n such that any red-blue coloring of Kn contains a red triangle
or a blue Kk. If we retain only the red edges say, then R(3, k) can be viewed as the minimum
n such that every graph on n vertices has a triangle or an independent set of size k.

In general, R(l, k) ≤k+l−2 Cl−1 ≤ ck2 for l = 3. Erdős showed that R(3, k) = Ω(( k
log k )3/2).

Ajtai, Komlos, and Szemerédi proved that R(3, k) = O( k2

log k ). The lower bound, namely,

R(3, k) = Ω( k2

log k ) which turns out to be much harder to prove was first furnished by J-H Kim
involving several deep inequalities, and an extremely involved proof. More recently, Bohman
gave a different proof by considering a graph evolution process.

Turán’s theorem states that Kr+1 6⊂ G ⇒ e(G) ≤ (1 − 1
r )n

2

2 . In terms of complements,
α(G) ≥ n

d+1
where d is the average degree of G. This can be proved as follows:

nd

2
= e(G) ≥ n(n− 1)

2
− (1− 1

r
)
n2

2
=

1

2
(
n2

r
− n)

⇒ d ≥ n

r
− 1⇒ r ≥ n

d+ 1
⇒ α(G) ≥ n

d+ 1

Theorem 54 (Ajtai-Komlos-Szemeŕedi). A triangle-free graph in Ck2

log k vertices has an indepen-
dent set of size k

Proof. Note that if the average degree is small, Turán’s bound should help. If not, we delete a
vertex to try and reduce the average degree.

If G is triangle-free, then define G′ = G\{v}, e′ = e−
∑

w↔v d(w). There will be a reduction
in the average degree of G′ compared to G if v is chosen such that

∑
w↔v d(w) ≥ d.d(v). Call
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a vertex v a groupie if
1

d(v)

∑
w↔v

d(w) ≥ d

v is a groupie ⇔ ∑
w↔v

d(w)− d.d(v) ≥ 0

g(v) =
∑
w∈V

d(w)Iw↔v − d.d(v) ≥ 0

Pick v uniformly at random

E[g(v)] =
∑
w∈V

d(w)
d(w)

n
− d

∑
v∈V

d(v)

n

=
1

n

∑
w∈V

d2(w)− d2 ≥ 0

by Cauchy-Schwarz Inequality. Hence, there is a groupie in every graph. Pick such a groupie.
G′ = G\{v}. Define f(n, d) as the size of the maximum independent set in a triangle free G
with n vertices and average degree d. Note that we have f(n, d) ≥ 1 + f(n − 1 − d(v), d).
Heuristically, suppose we denote the remaining number of vertices after t steps of this by nR(t),
we have R(t + 1) − R(t) ≈ − d

nR(t). If we parametrize time so that the next step after time t

occurs at t+ d
n , then R(t+ d

n)−R(t) ≈ − d
nR(t) giving us R′(t) ≈ −R(t).

We will start with a G. Define f(n, d) = cnd log d. Pick a groupie v, then delete v and all

its neighbors. In the resulting graph G′ we have n′ − 1 − d(v) and e′ = nd
2 −

∑
w↔v d(w) ≤

nd
2 − d(v)d = (n2 − d(v))d

d′ =
2e′

n− 1− d(v)
≥ n− 2d(v)

n− 1− d(v)
d

By induction, we have
f(n, d) ≥ 1 + f(n′, d′).

The authors check this for c = 1/100 to say that R(3, k) < n ⇔ every triangle free graph on n
vertices has an independent set of size k. If G is triangle free and for some v, ∆(v) ≥ k, then
we are done. Suppose ∆(Gn) ≤ k, The authors also showed that α(G) > cnd log d. If this bound
is less than k we have

1

100

n

d
log d < k ⇒ n < 100

k2

log k
.

7.2 Lower bound for R(3, k)

We know that R(3, k) ≥ n⇒ ∃Gn, a triangle free graph such that α(Gn) < k. Pick edges of G
at random with probability p. Let N3 denote the number of triangles in G.

E[N3] =

(
n

3

)
p3 < (np)3/6,
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so, we have

P(α(G) ≥ x) ≤
(
n

x

)
(1− p)(

x
2) ≤ nx

x!
e−p(

x
2) ≤ e−px

2/3+x logn

x!
≈ (e−px/3+logn)x.

Choose px > 3 log n, so that (np)3 = Θ(n). Setting p = 1
n2/3 gives E[N3] < n/6. Now applying

the Markov inequality gives N3 < n/3 with probability greater than 1/2. Hence, with positive
probability the following hold simultaneously:

• N3 < n/3

• α(G) ≤ 3n2/3 log n

Pick an assignment of edges such that these conditions both hold. From the resulting graph,
throw away one vertex from each of the triangles it contains. We then have a graph G with
|V (G)| > 2

3n, no triangles and α(G) ≤ 3n2/3 log n = k.

n = (
k

log n
)3/2 = (

k

log( k
logn)3/2

)3/2 = Ω((
k

log k
)3/2).

Erdős improved the bound in a remarkable manner following the same asymptotics for
p = ε√

n
and x = A

√
n log n for a small ε and a large A. The fact that this paper was written as

early as 1960 shows how ahead Erdős was in this game!

Theorem 55 (Erdős). There exists Gn, which is triangle free such that α(G) < A
√
n(log n)

for some large A. Consequently,

R(3, k) = Ω((
k

log k
)2).

Proof. Let G = G(n, p) with p = ε√
n

and x = A
√
n log n. Put all the edges in some order.

Delete an edge only if it forms a triangle with the preapproved edges, to get a triangle free
graph. Suppose G(n, p) satisfies that every x-subset of V has an edge eX which is not a part
of any crossing triangle. Consider G′ ⊆ G which consists only of the edges eX as X varies over
all x-subsets of V . Now run the triangle freeing process. The resulting G′′ has no independent
sets of size x.

Suppose not, then the edge eX is involved in some triangle. {eX , eX′ , eX′′} ⊆ X. Fix an X
of size x. We wish to calculate P (X has no nice edge eX). Suppose there is a pair {u, v} ⊆ X
such that no w 6∈ X is adjacent to both u and v. Then putting the edge {u, v} makes it the
choice of eX . Call a pair {u, v} ⊆ X bad for X if they are both adjacent to some w 6∈ X. The
number of such bad pairs is at most

∑
y 6∈X

(
dX(y)

2

)
.

Define for i ≥ 0

Y (i) = {y|ε
√
n

2i
≤ dX(y)}

P (|Y (i)| > βn for some X ⊆ V (G) with |X| = x)

≤
(

n

A
√
n(log n)

)(
n

βn

)
(

(
A
√
n log n
ε
√
n

2i

)
(
ε√
n

)
ε
√
n

2i )βn

≤ eA
√
n(logn)2+2βn log( 1

β
)+ ε
√
nβn

2i
(i log 2+log logn+O(1))− ε

√
nβn logn

2.2i .

Thus, for 0 ≤ i ≤ log2 n
4 , note that if we set ε

√
nβn logn

2.2i
= 8A

√
n(log n)2 we have
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•
√
n(log n)2 >> βn log( 1

β )

• ε
√
nβn
2i

(i log 2 + log log n+O(1)) < 5A
√
n(log n)2

This gives us

P(|Y (i)| ≥ 16A

ε
2i log n) ≤ e−(1/2)A

√
n(logn)2 .

For higher i, we make a different kind of estimate. Let

Y(i) = {y|2iAε log n ≤ dX(y)}, i ≤ log2 n

4

This is again motivated by the observation that E[dX(y)] ≈ Aε log n. Clearly, almost surely
Y = (

⋃
i Y

(i)) ∪ (
⋃
i Y(i)). Note that

∑
y∈Y (i)\Y (i−1)

d2
X(y)

2
≤ |Y

(i)|
2

(
ε
√
n

2i−1
)2 ≤ 16

A

ε2n log n

2i−2
.

Hence,

P(|Y(i)| ≥
n

i24i
for some X) ≤

(
n

A
√
n(log n)

)(
n
n
i24i

)
(

(
A
√
n(log n)

2i
√
A(log n)

)
(

1√
An

)2i
√
A(logn))

n

i24i

≤ exp

(
A
√
n(log n)2 +

n

i24i
log 8−

√
An log n

i2i
log 2

)
which clearly goes to zero as n→∞. We see that |Y(i)| < n

i24i
for all 0 ≤ i ≤ log2 n

4 , and hence∑
y
d2X(y)

2 is of the order of (Aε)2n(log n)2. Thus if ε = 1√
A

, for large A, this sum is bounded by

(
∑

i
1
i2

)An(log n)2 and for large A, this is much smaller than A2

5 n(log n)2.

P(Xhas no eX) ≤ P(No good pair in X is an edge)

≤ (1− p)
1
2(x2) ≤ e−

ε√
n

A2n(logn)2

5

P(∃X with no eX) ≤
(
n

x

)
e−

εA2√n(logn)2
5

≤ e−
εA2√n(logn)2

5
+A
√
n(logn)2+o(1)A

√
n logn,

which completes the proof.

52



8 The Lovász Local Lemma and Applications

Most of the applications of probabilistic methods we have thus far encountered in fact prove
that an overwhelming majority of ‘instances’ from the corresponding probability spaces satisfy
the criteria that we sought, so that in effect, one could say that ‘almost all’ of those instances
would gives examples (or counterexamples) for the problem at hand. While this makes it very
useful from an algorithmic point of view - one could envisage a randomized algorithm that
would contruct the desired object - it may not always be the case that the ‘good’ or ‘desirable’
configurations we seek are plenty. For instance, suppose we have two large finite sets A,B of
equal size, then we know that there is an injection from A to B but almost all random maps
are bound to be bad. The so-called Lovász Local Lemma - discovered by Erdős and Lovász -
gives us a very useful and important tool that allows us to show that certain probabilities are
non-zero, even though they might be extemely small. In this chapter, we shall consider the
lemma,and see some applications.

8.1 The Lemma and its proof

We know that given a set of independent events, A1, A2, ..., An, each with nonzero probability,
then P (A1 ∪ A2 ∪ ... ∪ An) > 0. The idea behind the Lovasz Local Lemma (LLL) is that in
certain cases we can relax the assumption that the Ai be mutually independent, as long as
each Ai is only dependent on a small number of the rest. We can visualize this by imagining
a graph with vertices labeled by the Ai, and edge set {{Ai, A)} : Ai and Aj are dependent}.
Call this the dependency graph. Then the degree of vertex Ai is the number of other events
with which Ai is dependent. We call this degree the dependence degree of Ai. Intuitively, if the
maximum dependence degree is small, then we should still have nonzero probability of all the
events occurring. The LLL formalizes this.

We now state the LLL formally, in its most general form:

The Lovasz Local Lemma:
Suppose we have events, A1, A2, ..., An, and real numbers x1, ..., xn such that for each i satisfying
0 ≤ xi < 1, and

P (Ai) ≤ xi
∏
j↔i

(1− xj),

where the product is taken over all neighbors Aj of Ai in the dependency graph. Then,

P (∧ni=1Ai) ≥
n∏
i=1

(1− xi) > 0,
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where Ai denotes the complement of Ai—the event that Ai does not occur. So in particular,
there is nonzero probability that none of the events Ai occur.

We will present the proof shortly. As an immediate corollary, we have:

Corollary:
Suppose there is some x, 0 ≤ x < 1, such that for each i,

P (Ai) ≤ x(1− x)d(i),

where d(i) denotes the degree of Ai in the dependence graph, ie, the number of Aj , j 6= i with
which Ai is dependent. Then with nonzero probability, none of the events Ai occur.

Finally, we state a more useful symmetric version of the LLL, which we will most often
apply in solving our problems:

Lovasz Local Lemma (Symmetric Version):
Suppose we have events A1, ..., An, and that there exists some p such that P (Ai) ≤ p for
each i, and ep(∆ + 1) ≤ 1, where ∆ is the maximum degree of the dependence graph. Then
P (∧ni=1Ai) > 0 (that is, with nonzero probability, none of the events occur).

Proof of Symmetric Version, using General Version of Local Lemma:

Take xi = 1/(∆ + 1), ∀i. Then note that

xi
∏
j↔i

(1− xj) ≥
1

∆ + 1

(
1− 1

∆ + 1

)∆

=
1

∆ + 1

(
∆

∆ + 1

)∆

.

Note that
(

∆+1
∆

)∆
=
(
1 + 1

∆

)∆ ≤ e, so for each i,

xi
∏
j↔i

(1− xj) ≥
1

e(∆ + 1)
≥ p ≥ P (Ai).

Then applying the general version of the local lemma yields the result. �

Proof of General Version of Local Lemma:
Let S ⊆ {1, ..., n} \ {i}. We will show by induction on |S| that

P (Ai| ∧j∈S Aj) ≤ xi.

If |S| = 0, then we are done, since by assumption P (Ai) ≤ xi
∏
j↔i(1 − xj) ≤ xi. Now take

|S| > 0, and suppose we have proven the result for all smaller sizes of S. Let NS(i) be the set
of neighbors of i in S (in the dependency graph), and let NNS(i) be the set of “non-neighbors”
of i in S, NNS(i) = S \NS(i). Then

P (Ai| ∧j∈S Aj) = P (Ai|
(
∧j∈NS(i)Aj

)
∧
(
∧j∈NNS(i)Aj

)
)
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=
P (Ai ∧

(
∧j∈NS(i)Aj

)
| ∧j∈NNS(i) Aj)

P (∧j∈NS(i)Aj | ∧j∈NNS(i) Aj)

≤
P (Ai| ∧j∈NNS(i) Aj)

P (∧j∈NS(i)Aj | ∧j∈NNS(i) Aj)

=
P (Ai)

P (∧j∈NS(i)Aj | ∧j∈NNS(i) Aj)
.

Now, note that if α ∈ NS(i), we can write

P (∧j∈NS(i)Aj | ∧j∈NNS(i) Aj) = P (Aα ∧
(
∧j∈NS(i)\{α}Aj

)
| ∧j∈NNS(i) Aj)

= P (Aα|
(
∧j∈NS(i)\{α}Aj

)
∧
(
∧j∈NNS(i)Aj

)
) · P (∧j∈NS(i)\{α}Aj | ∧j∈NNS(i) Aj)

= P (Aα| ∧j∈S\{α} Aj) · P (∧j∈NS(i)\{α}Aj | ∧j∈NNS(i) Aj).

Now, by our inductive hypothesis,

P (Aα| ∧j∈S\{α} Aj) ≥ 1− xα,

and by another inductive argument, we have

P (∧j∈NS(i)Aj | ∧j∈NNS(i) Aj) = P (Aα| ∧j∈S\{α} Aj) · P (∧j∈NS(i)\{α}Aj | ∧j∈NNS(i) Aj)

≥ (1− xα) ·
∏

β∈NS(i)\{α}

(1− xβ)

=
∏

α∈NS(i)

(1− xα).

Thus, from our work above,

P (Ai| ∧j∈S Aj) ≤
P (Ai)∏

α∈NS(i)(1− xα)
≤ xi,

where the last inequality follows from the hypothesis of the theorem.
Finally, we have

P (∧ni=1Ai) = P (An| ∧n−1
i=1 Ai) · P (∧n−1

i=1 Ai) ≥ (1− xn) · P (∧n−1
i=1 Ai),

where we have taken S = {1, ..., n− 1}. Thus, we see by induction that

P (∧ni=1Ai) ≥ (1− xn) ·
n−1∏
i=1

(1− xi) =

n∏
i=1

(1− xi) > 0,

which completes the proof. �
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8.2 Applications of the Lovász Local Lemma

We now illustrate several applications of the symmetric version of the Local Lemma.

Example: Property B
Recall that a hypergraph has Property B, or is 2-colorable, if there is a coloring of its vertices
using two colors such that no edge is monochromatic. We call a hypergraph k-uniform if each of
its edge sets contains k elements. We call it d-regular if each vertex is involved in exactly d edges.

Question: Suppose H is a k-uniform, d-regular hypergraph. What conditions on H will ensure
that Property B is satisfied?

Let each vertex toss a fair coin. If the toss reads heads, we color the vertex red. If tails, we
color it blue. For each edge A, consider the event EA that A is monochrome. Then 2-colorability
of H is equivalent the case that none of the events EA occur, that is, the event ∧A∈HEA. Now,

P (A) = P (A is monochrome) =
2

2k
=

1

2k−1
.

Now, EA is dependent with EB if A ∩ B 6= Ø. Since edge A contains k vertices, each of which
is contained in d − 1 other edges, we obtain an upper bound for the dependence degree as
|{B ∈ H|B ∩A 6= Ø}| ≤ (d− 1)k. Thus, by the Local Lemma, if

e
1

2k−1
[(d− 1)k + 1] ≤ 1,

then we can guarantee that
P (∧A∈HEA) > 0,

so in particular, we have the following:

Theorem: If H is k-regular and k-uniform, then for k ≥ 9, H has Property B.

Remark: It turns out that this result is true even for k ≥ 7. Another aspect of the proof of
this theorem is that if n (the number of edges) is large, then this probability goes to zero, but
it is nonetheless strictly greater than zero. Also, the Lovász Local Lemma does not extend if
there are infinitely many events.

Example: A Substitute for the Pigeonhole Principle
We know from the Pigeonhole Principle that if S and T are finite sets, with |T | ≥ |S|, then we
can find a function f : S → T such that f is injective (one-to-one).

But suppose we didn’t know the Pigeonhole Principal (!). Then we could try picking a
function f at random by selecting, uniformly and independently, the images of the elements of
S in T . Then,

E(|f(S)|) =
∑
t∈T

P (t is selected by f) = |T | ·

[
1−

(
1− 1

|T |

)|S|]
,

so by the first moment method, there exists an injection f if this is greater than |S|.
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Alternatively, we could let N be the number of pairs of distinct members of S which have
the same image in T under a randomly chosen function f . f will be injective provided that
N = 0. Again using the first moment method,

E(N) =
∑

{x,y}∈(S2)

P (f(x) = f(y)) =
1

|T |

(
|S|
2

)
,

so we see that if |T | >
(|S|

2

)
, there exists an injection.

We can get a remarkable improvement, however, if we use the Local Lemma. On this note,
for any edge E = {x, y}, let AE be the event that both x and y have the same image in T under
the chosen function f . Then,

P (AE) =
1

|T |
.

Since AE is independent of AE′ if E ∩ E′ = Ø, the dependence degree of these events can be
at most 2(|S| − 2) (we can get a dependent edge by replacing either x or y with one of the

remaining |S| − 2 elements). Thus, by the Local Lemma, if e(2|S|−3)
|T | ≤ 1, then with nonzero

probability, f is injective. Thus, using the Local Lemma, we see that we need only have that
|T | ≥ e(2|S| − 3) in order to endure the existence of an injection S → T .

Example: Cycles in digraphs of specific sizes
Alon and Linial consider the following general question: Given a graph, when can we guarantee
the existence of ‘special’ types of cycles? In the case of directed graphs, questions as simple as
those concerning even directed cycles are difficult. However, there is a positive result for the
case of a directed graph D. If deg(D) ≥ 7 and D is regular, then the answer is yes.

Theorem 56. Suppose D is a directed graph with maximum in degree ∆ and minimum outdegree

δ. Then, for k > 0, if e(δ∆ + 1)
(
1− 1

k

)δ ≤ 1, then there exists a directed cycle in D of length
0( mod k).

First, consider the following observations. Let c be a k−coloring of V (D). Let the colors be
{0, 1, . . . , k − 1}. If from a vertex x, colored i, there exists an edge from x to a vertex of color
i+1 ( mod k) for every x ∈ V (D), then there exists a directed cycle in D of length 0( mod k).
Thus, Theorem 56 is true if there is a coloring such that at each x, the aforementioned local
condition is satisfied.

Proof. Let us randomly color V using k-colors with each vertex colored independently by a
color in {0, 1, . . . , k− 1}. We may assume that d+(v) = δ for any v ∈ V , because if not, we can
throw away certain edges without tweaking the problem, until this condition is satisfied. Define
the following event for each v ∈ V ,

Ev := There is no vertex u in N+(v) such that color(u) = color(v) + 1 ( mod k).

Notice that P(Ev) =
(
1− 1

k

)δ
. We need to show that P(∧vEv) > 0. Moreover, Eu and Ev are

dependent if u ∈ N+(v). Also, Eu and Ev are dependent if they share a common out-neighbor.
Also, Ev is determined by the color choices of v and N+(v). Therefore, d = δ∆ in the Lovász

Local Lemma. Hence, if e(δ∆ + 1)
(
1− 1

k

)δ ≤ 1 then there exists an oriented cycle D of length
0( mod k).
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We now come to another appliction of the Lovász Local Lemma. Strauss proposed the
following conjecture.

Conjecture 57 (Strauss). Fix k ≥ 2. Is there an m(k) > 0 such that for any given fixed S of
size m, every translate of S is multicolored? Where multicolored means all colors appear.

Before returning to this conjecture, we introduce a theorem due to Van der Waerden.

Theorem 58 (Van der Waerden). Given k, r ∈ N there exists W (k, r) such that coloring Z by
k colors implies there exists a monocrhomatic arithmetic progression of length at least r.

Erdős and Lovász showed that this si true when |S| = (3 + o(1))k log k is sufficient. They
also proved this in the affirmative for another case. Fix S of size m and let |X| = n. If
ek
(
1− 1

k

)m {m(m− 1) + 1} ≤ 1, then every translate x+ s is multicolored for x ∈ X.

Proof. Let X = ∪x∈X(x + S) and notice that |X | < ∞. Now, color every element of X from
{1, 2, . . . , k} independently and uniformly. We want P(∧x∈X((x+ S) is not multicolored)) > 0.
Fix x. Therefore,

P((x+ S) is not multicolored) = P(∃ i ∈ {1, . . . , k} such that color i is missing in (x+ S))

≤ k
(

1− 1

k

)m
Moreover, (x+S) and (y+S) are co-dependent if (x+S)∩ (y+S) 6= ∅, where x+s = y+ t and
y = x+(s−t) for some y ∈ X and t ∈ S. This shows us that we are done if ek

(
1− 1

k

)m
m2 ≤ 1.

Therefore, we can loosen this to see that we are done if eke−m/km2 ≤ 1. We now use this
expression to obtain a bound on m.

eke−m/km2 ≤ 1 =⇒
em/k ≥ ekm2 =⇒
m ≥ k log k + 2k logm+ c =⇒
≥ k log k + 2k log(k log k) (substituing the above) =⇒
≥ 3k log k + 2k log log k + . . .

We now move on to Erdős and Lovász’ resolution of Strauss’ conjecture. Any coloring of R by
k-colors is an element of [k]R. Where, [k] = [1, 2, . . . , k] with the discrete topology. Tychonoff’s
theorem implies [k]R is compact. For each x ∈ R, let Cx = {c ∈ [k]R|x + S is multicolored}.
Observe that each Cx is closed in [k]R. Therefore C = {Cx|x ∈ R} is a family of closed sets in
[k]R with the finite intersection property. We have just shown that for any x finite, ∩x∈XCx 6= ∅
by the compactness of [k]R. We remark that this is equivalent to the Rado selection principle.
Thus we have proved

Theorem 59. For any fixed subset T ⊆ RED of size at least m = (3 + o(1))k log k, there is a
k coloring of RED such that every translate of T contains all k colors.
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Remark: it turns out that the k log k term in the above expression is not only sufficient, but
also necessary.

Example: Independent Transversals in Graphs

We next give an example which demonstrates how the Local Lemma often works more
effectively when more “bad” events are involved, because intuitively, this brings down the de-
pendence degree of each event.

Definition: Suppose G is a graph, with vertex set V = V1 ∪ V2 ∪ ... ∪ Vr (a disjoint partition).
We say a set I is a transversal for this partition if it contains exactly one element from each
Vi. An independent transversal is a transversal which is also an independent set (containing no
edges).

Theorem: Suppose V = V1 ∪ ... ∪ Vr, and for each i, |Vi| ≥ 2e∆, where ∆ is the maximum
degree of G. Then {Vi} admits ad independent transversal.

Proof: We may assume that |Vi| = d2e∆e, for each i (by just ignoring any extra vertices in
each set Vi). Let us pick vi ∈ Vi independently and uniformly for each i. Seeking to apply
the Local Lemma, we must consider how to define our “bad” events. We could, for instance,
define a bad event to indicate that vi and vj are adjacent. But this turns out to have a large
dependence degree, and is difficult to work with.

Instead, we define our events as follows. For an edge E, let AE denote the event that both
vertices in E are selected, so that E is involved in the transversal. This will significantly increase
the number of bad events, but this is of no matter, since the lemma depends only on the local
properties of each event, namely that the dependence degree of each event is relatively low.

Now, the probability that both vertices of E are included in the transversal is ≤ 1/(2e∆)2.
Furthermore, since each vertex in E has degree at most ∆, the dependence degree is at most
2∆. Thus, by the Local Lemma, since

e(2∆ + 1)

(2e∆)2
≤ 1, ∀∆

then there is positive probability that no edge is contained in our transversal. Thus, there exists
an independent transversal for our graph G. �

8.3 The Linear Arboricity Conjecture

Definition 60 (Forest). A forest is a an undirected cycle-free graph.

For any graph G, E(G) can be partitioned into disjoint forests. If we insist that every
connected component of each of these forests is a path, then the forest is called a linear forest.

Definition 61 (Linear Forest). A graph is a linear forest if all of its components are paths.
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A natural question to ask is, how many linear forests are needed for this partition? Let X ′

be an edge coloring. Recall that the Vizing-Gupta theorem gives X ′(G) ≤ ∆(G) + 1. Therefore
δ(G) + 1 linear forests suffice to cover G.

On the other hand, if G is a regular graph of degree d, and if E(G) is partitioned into m
linear forests with |V (G)| = n, then each linear forest has at most n− 1 edges and all the linear
forests toegether can cover at most (n − 1)d edges. Finally, |E(G)| = dn

2 ≤ (n − 1)m implies

that m ≥ d
2

n
n−1 >

d
2 .

Example 62. Consider Kn, the complete graph on n vertices. If n is even, then E(Kn) can be
partitioned into Hamiltonian paths.

Definition 63 (Linear Arboricity). Let G be a graph with maximum degree ∆. Define the
linear arboricity, la(G) := the minimum number of linear forests needed to partition the edge
set, E(G).

Arboricity is closely related to the density of edges in a graph and linear arboricity to the
maximum degree of a graph.

Conjecture 64 (Harary’s Conjecture). The minimum number of linear forests needed to par-
tition E(G) is the linear arboricity of G, where la(G) ≤ dd+1

2 e, where d is the degree of G.

This has been proven for d = {3, 4, 5, 6, 8, 9, 10}. Alon showed that for any ε > 0, and
d ‘sufficiently large’, that la(G) ≤

(
1
2 + ε

)
(d + 1). We now introduce equivalent arboricity

definitions for directed graphs.

Definition 65 (Directed Linear Forest). A directed graph D is a directed linear forest if all
components are directed paths.

Definition 66 (Directed Linear Arboricity). The directed linear arboricity, dla(D) := the min-
imum number of directed linear forests.

Conjecture 67 (Directed Linear Arboricity). Let D be a regular directed graph of degree d,
then dla(D) = d+ 1.

This issue is not yet settled, but the result can be shown under slightly weaker assumptions.

Theorem 68. Let Dr be a regular directed graph of degree d, and assume that Dr has directed
girth ≥ 8ed. Then, dla(Dr) = d+ 1.

Alon showed in 1986 that the directed linear arboricity conjecture is asymptotically true.

Theorem 69. If d is sufficiently large, then given any ε > 0, we have dla(D) ≤ d(1 + ε) + 1.

We can prove Theorem 69 with the following idea. Break D into ‘many’ subdigraphs each
having large girth. Think of coloring V (D) using p colors. We construct these subdigraphs as
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follows:

D1 ⊂ D : if c(w) = c(v) + 1, then edge (v, w) ∈ D1

D2 ⊂ D : if c(w) = c(v) + 2, then edge (v, w) ∈ D2

Vardots

Di ⊂ D : if c(w) = c(v) + i, then edge (v, w) ∈ Di

Next, notice that picking p prime implies that all the Di’s have girth at least p. Thus, if p is a
‘large’ prime, then all the Di’s (i = 1, 2, . . . , p − 1) have girth at least p. If further, each Di is
‘almost regular,’ then we can embed Di into a regular directed graph, with the girth condition
also intact. We do this by iteratively placing vertices in a direction that does not mess up the
girth ***Expand upon this***.

We now introduce the probabilistic paradigm we are using for this proof. Randomly color
vertices using colors in [1, 2, . . . , p]. If each resulting Di is almost regular and has large girth,
then we can apply Theorem 68 to each Di. We introduce further notation, this time regarding
the number of in and out edges. Let

d+
i (v) = #{w ∈ N+(v)|c(w) = c(v) + i}
d−i (v) = #{w ∈ N −+(v)|c(v) = c(w) + i}

Next, use Chernoff bounds to obtain

P
(∣∣∣∣d+

i (v)− d

p

∣∣∣∣ > t

)
≤ 2 exp

[
− t2

3d/p

]
.

if 0 ≤ t ≤ d/p. Next, choose t =
√

3dp log f(d) for some f(d). We see that

P

(∣∣∣∣d+
i (v)− d

p

∣∣∣∣ >
√
C
d

p
log f(d)

)
≤ 1

f(d)

for some constant C. Similarly,

P

(∣∣∣∣d−i (v)− d

p

∣∣∣∣ >
√
K
d

p
log f(d)

)
≤ 1

f(d)

for some constant K. Thus, we need to show there is a coloring c such that∣∣∣∣d+
i (v)− d

p

∣∣∣∣ ≤
√
C
d

p
log f(d) and

∣∣∣∣d−i (v)− d

p

∣∣∣∣ ≤
√
K
d

p
log f(d)

then we have a partition of E(D) into D1,D2, . . . ,Dp−1 such that for any 1 ≤ i ≤ p − 1 such
that the directed girth of Di ≥ ∗ ∗ ∗ ∗ di = d+

i + d−i ∗ ∗ ∗ ∗. Furthermore, we now define events
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that will be useful in obtaining the dependence degree. Let

A+
i,v :=

{∣∣∣∣d+
i (v)− d

p

∣∣∣∣ >
√
C
d

p
log f(d)

}

A−i,v :=

{∣∣∣∣d−i (v)− d

p

∣∣∣∣ >
√
K
d

p
log f(d)

}

Furthermore, observe that

P(A+
i,v) ≤

1

f(d)
and P(A−i,v) ≤

1

f(d)
.

We now want to show that

P
((
∧i,vA+

i,v

)
∧
(
∧i,vA−i,v

))
> 0. (8.1)

Next, realize that the dependence degree is ***** ********. Moreover, the above definitions
arguments show that Dependence degree + 1 ≤ (2d)(2d)p = 4d2p. Therefore, if e(4d2p) 1

f(d) ≤ 1

then 8.1 is satisfied. Now, suppose p = Θ(
√
d). Hence, f(d) = Ω(d) satisfied 8.1. We need to

guarantee that p ≥ 8ed
(
d
p +

√
cdp log d

)
. Therefore, consider p greater than the constant κ. We

want κ
√
d ≥ 8e

√
d

κ +
√

c
κ

√
d log d. This is clearly satisfied if κ2 ≥ 16e, so take κ ≥ 4

√
e. Now,

pick p such that
4
√
e
√
d ≤ p ≤ 8

√
e
√
d.

Notice that we are guaranteed the existence of a prime in this interval by the Bertrand-
Chebyshev Theorem.

Therefore, we have proved that there exists a coloring c of V (D) such that for each color,
and for each vertex v,∣∣∣∣d+

i (v)− d

p

∣∣∣∣ ≤
√
C
d

p
log f(d) and

∣∣∣∣d−i (v)− d

p

∣∣∣∣ ≤
√
K
d

p
log f(d),

for i = 1, . . . , p− 1. Hence, for each Di, dla(Di) ≤
(
d
p +

√
cdp log d

)
. Hence,

dla(D) ≤ dla(D0) +
n−1∑
i=1

dla(Di)

≤ dla(D0) +

(
d

p
+

√
C
d

p
log d

)
(p− 1)

Now we consider the asymptotics. Observe that

dla(D) ≤ O(
√
d) + d+

√
C
d

p
log d

= d+O
(
d3/4 log1/2 d

)
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Where this quantity can be made smaller than any ε > 0 by taking d large. Therefore dla(D) ≤
d+O

(
d3/4 log1/2 d

)
.

8.4 Another ‘twist’ to the Lovász Local Lemma

Erdös and Spencer proved the following result. Suppose A is an n×n matrix filled with integers
such that each integer occurs at most k = n−1

4e times. Then A admits a latin transversal.

Definition 70 (Latin Transversal). Let A = [aij ] be an n×n matrix whose entries are integers.
A latin transversal is a permutation π ∈ Sn such that the cells {aiπ(i)|i = 1, . . . , n} are all distinct
integers.

Furthermore, let BAD = {(c1, c2)|c1, c2 are cells of A and are the same integer}. This is
simply the set of all pairs of coordinates which take the same value. Also, let D be a di-
rected graph with maximum degree d. Let V (D) = BAD and let there be an edge between
(c1, c2), and (c′1, c

′
2) if both of these pairs are in V (D). Next say that (c1, c2) ↔ (c′1, c

′
2) if and

only if ({i1, i2}∩{i′1, i′2})∪({j1, j2}∩{j′1, j′2}) 6= ∅. This condition says that two pairs of cells are
adjacent if there is a common column or row. Thus, the dependence of degree of (c1, c2) < 4nk.
Notice that this is not tight, and could be improved upon, but is sufficient for our purposes.

Proof. Pick a π ∈ Sn at random. We want P(∧T∈BADAT ) > 0, where AT is the event that
the chosen permutation picks cells in T . Observe that the Lovász Local Lemma actually proves
that if we have events {A1, . . . , An} and a directed graph D with maximum degree d, such that
P(Ai Varert ∧j∈S, i 6↔j Aj) ≤ p. Then if pe(d+ 1) ≤ 1 we have P(∧ni=1Ai) > 0.

Also, without loss of generality we can take c1 = (1, 1) and c2 = (2, 2) and consider
P(A(c1,c2)| ∧T∈S AT ) ≤ p where S ⊂ ([3, n]× [3, n]) ∩ BAD. We need e 1

n−14k ≤ 1. In other

words k ≤ n−1
4e . Hence, it is enough the show P(A(c1,c2) Varert ∧T∈S AT ) ≤ 1

n(n−1) where S is
fixed.

Call a permutation π eligible if it picks no bad pairs from S. Further, let

S12 = {π|π is eligible, π(1) = 1, π(2) = 2}.

Therefore

P

(
A(c1,c2)|

∧
T∈S

AT

)
=

k!

# eligible sets

where S is the set of Sij = {π|π is eligible, π(1) = i, π(2) = j}. We know |S12|n(n − 1)| ≤∑
i 6=j |Sij | = # eligible sets. We also see that |S12| ≤ |Sij | for all i 6= j. This is one of those

(rare!) cases where the Lovász Local Lemma works nicely in conditional probability.

Alon’s proof of the asymptotic directed linear arboricity conjecture proves that if D has
‘large girth,’ then the conjecture is true. In general, he asked: given a regular graph G of degree
d, can we find H ⊂ G of large relative girth? We want to prove something like this:

Conjecture 71. There exists an H ⊂ G such that for any v ∈ V ,

1. f(d)− g(d) ≤ dH(v) ≤ f(d) + g(d)
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2. Girth(H) ≥ h(d).

Proof. To show this, pick an edge of G to be in H independently with probability f(d)
d . There-

fore, Chernoff gives

P(|dH(v)− f(d)| > g(d)) ≤ 2 exp

[
−g(d)2

3f(d)

]
.

An optimal choice of g(d) is approximately
√
Cf(d) log g(d) so that

P(|dH(v)− f(d)| >
√
Cf(d) log g(d)) ≤ 1√

Cf(d) log g(d)
.

Suppose C is a cycle in G of size k ≤ n(d). Then,

P(C is retained in H) =

(
f(d)

d

)k
for 3 ≤ k ≤ n(d). Let Av := {|dH(v) − f(d)| > C)}, so that P(Av) ≤ 1

g(d) and let BC :=

{C is retained in H} so that P(Bc) =
(
f(d)
d

)k
. Moreover

Av ↔ Aw if and only if v ↔ w

Av ↔ Bc if and only if v ∈ C
Bc ↔ Bc′ if and only if E(c) ∩ E(c′) 6= ∅

We now need to find the number of cycles of size k containing v.We use induction to see that
the number of k cycles containing v is less than dk−1. Similarly, for any edge ê, the number of
cycles of length k containing ê is less than dk−2. Using the general form of the Lovász Local
Lemma tells us that

P(Av) ≤
1

g(d)
≤ x(1− x)d

h(d)∏
k=3

(1− yk) (8.2)

where 1−x corresponds to adjacent vertices and 1−yk corresponds to adjacent cycles. We also
obtain

P|c|≥k(BC) ≤
(
f(d)

d

)k
≤ yk(1− x)k

∏
l≥3

(1− yl)kd
l−2
. (8.3)

If there exists x and yk such that (8.2) and (8.3) hold then the Lovász Local Lemma works. A
nice start is to try yk = 1

dk−1 .
Alon actually proves the corresponding theorem with

h(d) =
log d

2d log log d
f(d) = log10 d g(d) = log6 d.
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9 Martingales and Azuma’s Inequality

The theory of Martingales and concentration inequalities were first used spectacularly by Janson,
and then later by Bollobas in the determination of the chromatic number of a random graph.
Ever since, concentration inequalities Azuma’s inequality and its corollaries in particular, have
become a very important aspect of the theory of probabilistic techniques. What makes these
such an integral component is the relatively mild conditions under which they apply and the
surprisingly strong results they can prove which might be near impossible to achieve otherwise.
In this chapter, we shall review Azuma’s inequality and as a consequence prove the Spencer-
Shamir theorem for the chromatic number for sparse graphs and later, study the Pippenger-
Spencer theorem for the chromatic index of uniform hypergraphs. Kahn extended some of these
ideas to give an asymptotic version of the yet-open Erdős-faber-Lovász conjecture for nearly
disjoint hypergraphs.

9.1 Martingales

Suppose Ω,B,P is underlying probability space. F0 ⊆ F1 ⊆ ...Fn ⊆ ... where Fi is σ-algebra in
B.

F =
⋃
i

Fi

Xi is a martingale if Xi is Fi measurable and E(Xi+1|Fi) = Xi.
In general, if X is F-measurable and E(X) <∞, then Xi = E(X|Fi) always gives a martingale.
This is called Doobs’ Martingale Process.

9.2 Examples

• Edge Exposure Martingale
Let the random graph G(n, p) be the underlying probability space. Label the potential
edges {i, j} ⊆ [n] by e1, e2, ..em where m =

(
n
2

)
. Let f be any graph theoretic function.

Then we can define martingale X0, X1, X2, ...Xm where:

Xi = E(f(G)|ej is revealed ∀1 ≤ j ≤ i)

In other words to find Xi we first expose e1, e2, ..., ei and see if they are in G. Then Xi

will be expectation of f(G) with this information. Note that X0 is constant.
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• Vertex Exposure Martingale
AgainG(n, p) is underlying probability space and f is any function ofG. DefineX1, X2, ..., Xn

by:
Xi = E(f(G)|∀x, y ≤ i ex,y is exposed)

In words, to find Xi, we expose all edges between first i vertices (i.e. expose subgraph
induced by v1, v2, ..., vi) and look at the conditional expectation given this information.

9.3 Azuma’s Inequality

Definition 72 (Lipshitz). A function f is K −Lipschitz if ∀x, y |f(x)− f(y)| ≤ K|x− y|. A
martingale X0, X1, ... is K − Lipschitz if ∀i |Xi −Xi+1| ≤ K

Theorem 73 (Azuma’s Inequality). Let 0 = X0, X1, ...Xm be a martingale with

|Xi+1 −Xi| ≤ 1 (i.e.1− Lipschitz)

∀0 ≤ i < m. Let λ > 0 be arbitrary. Then

P(Xm > λ
√
m) < e−λ

2/2

Proof. Set α = λ/
√
m. Set Yi = Xi+1 −Xi so that |Yi| ≤ 1 and E(Yi|Xi−1) = 0. Then similar

to argument used for proving Chernoff bound, we have:

E(eαYi |Xi−1) ≤ cosh(α) ≤ eα2/2

Hence:

E(eαXm) = E(

m∏
i=1

eαYi)

= E((
m−1∏
i=1

eαYi)E(eαYm |Xm−1))

≤ E(
m−1∏
i=1

eαYi)eα
2/2 ≤ eα2m/2 (by induction)

and using this result we get:

P(Xm > λ
√
m) = P(eαXm > eαλ

√
m)

≤ E(eαXm)e−αλ
√
m

≤ eα2m/2−αλ
√
m

= e−λ
2/2 (since α = λ/

√
m)

66



Corollary 74. Let c = X0, X1, ...Xm be a martingale with

|Xi+1 −Xi| ≤ 1

∀0 ≤ i < m. Let λ > 0 be arbitrary. Then

P(|Xm − c| > λ
√
m) < 2e−λ

2/2

9.4 The Shamir-Spencer Theorem for Sparse Graphs

Theorem 75 (Theorem of Shamir-Spencer). If G = G(n, p) with p = n−α for some α then
there exists an integer µ = µ(n) such that

P(µ ≤ χ(G) ≤ µ+ 3)→ 1 as n→ 1

(i.e., χ(G) get concentrated over only 4 values.)
(Almost every graph parameter has a behavior similar to chromatic number.)

Proof. Let ε > 0 be arbitrarily small and let µ be defined as follows:

µ = inf{v | P(χ(G) > v) < 1− ε}

i.e. with probability ≥ ε, χ(G) ≤ µ however P(χ(G) ≤ µ− 1) < ε.
Let Y be the vertex set of largest subgraph of G which is µ− colorable. Let R = V \ Y where
V = vertex(G), consider |R|. Consider a vertex exposure martingale i.e., we know if the vertex
is in R or Y one at a time.

Xi = E(|R| | exposed till i′th vertex); clearly |Xi+1 −Xi| ≤ 1

By Azuma’s inequality we have:

P(||R| − E(|R|)| > λ
√
n− 1) ≤ 2e−λ

2/2 ∀λ > 0

Pick λ s.t. 2e−λ
2/2 < ε. R = 0 =⇒ G is µ colorable and this happens with prob ≥ ε i.e.

0 ∈ (E(R)− λ
√
n,E(R) + λ

√
n) =⇒ |R| ≈ c

√
n w.p. ≥ 1− ε

But any induced subgraph on c
√
n vertices can be 3-colored with high probability, i.e.

P(χ(G(R)) > 3) < ε if n is large enough. Here G(R) is the graph induced by R.

Claim: Let S be s.t. |S| ≤ c
√
n, w.h.p. S is 3-colorable.

Proof. Suppose not. Then ∃ a smallest subgraph of size ≤ c
√
n that is not 3-colorable. Let T

be smallest such set. Note that every vertex in T has degree ≥ 3 =⇒ e(T ) ≥ 3
2 |T |.

But in a graph Gn,p the probability that ∃ some set T of size ≤ c
√
n which has ≥ 3t

2 edges is
o(1). Because:

P(∃T of size t and with
3t

2
edges) ≈

((t
2

)
3t
2

)
p3t/2 where p ∼ n−α
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Because:

P(∃T of size ≤ c
√
n and with

3t

2
edges) ≤

t=c
√
n∑

t=0

(
n

t

)((t
2

)
3t
2

)
p3t/2 → o(1)

if p ∼ n−α and α > 5/6.

This concludes the proof of Shamir-Spencer as µ ≤ χ(G) ≤ µ+ 3 with high probability.

9.5 The Pippenger-Spencer (PS) Theorem

LetH be a hypergraph. We say that E(H) can be properlyN−colored if E(H) can be partitioned
into N matchings in H. By a matching, we mean a set of mutually non-intersecting hyper-edges.
The smallest N for which E(H) can be N − colored is called chromatic index of H, denoted by
χ′(H).
If G is a graph, we know that ∆(G) ≤ χ(G) where ∆(G) is max vertex degree.
Also from Vizing-Gupta Theorem we have χ′(G) ≤ ∆(G) + 1. Overall we know:

∆(G) ≤ χ′(G) ≤ ∆(G) + 1

for graphs.
However it is computationally hard to figure out if χ′(G) = ∆(G) or ∆(G) + 1.

For H note that χ′(H) ≥ ∆(H) where ∆ still denotes max degree in H i.e.:
∆(H) = max{d(x)|x ∈ V (H)}, d(x) = # of hyperedges containing x

Theorem 76 (The Pippenger-Spencer Theorem). Given ε > 0, ∃ a δ > 0 and D0(ε) s.t. the
following holds if n ≥ D ≥ D0 and:

• D > d(x) > (1− δ)D

• d(x, y) < δD∀x, y ∈ V where D = ∆(H) ?

Then χ′(H) < (1 + ε)D

Note: d(x, y) is codegree of x, y i.e. d(x, y) = |{E ∈ E(H) s.t. {x, y} ⊆ E}|

The proof of this theorem due to Pippenger-Spencer follows the paradigm of the ‘pseudo-
random method’ pioneered by Vojtech Rödl and the ‘Nibble’.

Proof of the P-S theorem:
Idea: Pick each edge of E with probability ε

D independent of each other. Form the subcollec-
tion that is obtained, E1, throw away these edges and other incident edges to E1. The resulting
hypergraph is H1. Then with high probability H1 also satisfies the same the same 2 conditions
? of Pippenger-Spencer for a different D.
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From E1 extract a matching M1, i.e. pick those edges of E1 that do not intersect any other
edges of E1. By repeating this procedure we have:

H = H0
E1−→ H1

E2−→ H2 . . .
Et−→ Ht

D1 ≈ De−εk (where H is k-uniform) since

P(edge surviving) ≈
[
(1− ε

D
)D
]k

= e−εk

asymptotically. Now let:

M(1) =

t⋃
i=1

Mi (Mi are disjoint by construction)

For an edge A:

P(A ∈M(1)) =

t∑
i=1

P (A ∈Mi) and

P(A ∈M1) ≈ ε

D
, P(A ∈M2) ≈ ε

D1
(1− ε

D
)k(D−1) ≈ ε

D1
e−εk in general :

P
(
A ∈Mi

)
≈ ε

D
e−εk+ε(i−1)

=⇒ P(A ∈M(1)) = e−εk
( ε
D

) t∑
i=1

eε(i−1) = e−εk
( ε
D

)(1− eεt

1− eε

)
≈ α

D

where α = α(ε, t, k) = εe−εk (1−eεt)
1−eε . Now, we can generate a second independent matching M (2)

by repeating the same process and so on.

Just like the Rödl’s nibble start by picking a ‘small’ number of ‘independent’ matchings from
H. Let 0 < θ < 1 and µ = bθDc and generate independent matchingsM(1),M(2),M(3) . . .M(µ)

with each M(i) having:

P(A ∈M(i)) ≈ α

D

Let P(1) =M(1) ∪M(2) ∪M(3) ∪ · · · ∪M(µ).

H = H(0) P(1)

−−−→ H(1) P(2)

−−−→ H(2) . . .
P(s)

−−→ H(s)

Here first ‘packing’ P(1) is µ = θD-colorable since we can assign each matching M(i) a
separate color. Note that χ′(H(0)) ≤ µ + χ′(H(1)) (since chromatic number is subadditive).
Similarly P(2) is θD(1) − colorable and so on.

Hence so far we need θD + θD(1) + · · · + θD(s−1) colors. After removing colored edges (i.e.
edges ∈ some P(i)), very few edges will be left in H(s).

Bounding χ′(H(s)): For any k − uniform hypergraph H with max degree D, we have:
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χ′(H) ≤ k(D − 1) + 1 =⇒ χ′(H(s)) ≤ k(D(s) − 1) + 1

Hence:

total # of colors we used = θ

s−1∑
i=1

D(i) + θD + k(D(s) − 1) + 1 ≈ D

s will be chosen as large as possible. Here we need to make sure that H(i) is similar to H(i−1)

(i.e. all degrees are almost equal and the co-degree is small). (In particular we’ll be interested
in i = 1 case).

Fix any x ∈ H, what is the E(d(1)(x))?

d(1)(x) =
∑

A:x∈A∈H(0)

1A 6∈P(1)

=⇒ E(d(1)(x)) =
∑

A:x∈A∈H(0)

(1− α

D
)µ ≈ D(1− α

D
)µ ≈ D(1− α

D
)θD ≈ De−αθ = D(1)

Hence E(d(1)(x)) ≈ D(1) = De−αθ

Use Azuma’s inequality to get a concentration inequality for d(1)(x). The art is to pick the right
filtration.

(We will consider the following martingale Xi = E[d(1)(x) | M(1),M(2), . . . ,M(i)])

Let Fi = {M(1),M(2), . . . ,M(i)} since M(i) is a matching =⇒ at most one edge contain-
ing x is exposed.

Then E[d(1)(x)|Fi] := Xi is a 1− Lipschitz martingale. So by Azuma’s inequality:
P(|d(1)(x)−D(1)| > λ

√
µ) ≤ e−λ2/2 (Here x is fixed and µ ≈ θD = o(1)D)

Now question is: ”How to guarantee this for all vertices?”. Use Lovasz Local Lemma (LLL):

Ax := |d(1)(x)−D(1)| > λ
√
o(1)D(1)

Want to show that:

P

(∧
x∈V

Ax

)
> 0

We know: P(Ax) ≤ 2e−λ
2/2. To compute the dependence degree among {Ax|x ∈ V (H)}:

M(i) =M(i)
1 ∪M

(i)
2 ∪ . . .M

(i)
t

(Distance between two vertices is the shortest number of edges one needs to go from x to
y.)
Note that each matching M(i) is generated by atoms 1E where each E ∈ H(0) and whose
’distance’ from x ≤ t. So if distance between x and y ≥ 2t+ 1, Ax and Ay are independent.

=⇒ Dependence degree
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≤ (k − 1)D(0) + 2(k − 1)2(D − 1)D + · · ·+ r(k − 1)r(D − 1)r + · · ·+ 2t(k − 1)2t(D − 1)2t

≤ (2t+1)(kD(0))2t+1

So for LLL, we need:

e2e−λ
2/2(2t+ 1)(kD(0))2t+1 < 1

Put λ =
√
o(1)D(1) to get: ⇐⇒ e(2t+1)(kD(0))2t+1

eo(1)D
(1)/2

< 1.

Asymptotically D(1) beats t (big time), so condition for LLL will hold hence we are in business.

Finally repeating the previous argument:
χ′(H) ≤ µ(0) + µ(0) + · · ·+ µ(s−1) + χ′(H(s))
where µ(i) = θD(i) and D(i) = e−αθiD and χ′(H(s)) bounded above as before. Then we get:

χ′(H) ≤ θD(1+e−αθ+e−2αθ+· · ·+e−(s−1)αθ)+kθDe−sαθ

≤ θD

1− e−αθ
+kθDe−sαθ → D(1+o(1))

as t→∞, s→∞, ε→∞, etc. Thus we’ll have the desired result.

When we do the calculations, everything works out nicely.

9.6 A Conjecture of Erdős-Faber-Lovász (EFL) and a theorem of Kahn

Definition 77. A hypergraph H is nearly-disjoint (linear) if

∀A 6= B ∈ E(H), |A ∩B| ≤ 1

.

Conjecture 78. If H is nearly-disjoint on n vertices, then χ′(H) ≤ n

Theorem 79 (Erdos-de Bruijn Theorem). If H is a hypergraph on n vertices with

|A ∩B| = 1 ∀A 6= B

then |E(H)| ≤ n.

As an aside, |E(H)| ≤ n =⇒ χ′(H) ≤ n. This theorem is tight in the sense that if it is a
projective plane of order n, then n2 + n+ 1 colors are needed =⇒ χ′(H) = |E(H)|.
(¶n = projective plane of order n)

Theorem 80 (Theorem - Jeff Kahn (1992)). The EFL conjecture is asymptotically true, i.e.
χ′(H) ≤ n(1 + o(1)) for H nearly-disjoint on n-vertices.
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Note that in this general situation, the edge sizes need not be the same; in fact they need
not even be absolutely bounded, and as we shall see, that causes some of the trouble.

Firstly, we start with a simple observation. If there is an integer k such that for each edge
E in a nearly disjoint hypergraph H we hav |E| ≤ k, then we can ‘uniformize’ the edge sizes.
This is a standard trick, so we will not describe it in detail. One may form a bipartite graph
G whose vertex sets are the vertices and edges of H, and (v,E) is an incident pair iff v ∈ E.
Then the uniformization described earlier is equivalent to embedding G into a bipartite graph
with uniform degree over all the vertices E ∈ E such that the graph is C4-free. This is a fairly
standard exercise in Graph theory.

If all the edges are of bounded size, i.e., if 3 ≤ b ≤ |E| ≤ a for all edges E then the Pippenger-
Spencer theorem of the preceding section proves the result claimed by the aforementioned
theorem. Indeed, for any x count the number of pairs (y,E) where y 6= x, and x, y ∈ E. Since
H is nearly disjoint, any two vertices of H are in at most one edge so this is at most n− 1. On
the other hand, this is precisely

∑
x∈E(|E|−1), so we have (b−1)d(x) ≤ n−1⇒ d(x) ≤ n−1

b−1 <
n
2 .

Here is a general algorithm for trying to color the edges of H using C colors: Arrange the
edges of H in decreasing order of size and color them greedily. If the edges are E1, E2, . . . , Em
with |Ei| ≥ |Ei+1| for all i then when Ei is considered for coloring, we may do so provided
there is a color not already assigned to one of the edges Ej , j < i for which Ei ∩ Ej 6= ∅.
To estimate |{1 ≤ j < i|Ej ∩ Ei 6= ∅}|, let us count the number of triples (x, y, j) where
x ∈ Ei∩Ej , y ∈ Ej \Ei. Write |Ei| = k for simplicity. Again, since H is nearly disjoint, any two
vertices of H are in at most one edge, hence the number of such triples is at most the number
of pairs (x, y) with x ∈ Ei, y 6∈ Ei, which is k(n− k). On the other hand, for each fixed Ej such
that 1 ≤ j < i, Ej ∩ Ei 6= ∅, Ei ∩ Ej is uniquely determined, so the number of such triples is
|Ej | − 1. Hence denoting I = {1 ≤ j < i|Ej ∩Ei 6= ∅} and noting that for each j ∈ I |Ej | ≥ k,
we get

(k − 1)|I| ≤
∑
j∈I

(|Ej | − 1) ≤ k(n− k)⇒ |I| ≤ k(n− k)

k − 1
.

In particular, if C > |E|(n−|E|)
|E|−1 for every edge E, the greedy algorithm properly colors H.

Upshot: For any nearly disjoint hypergraph H on n vertices χ′(H) ≤ 2n− 3.

The previous argument actually shows a little more. Since k(n−k)
k−1 is decreasing in k if |E| > a

for some (large) constant a, then |I| < (1+ 1
a)n. So, for a given ε > 0 if we a > 1/ε, say, then for

C = (1 + 2ε)n, following the same greedy algorithm will properly color all edges of size greater
than a. This motivates us to consider

• Es := {E ∈ E||E| ≤ b}.

• Em := {E ∈ E|b < |E| ≤ a}.

• El := {E ∈ E||E| > a}

for some absolute constants a, b which we shall define later. We have seen that χ′(Hl) ≤ (1+2ε)n;
also by a preceding remark, if we pick b > O(1)/ε we have χ′(Hm) ≤ εn. Thus, let us do the
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following.

Let C = b(1 + 4ε)nc; we shall color the edges of H using the colors {1, 2 . . . , C}. Let C1 =
{1, 2 . . . , b(1 + 3ε)mc}; C2 := C \ C1. Fix a coloring f1 of Hl using the colors of C1, and a
coloring f2 of Hm using the colors of C2. We now wish to color Hs. We shall attempt to do
that using the colors of C1. For each E ∈ Hs let

Forb(E) := {c ∈ C1|E ∩A 6= ∅ for some A ∈ Hl, f1(A) = c}.

Then as before, |Forb(E)| ≤ |{A ∈ Hl|A ∩ E 6= ∅}| ≤ a(n−a)
b < ηD for η = a/b,D = n. In

other words, every edge of Hs also has a (small) list of forbidden colors for it. If we can prove
a theorem that guarantees a proper coloring of the edges with no edge given a forbidden color,
we have an asymptotic version of the EFL.

At this point, we are motivated enough (as was Kahn) to state the following

Conjecture 81. Let k ≥ 2, ν > 0, 0 ≤ η < 1. Let C be a set of colors of size at least (1 + ν)D.
There exists β > 0 such that if H is a k-uniform hypergraph satisfying

• (1− β)D < d(x) ≤ D for all vertices x of H,

• d(x, y) < βD for all distinct pairs of vertices x, y,

• For each A ∈ E, there is a subset Forb(A) ⊂ C with |Forb(A)| < ηD.

then there is a proper coloring f of E such that for every edge A, f(A) 6∈ Forb(A).

Note that the first two conditions are identical to those of the PS theorem. Also, it is
important to note that there might be some additional constraints on η, ν which indeed is the
case. We will see what those are as we proceed with the proof.

To prove this conjecture, let us again recall the idea of the proof of the PS theorem. The
ith step/iteration in the proof of the PS theorem does the following: Fix 0 < θ < 1, and let t, s
be large integers. Starting with the hypergraph H(i)(1 ≤ i ≤ s) which satisfies conditions (1),

(2) above with D(i) := e−αθiD with α = α(ε, t, k) = εe−εk (1−eεt)
1−eε , with positive probability there

is a random packing P(i+1) :=M(1)
i+1 ∪M

(2)
i+1 ∪ · · · ∪M

(µi)
i+1 ∈ H(i) with µi = bθD(i)c, such that

• P(A ∈ P(i+1)) ≈ α
D(i) .

• For all A ∈ H(i) the event “A ∈ P(i+1)” is independent of all events “B ∈ P(i+1)” if
distance between A,B is at least 2t. Here, the distance is in the hypergraph H(i).

The idea is to try to give every edge its ‘default color’ as and when we form the packings P(i).
Since each such packing consists of up to µi different matchings, P(i) can be (by default) colored
using µi colors, so that when we complete s iterations we have used

∑
i µi different colors to

color all the edges except those of H(s). The PS theorem finishes off by coloring these edges
greedily using a fresh set and colors by observing that the number of edges in H(s) is ‘small’.
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To keep track of these let us write

C :=
⋃

1≤j≤µi,1≤i≤s
Cij ∪ C∗, with Cij := {ci1, ci2, . . . , ciµi},

where these sets Cij are mutually disjoint and the matchingM(j)
i+1 is by default allocated color cij .

In our present situation, the default colors allocated to some of the edges may be forbidden
at those edges. More specifically, define

B(i) := {A ∈ H(i)|A ∈M(j)
i+1 for some j and cij ∈ Forb(A)}.

For each vertex v, let B
(i)
v := |{A ∈ B(i)|v ∈ A}|.

At each stage, remove the ‘bad edges’ from the packings, i.e., the ones assigned a forbidden
color. After s iterations the edges that need to be (re)colored are the ones inH′ := H(s)

⋃s
i=1 B(i)

and the colors that are left to be used are those in C∗. Note that for each vertex v we have
dH′(v) ≤ D(s)

v +Bv. The first term is o(D); if the second term is also o(D) then we may finish
the coloring greedily. Thus, if we can show that we can pick our random packing at stage i

in such a way that apart from the criteria in the PS-theorem, we can also ensure that B
(i)
v is

‘small’ (compared to the order of D(i)) then we are through (there is still some technicality but
we will come to that later).

Hence to start with, we need to show that at each step i of the iteration, we can get a random
packing P(i+1) such that

• |d(i)(v)−D(i)| < o(D(i)) for all v.

• B(i)
v < E(B

(i)
v ) + o(D)

The proof of this part is identical to that of the PS theorem; use the same martingale, the same
filtration, and use Azuma’s inequality.

To complete the proof, we need to get an (over)estimate of E(B
(i)
v ). For each A ∈ H(i), A

is not in B(i) if and only if for each cij ∈ Forb(A) we have A 6∈ M(j)
i=1. Denoting Forb(i)(A) :=

{j|cij ∈ Forb(A)} we have

P(A ∈ B(i)) = 1−
(

1− α

D(i)

)|Forb(i)(A)|
<
α|Forb(i)(A)|

D(i)
.

Hence,

E(B(i)
v ) =

∑
v∈A∈H(i)

P(A ∈ B(i))

.
α

D(i)

∑
v∈A∈H(i)

|Forb(i)(A)|
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Let i(A) := max{0 ≤ i ≤ s|A ∈ H(i)}. Note that for any fixed i,

|{A ∈ H|v ∈ A, i(A) = i}| ≤ θe−αθiD.

Hence we have

s∑
i=0

E(B(i)
v ) . α

s∑
i=0

1

D(i)

∑
v∈A∈H(i)

|Forb(i)(A)|

= α
∑
v∈A

∑
i

|Forb(i)(A)|
D(i)

(
1A∈H(i)

)
≤ α

∑
v∈A

1

D(i(A))

(∑
i

|Forb(i)(A)|
)

≤ α
∑
v∈A

|Forb(A)|
D

eαθi(A)

< αo(1)

s∑
i=0

eαθi|{A|v ∈ A, i(A) = i}|

The last term in the above expression can be made ‘small’. This completes the proof of
Kahn’s theorem.
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10 Talagrand’s Inequality

A relatively recent, extremely powerful, and by now well utilized technique in probabilistic
methods, was discovered by Michel Talagrand and was published around 1996. Talagrand’s
inequality is an instance of what is refered to as the phenomenon of ‘Concentration of Measure in
Product Spaces’ (his paper was titled almost exactly this). Roughly speaking, if we have several
probability spaces, we many consider the product measure on the product space. Talagrand
showed that one can prove the concentration of measure phenomenon holds on the product
space as well. One of the main reasons this inequality is so powerful is the its relatively wide
applicability. In this chapter, we briefly study the inequality, and a couple of simple applications.

10.1 Talagrand’s Inequality

Let (Ω, P, ρ) be a metric probability space, and let A ⊆ Ω with P(A) ≥ 1/2. For fixed t, let
At = {ω ∈ Ω | ρ(ω,A) ≤ t}. What is P[At]? That is, what can we say about the probability of
an outcome close to one in A?

Definition 82. Suppose Ω = Ω1 × Ω2 × · · · × Ωn, the product of n (not necessarily metric)
probability spaces (Ωi, Pi). Then we can define a measure ρ on Ω by

ρ(x,A) := sup
‖α‖=1

inf
y ∈A

∑
xi 6=yi

αi

Here α can be thought of as a cost (set by an adversary) for changing each coordinate of x
to get to some event y ∈ A. Then we can intuitively think of ρ as the worst-case cost necessary
to get from x to some element in A by changing coordinates.

Now for any probability space we can define At = {x ∈ Ω | ρ(x,A) ≤ t}, as above.

Theorem 83. (Talagrand’s Inequality)

P[A](1− P[At]) ≤ e−t
2/4

For the proof see p. 55 of Talagrand’s paper “Concentration of Measure and Isoperimetric
Inequalities in Product Spaces.”

We can also define the measure ρ in another, perhaps more intuitive way. For a given x ∈ Ω
and A ⊆ Ω let

Path(x,A) = {s ∈ {0, 1}n | ∃y ∈ A with xi 6= yi ⇔ si = 1}
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and let V (x,A) be the convex hull of Path(x,A) (in [0, 1]n). We can think of Path(x,A) as the
set of all possible paths from x to some element y ∈ A, that is, the set of choices given some
cost vector.

Theorem 84. ρ(x,A) = min
v∈V (x,A)

‖v‖.

Note that it is now clear that we can use min instead of sup and inf, since the convex hull
is closed. It is also clear now that ρ(x,A) = 0 iff (0, 0) ∈ V (x,A) iff x ∈ A.

Concentration of Measure about the Mean

Recall the definition of a Lipschitz function from earlier:

Definition 85. A random variable X : Ω→ RED is c-Lipschitz if for any ω1, ω2 ∈ Ω differing
in one coordinate |X(ω1)−X(ω2)| ≤ c.

We will also need to define another similar notion.

Definition 86. A random variable X : Ω→ RED is f -certifiable for f : RED → RED if the
following holds: If some ω ∈ Ω satisfies X(ω) ≥ s, then there is a set I ∈ [n] of size ≤ f(s)
such that X(ω′) ≥ s for any ω′ ∈ Ω with ω′i = ωi for all i ∈ I.

We can now state a useful consequence of Talagrand’s Inequality:

Corollary 87. If X is 1-Lipschitz and f -certifiable then

P[X ≥ b]P[X ≤ b− t
√
f(b)] ≤ e−t2/4.

In particular, if b is the median of X, i.e. b = inf {t ∈ RED |P[X ≥ t] ≤ 1/2}, we have

P[X ≤ b− t
√
f(b)] ≤ 2e−t

2/4.

Proof. Let A =
{
ω |X(ω) < b−

√
f(b)

}
. We want to show that {ω |X(ω) < b} ⊇ At so that

P[X ≥ b] ≤ 1−P[At]. That is, we want to show that for any ω′ with X(ω) ≥ b, ω′ 6∈ At. Suppose
otherwise. Since X is f -certifiable, there is a set I ⊆ [n] of size no more than f(b) such that if
x agrees with ω′ on I then X(x) ≥ b. Now consider the penalty function αi = 1{i∈I}(|I|)−1/2.
By our assumption that ω′ ∈ At, there exists y ∈ A such that

∑
yi 6=ω′i

αi ≤ t. Then the number

of coordinates in which y and ω′ disagree is no more than t
√
|I| ≤ t

√
f(b). Now pick z ∈ Ω

such that zi = yi for all i 6∈ I and zi = ω′i for i ∈ I. Since z disagrees with y on no more than
t
√
f(b) coordinates and X is 1-Lipschitz we have |X(z)−X(y)| ≤ t

√
f(b). But since y ∈ A,

we have X(y) < b − t
√
f(b), so by the closeness of X(y) and X(z) we have |X(z)| < b. But

since z agrees with ω′ on the coordinates of I, f -certifiability guarantees that X(z) ≥ b, and we
have a contradiction.

This phenomenon is known as concentration of measure about the median. The median
tends to be difficult to compute, but fortunately it is often close to the mean. The conversion
from median to mean is responsible for the constant factors in the following corollary.
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Corollary 88. (Talagrand’s Inequality About the Mean) Suppose X is c-Lipschitz and r-
certifiable (i.e. f -certifiable with f(s) = rs). Then

P[|X − E[X]| > t+ 60c
√
rE[X] ≤ e−t2/8c2r E[X].

Here we tend to think of t as some large multiple of
√
E[X], so that we can rewrite this as

P[|X − E[X]| > k
√

E[X]] ≤ e−Ω(1)

or
P[|X − E[X]| > E[X]

1
2

+ε] ≤ e−E[X]ε .

10.2 Examples

1. Non-isolated vertices in random graphs

Suppose G is a d-regular graph on n vertices. Let H be a random subgraph of G with each
edge of G being retained in H with probability p. Let

X = |{v | dH(v) > 0}| =
∑
v∈V

1dH(v)>0

the number of non-isolated vertices in H. By linearity of expectation,

E[X] =
∑
v∈V

P[dH(v) > 0] = n(1− (1− p)d).

The probability space in question is a product of the nd/2 binary probability spaces correspond-
ing to retaining each edge, so that the events are tuples representing the outcomes for each edge.
Changing the outcome of a single edge can isolate or un-isolate at most two vertices, so X is
2-Lipschitz. Furthermore, for any value of H with X(H) ≥ s, we can choose one edge adjacent
to each of s non-isolated vertices whose existence in another subgraph H ′ of G will ensure that
the same s vertices are not isolated in H ′, i.e. X(H ′) ≥ s. Thus X is also 1-certifiable, and
Talagrand gives us

P
[
|X − E[X]| > (60 + k)

√
E[X]

]
≤ e−k2/32

so with high probability the number of non-isolated vertices is within an interval of length
O(
√
E[X]) = O(

√
n) about the mean. Compare this to the result using Azuma on the edge-

exposure martingale, which would only give an interval of size O
(√(

n
2

))
= O(n) about the

mean.

2. Longest increasing subsequence

Suppose x1, . . . , xn ∈ [0, 1] are picked uniformly and independently at random, and put them in
increasing order to generate a permutation of [n]. Let X be the length of the longest increasing
subsequence, and note that X is 1-Lipschitz (as changing a certain value could only either add
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it to a long increasing subsequence or remove it from one) and 1-certifiable (as any choice of
the xi with a particular increasing subsequence of length s always has X ≥ s).

It is also easy to show that X ≤ 3
√
n with high probability. For any i1 < · · · < ik,

P[xi1 ≤ · · · ≤ xik ] = 1
k! so

P[X ≥ k] ≤
(
n

k

)
1

k!
≤
(
en

k

k
)
ek

kk

and thus P[X ≥ 3n] ≤
(
e
3

)6√n → 0. On the other hand, there is always an increasing or
decreasing subsequence of length

√
n− 1, so we actually find that with high probability

1

3

√
n ≤ X ≤ 3

√
n

so E[X] = O(
√
n).

Talagrand’s inequality now tells us that X is with high probability in an interval of length
O(
√
E[X]) = O(n1/4). Note that Azuma would only give an interval of length O(

√
n), since

the corresponding martingale would be of length n. The strength of Talagrand is that unlike
Azuma it does not depend on the dimension of the product space.

10.3 An Improvement of Brook’s Theorem

Let us recall Brook’s Theorem: If a graph G is not Kn or C2k+1 then χ(G) ≤
a

(G).
Here are two improvements:

Kim (2002): For G with girth ≥ 5, χ(G) ≤ (1 + o(1)) D
logD .

Johansson (2004): For M-free G, χ(G) ≤ O( D
logD ).

Theorem: If G is M-free with max. degree D, then χ(G) ≤ (1− α)D for some α > 0.

Proof : WLOG, let G be D-regular.
Scheme - We shall color the vertices uniformly at random from [c]. If two adjacent vertices are
colored the same, uncolor both.
WTS - With positive probability, each vertex v has ≥ αD + 1 colors that are retained on ≥ 2
neighbors of v. If this is done, color each vertex greedily. The greedy algorithm will complete
the proof.

Let Av be the event that vertex v has ≤ αD colors retained on ≥ 2 neighbors of v. Av ↔ Aw
are dependent for < D4 choices of w. Therefore, if P(Av) = O( 1

D5 ), then we are through.
Let Xv be the number of colors retained on ≥ 2 neighbors of v,
X ′v be the number of colors retained on exactly 2 neighbors of v, and
X ′′v be the number of colors assigned on 2 neighbors of v and retained from the start. Note that
Xv ≥ X ′v ≥ X ′′v .
E(X ′′v ) ≥

(
D
2

)
1
c (1−

1
c )

3D−3. If u,w ∈ N(v) are assigned RED, then no vertext in V is assigned
RED, where V

⊎
(N(v) \ {u,w}

⋃
N(u)

⋃
N(w)).

Now let C = βD =⇒ E(X ′′v ) ≥ D(D−1)
2

1
βD [(1− 1

βD )D−1]3 ≥ D−1
2 e

− 3
β , D � 0.
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Let us note that Xv is 1-Lipschitz and certifiable for Xv ≥ s.
Let us write X ′′v = Assv−Delv where Assv is the number of colors assigned to 2 neighbors of v
and Delv is the number of colors asssigned to 2 neighbors but deleted from at least one of these
two. We can see that Assv is 1-Lipschitz. If Delv ≥ s, then ∃ 2s vertices making color choices
in pairs picking the same color and another ≤s neighbors of at least one of each of these pairs
that witnesses G discoloration. Therefore, Delv ≥ s and Delv is s-certifiable.

Lets us recall the following inequalities:
If X is 1-Lipschitz and determined by independent trials {T1, . . . , Tm}, then P(|X−EX| > t) ≤
e−

t2

2m . If X is also r-certifiable, then Talagrand tells us that P(|X−EX| > t+60
√
rEX) ≤ e−

t2

8rEX

This implies that t = C
√
D logD then P(|Assv − E(Assv)| > t) ≤ 2e−

t2

D = 2e−
C2 logD

2 = 2

DC
2/2

.

Also, P(|Delv − E(Delv)| > t+ 60
√

3E(Delv)) ≤ 2e
− t2

24E(Delv) = 2

D
C2D2

24E(Delv)
.

We may now take β = 1
2 so that α = 2e−6.

10.4 Chromatic number of graph powers: A result of Alon and Mohar

Recall, for k ≥ 1, Gk is defined as:
V (Gk) = V (G)
-For u 6= v, u↔ v iff dist(u, v)G ≤ k

Let 4(G) = d, what is χ(Gk)? The greedy algorithm tells us χ(Gk) ≤ dk + 1.

Alon−Krivelevich− Sudakov (2002): If G has at most d2

t edges in the induced subgraph on

N(v) for each v ∈ V (G) then χ(G) ≤ d
log(t) . This implies for G having girth ≥ 3k+ 1, it is easy

to show χ(Gk) ≤ O
(

dk

log(d)

)
.

The result we shall prove is thus,
Alon−Mohar (2001): For large d and any fixed g ≥ 3, ∃ graphs with max degree ∆ ≤ d, girth

Γ ≥ g, and χ(Gk) ≥ Ω
(

dk

log(d)

)
.

Proof : First, we shall bound ∆ and Γ. We want to pick G = Gn,p such that ∀v ∈ V (G),
E[deg(v)] = (n− 1)p < np. Let p = d

2n . Because this process is a binomial distribution, we can
bound the number of vertices with degree at least d using Chernoff.

P[deg(v) ≥ d] < P[(deg(v)− E(d(v)) >
d

2
)] ≤ e

−(d/2)2

3(d/2) = e−d/6

Now, let Nbad = |{v ∈ V |deg(v) > d}| =⇒

E[Nbad] < ne−d/6

By the Markov inequality

P[Nbad > 10ne−d/6] < .1
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Similarly, let N<g = |{Ck ⊆ G|k < g}| =⇒

E[N<g] =

g−1∑
i=3

(n)i
2i

(
d

2n

)i
< dg

Again, Markov tells us that
P[N<g > 10dg] < .1

This implies that with probability at least .8, G satisfies Nbad ≤ 10ne−d/6 and N<g ≤ 10dg. We
shall assume n >> dg + ne−d/6 so that we can remove an arbitrary vertex from all small cycles
and remove all vertices of degree more than d. If we want to ensure ∆ = d, it is simple enough
to add some cycles of length g.

Let the path P be a U-path if the end vertices of P lie in U and the internal vertices lie
outside of U .Set U ⊆ V (G) such that

|U | = ckn log(d)

dk
= x

Now, to show χ(Gk) ≥ Ω
(

dk

log(d)

)
, we will show that α(Gk) ≤ ck

n log(d)
dk

for some ck. To do

this, we will show that with high probability, ∀ U , Π(G), the number of internally disjoint
U-paths of length k, is large. Specifically, we will show that there are still many of these paths
after we make vertex deletions for girth and maximum degree considerations. This will bound
independent sets in Gk.
Let µ be the number of U-paths of length k. It is easy to show that

E[µ] =

(
x

2

)
(n−X)k−1p

k >
c2
kn

2 log 2(d)

2d2k

nk−1

2

dk

2knk
=
c2
kn log 2(d)

2k+2dk

Now, we need to say that E[ν], the expected number of non-internally disjoint U-paths, is much
smaller than E[µ]. For n� d� k, the expected number of U-paths which share one endpoint
and the unique neighbor is at most

µnk−2xpk−1 =
µck log d

2k−1d
� µ

It is easy to see that the number of other types of intersecting U-paths is smaller, implying that

E[Π] =
c2
knlog

2(d)

2k+2dk

Let us note that, because Π(G) counts the number internally disjoint U-paths, removing one
edge can change Π(G) by at most one. Therefore, Π(G) is a 1-Lipschitz function. Let us also
note that Π(G) is f -certifiable. That is, for f(s) = ks, when Π(G) ≥ s, G contains a set of
at most ks edges so that ∀G′ which agree with G on these edges, Π(G′) ≥ s. We can now use
Talagrand’s inequality to bound the number of graphs with insufficiently many U-paths.
For any b and t, Talagrand’s tells us that

P[|X − E[X]| > t] ≤ e−
βt2

E[X]
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for some β > 0. This implies that for t = εE[Π], ε > 0,

P[Π <
(1− ε)c2

knlog
2(d)

2k+2dk
] ≤ e−βε

2 c
2
knlog

2(d)

2k+2dk = o(1)

Now, becuase the maximum number of sets U is at most(
n

x

)
≤
(en
x

)x
≤
(

edk

ck log d

)ck n

dk
log d

≤ exp
(
ckk

n

dk
log2 d

)
So, if

βε2c2
k

2k+2
> 2kck

then, with probability 1 − o(1), for every set U , there are at least εn log2 d
2k+2dk

pairwise internally
disjoint U-paths.
Now, for n� d� k

10n2−d/10 + 10dg <
εn log2 d

2k+2dk

so we can remove all small cycles and high-degree vertices without destroying all U-paths and
therefore

α(Gk) ≤ ck
n log(d)

dk
=⇒ χ(Gk) ≤ Ω

(
dk

log(d)

)
as desired, and this completes our proof.
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