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Heaps’ law for Reuters
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Vocabulary size M as a

function of collection size

T (number of tokens) for

Reuters-RCV1. For these

data, the dashed line

log10 M =

0.49 ∗ log10 T + 1.64 is the

best least squares fit.

Thus, M = 101.64T 0.49

and k = 101.64 ≈ 44 and

b = 0.49.
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Zipf’s law for Reuters
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Fit is not great. What
is important is the
key insight: Few fre-
quent terms, many
rare terms.
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Compressing the dictionary
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Compressing the postings

encoding postings list

the docIDs . . . 283042 283043 283044 283045 . . .
gaps 1 1 1 . . .

computer docIDs . . . 283047 283154 283159 283202 . . .
gaps 107 5 43 . . .

arachnocentric docIDs 252000 500100
gaps 252000 248100

Key idea: Store gaps instead of docIDs

Thus: We can encode small gaps with fewer than 20 bits.

In order to implement this, we need to devise some form of
variable length encoding.

Variable byte (VB) code.

Gamma code
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Take-away today

Ranking search results: why it is important (as opposed to
just presenting a set of unordered Boolean results)

Term frequency: This is a key ingredient for ranking.

Tf-idf ranking: best known traditional ranking scheme

Vector space model: One of the most important formal
models for information retrieval (along with Boolean and
probabilistic models)
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Ranked retrieval

Thus far, our queries have been Boolean.

Documents either match or don’t.

Good for expert users with precise understanding of their
needs and of the collection.

Also good for applications: Applications can easily consume
1000s of results.

Not good for the majority of users

Most users are not capable of writing Boolean queries . . .

. . . or they are, but they think it’s too much work.

Most users don’t want to wade through 1000s of results.

This is particularly true of web search.
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Problem with Boolean search: Feast or famine

Boolean queries often result in either too few (=0) or too
many (1000s) results.

Query 1 (boolean conjunction): [standard user dlink 650]

→ 200,000 hits – feast

Query 2 (boolean conjunction): [standard user dlink 650 no
card found]

→ 0 hits – famine

In Boolean retrieval, it takes a lot of skill to come up with a
query that produces a manageable number of hits.
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Feast or famine: No problem in ranked retrieval

With ranking, large result sets are not an issue.

Just show the top 10 results

Doesn’t overwhelm the user

Premise: The ranking algorithm works: More relevant results
are ranked higher than less relevant results.
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Scoring as the basis of ranked retrieval

We wish to rank documents that are more relevant higher
than documents that are less relevant.

How can we accomplish such a ranking of the documents in
the collection with respect to a query?

Assign a score to each query-document pair, say in [0, 1].

This score measures how well document and query “match”.
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Query-document matching scores

How do we compute the score of a query-document pair?

Let’s start with a one-term query.

If the query term does not occur in the document: score
should be 0.

The more frequent the query term in the document, the
higher the score.

We will look at a number of alternatives for doing this.
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Take 1: Jaccard coefficient

A commonly used measure of overlap of two sets

Let A and B be two sets

Jaccard coefficient:

jaccard(A,B) =
|A ∩ B |
|A ∪ B |

(A 6= ∅ or B 6= ∅)
jaccard(A,A) = 1

jaccard(A,B) = 0 if A ∩ B = 0

A and B don’t have to be the same size.

Always assigns a number between 0 and 1.
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Jaccard coefficient: Example

What is the query-document match score that the Jaccard
coefficient computes for:

Query: “ides of March”
Document “Caesar died in March”
jaccard(q, d) = 1/6
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What’s wrong with Jaccard?

It doesn’t consider term frequency (how many occurrences a
term has).

Rare terms are more informative than frequent terms. Jaccard
does not consider this information.

We need a more sophisticated way of normalizing for the
length of a document.

Later in this lecture, we’ll use |A ∩ B |/
√

|A ∪ B | (cosine) . . .
. . . instead of |A ∩ B |/|A ∪ B | (Jaccard) for length
normalization.
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Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.
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Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N
|V |.
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Bag of words model

We do not consider the order of words in a document.

John is quicker than Mary and Mary is quicker than John are
represented the same way.

This is called a bag of words model.

In a sense, this is a step back: The positional index was able
to distinguish these two documents.

We will look at “recovering” positional information later in
this course.

For now: bag of words model
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Term frequency tf

The term frequency tft,d of term t in document d is defined
as the number of times that t occurs in d .

We want to use tf when computing query-document match
scores.

But how?

Raw term frequency is not what we want because:

A document with tf = 10 occurrences of the term is more
relevant than a document with tf = 1 occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term
frequency.
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Instead of raw frequency: Log frequency weighting

The log frequency weight of term t in d is defined as follows

wt,d =

{

1 + log10 tft,d if tft,d > 0
0 otherwise

tft,d → wt,d :
0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.

Score for a document-query pair: sum over terms t in both q
and d :
tf-matching-score(q, d) =

∑

t∈q∩d (1 + log tft,d)

The score is 0 if none of the query terms is present in the
document.
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Exercise

Compute the Jaccard matching score and the tf matching
score for the following query-document pairs.

q: [information on cars] d: “all you’ve ever wanted to know
about cars”

q: [information on cars] d: “information on trucks,
information on planes, information on trains”

q: [red cars and red trucks] d: “cops stop red cars more
often”
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Frequency in document vs. frequency in collection

In addition, to term frequency (the frequency of the term in
the document) . . .

. . . we also want to use the frequency of the term in the
collection for weighting and ranking.
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Desired weight for rare terms

Rare terms are more informative than frequent terms.

Consider a term in the query that is rare in the collection
(e.g., arachnocentric).

A document containing this term is very likely to be relevant.

→ We want high weights for rare terms like
arachnocentric.
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Desired weight for frequent terms

Frequent terms are less informative than rare terms.

Consider a term in the query that is frequent in the collection
(e.g., good, increase, line).

A document containing this term is more likely to be relevant
than a document that doesn’t . . .

. . . but words like good, increase and line are not sure
indicators of relevance.

→ For frequent terms like good, increase, and line, we
want positive weights . . .

. . . but lower weights than for rare terms.
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Document frequency

We want high weights for rare terms like arachnocentric.

We want low (positive) weights for frequent words like good,
increase, and line.

We will use document frequency to factor this into computing
the matching score.

The document frequency is the number of documents in the
collection that the term occurs in.
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idf weight

dft is the document frequency, the number of documents that
t occurs in.

dft is an inverse measure of the informativeness of term t.

We define the idf weight of term t as follows:

idft = log10
N

dft

(N is the number of documents in the collection.)

idft is a measure of the informativeness of the term.

[logN/dft ] instead of [N/dft ] to “dampen” the effect of idf

Note that we use the log transformation for both term
frequency and document frequency.
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Examples for idf

Compute idft using the formula: idft = log10
1,000,000

dft

term dft idft
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0
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Effect of idf on ranking

idf affects the ranking of documents for queries with at least
two terms.

For example, in the query “arachnocentric line”, idf weighting
increases the relative weight of arachnocentric and
decreases the relative weight of line.

idf has little effect on ranking for one-term queries.
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Collection frequency vs. Document frequency

word collection frequency document frequency

insurance 10440 3997
try 10422 8760

Collection frequency of t: number of tokens of t in the
collection

Document frequency of t: number of documents t occurs in

Why these numbers?

Which word is a better search term (and should get a higher
weight)?

This example suggests that df (and idf) is better for weighting
than cf (and “icf”).
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tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and
its idf weight.

wt,d = (1 + log tft,d ) · log
N

dft

tf-weight

idf-weight

Best known weighting scheme in information retrieval

Note: the “-” in tf-idf is a hyphen, not a minus sign!

Alternative names: tf.idf, tf x idf
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Summary: tf-idf

Assign a tf-idf weight for each term t in each document d :
wt,d = (1 + log tft,d) · log N

dft
The tf-idf weight . . .

. . . increases with the number of occurrences within a
document. (term frequency)
. . . increases with the rarity of the term in the collection.
(inverse document frequency)
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Exercise: Term, collection and document frequency

Quantity Symbol Definition

term frequency tft,d number of occurrences of t in
d

document frequency dft number of documents in the
collection that t occurs in

collection frequency cft total number of occurrences of
t in the collection

Relationship between df and cf?

Relationship between tf and cf?

Relationship between tf and df?
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Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Each document is represented as a binary vector ∈ {0, 1}|V |.
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Count matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Each document is now represented as a count vector ∈ N
|V |.
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Binary → count → weight matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .

Each document is now represented as a real-valued vector of tf-idf weights
∈ R

|V |.
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Documents as vectors

Each document is now represented as a real-valued vector of
tf-idf weights ∈ R

|V |.

So we have a |V |-dimensional real-valued vector space.

Terms are axes of the space.

Documents are points or vectors in this space.

Very high-dimensional: tens of millions of dimensions when
you apply this to web search engines

Each vector is very sparse - most entries are zero.
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Queries as vectors

Key idea 1: do the same for queries: represent them as
vectors in the high-dimensional space

Key idea 2: Rank documents according to their proximity to
the query

proximity = similarity

proximity ≈ negative distance

Recall: We’re doing this because we want to get away from
the you’re-either-in-or-out, feast-or-famine Boolean model.

Instead: rank relevant documents higher than nonrelevant
documents
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How do we formalize vector space similarity?

First cut: (negative) distance between two points

( = distance between the end points of the two vectors)

Euclidean distance?

Euclidean distance is a bad idea . . .

. . . because Euclidean distance is large for vectors of different
lengths.
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Why distance is a bad idea

0 1
0

1

rich

poor

q: [rich poor]

d1:Ranks of starving poets swell
d2:Rich poor gap grows

d3:Record baseball salaries in 2010

The Euclidean distance of ~q and ~d2 is large although the
distribution of terms in the query q and the distribution of terms in
the document d2 are very similar.

Questions about basic vector space setup?
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Use angle instead of distance

Rank documents according to angle with query

Thought experiment: take a document d and append it to
itself. Call this document d ′. d ′ is twice as long as d .

“Semantically” d and d ′ have the same content.

The angle between the two documents is 0, corresponding to
maximal similarity . . .

. . . even though the Euclidean distance between the two
documents can be quite large.
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From angles to cosines

The following two notions are equivalent.

Rank documents according to the angle between query and
document in decreasing order
Rank documents according to cosine(query,document) in
increasing order

Cosine is a monotonically decreasing function of the angle for
the interval [0◦, 180◦]
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Cosine
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Length normalization

How do we compute the cosine?

A vector can be (length-) normalized by dividing each of its
components by its length – here we use the L2 norm:

||x ||2 =
√

∑

i x
2
i

This maps vectors onto the unit sphere . . .

. . . since after normalization: ||x ||2 =
√

∑

i x
2
i = 1.0

As a result, longer documents and shorter documents have
weights of the same order of magnitude.

Effect on the two documents d and d ′ (d appended to itself)
from earlier slide: they have identical vectors after
length-normalization.
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Cosine similarity between query and document

cos(~q, ~d) = sim(~q, ~d) =
~q · ~d
|~q||~d |

=

∑|V |
i=1 qidi

√

∑|V |
i=1 q

2
i

√

∑|V |
i=1 d

2
i

qi is the tf-idf weight of term i in the query.

di is the tf-idf weight of term i in the document.

|~q| and |~d | are the lengths of ~q and ~d .

This is the cosine similarity of ~q and ~d . . . . . . or, equivalently,
the cosine of the angle between ~q and ~d .
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Cosine for normalized vectors

For normalized vectors, the cosine is equivalent to the dot
product or scalar product.

cos(~q, ~d) = ~q · ~d =
∑

i qi · di
(if ~q and ~d are length-normalized).
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Cosine similarity illustrated

0 1
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~v(q)
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θ
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Cosine: Example

How similar are
these novels?

SaS: Sense and
Sensibility

PaP: Pride and
Prejudice

WH: Wuthering
Heights

term frequencies (counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38
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Cosine: Example

term frequencies (counts)

term SaS PaP WH

affection 115 58 20
jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

(To simplify this example, we don’t do idf weighting.)
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Cosine: Example

log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30
jealous 2.0 1.85 2.04
gossip 1.30 0 1.78
wuthering 0 0 2.58

log frequency weighting
& cosine normalization

term SaS PaP WH

affection 0.789 0.832 0.524
jealous 0.515 0.555 0.465
gossip 0.335 0.0 0.405
wuthering 0.0 0.0 0.588

cos(SaS,PaP) ≈
0.789 ∗ 0.832 + 0.515 ∗ 0.555 + 0.335 ∗ 0.0 + 0.0 ∗ 0.0 ≈ 0.94.

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SaS,WH)?
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Computing the cosine score

CosineScore(q)
1 float Scores[N] = 0
2 float Length[N]
3 for each query term t
4 do calculate wt,q and fetch postings list for t
5 for each pair(d , tft,d) in postings list
6 do Scores[d ]+ = wt,d × wt,q

7 Read the array Length
8 for each d
9 do Scores[d ] = Scores[d ]/Length[d ]
10 return Top K components of Scores[]
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Components of tf-idf weighting

Term frequency Document frequency Normalization

n (natural) tft,d n (no) 1 n (none)
1

l (logarithm) 1 + log(tft,d) t (idf) log N

dft
c (cosine)

1√
w2
1+w2

2+...+w2
M

a (augmented) 0.5 +
0.5×tft,d
maxt(tft,d )

p (prob idf) max{0, log N−dft

dft
} u (pivoted

unique)
1/u

b (boolean)

{

1 if tft,d > 0
0 otherwise

b (byte size) 1/CharLengthα,
α < 1

L (log ave)
1+log(tf t,d )

1+log(avet∈d(tf t,d ))

Best known combination of weighting options

Default: no weighting
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tf-idf example

We often use different weightings for queries and documents.

Notation: ddd.qqq

Example: lnc.ltn

document: logarithmic tf, no df weighting, cosine
normalization

query: logarithmic tf, idf, no normalization

Isn’t it bad to not idf-weight the document?

Example query: “best car insurance”

Example document: “car insurance auto insurance”
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tf-idf example: lnc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
tf-raw tf-wght df idf weight tf-raw tf-wght weight n’lized

auto 0 0 5000 2.3 0 1 1 1 0.52 0
best 1 1 50000 1.3 1.3 0 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 1 0.52 1.04
insurance 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted
term frequency, df: document frequency, idf: inverse document frequency, weight: the final
weight of the term in the query or document, n’lized: document weights after cosine
normalization, product: the product of final query weight and final document weight
√
12 + 02 + 12 + 1.32 ≈ 1.92

1/1.92 ≈ 0.52
1.3/1.92 ≈ 0.68

Final similarity score between query and document:
∑

i wqi · wdi = 0 + 0 + 1.04 + 2.04 = 3.08

Questions?
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Summary: Ranked retrieval in the vector space model

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf vector

Compute the cosine similarity between the query vector and
each document vector

Rank documents with respect to the query

Return the top K (e.g., K = 10) to the user
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Take-away today

Ranking search results: why it is important (as opposed to
just presenting a set of unordered Boolean results)

Term frequency: This is a key ingredient for ranking.

Tf-idf ranking: best known traditional ranking scheme

Vector space model: One of the most important formal
models for information retrieval (along with Boolean and
probabilistic models)
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Resources

Chapter 6 of IIR

Resources at http://ifnlp.org/ir

Vector space for dummies
Exploring the similarity space (Moffat and Zobel, 2005)
Okapi BM25 (a state-of-the-art weighting method, 11.4.3 of
IIR)
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