
Chapter 5

Link Analysis

One of the biggest changes in our lives in the decade following the turn of
the century was the availability of efficient and accurate Web search, through
search engines such as Google. While Google was not the first search engine, it
was the first able to defeat the spammers who had made search almost useless.
Moreover, the innovation provided by Google was a nontrivial technological
advance, called “PageRank.” We shall begin the chapter by explaining what
PageRank is and how it is computed efficiently.

Yet the war between those who want to make the Web useful and those
who would exploit it for their own purposes is never over. When PageRank was
established as an essential technique for a search engine, spammers invented
ways to manipulate the PageRank of a Web page, often called link spam.1

That development led to the response of TrustRank and other techniques for
preventing spammers from attacking PageRank. We shall discuss TrustRank
and other approaches to detecting link spam.

Finally, this chapter also covers some variations on PageRank. These tech-
niques include topic-sensitive PageRank (which can also be adapted for combat-
ing link spam) and the HITS, or “hubs and authorities” approach to evaluating
pages on the Web.

5.1 PageRank

We begin with a portion of the history of search engines, in order to motivate
the definition of PageRank,2 a tool for evaluating the importance of Web pages
in a way that it is not easy to fool. We introduce the idea of “random surfers,”
to explain why PageRank is effective. We then introduce the technique of “tax-
ation” or recycling of random surfers, in order to avoid certain Web structures

1Link spammers sometimes try to make their unethicality less apparent by referring to
what they do as “search-engine optimization.”

2The term PageRank comes from Larry Page, the inventor of the idea and a founder of
Google.

163

164 CHAPTER 5. LINK ANALYSIS

that present problems for the simple version of PageRank.

5.1.1 Early Search Engines and Term Spam

There were many search engines before Google. Largely, they worked by crawl-
ing the Web and listing the terms (words or other strings of characters other
than white space) found in each page, in an inverted index. An inverted index
is a data structure that makes it easy, given a term, to find (pointers to) all the
places where that term occurs.

When a search query (list of terms) was issued, the pages with those terms
were extracted from the inverted index and ranked in a way that reflected the
use of the terms within the page. Thus, presence of a term in a header of
the page made the page more relevant than would the presence of the term in
ordinary text, and large numbers of occurrences of the term would add to the
assumed relevance of the page for the search query.

As people began to use search engines to find their way around the Web,
unethical people saw the opportunity to fool search engines into leading people
to their page. Thus, if you were selling shirts on the Web, all you cared about
was that people would see your page, regardless of what they were looking for.
Thus, you could add a term like “movie” to your page, and do it thousands of
times, so a search engine would think you were a terribly important page about
movies. When a user issued a search query with the term “movie,” the search
engine would list your page first. To prevent the thousands of occurrences of
“movie” from appearing on your page, you could give it the same color as the
background. And if simply adding “movie” to your page didn’t do the trick,
then you could go to the search engine, give it the query “movie,” and see what
page did come back as the first choice. Then, copy that page into your own,
again using the background color to make it invisible.

Techniques for fooling search engines into believing your page is about some-
thing it is not, are called term spam. The ability of term spammers to operate
so easily rendered early search engines almost useless. To combat term spam,
Google introduced two innovations:

1. PageRank was used to simulate where Web surfers, starting at a random
page, would tend to congregate if they followed randomly chosen outlinks
from the page at which they were currently located, and this process were
allowed to iterate many times. Pages that would have a large number of
surfers were considered more “important” than pages that would rarely
be visited. Google prefers important pages to unimportant pages when
deciding which pages to show first in response to a search query.

2. The content of a page was judged not only by the terms appearing on that
page, but by the terms used in or near the links to that page. Note that
while it is easy for a spammer to add false terms to a page they control,
they cannot as easily get false terms added to the pages that link to their
own page, if they do not control those pages.

5.1. PAGERANK 165

Simplified PageRank Doesn’t Work

As we shall see, computing PageRank by simulating random surfers is
a time-consuming process. One might think that simply counting the
number of in-links for each page would be a good approximation to where
random surfers would wind up. However, if that is all we did, then the
hypothetical shirt-seller could simply create a “spam farm” of a million
pages, each of which linked to his shirt page. Then, the shirt page looks
very important indeed, and a search engine would be fooled.

These two techniques together make it very hard for the hypothetical shirt
vendor to fool Google. While the shirt-seller can still add “movie” to his page,
the fact that Google believed what other pages say about him, over what he says
about himself would negate the use of false terms. The obvious countermeasure
is for the shirt seller to create many pages of his own, and link to his shirt-
selling page with a link that says “movie.” But those pages would not be given
much importance by PageRank, since other pages would not link to them. The
shirt-seller could create many links among his own pages, but none of these
pages would get much importance according to the PageRank algorithm, and
therefore, he still would not be able to fool Google into thinking his page was
about movies.

It is reasonable to ask why simulation of random surfers should allow us to
approximate the intuitive notion of the “importance” of pages. There are two
related motivations that inspired this approach.

• Users of the Web “vote with their feet.” They tend to place links to pages
they think are good or useful pages to look at, rather than bad or useless
pages.

• The behavior of a random surfer indicates which pages users of the Web
are likely to visit. Users are more likely to visit useful pages than useless
pages.

But regardless of the reason, the PageRank measure has been proved empirically
to work, and so we shall study in detail how it is computed.

5.1.2 Definition of PageRank

PageRank is a function that assigns a real number to each page in the Web
(or at least to that portion of the Web that has been crawled and its links
discovered). The intent is that the higher the PageRank of a page, the more
“important” it is. There is not one fixed algorithm for assignment of PageRank,
and in fact variations on the basic idea can alter the relative PageRank of any
two pages. We begin by defining the basic, idealized PageRank, and follow it

166 CHAPTER 5. LINK ANALYSIS

by modifications that are necessary for dealing with some real-world problems
concerning the structure of the Web.

Think of the Web as a directed graph, where pages are the nodes, and there
is an arc from page p1 to page p2 if there are one or more links from p1 to p2.
Figure 5.1 is an example of a tiny version of the Web, where there are only four
pages. Page A has links to each of the other three pages; page B has links to
A and D only; page C has a link only to A, and page D has links to B and C
only.

BA

C D

Figure 5.1: A hypothetical example of the Web

Suppose a random surfer starts at page A in Fig. 5.1. There are links to B,
C, and D, so this surfer will next be at each of those pages with probability
1/3, and has zero probability of being at A. A random surfer at B has, at the
next step, probability 1/2 of being at A, 1/2 of being at D, and 0 of being at
B or C.

In general, we can define the transition matrix of the Web to describe what
happens to random surfers after one step. This matrix M has n rows and
columns, if there are n pages. The element mij in row i and column j has value
1/k if page j has k arcs out, and one of them is to page i. Otherwise, mij = 0.

Example 5.1 : The transition matrix for the Web of Fig. 5.1 is

M =

0 1/2 1 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 0 0

In this matrix, the order of the pages is the natural one, A, B, C, and D. Thus,
the first column expresses the fact, already discussed, that a surfer at A has a
1/3 probability of next being at each of the other pages. The second column
expresses the fact that a surfer at B has a 1/2 probability of being next at A
and the same of being at D. The third column says a surfer at C is certain to
be at A next. The last column says a surfer at D has a 1/2 probability of being
next at B and the same at C. ✷

5.1. PAGERANK 167

The probability distribution for the location of a random surfer can be
described by a column vector whose jth component is the probability that the
surfer is at page j. This probability is the (idealized) PageRank function.

Suppose we start a random surfer at any of the n pages of the Web with
equal probability. Then the initial vector v0 will have 1/n for each component.
If M is the transition matrix of the Web, then after one step, the distribution
of the surfer will be Mv0, after two steps it will be M(Mv0) = M2v0, and so
on. In general, multiplying the initial vector v0 by M a total of i times will
give us the distribution of the surfer after i steps.

To see why multiplying a distribution vector v by M gives the distribution
x = Mv at the next step, we reason as follows. The probability xi that a
random surfer will be at node i at the next step, is

∑

j mijvj . Here, mij is the
probability that a surfer at node j will move to node i at the next step (often
0 because there is no link from j to i), and vj is the probability that the surfer
was at node j at the previous step.

This sort of behavior is an example of the ancient theory ofMarkov processes.
It is known that the distribution of the surfer approaches a limiting distribution
v that satisfies v = Mv, provided two conditions are met:

1. The graph is strongly connected; that is, it is possible to get from any
node to any other node.

2. There are no dead ends : nodes that have no arcs out.

Note that Fig. 5.1 satisfies both these conditions.

The limit is reached when multiplying the distribution by M another time
does not change the distribution. In other terms, the limiting v is an eigenvec-
tor of M (an eigenvector of a matrix M is a vector v that satisfies v = λMv for
some constant eigenvalue λ). In fact, because M is stochastic, meaning that its
columns each add up to 1, v is the principal eigenvector (its associated eigen-
value is the largest of all eigenvalues). Note also that, because M is stochastic,
the eigenvalue associated with the principal eigenvector is 1.

The principal eigenvector of M tells us where the surfer is most likely to
be after a long time. Recall that the intuition behind PageRank is that the
more likely a surfer is to be at a page, the more important the page is. We
can compute the principal eigenvector of M by starting with the initial vector
v0 and multiplying by M some number of times, until the vector we get shows
little change at each round. In practice, for the Web itself, 50–75 iterations are
sufficient to converge to within the error limits of double-precision arithmetic.

Example 5.2 : Suppose we apply the process described above to the matrix
M from Example 5.1. Since there are four nodes, the initial vector v0 has four
components, each 1/4. The sequence of approximations to the limit that we

168 CHAPTER 5. LINK ANALYSIS

Solving Linear Equations

If you look at the 4-node “Web” of Example 5.2, you might think that the
way to solve the equation v = Mv is by Gaussian elimination. Indeed,
in that example, we argued what the limit would be essentially by doing
so. However, in realistic examples, where there are tens or hundreds of
billions of nodes, Gaussian elimination is not feasible. The reason is that
Gaussian elimination takes time that is cubic in the number of equations.
Thus, the only way to solve equations on this scale is to iterate as we
have suggested. Even that iteration is quadratic at each round, but we
can speed it up by taking advantage of the fact that the matrix M is very
sparse; there are on average about ten links per page, i.e., ten nonzero
entries per column.

Moreover, there is another difference between PageRank calculation
and solving linear equations. The equation v = Mv has an infinite number
of solutions, since we can take any solution v, multiply its components by
any fixed constant c, and get another solution to the same equation. When
we include the constraint that the sum of the components is 1, as we have
done, then we get a unique solution.

get by multiplying at each step by M is:

1/4
1/4
1/4
1/4

,

9/24
5/24
5/24
5/24

,

15/48
11/48
11/48
11/48

,

11/32
7/32
7/32
7/32

, . . . ,

3/9
2/9
2/9
2/9

Notice that in this example, the probabilities for B, C, and D remain the
same. It is easy to see that B and C must always have the same values at any
iteration, because their rows in M are identical. To show that their values are
also the same as the value for D, an inductive proof works, and we leave it as
an exercise. Given that the last three values of the limiting vector must be the
same, it is easy to discover the limit of the above sequence. The first row of
M tells us that the probability of A must be 3/2 the other probabilities, so the
limit has the probability of A equal to 3/9, or 1/3, while the probability for the
other three nodes is 2/9.

This difference in probability is not great. But in the real Web, with billions
of nodes of greatly varying importance, the true probability of being at a node
like www.amazon.com is orders of magnitude greater than the probability of
typical nodes. ✷

5.1. PAGERANK 169

5.1.3 Structure of the Web

It would be nice if the Web were strongly connected like Fig. 5.1. However, it
is not, in practice. An early study of the Web found it to have the structure
shown in Fig. 5.2. There was a large strongly connected component (SCC), but
there were several other portions that were almost as large.

1. The in-component, consisting of pages that could reach the SCC by fol-
lowing links, but were not reachable from the SCC.

2. The out-component, consisting of pages reachable from the SCC but un-
able to reach the SCC.

3. Tendrils, which are of two types. Some tendrils consist of pages reachable
from the in-component but not able to reach the in-component. The
other tendrils can reach the out-component, but are not reachable from
the out-component.

Component

Tubes

Strongly
Connected

Component
In

Component
Out

Out
Tendrils

In
Tendrils

Disconnected
Components

Figure 5.2: The “bowtie” picture of the Web

In addition, there were small numbers of pages found either in

170 CHAPTER 5. LINK ANALYSIS

(a) Tubes, which are pages reachable from the in-component and able to reach
the out-component, but unable to reach the SCC or be reached from the
SCC.

(b) Isolated components that are unreachable from the large components (the
SCC, in- and out-components) and unable to reach those components.

Several of these structures violate the assumptions needed for the Markov-
process iteration to converge to a limit. For example, when a random surfer
enters the out-component, they can never leave. As a result, surfers starting
in either the SCC or in-component are going to wind up in either the out-
component or a tendril off the in-component. Thus, no page in the SCC or in-
component winds up with any probability of a surfer being there. If we interpret
this probability as measuring the importance of a page, then we conclude falsely
that nothing in the SCC or in-component is of any importance.

As a result, PageRank is usually modified to prevent such anomalies. There
are really two problems we need to avoid. First is the dead end, a page that
has no links out. Surfers reaching such a page disappear, and the result is that
in the limit no page that can reach a dead end can have any PageRank at all.
The second problem is groups of pages that all have outlinks but they never
link to any other pages. These structures are called spider traps.3 Both these
problems are solved by a method called “taxation,” where we assume a random
surfer has a finite probability of leaving the Web at any step, and new surfers
are started at each page. We shall illustrate this process as we study each of
the two problem cases.

5.1.4 Avoiding Dead Ends

Recall that a page with no link out is called a dead end. If we allow dead
ends, the transition matrix of the Web is no longer stochastic, since some of
the columns will sum to 0 rather than 1. A matrix whose column sums are at
most 1 is called substochastic. If we compute M iv for increasing powers of a
substochastic matrix M , then some or all of the components of the vector go
to 0. That is, importance “drains out” of the Web, and we get no information
about the relative importance of pages.

Example 5.3 : In Fig. 5.3 we have modified Fig. 5.1 by removing the arc from
C to A. Thus, C becomes a dead end. In terms of random surfers, when
a surfer reaches C they disappear at the next round. The matrix M that
describes Fig. 5.3 is

M =

0 1/2 0 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 0 0

3They are so called because the programs that crawl the Web, recording pages and links,
are often referred to as “spiders.” Once a spider enters a spider trap, it can never leave.

5.1. PAGERANK 171

BA

C D

Figure 5.3: C is now a dead end

Note that it is substochastic, but not stochastic, because the sum of the third
column, for C, is 0, not 1. Here is the sequence of vectors that result by starting
with the vector with each component 1/4, and repeatedly multiplying the vector
by M :

1/4
1/4
1/4
1/4

,

3/24
5/24
5/24
5/24

,

5/48
7/48
7/48
7/48

,

21/288
31/288
31/288
31/288

, . . . ,

0
0
0
0

As we see, the probability of a surfer being anywhere goes to 0, as the number
of steps increase. ✷

There are two approaches to dealing with dead ends.

1. We can drop the dead ends from the graph, and also drop their incoming
arcs. Doing so may create more dead ends, which also have to be dropped,
recursively. However, eventually we wind up with a strongly-connected
component, none of whose nodes are dead ends. In terms of Fig. 5.2,
recursive deletion of dead ends will remove parts of the out-component,
tendrils, and tubes, but leave the SCC and the in-component, as well as
parts of any small isolated components.4

2. We can modify the process by which random surfers are assumed to move
about the Web. This method, which we refer to as “taxation,” also solves
the problem of spider traps, so we shall defer it to Section 5.1.5.

If we use the first approach, recursive deletion of dead ends, then we solve the
remaining graph G by whatever means are appropriate, including the taxation
method if there might be spider traps inG. Then, we restore the graph, but keep

4You might suppose that the entire out-component and all the tendrils will be removed, but
remember that they can have within them smaller strongly connected components, including
spider traps, which cannot be deleted.

172 CHAPTER 5. LINK ANALYSIS

the PageRank values for the nodes of G. Nodes not in G, but with predecessors
all in G can have their PageRank computed by summing, over all predecessors
p, the PageRank of p divided by the number of successors of p in the full graph.
Now there may be other nodes, not in G, that have the PageRank of all their
predecessors computed. These may have their own PageRank computed by
the same process. Eventually, all nodes outside G will have their PageRank
computed; they can surely be computed in the order opposite to that in which
they were deleted.

BA

C D

E

Figure 5.4: A graph with two levels of dead ends

Example 5.4 : Figure 5.4 is a variation on Fig. 5.3, where we have introduced
a successor E for C. But E is a dead end, and when we remove it, and the
arc entering from C, we find that C is now a dead end. After removing C, no
more nodes can be removed, since each of A, B, and D have arcs leaving. The
resulting graph is shown in Fig. 5.5.

The matrix for the graph of Fig. 5.5 is

M =

0 1/2 0
1/2 0 1
1/2 1/2 0

The rows and columns correspond to A, B, and D in that order. To get the
PageRanks for this matrix, we start with a vector with all components equal
to 1/3, and repeatedly multiply by M . The sequence of vectors we get is

1/3
1/3
1/3

 ,

1/6
3/6
2/6

 ,

3/12
5/12
4/12

 ,

5/24
11/24
8/24

 , . . . ,

2/9
4/9
3/9

We now know that the PageRank of A is 2/9, the PageRank of B is 4/9,
and the PageRank of D is 3/9. We still need to compute PageRanks for C

5.1. PAGERANK 173

BA

D

Figure 5.5: The reduced graph with no dead ends

and E, and we do so in the order opposite to that in which they were deleted.
Since C was last to be deleted, we know all its predecessors have PageRanks
computed. These predecessors are A and D. In Fig. 5.4, A has three successors,
so it contributes 1/3 of its PageRank to C. Page D has two successors in
Fig. 5.4, so it contributes half its PageRank to C. Thus, the PageRank of C is
1
3 × 2

9 + 1
2 × 3

9 = 13/54.
Now we can compute the PageRank for E. That node has only one pre-

decessor, C, and C has only one successor. Thus, the PageRank of E is the
same as that of C. Note that the sums of the PageRanks exceed 1, and they
no longer represent the distribution of a random surfer. Yet they do represent
decent estimates of the relative importance of the pages. ✷

5.1.5 Spider Traps and Taxation

As we mentioned, a spider trap is a set of nodes with no dead ends but no arcs
out. These structures can appear intentionally or unintentionally on the Web,
and they cause the PageRank calculation to place all the PageRank within the
spider traps.

Example 5.5 : Consider Fig. 5.6, which is Fig. 5.1 with the arc out of C
changed to point to C itself. That change makes C a simple spider trap of one
node. Note that in general spider traps can have many nodes, and as we shall
see in Section 5.4, there are spider traps with millions of nodes that spammers
construct intentionally.

The transition matrix for Fig. 5.6 is

M =

0 1/2 0 0
1/3 0 0 1/2
1/3 0 1 1/2
1/3 1/2 0 0

If we perform the usual iteration to compute the PageRank of the nodes, we

174 CHAPTER 5. LINK ANALYSIS

BA

C D

Figure 5.6: A graph with a one-node spider trap

get

1/4
1/4
1/4
1/4

,

3/24
5/24

11/24
5/24

,

5/48
7/48

29/48
7/48

,

21/288
31/288

205/288
31/288

, . . . ,

0
0
1
0

As predicted, all the PageRank is at C, since once there a random surfer can
never leave. ✷

To avoid the problem illustrated by Example 5.5, we modify the calculation
of PageRank by allowing each random surfer a small probability of teleporting
to a random page, rather than following an out-link from their current page.
The iterative step, where we compute a new vector estimate of PageRanks v′

from the current PageRank estimate v and the transition matrix M is

v′ = βMv + (1− β)e/n

where β is a chosen constant, usually in the range 0.8 to 0.9, e is a vector of all
1’s with the appropriate number of components, and n is the number of nodes
in the Web graph. The term βMv represents the case where, with probability
β, the random surfer decides to follow an out-link from their present page. The
term (1− β)e/n is a vector each of whose components has value (1− β)/n and
represents the introduction, with probability 1 − β, of a new random surfer at
a random page.

Note that if the graph has no dead ends, then the probability of introducing a
new random surfer is exactly equal to the probability that the random surfer will
decide not to follow a link from their current page. In this case, it is reasonable
to visualize the surfer as deciding either to follow a link or teleport to a random
page. However, if there are dead ends, then there is a third possibility, which
is that the surfer goes nowhere. Since the term (1− β)e/n does not depend on
the sum of the components of the vector v, there will always be some fraction

5.1. PAGERANK 175

of a surfer operating on the Web. That is, when there are dead ends, the sum
of the components of v may be less than 1, but it will never reach 0.

Example 5.6 : Let us see how the new approach to computing PageRank
fares on the graph of Fig. 5.6. We shall use β = 0.8 in this example. Thus, the
equation for the iteration becomes

v′ =

0 2/5 0 0
4/15 0 0 2/5
4/15 0 4/5 2/5
4/15 2/5 0 0

v +

1/20
1/20
1/20
1/20

Notice that we have incorporated the factor β into M by multiplying each of
its elements by 4/5. The components of the vector (1 − β)e/n are each 1/20,
since 1− β = 1/5 and n = 4. Here are the first few iterations:

1/4
1/4
1/4
1/4

,

9/60
13/60
25/60
13/60

,

41/300
53/300
153/300
53/300

,

543/4500
707/4500
2543/4500
707/4500

, . . . ,

15/148
19/148
95/148
19/148

By being a spider trap, C has managed to get more than half of the PageRank
for itself. However, the effect has been limited, and each of the nodes gets some
of the PageRank. ✷

5.1.6 Using PageRank in a Search Engine

Having seen how to calculate the PageRank vector for the portion of the Web
that a search engine has crawled, we should examine how this information is
used. Each search engine has a secret formula that decides the order in which
to show pages to the user in response to a search query consisting of one or
more search terms (words). Google is said to use over 250 different properties
of pages, from which a linear order of pages is decided.

First, in order to be considered for the ranking at all, a page has to have at
least one of the search terms in the query. Normally, the weighting of properties
is such that unless all the search terms are present, a page has very little chance
of being in the top ten that are normally shown first to the user. Among the
qualified pages, a score is computed for each, and an important component of
this score is the PageRank of the page. Other components include the presence
or absence of search terms in prominent places, such as headers or the links to
the page itself.

5.1.7 Exercises for Section 5.1

Exercise 5.1.1 : Compute the PageRank of each page in Fig. 5.7, assuming
no taxation.

176 CHAPTER 5. LINK ANALYSIS

a b

c

Figure 5.7: An example graph for exercises

Exercise 5.1.2 : Compute the PageRank of each page in Fig. 5.7, assuming
β = 0.8.

! Exercise 5.1.3 : Suppose the Web consists of a clique (set of nodes with all
possible arcs from one to another) of n nodes and a single additional node that
is the successor of each of the n nodes in the clique. Figure 5.8 shows this graph
for the case n = 4. Determine the PageRank of each page, as a function of n
and β.

Figure 5.8: Example of graphs discussed in Exercise 5.1.3

!! Exercise 5.1.4 : Construct, for any integer n, a Web such that, depending on
β, any of the n nodes can have the highest PageRank among those n. It is
allowed for there to be other nodes in the Web besides these n.

! Exercise 5.1.5 : Show by induction on n that if the second, third, and fourth
components of a vector v are equal, and M is the transition matrix of Exam-
ple 5.1, then the second, third, and fourth components are also equal in Mnv

for any n ≥ 0.

5.2. EFFICIENT COMPUTATION OF PAGERANK 177

. . .

Figure 5.9: A chain of dead ends

Exercise 5.1.6 : Suppose we recursively eliminate dead ends from the graph,
solve the remaining graph, and estimate the PageRank for the dead-end pages
as described in Section 5.1.4. Suppose the graph is a chain of dead ends, headed
by a node with a self-loop, as suggested in Fig. 5.9. What would be the Page-
Rank assigned to each of the nodes?

Exercise 5.1.7 : Repeat Exercise 5.1.6 for the tree of dead ends suggested by
Fig. 5.10. That is, there is a single node with a self-loop, which is also the root
of a complete binary tree of n levels.

. . .

. . .

. . .

. . .

Figure 5.10: A tree of dead ends

5.2 Efficient Computation of PageRank

To compute the PageRank for a large graph representing the Web, we have
to perform a matrix–vector multiplication on the order of 50 times, until the
vector is close to unchanged at one iteration. To a first approximation, the
MapReduce method given in Section 2.3.1 is suitable. However, we must deal
with two issues:

1. The transition matrix of the Web M is very sparse. Thus, representing
it by all its elements is highly inefficient. Rather, we want to represent
the matrix by its nonzero elements.

2. We may not be using MapReduce, or for efficiency reasons we may wish
to use a combiner (see Section 2.2.4) with the Map tasks to reduce the
amount of data that must be passed from Map tasks to Reduce tasks. In
this case, the striping approach discussed in Section 2.3.1 is not sufficient
to avoid heavy use of disk (thrashing).

We discuss the solution to these two problems in this section.

178 CHAPTER 5. LINK ANALYSIS

5.2.1 Representing Transition Matrices

The transition matrix is very sparse, since the average Web page has about 10
out-links. If, say, we are analyzing a graph of ten billion pages, then only one
in a billion entries is not 0. The proper way to represent any sparse matrix is
to list the locations of the nonzero entries and their values. If we use 4-byte
integers for coordinates of an element and an 8-byte double-precision number
for the value, then we need 16 bytes per nonzero entry. That is, the space
needed is linear in the number of nonzero entries, rather than quadratic in the
side of the matrix.

However, for a transition matrix of the Web, there is one further compression
that we can do. If we list the nonzero entries by column, then we know what
each nonzero entry is; it is 1 divided by the out-degree of the page. We can
thus represent a column by one integer for the out-degree, and one integer
per nonzero entry in that column, giving the row number where that entry
is located. Thus, we need slightly more than 4 bytes per nonzero entry to
represent a transition matrix.

Example 5.7 : Let us reprise the example Web graph from Fig. 5.1, whose
transition matrix is

M =

0 1/2 1 0
1/3 0 0 1/2
1/3 0 0 1/2
1/3 1/2 0 0

Recall that the rows and columns represent nodes A, B, C, and D, in that
order. In Fig. 5.11 is a compact representation of this matrix.5

Source Degree Destinations

A 3 B, C, D

B 2 A, D
C 1 A
D 2 B, C

Figure 5.11: Represent a transition matrix by the out-degree of each node and
the list of its successors

For instance, the entry for A has degree 3 and a list of three successors.
From that row of Fig. 5.11 we can deduce that the column for A in matrix M
has 0 in the row for A (since it is not on the list of destinations) and 1/3 in
the rows for B, C, and D. We know that the value is 1/3 because the degree
column in Fig. 5.11 tells us there are three links out of A. ✷

5Because M is not sparse, this representation is not very useful for M . However, the
example illustrates the process of representing matrices in general, and the sparser the matrix
is, the more this representation will save.

5.2. EFFICIENT COMPUTATION OF PAGERANK 179

5.2.2 PageRank Iteration Using MapReduce

One iteration of the PageRank algorithm involves taking an estimated Page-
Rank vector v and computing the next estimate v′ by

v′ = βMv + (1− β)e/n

Recall β is a constant slightly less than 1, e is a vector of all 1’s, and n is the
number of nodes in the graph that transition matrix M represents.

If n is small enough that each Map task can store the full vector v in main
memory and also have room in main memory for the result vector v′, then there
is little more here than a matrix–vector multiplication. The additional steps
are to multiply each component of Mv by constant β and to add (1− β)/n to
each component.

However, it is likely, given the size of the Web today, that v is much too
large to fit in main memory. As we discussed in Section 2.3.1, the method
of striping, where we break M into vertical stripes (see Fig. 2.4) and break v

into corresponding horizontal stripes, will allow us to execute the MapReduce
process efficiently, with no more of v at any one Map task than can conveniently
fit in main memory.

5.2.3 Use of Combiners to Consolidate the Result Vector

There are two reasons the method of Section 5.2.2 might not be adequate.

1. We might wish to add terms for v′
i, the ith component of the result vector

v, at the Map tasks. This improvement is the same as using a combiner,
since the Reduce function simply adds terms with a common key. Recall
that for a MapReduce implementation of matrix–vector multiplication,
the key is the value of i for which a term mijvj is intended.

2. We might not be using MapReduce at all, but rather executing the iter-
ation step at a single machine or a collection of machines.

We shall assume that we are trying to implement a combiner in conjunction
with a Map task; the second case uses essentially the same idea.

Suppose that we are using the stripe method to partition a matrix and
vector that do not fit in main memory. Then a vertical stripe from the matrix
M and a horizontal stripe from the vector v will contribute to all components
of the result vector v′. Since that vector is the same length as v, it will not
fit in main memory either. Moreover, as M is stored column-by-column for
efficiency reasons, a column can affect any of the components of v′. As a result,
it is unlikely that when we need to add a term to some component v′

i, that
component will already be in main memory. Thus, most terms will require
that a page be brought into main memory to add it to the proper component.
That situation, called thrashing, takes orders of magnitude too much time to
be feasible.

180 CHAPTER 5. LINK ANALYSIS

An alternative strategy is based on partitioning the matrix into k2 blocks,
while the vectors are still partitioned into k stripes. A picture, showing the
division for k = 4, is in Fig. 5.12. Note that we have not shown the multiplica-
tion of the matrix by β or the addition of (1 − β)e/n, because these steps are
straightforward, regardless of the strategy we use.

v

v

v

v

4

1

2

3

v

v

v

v

4

1

2

3

M

M

M

M M

M

M M

M

M M

M

M

MM
11

M
12 13 14

21 22 23 24

31 32 33 34

41 42 43

’

’

’

’

44

=

Figure 5.12: Partitioning a matrix into square blocks

In this method, we use k2 Map tasks. Each task gets one square of the
matrix M , say Mij , and one stripe of the vector v, which must be vj . Notice
that each stripe of the vector is sent to k different Map tasks; vj is sent to the
task handling Mij for each of the k possible values of i. Thus, v is transmitted
over the network k times. However, each piece of the matrix is sent only once.
Since the size of the matrix, properly encoded as described in Section 5.2.1, can
be expected to be several times the size of the vector, the transmission cost is
not too much greater than the minimum possible. And because we are doing
considerable combining at the Map tasks, we save as data is passed from the
Map tasks to the Reduce tasks.

The advantage of this approach is that we can keep both the jth stripe of
v and the ith stripe of v′ in main memory as we process Mij . Note that all
terms generated from Mij and vj contribute to v′

i and no other stripe of v′.

5.2.4 Representing Blocks of the Transition Matrix

Since we are representing transition matrices in the special way described in
Section 5.2.1, we need to consider how the blocks of Fig. 5.12 are represented.
Unfortunately, the space required for a column of blocks (a “stripe” as we called
it earlier) is greater than the space needed for the stripe as a whole, but not
too much greater.

For each block, we need data about all those columns that have at least one
nonzero entry within the block. If k, the number of stripes in each dimension,
is large, then most columns will have nothing in most blocks of its stripe. For
a given block, we not only have to list those rows that have a nonzero entry for
that column, but we must repeat the out-degree for the node represented by
the column. Consequently, it is possible that the out-degree will be repeated as
many times as the out-degree itself. That observation bounds from above the

5.2. EFFICIENT COMPUTATION OF PAGERANK 181

space needed to store the blocks of a stripe at twice the space needed to store
the stripe as a whole.

A B C D

A

B

C

D

Figure 5.13: A four-node graph is divided into four 2-by-2 blocks

Example 5.8 : Let us suppose the matrix from Example 5.7 is partitioned into
blocks, with k = 2. That is, the upper-left quadrant represents links from A or
B to A or B, the upper-right quadrant represents links from C or D to A or
B, and so on. It turns out that in this small example, the only entry that we
can avoid is the entry for C in M22, because C has no arcs to either C or D.
The tables representing each of the four blocks are shown in Fig. 5.14.

If we examine Fig. 5.14(a), we see the representation of the upper-left quad-
rant. Notice that the degrees for A and B are the same as in Fig. 5.11, because
we need to know the entire number of successors, not the number of successors
within the relevant block. However, each successor of A or B is represented
in Fig. 5.14(a) or Fig. 5.14(c), but not both. Notice also that in Fig. 5.14(d),
there is no entry for C, because there are no successors of C within the lower
half of the matrix (rows C and D). ✷

5.2.5 Other Efficient Approaches to PageRank Iteration

The algorithm discussed in Section 5.2.3 is not the only option. We shall discuss
several other approaches that use fewer processors. These algorithms share with
the algorithm of Section 5.2.3 the good property that the matrix M is read only
once, although the vector v is read k times, where the parameter k is chosen
so that 1/kth of the vectors v and v′ can be held in main memory. Recall that
the algorithm of Section 5.2.3 uses k2 processors, assuming all Map tasks are
executed in parallel at different processors.

We can assign all the blocks in one row of blocks to a single Map task, and
thus reduce the number of Map tasks to k. For instance, in Fig. 5.12, M11,
M12, M13, and M14 would be assigned to a single Map task. If we represent the
blocks as in Fig. 5.14, we can read the blocks in a row of blocks one-at-a-time,
so the matrix does not consume a significant amount of main-memory. At the
same time that we read Mij , we must read the vector stripe vj . As a result,
each of the k Map tasks reads the entire vector v, along with 1/kth of the
matrix.

182 CHAPTER 5. LINK ANALYSIS

Source Degree Destinations

A 3 B

B 2 A

(a) Representation of M11 connecting A and B to A and B

Source Degree Destinations

C 1 A

D 2 B

(b) Representation of M12 connecting C and D to A and B

Source Degree Destinations

A 3 C, D

B 2 D

(c) Representation of M21 connecting A and B to C and D

Source Degree Destinations

D 2 C

(d) Representation of M22 connecting C and D to C and D

Figure 5.14: Sparse representation of the blocks of a matrix

The work reading M and v is thus the same as for the algorithm of Sec-
tion 5.2.3, but the advantage of this approach is that each Map task can combine
all the terms for the portion v′

i for which it is exclusively responsible. In other
words, the Reduce tasks have nothing to do but to concatenate the pieces of v′

received from the k Map tasks.

We can extend this idea to an environment in which MapReduce is not used.
Suppose we have a single processor, with M and v stored on its disk, using the
same sparse representation for M that we have discussed. We can first simulate
the first Map task, the one that uses blocks M11 through M1k and all of v to
compute v′

1. Then we simulate the second Map task, reading M21 through M2k

and all of v to compute v′
2, and so on. As for the previous algorithms, we thus

read M once and v k times. We can make k as small as possible, subject to the
constraint that there is enough main memory to store 1/kth of v and 1/kth of
v′, along with as small a portion of M as we can read from disk (typically, one
disk block).

5.3. TOPIC-SENSITIVE PAGERANK 183

5.2.6 Exercises for Section 5.2

Exercise 5.2.1 : Suppose we wish to store an n × n Boolean matrix (0 and
1 elements only). We could represent it by the bits themselves, or we could
represent the matrix by listing the positions of the 1’s as pairs of integers, each
integer requiring ⌈log2 n⌉ bits. The former is suitable for dense matrices; the
latter is suitable for sparse matrices. How sparse must the matrix be (i.e., what
fraction of the elements should be 1’s) for the sparse representation to save
space?

Exercise 5.2.2 : Using the method of Section 5.2.1, represent the transition
matrices of the following graphs:

(a) Figure 5.4.

(b) Figure 5.7.

Exercise 5.2.3 : Using the method of Section 5.2.4, represent the transition
matrices of the graph of Fig. 5.3, assuming blocks have side 2.

Exercise 5.2.4 : Consider a Web graph that is a chain, like Fig. 5.9, with
n nodes. As a function of k, which you may assume divides n, describe the
representation of the transition matrix for this graph, using the method of
Section 5.2.4

5.3 Topic-Sensitive PageRank

There are several improvements we can make to PageRank. One, to be studied
in this section, is that we can weight certain pages more heavily because of their
topic. The mechanism for enforcing this weighting is to alter the way random
surfers behave, having them prefer to land on a page that is known to cover the
chosen topic. In the next section, we shall see how the topic-sensitive idea can
also be applied to negate the effects of a new kind of spam, called “‘link spam,”
that has developed to try to fool the PageRank algorithm.

5.3.1 Motivation for Topic-Sensitive Page Rank

Different people have different interests, and sometimes distinct interests are
expressed using the same term in a query. The canonical example is the search
query jaguar, which might refer to the animal, the automobile, a version of the
MAC operating system, or even an ancient game console. If a search engine
can deduce that the user is interested in automobiles, for example, then it can
do a better job of returning relevant pages to the user.

Ideally, each user would have a private PageRank vector that gives the
importance of each page to that user. It is not feasible to store a vector of
length many billions for each of a billion users, so we need to do something

184 CHAPTER 5. LINK ANALYSIS

simpler. The topic-sensitive PageRank approach creates one vector for each of
some small number of topics, biasing the PageRank to favor pages of that topic.
We then endeavour to classify users according to the degree of their interest in
each of the selected topics. While we surely lose some accuracy, the benefit is
that we store only a short vector for each user, rather than an enormous vector
for each user.

Example 5.9 : One useful topic set is the 16 top-level categories (sports, med-
icine, etc.) of the Open Directory (DMOZ).6 We could create 16 PageRank
vectors, one for each topic. If we could determine that the user is interested
in one of these topics, perhaps by the content of the pages they have recently
viewed, then we could use the PageRank vector for that topic when deciding
on the ranking of pages. ✷

5.3.2 Biased Random Walks

Suppose we have identified some pages that represent a topic such as “sports.”
To create a topic-sensitive PageRank for sports, we can arrange that the random
surfers are introduced only to a random sports page, rather than to a random
page of any kind. The consequence of this choice is that random surfers are
likely to be at an identified sports page, or a page reachable along a short path
from one of these known sports pages. Our intuition is that pages linked to
by sports pages are themselves likely to be about sports. The pages they link
to are also likely to be about sports, although the probability of being about
sports surely decreases as the distance from an identified sports page increases.

The mathematical formulation for the iteration that yields topic-sensitive
PageRank is similar to the equation we used for general PageRank. The only
difference is how we add the new surfers. Suppose S is a set of integers consisting
of the row/column numbers for the pages we have identified as belonging to a
certain topic (called the teleport set). Let eS be a vector that has 1 in the
components in S and 0 in other components. Then the topic-sensitive Page-
Rank for S is the limit of the iteration

v′ = βMv + (1− β)eS/|S|
Here, as usual, M is the transition matrix of the Web, and |S| is the size of set
S.

Example 5.10 : Let us reconsider the original Web graph we used in Fig. 5.1,
which we reproduce as Fig. 5.15. Suppose we use β = 0.8. Then the transition
matrix for this graph, multiplied by β, is

βM =

0 2/5 4/5 0
4/15 0 0 2/5
4/15 0 0 2/5
4/15 2/5 0 0

6This directory, found at www.dmoz.org, is a collection of human-classified Web pages.

5.3. TOPIC-SENSITIVE PAGERANK 185

BA

C D

Figure 5.15: Repeat of example Web graph

Suppose that our topic is represented by the teleport set S = {B,D}. Then
the vector (1 − β)eS/|S| has 1/10 for its second and fourth components and 0
for the other two components. The reason is that 1− β = 1/5, the size of S is
2, and eS has 1 in the components for B and D and 0 in the components for A
and C. Thus, the equation that must be iterated is

v′ =

0 2/5 4/5 0
4/15 0 0 2/5
4/15 0 0 2/5
4/15 2/5 0 0

v +

0
1/10
0

1/10

Here are the first few iterations of this equation. We have also started with
the surfers only at the pages in the teleport set. Although the initial distribution
has no effect on the limit, it may help the computation to converge faster.

0/2
1/2
0/2
1/2

,

2/10
3/10
2/10
3/10

,

42/150
41/150
26/150
41/150

,

62/250
71/250
46/250
71/250

, . . . ,

54/210
59/210
38/210
59/210

Notice that because of the concentration of surfers at B and D, these nodes get
a higher PageRank than they did in Example 5.2. In that example, A was the
node of highest PageRank. ✷

5.3.3 Using Topic-Sensitive PageRank

In order to integrate topic-sensitive PageRank into a search engine, we must:

1. Decide on the topics for which we shall create specialized PageRank vec-
tors.

2. Pick a teleport set for each of these topics, and use that set to compute
the topic-sensitive PageRank vector for that topic.

186 CHAPTER 5. LINK ANALYSIS

3. Find a way of determining the topic or set of topics that are most relevant
for a particular search query.

4. Use the PageRank vectors for that topic or topics in the ordering of the
responses to the search query.

We have mentioned one way of selecting the topic set: use the top-level topics
of the Open Directory. Other approaches are possible, but there is probably a
need for human classification of at least some pages.

The third step is probably the trickiest, and several methods have been
proposed. Some possibilities:

(a) Allow the user to select a topic from a menu.

(b) Infer the topic(s) by the words that appear in the Web pages recently
searched by the user, or recent queries issued by the user. We need to
discuss how one goes from a collection of words to a topic, and we shall
do so in Section 5.3.4

(c) Infer the topic(s) by information about the user, e.g., their bookmarks or
their stated interests on Facebook.

5.3.4 Inferring Topics from Words

The question of classifying documents by topic is a subject that has been studied
for decades, and we shall not go into great detail here. Suffice it to say that
topics are characterized by words that appear surprisingly often in documents
on that topic. For example, neither fullback nor measles appear very often in
documents on the Web. But fullback will appear far more often than average
in pages about sports, and measles will appear far more often than average in
pages about medicine.

If we examine the entire Web, or a large, random sample of the Web, we
can get the background frequency of each word. Suppose we then go to a large
sample of pages known to be about a certain topic, say the pages classified
under sports by the Open Directory. Examine the frequencies of words in the
sports sample, and identify the words that appear significantly more frequently
in the sports sample than in the background. In making this judgment, we
must be careful to avoid some extremely rare word that appears in the sports
sample with relatively higher frequency. This word is probably a misspelling
that happened to appear only in one or a few of the sports pages. Thus, we
probably want to put a floor on the number of times a word appears, before it
can be considered characteristic of a topic.

Once we have identified a large collection of words that appear much more
frequently in the sports sample than in the background, and we do the same
for all the topics on our list, we can examine other pages and classify them by
topic. Here is a simple approach. Suppose that S1, S2, . . . , Sk are the sets of
words that have been determined to be characteristic of each of the topics on

5.4. LINK SPAM 187

our list. Let P be the set of words that appear in a given page P . Compute
the Jaccard similarity (recall Section 3.1.1) between P and each of the Si’s.
Classify the page as that topic with the highest Jaccard similarity. Note that
all Jaccard similarities may be very low, especially if the sizes of the sets Si are
small. Thus, it is important to pick reasonably large sets Si to make sure that
we cover all aspects of the topic represented by the set.

We can use this method, or a number of variants, to classify the pages the
user has most recently retrieved. We could say the user is interested in the topic
into which the largest number of these pages fall. Or we could blend the topic-
sensitive PageRank vectors in proportion to the fraction of these pages that
fall into each topic, thus constructing a single PageRank vector that reflects
the user’s current blend of interests. We could also use the same procedure on
the pages that the user currently has bookmarked, or combine the bookmarked
pages with the recently viewed pages.

5.3.5 Exercises for Section 5.3

Exercise 5.3.1 : Compute the topic-sensitive PageRank for the graph of Fig.
5.15, assuming the teleport set is:

(a) A only.

(b) A and C.

5.4 Link Spam

When it became apparent that PageRank and other techniques used by Google
made term spam ineffective, spammers turned to methods designed to fool
the PageRank algorithm into overvaluing certain pages. The techniques for
artificially increasing the PageRank of a page are collectively called link spam.
In this section we shall first examine how spammers create link spam, and
then see several methods for decreasing the effectiveness of these spamming
techniques, including TrustRank and measurement of spam mass.

5.4.1 Architecture of a Spam Farm

A collection of pages whose purpose is to increase the PageRank of a certain
page or pages is called a spam farm. Figure 5.16 shows the simplest form of
spam farm. From the point of view of the spammer, the Web is divided into
three parts:

1. Inaccessible pages : the pages that the spammer cannot affect. Most of
the Web is in this part.

2. Accessible pages : those pages that, while they are not controlled by the
spammer, can be affected by the spammer.

188 CHAPTER 5. LINK ANALYSIS

3. Own pages : the pages that the spammer owns and controls.

Accessible
Pages

Own

Pages

Inaccessible
Pages

Target
Page

Figure 5.16: The Web from the point of view of the link spammer

The spam farm consists of the spammer’s own pages, organized in a special
way as seen on the right, and some links from the accessible pages to the
spammer’s pages. Without some links from the outside, the spam farm would
be useless, since it would not even be crawled by a typical search engine.

Concerning the accessible pages, it might seem surprising that one can af-
fect a page without owning it. However, today there are many sites, such as
blogs or newspapers that invite others to post their comments on the site. In
order to get as much PageRank flowing to his own pages from outside, the
spammer posts many comments such as “I agree. Please see my article at
www.mySpamFarm.com.”

In the spam farm, there is one page t, the target page, at which the spammer
attempts to place as much PageRank as possible. There are a large number
m of supporting pages, that accumulate the portion of the PageRank that is
distributed equally to all pages (the fraction 1− β of the PageRank that repre-
sents surfers going to a random page). The supporting pages also prevent the
PageRank of t from being lost, to the extent possible, since some will be taxed
away at each round. Notice that t has a link to every supporting page, and
every supporting page links only to t.

5.4. LINK SPAM 189

5.4.2 Analysis of a Spam Farm

Suppose that PageRank is computed using a taxation parameter β, typically
around 0.85. That is, β is the fraction of a page’s PageRank that gets dis-
tributed to its successors at the next round. Let there be n pages on the Web
in total, and let some of them be a spam farm of the form suggested in Fig. 5.16,
with a target page t and m supporting pages. Let x be the amount of PageRank
contributed by the accessible pages. That is, x is the sum, over all accessible
pages p with a link to t, of the PageRank of p times β, divided by the number
of successors of p. Finally, let y be the unknown PageRank of t. We shall solve
for y.

First, the PageRank of each supporting page is

βy/m+ (1 − β)/n

The first term represents the contribution from t. The PageRank y of t is taxed,
so only βy is distributed to t’s successors. That PageRank is divided equally
among the m supporting pages. The second term is the supporting page’s share
of the fraction 1 − β of the PageRank that is divided equally among all pages
on the Web.

Now, let us compute the PageRank y of target page t. Its PageRank comes
from three sources:

1. Contribution x from outside, as we have assumed.

2. β times the PageRank of every supporting page; that is,

β
(

βy/m+ (1− β)/n
)

3. (1−β)/n, the share of the fraction 1−β of the PageRank that belongs to
t. This amount is negligible and will be dropped to simplify the analysis.

Thus, from (1) and (2) above, we can write

y = x+ βm
(βy

m
+

1− β

n

)

= x+ β2y + β(1− β)
m

n

We may solve the above equation for y, yielding

y =
x

1− β2
+ c

m

n

where c = β(1− β)/(1 − β2) = β/(1 + β).

Example 5.11 : If we choose β = 0.85, then 1/(1 − β2) = 3.6, and c =
β/(1 + β) = 0.46. That is, the structure has amplified the external PageRank
contribution by 360%, and also obtained an amount of PageRank that is 46%
of the fraction of the Web, m/n, that is in the spam farm. ✷

190 CHAPTER 5. LINK ANALYSIS

5.4.3 Combating Link Spam

It has become essential for search engines to detect and eliminate link spam,
just as it was necessary in the previous decade to eliminate term spam. There
are two approaches to link spam. One is to look for structures such as the
spam farm in Fig. 5.16, where one page links to a very large number of pages,
each of which links back to it. Search engines surely search for such structures
and eliminate those pages from their index. That causes spammers to develop
different structures that have essentially the same effect of capturing PageRank
for a target page or pages. There is essentially no end to variations of Fig. 5.16,
so this war between the spammers and the search engines will likely go on for
a long time.

However, there is another approach to eliminating link spam that doesn’t
rely on locating the spam farms. Rather, a search engine can modify its defini-
tion of PageRank to lower the rank of link-spam pages automatically. We shall
consider two different formulas:

1. TrustRank, a variation of topic-sensitive PageRank designed to lower the
score of spam pages.

2. Spam mass, a calculation that identifies the pages that are likely to be
spam and allows the search engine to eliminate those pages or to lower
their PageRank strongly.

5.4.4 TrustRank

TrustRank is topic-sensitive PageRank, where the “topic” is a set of pages be-
lieved to be trustworthy (not spam). The theory is that while a spam page
might easily be made to link to a trustworthy page, it is unlikely that a trust-
worthy page would link to a spam page. The borderline area is a site with
blogs or other opportunities for spammers to create links, as was discussed in
Section 5.4.1. These pages cannot be considered trustworthy, even if their own
content is highly reliable, as would be the case for a reputable newspaper that
allowed readers to post comments.

To implement TrustRank, we need to develop a suitable teleport set of
trustworthy pages. Two approaches that have been tried are:

1. Let humans examine a set of pages and decide which of them are trust-
worthy. For example, we might pick the pages of highest PageRank to
examine, on the theory that, while link spam can raise a page’s rank from
the bottom to the middle of the pack, it is essentially impossible to give
a spam page a PageRank near the top of the list.

2. Pick a domain whose membership is controlled, on the assumption that it
is hard for a spammer to get their pages into these domains. For example,
we could pick the .edu domain, since university pages are unlikely to be
spam farms. We could likewise pick .mil, or .gov. However, the problem

5.4. LINK SPAM 191

with these specific choices is that they are almost exclusively US sites. To
get a good distribution of trustworthy Web pages, we should include the
analogous sites from foreign countries, e.g., ac.il, or edu.sg.

It is likely that search engines today implement a strategy of the second type
routinely, so that what we think of as PageRank really is a form of TrustRank.

5.4.5 Spam Mass

The idea behind spam mass is that we measure for each page the fraction of its
PageRank that comes from spam. We do so by computing both the ordinary
PageRank and the TrustRank based on some teleport set of trustworthy pages.
Suppose page p has PageRank r and TrustRank t. Then the spam mass of p is
(r− t)/r. A negative or small positive spam mass means that p is probably not
a spam page, while a spam mass close to 1 suggests that the page probably is
spam. It is possible to eliminate pages with a high spam mass from the index
of Web pages used by a search engine, thus eliminating a great deal of the link
spam without having to identify particular structures that spam farmers use.

Example 5.12 : Let us consider both the PageRank and topic-sensitive Page-
Rank that were computed for the graph of Fig. 5.1 in Examples 5.2 and 5.10,
respectively. In the latter case, the teleport set was nodes B and D, so let
us assume those are the trusted pages. Figure 5.17 tabulates the PageRank,
TrustRank, and spam mass for each of the four nodes.

Node PageRank TrustRank Spam Mass

A 3/9 54/210 0.229

B 2/9 59/210 -0.264
C 2/9 38/210 0.186
D 2/9 59/210 -0.264

Figure 5.17: Calculation of spam mass

In this simple example, the only conclusion is that the nodes B andD, which
were a priori determined not to be spam, have negative spam mass and are
therefore not spam. The other two nodes, A and C, each have a positive spam
mass, since their PageRanks are higher than their TrustRanks. For instance,
the spam mass of A is computed by taking the difference 3/9− 54/210 = 8/105
and dividing 8/105 by the PageRank 3/9 to get 8/35 or about 0.229. However,
their spam mass is still closer to 0 than to 1, so it is probable that they are not
spam. ✷

5.4.6 Exercises for Section 5.4

Exercise 5.4.1 : In Section 5.4.2 we analyzed the spam farm of Fig. 5.16, where
every supporting page links back to the target page. Repeat the analysis for a

192 CHAPTER 5. LINK ANALYSIS

spam farm in which:

(a) Each supporting page links to itself instead of to the target page.

(b) Each supporting page links nowhere.

(c) Each supporting page links both to itself and to the target page.

Exercise 5.4.2 : For the original Web graph of Fig. 5.1, assuming only B is a
trusted page:

(a) Compute the TrustRank of each page.

(b) Compute the spam mass of each page.

! Exercise 5.4.3 : Suppose two spam farmers agree to link their spam farms.
How would you link the pages in order to increase as much as possible the
PageRank of each spam farm’s target page? Is there an advantage to linking
spam farms?

5.5 Hubs and Authorities

An idea called “hubs and authorities’ was proposed shortly after PageRank was
first implemented. The algorithm for computing hubs and authorities bears
some resemblance to the computation of PageRank, since it also deals with the
iterative computation of a fixedpoint involving repeated matrix–vector multi-
plication. However, there are also significant differences between the two ideas,
and neither can substitute for the other.

This hubs-and-authorities algorithm, sometimes called HITS (hyperlink-
induced topic search), was originally intended not as a preprocessing step before
handling search queries, as PageRank is, but as a step to be done along with
the processing of a search query, to rank only the responses to that query. We
shall, however, describe it as a technique for analyzing the entire Web, or the
portion crawled by a search engine. There is reason to believe that something
like this approach is, in fact, used by the Ask search engine.

5.5.1 The Intuition Behind HITS

While PageRank assumes a one-dimensional notion of importance for pages,
HITS views important pages as having two flavors of importance.

1. Certain pages are valuable because they provide information about a
topic. These pages are called authorities.

2. Other pages are valuable not because they provide information about any
topic, but because they tell you where to go to find out about that topic.
These pages are called hubs.

5.5. HUBS AND AUTHORITIES 193

Example 5.13 : A typical department at a university maintains a Web page
listing all the courses offered by the department, with links to a page for each
course, telling about the course – the instructor, the text, an outline of the
course content, and so on. If you want to know about a certain course, you
need the page for that course; the departmental course list will not do. The
course page is an authority for that course. However, if you want to find out
what courses the department is offering, it is not helpful to search for each
courses’ page; you need the page with the course list first. This page is a hub
for information about courses. ✷

Just as PageRank uses the recursive definition of importance that “a page
is important if important pages link to it,” HITS uses a mutually recursive
definition of two concepts: “a page is a good hub if it links to good authorities,
and a page is a good authority if it is linked to by good hubs.”

5.5.2 Formalizing Hubbiness and Authority

To formalize the above intuition, we shall assign two scores to each Web page.
One score represents the hubbiness of a page – that is, the degree to which it
is a good hub, and the second score represents the degree to which the page
is a good authority. Assuming that pages are enumerated, we represent these
scores by vectors h and a. The ith component of h gives the hubbiness of the
ith page, and the ith component of a gives the authority of the same page.

While importance is divided among the successors of a page, as expressed by
the transition matrix of the Web, the normal way to describe the computation
of hubbiness and authority is to add the authority of successors to estimate
hubbiness and to add hubbiness of predecessors to estimate authority. If that
is all we did, then the hubbiness and authority values would typically grow
beyond bounds. Thus, we normally scale the values of the vectors h and a so
that the largest component is 1. An alternative is to scale so that the sum of
components is 1.

To describe the iterative computation of h and a formally, we use the link
matrix of the Web, L. If we have n pages, then L is an n×nmatrix, and Lij = 1
if there is a link from page i to page j, and Lij = 0 if not. We shall also have
need for LT, the transpose of L. That is, LT

ij = 1 if there is a link from page

j to page i, and LT
ij = 0 otherwise. Notice that LT is similar to the matrix M

that we used for PageRank, but where LT has 1, M has a fraction – 1 divided
by the number of out-links from the page represented by that column.

Example 5.14 : For a running example, we shall use the Web of Fig. 5.4,
which we reproduce here as Fig. 5.18. An important observation is that dead
ends or spider traps do not prevent the HITS iteration from converging to a
meaningful pair of vectors. Thus, we can work with Fig. 5.18 directly, with
no “taxation” or alteration of the graph needed. The link matrix L and its
transpose are shown in Fig. 5.19. ✷

194 CHAPTER 5. LINK ANALYSIS

BA

C D

E

Figure 5.18: Sample data used for HITS examples

L =

0 1 1 1 0
1 0 0 1 0
0 0 0 0 1
0 1 1 0 0
0 0 0 0 0

LT =

0 1 0 0 0
1 0 0 1 0
1 0 0 1 0
1 1 0 0 0
0 0 1 0 0

Figure 5.19: The link matrix for the Web of Fig. 5.18 and its transpose

The fact that the hubbiness of a page is proportional to the sum of the
authority of its successors is expressed by the equation h = λLa, where λ is
an unknown constant representing the scaling factor needed. Likewise, the fact
that the authority of a page is proportional to the sum of the hubbinesses of
its predecessors is expressed by a = µLTh, where µ is another scaling constant.
These equations allow us to compute the hubbiness and authority indepen-
dently, by substituting one equation in the other, as:

• h = λµLLTh.

• a = λµLTLa.

However, since LLT and LTL are not as sparse as L and LT, we are usually
better off computing h and a in a true mutual recursion. That is, start with h

a vector of all 1’s.

1. Compute a = LTh and then scale so the largest component is 1.

2. Next, compute h = La and scale again.

5.5. HUBS AND AUTHORITIES 195

Now, we have a new h and can repeat steps (1) and (2) until at some iteration
the changes to the two vectors are sufficiently small that we can stop and accept
the current values as the limit.

1
1
1
1
1

1
2
2
2
1

1/2
1
1
1
1/2

3
3/2
1/2
2
0

1
1/2
1/6
2/3
0

h LTh a La h

1/2
5/3
5/3
3/2
1/6

3/10
1
1

9/10
1/10

29/10
6/5
1/10
2
0

1
12/29
1/29
20/29
0

LTh a La h

Figure 5.20: First two iterations of the HITS algorithm

Example 5.15 : Let us perform the first two iterations of the HITS algorithm
on the Web of Fig. 5.18. In Fig. 5.20 we see the succession of vectors computed.
The first column is the initial h, all 1’s. In the second column, we have estimated
the relative authority of pages by computing LTh, thus giving each page the
sum of the hubbinesses of its predecessors. The third column gives us the first
estimate of a. It is computed by scaling the second column; in this case we
have divided each component by 2, since that is the largest value in the second
column.

The fourth column is La. That is, we have estimated the hubbiness of each
page by summing the estimate of the authorities of each of its successors. Then,
the fifth column scales the fourth column. In this case, we divide by 3, since
that is the largest value in the fourth column. Columns six through nine repeat
the process outlined in our explanations for columns two through five, but with
the better estimate of hubbiness given by the fifth column.

The limit of this process may not be obvious, but it can be computed by a
simple program. The limits are:

h =

1
0.3583

0
0.7165

0

a =

0.2087
1
1

0.7913
0

196 CHAPTER 5. LINK ANALYSIS

This result makes sense. First, we notice that the hubbiness of E is surely 0,
since it leads nowhere. The hubbiness of C depends only on the authority of E
and vice versa, so it should not surprise us that both are 0. A is the greatest
hub, since it links to the three biggest authorities, B, C, and D. Also, B and
C are the greatest authorities, since they are linked to by the two biggest hubs,
A and D.

For Web-sized graphs, the only way of computing the solution to the hubs-
and-authorities equations is iteratively. However, for this tiny example, we
can compute the solution by solving equations. We shall use the equations
h = λµLLTh. First, LLT is

LLT =

3 1 0 2 0
1 2 0 0 0
0 0 1 0 0
2 0 0 2 0
0 0 0 0 0

Let ν = 1/(λµ) and let the components of h for nodes A through E be a through
e, respectively. Then the equations for h can be written

νa = 3a+ b+ 2d νb = a+ 2b
νc = c νd = 2a+ 2d
νe = 0

The equation for b tells us b = a/(ν − 2) and the equation for d tells us d =
2a/(ν − 2). If we substitute these expressions for b and d in the equation for a,
we get νa = a

(

3+5/(ν−2)
)

. From this equation, since a is a factor of both sides,
we are left with a quadratic equation for ν which simplifies to ν2 − 5ν + 1 = 0.
The positive root is ν = (5 +

√
21)/2 = 4.791. Now that we know ν is neither

0 or 1, the equations for c and e tell us immediately that c = e = 0.
Finally, if we recognize that a is the largest component of h and set a = 1,

we get b = 0.3583 and d = 0.7165. Along with c = e = 0, these values give us
the limiting value of h. The value of a can be computed from h by multiplying
by LT and scaling. ✷

5.5.3 Exercises for Section 5.5

Exercise 5.5.1 : Compute the hubbiness and authority of each of the nodes in
our original Web graph of Fig. 5.1.

! Exercise 5.5.2 : Suppose our graph is a chain of n nodes, as was suggested by
Fig. 5.9. Compute the hubs and authorities vectors, as a function of n.

5.6 Summary of Chapter 5

Term Spam: Early search engines were unable to deliver relevant results
because they were vulnerable to term spam – the introduction into Web
pages of words that misrepresented what the page was about.

5.6. SUMMARY OF CHAPTER 5 197

The Google Solution to Term Spam: Google was able to counteract term
spam by two techniques. First was the PageRank algorithm for deter-
mining the relative importance of pages on the Web. The second was a
strategy of believing what other pages said about a given page, in or near
their links to that page, rather than believing only what the page said
about itself.

PageRank : PageRank is an algorithm that assigns a real number, called
its PageRank, to each page on the Web. The PageRank of a page is a
measure of how important the page is, or how likely it is to be a good
response to a search query. In its simplest form, PageRank is a solution
to the recursive equation “a page is important if important pages link to
it.”

Transition Matrix of the Web: We represent links in the Web by a matrix
whose ith row and ith column represent the ith page of the Web. If there
are one or more links from page j to page i, then the entry in row i and
column j is 1/k, where k is the number of pages to which page j links.
Other entries of the transition matrix are 0.

Computing PageRank on Strongly Connected Web Graphs : For strongly
connected Web graphs (those where any node can reach any other node),
PageRank is the principal eigenvector of the transition matrix. We can
compute PageRank by starting with any nonzero vector and repeatedly
multiplying the current vector by the transition matrix, to get a better
estimate.7 After about 50 iterations, the estimate will be very close to
the limit, which is the true PageRank.

The Random Surfer Model : Calculation of PageRank can be thought of
as simulating the behavior of many random surfers, who each start at a
random page and at any step move, at random, to one of the pages to
which their current page links. The limiting probability of a surfer being
at a given page is the PageRank of that page. The intuition is that people
tend to create links to the pages they think are useful, so random surfers
will tend to be at a useful page.

Dead Ends : A dead end is a Web page with no links out. The presence of
dead ends will cause the PageRank of some or all of the pages to go to 0
in the iterative computation, including pages that are not dead ends. We
can eliminate all dead ends before undertaking a PageRank calculation
by recursively dropping nodes with no arcs out. Note that dropping one
node can cause another, which linked only to it, to become a dead end,
so the process must be recursive.

7Technically, the condition for this method to work is more restricted than simply “strongly
connected.” However, the other necessary conditions will surely be met by any large strongly
connected component of the Web that was not artificially constructed.

198 CHAPTER 5. LINK ANALYSIS

Spider Traps : A spider trap is a set of nodes that, while they may link to
each other, have no links out to other nodes. In an iterative calculation
of PageRank, the presence of spider traps cause all the PageRank to be
captured within that set of nodes.

Taxation Schemes : To counter the effect of spider traps (and of dead ends,
if we do not eliminate them), PageRank is normally computed in a way
that modifies the simple iterative multiplication by the transition matrix.
A parameter β is chosen, typically around 0.85. Given an estimate of the
PageRank, the next estimate is computed by multiplying the estimate by
β times the transition matrix, and then adding (1− β)/n to the estimate
for each page, where n is the total number of pages.

Taxation and Random Surfers : The calculation of PageRank using taxa-
tion parameter β can be thought of as giving each random surfer a prob-
ability 1 − β of leaving the Web, and introducing an equivalent number
of surfers randomly throughout the Web.

Efficient Representation of Transition Matrices : Since a transition matrix
is very sparse (almost all entries are 0), it saves both time and space
to represent it by listing its nonzero entries. However, in addition to
being sparse, the nonzero entries have a special property: they are all the
same in any given column; the value of each nonzero entry is the inverse
of the number of nonzero entries in that column. Thus, the preferred
representation is column-by-column, where the representation of a column
is the number of nonzero entries, followed by a list of the rows where those
entries occur.

Very Large-Scale Matrix–Vector Multiplication: For Web-sized graphs, it
may not be feasible to store the entire PageRank estimate vector in the
main memory of one machine. Thus, we can break the vector into k
segments and break the transition matrix into k2 squares, called blocks,
assigning each square to one machine. The vector segments are each sent
to k machines, so there is a small additional cost in replicating the vector.

Representing Blocks of a Transition Matrix : When we divide a transition
matrix into square blocks, the columns are divided into k segments. To
represent a segment of a column, nothing is needed if there are no nonzero
entries in that segment. However, if there are one or more nonzero entries,
then we need to represent the segment of the column by the total number
of nonzero entries in the column (so we can tell what value the nonzero
entries have) followed by a list of the rows with nonzero entries.

Topic-Sensitive PageRank : If we know the queryer is interested in a cer-
tain topic, then it makes sense to bias the PageRank in favor of pages
on that topic. To compute this form of PageRank, we identify a set of
pages known to be on that topic, and we use it as a “teleport set.” The

5.6. SUMMARY OF CHAPTER 5 199

PageRank calculation is modified so that only the pages in the teleport
set are given a share of the tax, rather than distributing the tax among
all pages on the Web.

Creating Teleport Sets : For topic-sensitive PageRank to work, we need to
identify pages that are very likely to be about a given topic. One approach
is to start with the pages that the open directory (DMOZ) identifies with
that topic. Another is to identify words known to be associated with the
topic, and select for the teleport set those pages that have an unusually
high number of occurrences of such words.

Link Spam: To fool the PageRank algorithm, unscrupulous actors have
created spam farms. These are collections of pages whose purpose is to
concentrate high PageRank on a particular target page.

Structure of a Spam Farm: Typically, a spam farm consists of a target
page and very many supporting pages. The target page links to all the
supporting pages, and the supporting pages link only to the target page.
In addition, it is essential that some links from outside the spam farm be
created. For example, the spammer might introduce links to their target
page by writing comments in other people’s blogs or discussion groups.

TrustRank : One way to ameliorate the effect of link spam is to compute
a topic-sensitive PageRank called TrustRank, where the teleport set is a
collection of trusted pages. For example, the home pages of universities
could serve as the trusted set. This technique avoids sharing the tax in
the PageRank calculation with the large numbers of supporting pages in
spam farms and thus preferentially reduces their PageRank.

Spam Mass : To identify spam farms, we can compute both the conven-
tional PageRank and the TrustRank for all pages. Those pages that have
much lower TrustRank than PageRank are likely to be part of a spam
farm.

Hubs and Authorities : While PageRank gives a one-dimensional view
of the importance of pages, an algorithm called HITS tries to measure
two different aspects of importance. Authorities are those pages that
contain valuable information. Hubs are pages that, while they do not
themselves contain the information, link to places where the information
can be found.

Recursive Formulation of the HITS Algorithm: Calculation of the hubs
and authorities scores for pages depends on solving the recursive equa-
tions: “a hub links to many authorities, and an authority is linked to
by many hubs.” The solution to these equations is essentially an iter-
ated matrix–vector multiplication, just like PageRank’s. However, the
existence of dead ends or spider traps does not affect the solution to the

200 CHAPTER 5. LINK ANALYSIS

HITS equations in the way they do for PageRank, so no taxation scheme
is necessary.

5.7 References for Chapter 5

The PageRank algorithm was first expressed in [1]. The experiments on the
structure of the Web, which we used to justify the existence of dead ends and
spider traps, were described in [2]. The block-stripe method for performing the
PageRank iteration is taken from [5].

Topic-sensitive PageRank is taken from [6]. TrustRank is described in [4],
and the idea of spam mass is taken from [3].

The HITS (hubs and authorities) idea was described in [7].

1. S. Brin and L. Page, “Anatomy of a large-scale hypertextual web search
engine,” Proc. 7th Intl. World-Wide-Web Conference, pp. 107–117, 1998.

2. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R.
Stata, A. Tomkins, and J. Weiner, “Graph structure in the web,” Com-
puter Networks 33:1–6, pp. 309–320, 2000.

3. Z. Gyöngi, P. Berkhin, H. Garcia-Molina, and J. Pedersen, “Link spam
detection based on mass estimation,” Proc. 32nd Intl. Conf. on Very Large
Databases, pp. 439–450, 2006.

4. Z. Gyöngi, H. Garcia-Molina, and J. Pedersen, “Combating link spam
with trustrank,” Proc. 30th Intl. Conf. on Very Large Databases, pp. 576–
587, 2004.

5. T.H. Haveliwala, “Efficient computation of PageRank,” Stanford Univ.
Dept. of Computer Science technical report, Sept., 1999. Available as

http://infolab.stanford.edu/~taherh/papers/efficient-pr.pdf

6. T.H. Haveliwala, “Topic-sensitive PageRank,” Proc. 11th Intl. World-
Wide-Web Conference, pp. 517–526, 2002

7. J.M. Kleinberg, “Authoritative sources in a hyperlinked environment,” J.
ACM 46:5, pp. 604–632, 1999.

