
Closures

MDN DEFINITION

• A closure gives you access to an outer function's scope from an inner
function.

• In JavaScript, closures are created every time a function is created, at
function creation time.

• Έστω ότι έχουμε αυτό το παράδειγμα.

• Ξέρουμε ότι ένα function έχει πρόσβαση στις μεταβλητές που
ορίζονται σε outer function. Είναι λογικό να βλέπουμε αυτό το
αποτέλεσμα

• Αν τώρα θέλω να «τρέχουν» οι
inner functions κάποια άλλη
στιγμή στον κώδικά μου…

• Στο παρακάτω παράδειγμα
φαίνεται η σημασία των
closures.

• Τα closures «συγκρατούν -
θυμούνται» το outer function
scope ακόμα και μετά το
creation time του.

A closure is created when a function is defined within another function, allowing the
inner function to access variables from the outer (enclosing) function's scope. Closures
have the ability to "remember" the environment in which they were created, even after
the outer function has finished executing.

Here's a concise explanation of closures:

 Definition: A closure is the combination of a function and the lexical(place where
code is writen) environment within which that function was declared.

 Key Points:
• Closures allow inner functions to access variables from outer functions even after

the outer function has completed execution.

• The inner function "closes over" the variables it uses, preserving their values.

Factory functions

• A factory function in JavaScript is a function that returns an object.

• It is called a "factory" because it's designed to produce instances of
objects.

• Just like a car factory would do

Factory functions

• Simple!

• Easy to read

• No class constructor for example!

• No duplicate

• Data privacy

• makeAdder : takes a parameter x.

• Inside makeAdder, inner function is defined that takes a parameter y.

• inner function is returned from outer function.

• At this point, the inner function has access to the x parameter from the
outer function's scope, even though the outer function has already
finished executing. This behavior is known as a closure.

• When you create new functions using makeAdder and assign them to
add5 and add10, they "remember" the value of x that was passed
during their creation.

• So:

• add5 effectively becomes a function that adds 5 to its argument.

• add10 becomes a function that adds 10 to its argument.

• When you later call add5(2), it's equivalent to makeAdder(5)(2), and it
returns 5 + 2, which is 7. Similarly, add10(2) is equivalent to
makeAdder(10)(2), and it returns 10 + 2, which is 12.

SOURCE

• https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

	Διαφάνεια 1: Closures
	Διαφάνεια 2: MDN DEFINITION
	Διαφάνεια 3
	Διαφάνεια 4
	Διαφάνεια 5
	Διαφάνεια 6: Factory functions
	Διαφάνεια 7
	Διαφάνεια 8: Factory functions
	Διαφάνεια 9
	Διαφάνεια 10: SOURCE

