
Node.js
Web server creation

Web Server

• Web server can refer to

➢ hardware

➢ software

➢ both of them working together

Web Server

• hardware side

➢ a web server is a computer that stores web server software and a
website's component files (ie. HTML docs, images, CSS & JS files)

➢a web server connects to the Internet and supports physical data
interchange with other devices connected to the web.

Web Server

• Software side

➢a web server includes several parts that control how web users access hosted
files. At a minimum, this is an HTTP server.

HTTP is a communication protocol (communication protocol :is a system of rules that allows two or more parties
to communicate.

• An HTTP server

➢software that understands URLs (web addresses) and HTTP (the protocol your
browser uses to view webpages).

➢ a protocol that allows clients & web servers to communicate

Web Server

• An HTTP server can be accessed through the domain names of the
websites it stores, and it delivers the content of these hosted
websites to the end user's device. (source)

https://stuyhsdesign.wordpress.com/web-design/domain-name/

https://developer.mozilla.org/en-US/docs/Learn/Common_questions/What_is_a_web_server

Web Server

• So this is how a web server basically works

➢When a browser needs a file that is hosted on a web server, the
browser requests the file via HTTP

➢When the request reaches the correct (hardware) web server, the
(software) HTTP server accepts the request, finds the requested
document, and sends it back to the browser (response), also
through HTTP. (or returns 404)

Web Server

Source:https://developer.mozilla.org/

Web Server

• To publish a website we need-> static or dynamic web server

• Static web server

➢ consists of a computer (hardware) with an HTTP server (software)

➢ sends its hosted files as-is to your browser.

Web Server

• Dynamic web server

➢ consists of a static web server plus extra software, most
commonly an application server and a database.

➢application server updates hosted files before sending content to
browser via the HTTP server.

Dynamic web sites

Dynamic web sites

• For example, an application server might fill an HTML template with
content from database.

• Dynamic webpages usually consist of only a few HTML templates and
a database, rather than thousands of static HTML documents.

• Easier to maintain and deliver the content.

Node.js as a Web Server

• Lets see how we can create a web server capable of accepting
requests and sending back responses

• Node.js has a module called HTTP-> used to transfer data over the
Hyper Text Transfer Protocol (HTTP)

Node.js as a Web Server

• HTTP module can create an HTTP server that

➢ listens to server ports for requests and

➢ gives a response back to the client

Node.js as a Web Server

Include HTTP module:

• const http = require('http’);

create an HTTP server:

• const server = http.createServer()
• Create the server with the aforementioned method that accepts a callback

function that will fire every time a new request hits our server

Node.js as a Web Server

http.createServer() method

➢turns your computer into an HTTP server.

➢generates an HTTP Server object
➢HTTP Server object can listen to ports on your machine and execute a

requestListener method whenever a request is received.

➢Callback function to be executed every time the server gets a request.

HTTP Server Methods and Properties: https://www.w3schools.com/nodejs/obj_http_server.asp

Node.js as a Web Server

Listen for incoming requests at localhost port 8080

• server.listen(8080,'127.0.0.1’,callback)

Node.js as a Web Server

server.listen(8080,'127.0.0.1',()=>{

 console.log('hI! We are listening to requests! ');

 });

• 8080: port number

• Localhost(like a domain name on the web) is an alias for the IP
address 127.0. 0.1 -> points back to our computer that is acting as a
host for our website

• If we console.log(req) we shall see that the req Object is huge, with
many properties and methods

• Lets see some specific options
• Req.url
• Req.method (type of request, get post etc)

Node.js as a Web Server

• Res object: response

• res.write method: write to the response

• res.end method: ending the response which then sends it to the
browser

Node.js as a Web Server

Node.js as a Web Server

• Save code (first_webserver.js)

• Initiate the file: node first_webserver.js

• See the result at localhost: http://localhost:8080
• That way the browser knows to connect to our own computer via this

particular port number

• We have a real web server running on our computer!

http://localhost:8080/

Node.js as a Web Server

If you check at the terminal-> you will see that the app keeps running

Remember that in previous examples-> app was executing its code and then it
stopped , exited the application.

When we start a server we do not have this behavior-> the app is waiting to receive
requests

Steps…

• Step 1: We created a server, using createServer & passed in a callback
function

➢This callback function
➢ is executed each time a new request hits our server

➢accesses two fundamental variables: request & response variables

• Step 2: we used the created server object and started listening for
incoming requests from the client

Introduction

• Check that the code we wrote in our first webserver-> does not react
to the URL that we're requesting.

Introduction

What is Routing?

• Routing defines the way in which client requests are handled by the
application endpoints (endpoint ie /api/users)

• Routing actually means implementing different actions for different
urls

Routing with node.js

• No we will see how we can implement routing without framework.

• A developer may need to build up their own server without other
dependencies!

• We will know how to do so!

URL Module

• URL node.js module -> splits up a web address into readable parts

• For very simple urls we do not actually need the url module

• We do need it for more complex ones

Lets see an example
• We use some conditions to handle different urls and display different

content

• req object represents the HTTP request and has properties

Lets see an example

• Lets see the results in the browser

Lets see an example

• Lets see the results in the browser

• Lets see how we can perform routing and serve an html file

Check

https://stackoverflow.com/questions/28094192/difference-between-response-
setheader-and-response-writehead

https://developer.mozilla.org/en-US/docs/Learn/Server-
side/Express_Nodejs/deployment

https://stackoverflow.com/questions/28094192/difference-between-response-setheader-and-response-writehead
https://stackoverflow.com/questions/28094192/difference-between-response-setheader-and-response-writehead
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/deployment
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/deployment

	Διαφάνεια 1: Node.js Web server creation
	Διαφάνεια 2: Web Server
	Διαφάνεια 3: Web Server
	Διαφάνεια 4: Web Server
	Διαφάνεια 5: Web Server
	Διαφάνεια 6: Web Server
	Διαφάνεια 7: Web Server
	Διαφάνεια 8: Web Server
	Διαφάνεια 9: Web Server
	Διαφάνεια 10: Dynamic web sites
	Διαφάνεια 11: Node.js as a Web Server
	Διαφάνεια 12: Node.js as a Web Server
	Διαφάνεια 13: Node.js as a Web Server
	Διαφάνεια 14: Node.js as a Web Server
	Διαφάνεια 15: Node.js as a Web Server
	Διαφάνεια 16: Node.js as a Web Server
	Διαφάνεια 17
	Διαφάνεια 18
	Διαφάνεια 19: Node.js as a Web Server
	Διαφάνεια 20: Node.js as a Web Server
	Διαφάνεια 21: Node.js as a Web Server
	Διαφάνεια 22: Node.js as a Web Server
	Διαφάνεια 23: Steps…
	Διαφάνεια 24: Introduction
	Διαφάνεια 25: Introduction
	Διαφάνεια 26: Routing with node.js
	Διαφάνεια 27: URL Module
	Διαφάνεια 28: Lets see an example
	Διαφάνεια 29: Lets see an example
	Διαφάνεια 30: Lets see an example
	Διαφάνεια 31
	Διαφάνεια 32
	Διαφάνεια 33

