
Node.js
event-loop

Synchronous code

• This means that each statement is processed one after the other
• So each line waits for the result of the previous one
• Thus each line blocks the execution of the rest of the code

Asynchronous code

But not everything needs to be attended to immediately.
• Ie. when we send a network request, the process executing our code shall

wait for data-> so much time wasted

• Asynchronous code allow us to transfer heavy work in the
background, in order for the rest of the code to continue being
executed

• Asynchronous code - > non-blocking code

Asynchronous code

With asynchronous code, we can offload long-running tasks to a
background thread to avoid blocking

When a task is complete-> aforementioned tasks’ data is put back on
the main single thread

• When a JavaScript engine executes a script -> it creates the execution
contexts

• The execution context has two phases:
▪ creation phase

▪ execution phase.

Call stack

• call stack -> is a “Last in, first out” or LIFO stack

• used by Javascript engine to manage execution contexts: Global Execution
Context & Function Execution Contexts

• When we execute a script

• JavaScript engine creates a Global Execution Context and pushes it on top of
the call stack.

• When a function is called

• JavaScript engine creates a Function Execution Context for the function,
pushes it on top of the Call Stack, and starts executing the function.

Call stack

• If a function calls another function

• JavaScript engine creates a new Function Execution Context for the function that is being
called and pushes it on top of the call stack.

• When the current function completes

• JavaScript engine pops it off the call stack and resumes the execution where it left off in the
last code listing.

• When the call stack is empty

• script stops

When script runs -> JS engine places the global execution
context (denoted by main() or global() function) in the call
stack.

JS engine executes the call to the avg() function -> creates a
function execution context it and pushes it on top of the call stack:

JS engine starts executing avg() since it is at the top of the call
stack.

Avg() calls sum() function-> JS engine creates another function
execution context for sum() function -> places it on the top of
the call stack

1. JS engine executes sum() function and pops it off the
call stack

2. JS engine executes avg() function and pops it off the
call stack

3. call stack is empty so the script stops executing

How it works behind the scenes

• Node.js is a JavaScript runtime environment -> based on Google’s V8
Engine

• Node.js allows us to run JavaScript outside of the browser

• Node.js Architecture is made of:
• Chrome V8 engine (which is written in C++)

• Libuv -> a multi-platform support library that focuses on asynchronous I/O
based events on event loops and thread loops

• More on libuv http://docs.libuv.org/en/v1.x/

http://docs.libuv.org/en/v1.x/

https://blog.insiderattack.net/handling-io-nodejs-event-loop-part-4-418062f917d1

Libuv

• is an open source library => focuses on asynchronous
IO (gives Nodejs access to the underlying computer
operating system, file system, networking, and more)

• implements event loop & thread pool.

•https://libuv.org/

Node runs in a single thread -> we must not
bock this thread

In a single thread -> when we run our node app

1. program is initialized

2. top level code is executed-> code outside
callbacks

3. modules are required

4. Callbacks functions are registered

5. event loop starts running

1. Initialize program

2. Execute top level code

3. Require modules

4. Register callbacks

5. Start event loop

Nodejs process: instance of program in
execution

App runs on a single thread

Event loop

event loop

• enables Node.js to perform non-blocking, asynchronous I/O
operations

• making it one of the most important environmental features.

• Objects in Node.js can fire events, ie example receiving an HTTP
request on our server or a file finishing to read will emit events &
event loop will then pick up these events & call the callback
functions that are associated with each event.

Event loop

event loop has multiple phases

• each phase has a FIFO queue of callbacks to execute

• callbacks in each queue are processed one by one until there are no
ones left in the queue

• then it moves on to next phase

• Event loop
➢is an endless loop: waits for tasks, executes them and then sleeps until it

receives another one and so on
➢ (ie when listening for incoming HTTP requests , we were basically running an I/O task, so

the event loop keeps running & keep listening for new HTTP requests coming in instead
of exiting the app)

➢executes tasks from the task queue only when the call stack is empty

➢allows us to use callbacks and promises.

➢executes the tasks starting from the oldest first

Firstly console.logs are executed

After 6 ms pass, though, our callback needs to be executed -
>thus callback needs to get inside our call stack in order to
execute it

When timer expires cb is put in callback queue

Event loop: monitors all the time the
call stack and the callback queue..

If call stack is empty and there is
something in the callback queue, it
puts it in the call stack in order to
execute it!

We need a queue because we may
have more than one tasks to be
executed in the task queue

• We said that event loop has multiple phases -> each phase has a callback/task/event
queue

• let's now take a look at the four most important phases

• 1st phase takes care of callbacks of expired timers (ie setTimeout() function we saw
above (If a timer expires later when another phase is being processed-> cb of that
timer will be called when event loop comes back to 1rst phase)

• 2nd phase Input /Output polling and execution of I/O callbacks

• 3rd phase: setImmediate used in order to process callbacks immediately

• 4th phase: close callbacks: close events are processed

https://www.youtube.com/watch?v=6YgsqXlUoTM

2 other queues also exist:

• nextTick() queue (nextTick() is a function we use when we wish to execute a certain callback right after the
current event loop phase)

• microtasks queue (mainly for resolved promises)

• if there are any callbacks in one of these two queues to be processed: they will be
executed right after current phase of the event loop

1rst phase : Expired timer
callbacks

2nd phase I/O
polling and
callbacks

4rth phase: Close
callbacks

3rd phase
setImmediate
callbacks

PROCESS.NEXTTICK()
QUEUE

 MICROTASKS
QUEUE

(Resolved promises)

Complete diagram with
overview of the event loop's
order of operations in
https://nodejs.org/en/docs/
guides/event-loop-timers-
and-nexttick/

Most important phase to understand as this
phase waits for and executes :
• asynchronous IO related callbacks. (eg.

callbacks from fs.read(), fetch() etc.)
• incoming connections or requests

1. Initialize program

2. Execute top level code

3. Require modules

4. Register callbacks

5. Start event loop

Nodejs program in execution
App runs on a single thread

Some tasks are so heavy -> in such case the thread pool
comes in,

thread pool gives additional threads (by default 4)->
completely separate from the main single thread.

event loop automatically offloads heavy tasks to the
thread pool (ie expensive tasks : operations with files,
cryprography related tasks)

Thread 2Thread 1

Thread 4Thread 3

1. Initialize program

2. Execute top level code

3. Require modules

4. Register callbacks

5. Start event loop

Nodejs program in execution
App runs on a single thread

event loop does the orchestration

➢ it receives events,
➢ calls their callback functions
➢ offloads the more expensive tasks to the thread pool.

Thread 2Thread 1

Thread 4Thread 3

To be continued…

Sources and interesting articles:

https://blog.insiderattack.net/javascript-event-loop-vs-node-js-event-loop-aea2b1b85f5c

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/

https://nodejs.org/en/about/

https://www.geeksforgeeks.org/how-node-js-works-behind-the-scene/

http://docs.libuv.org/en/v1.x/

https://dharmanikheem.medium.com/what-are-threads-in-nodejs-9ae3203f2dff

https://medium.com/payu-engineering/the-node-js-event-loop-ecde345dbc57

https://nodejs.org/api/worker_threads.html

https://nodejs.org/en/about/
https://www.geeksforgeeks.org/how-node-js-works-behind-the-scene/
http://docs.libuv.org/en/v1.x/
https://dharmanikheem.medium.com/what-are-threads-in-nodejs-9ae3203f2dff
https://medium.com/payu-engineering/the-node-js-event-loop-ecde345dbc57

	Διαφάνεια 1: Node.js event-loop
	Διαφάνεια 2: Synchronous code
	Διαφάνεια 3: Asynchronous code
	Διαφάνεια 4: Asynchronous code
	Διαφάνεια 5
	Διαφάνεια 6: Call stack
	Διαφάνεια 7: Call stack
	Διαφάνεια 8
	Διαφάνεια 9
	Διαφάνεια 10
	Διαφάνεια 11: How it works behind the scenes
	Διαφάνεια 12
	Διαφάνεια 13: Libuv
	Διαφάνεια 14
	Διαφάνεια 15: Event loop
	Διαφάνεια 16: Event loop
	Διαφάνεια 17
	Διαφάνεια 18
	Διαφάνεια 19
	Διαφάνεια 20
	Διαφάνεια 21
	Διαφάνεια 22
	Διαφάνεια 23
	Διαφάνεια 24
	Διαφάνεια 25

