
ΑΝΑΚΤΗΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ
ΑΝΑΖΗΤΗΣΗ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ

ΙΣΤΟ

Παροράματα από το Πανεπιστήμιο του Stanford

Introduction to Information Retrieval Introduction to Information Retrieval

Introduction to

Information Retrieval

CS276
Information Retrieval and Web Search

Pandu Nayak and Prabhakar Raghavan

Lecture 7: Scoring and results assembly

Introduction to Information Retrieval Introduction to Information Retrieval

This lecture

 Speeding up vector space ranking

 Putting together a complete search
system

Will require learning about a number of
miscellaneous topics and heuristics

Ch. 7

Introduction to Information Retrieval Introduction to Information Retrieval

Computing cosine scores

Sec. 6.3.3

Introduction to Information Retrieval Introduction to Information Retrieval

Efficient cosine ranking

 Find the K docs in the collection “nearest” to the
query K largest query-doc cosines.

 Efficient ranking:

 Computing a single cosine efficiently.

 Choosing the K largest cosine values efficiently.

 Can we do this without computing all N cosines?

Sec. 7.1

Introduction to Information Retrieval Introduction to Information Retrieval

Efficient cosine ranking

 What we’re doing in effect: solving the K-nearest
neighbor problem for a query vector

 In general, we do not know how to do this efficiently
for high-dimensional spaces

 But it is solvable for short queries, and standard
indexes support this well

Sec. 7.1

Introduction to Information Retrieval Introduction to Information Retrieval

Special case – unweighted queries

 No weighting on query terms

 Assume each query term occurs only once

 Then for ranking, don’t need to normalize query
vector

 Slight simplification of algorithm from Lecture 6

Sec. 7.1

Introduction to Information Retrieval Introduction to Information Retrieval

Computing the K largest cosines:
selection vs. sorting

 Typically we want to retrieve the top K docs (in the
cosine ranking for the query)

 not to totally order all docs in the collection

 Can we pick off docs with K highest cosines?

 Let J = number of docs with nonzero cosines

 We seek the K best of these J

Sec. 7.1

Introduction to Information Retrieval Introduction to Information Retrieval

Use heap for selecting top K

 Binary tree in which each node’s value > the values
of children

 Takes 2J operations to construct, then each of K
“winners” read off in 2log J steps.

 For J=1M, K=100, this is about 10% of the cost of
sorting.

1

.9 .3

.8 .3

.1

.1

Sec. 7.1

Introduction to Information Retrieval Introduction to Information Retrieval

Bottlenecks

 Primary computational bottleneck in scoring: cosine
computation

 Can we avoid all this computation?

 Yes, but may sometimes get it wrong

 a doc not in the top K may creep into the list of K
output docs

 Is this such a bad thing?

Sec. 7.1.1

Introduction to Information Retrieval Introduction to Information Retrieval

Cosine similarity is only a proxy

 User has a task and a query formulation

 Cosine matches docs to query

 Thus cosine is anyway a proxy for user happiness

 If we get a list of K docs “close” to the top K by cosine
measure, should be ok

Sec. 7.1.1

Introduction to Information Retrieval Introduction to Information Retrieval

Generic approach

 Find a set A of contenders, with K < |A| << N

 A does not necessarily contain the top K, but has
many docs from among the top K

 Return the top K docs in A

 Think of A as pruning non-contenders

 The same approach is also used for other (non-
cosine) scoring functions

 Will look at several schemes following this approach

Sec. 7.1.1

Introduction to Information Retrieval Introduction to Information Retrieval

Index elimination

 Basic algorithm cosine computation algorithm only
considers docs containing at least one query term

 Take this further:

 Only consider high-idf query terms

 Only consider docs containing many query terms

Sec. 7.1.2

Introduction to Information Retrieval Introduction to Information Retrieval

High-idf query terms only

 For a query such as catcher in the rye

 Only accumulate scores from catcher and rye

 Intuition: in and the contribute little to the scores
and so don’t alter rank-ordering much

 Benefit:

 Postings of low-idf terms have many docs these (many)
docs get eliminated from set A of contenders

Sec. 7.1.2

Introduction to Information Retrieval Introduction to Information Retrieval

Docs containing many query terms

 Any doc with at least one query term is a candidate
for the top K output list

 For multi-term queries, only compute scores for docs
containing several of the query terms

 Say, at least 3 out of 4

 Imposes a “soft conjunction” on queries seen on web
search engines (early Google)

 Easy to implement in postings traversal

Sec. 7.1.2

Introduction to Information Retrieval Introduction to Information Retrieval

3 of 4 query terms

Brutus

Caesar

Calpurnia

1 2 3 5 8 13 21 34

2 4 8 16 32 64 128

13 16

Antony 3 4 8 16 32 64 128

32

Scores only computed for docs 8, 16 and 32.

Sec. 7.1.2

Introduction to Information Retrieval Introduction to Information Retrieval

Champion lists

 Precompute for each dictionary term t, the r docs of
highest weight in t’s postings

 Call this the champion list for t

 (aka fancy list or top docs for t)

 Note that r has to be chosen at index build time

 Thus, it’s possible that r < K

 At query time, only compute scores for docs in the
champion list of some query term

 Pick the K top-scoring docs from amongst these

Sec. 7.1.3

Introduction to Information Retrieval Introduction to Information Retrieval

Exercises

 How do Champion Lists relate to Index Elimination?
Can they be used together?

 How can Champion Lists be implemented in an
inverted index?

 Note that the champion list has nothing to do with small
docIDs

Sec. 7.1.3

Introduction to Information Retrieval Introduction to Information Retrieval

Quantitative Quantitative

Static quality scores

 We want top-ranking documents to be both relevant
and authoritative

 Relevance is being modeled by cosine scores

 Authority is typically a query-independent property
of a document

 Examples of authority signals

 Wikipedia among websites

 Articles in certain newspapers

 A paper with many citations

 Many bitly’s, diggs or del.icio.us marks

 (Pagerank)

Sec. 7.1.4

Introduction to Information Retrieval Introduction to Information Retrieval

Modeling authority

 Assign to each document a query-independent
quality score in [0,1] to each document d

 Denote this by g(d)

 Thus, a quantity like the number of citations is scaled
into [0,1]

 Exercise: suggest a formula for this.

Sec. 7.1.4

Introduction to Information Retrieval Introduction to Information Retrieval

Net score

 Consider a simple total score combining cosine
relevance and authority

 net-score(q,d) = g(d) + cosine(q,d)

 Can use some other linear combination

 Indeed, any function of the two “signals” of user happiness
– more later

 Now we seek the top K docs by net score

Sec. 7.1.4

Introduction to Information Retrieval Introduction to Information Retrieval

Top K by net score – fast methods

 First idea: Order all postings by g(d)

 Key: this is a common ordering for all postings

 Thus, can concurrently traverse query terms’
postings for

 Postings intersection

 Cosine score computation

 Exercise: write pseudocode for cosine score
computation if postings are ordered by g(d)

Sec. 7.1.4

Introduction to Information Retrieval Introduction to Information Retrieval

Why order postings by g(d)?

 Under g(d)-ordering, top-scoring docs likely to
appear early in postings traversal

 In time-bound applications (say, we have to return
whatever search results we can in 50 ms), this allows
us to stop postings traversal early

 Short of computing scores for all docs in postings

Sec. 7.1.4

Introduction to Information Retrieval Introduction to Information Retrieval

Champion lists in g(d)-ordering

 Can combine champion lists with g(d)-ordering

 Maintain for each term a champion list of the r docs
with highest g(d) + tf-idftd

 Seek top-K results from only the docs in these
champion lists

Sec. 7.1.4

Introduction to Information Retrieval Introduction to Information Retrieval

High and low lists

 For each term, we maintain two postings lists called
high and low

 Think of high as the champion list

 When traversing postings on a query, only traverse
high lists first

 If we get more than K docs, select the top K and stop

 Else proceed to get docs from the low lists

 Can be used even for simple cosine scores, without
global quality g(d)

 A means for segmenting index into two tiers

Sec. 7.1.4

Introduction to Information Retrieval Introduction to Information Retrieval

Impact-ordered postings

 We only want to compute scores for docs for which
wft,d is high enough

 We sort each postings list by wft,d

 Now: not all postings in a common order!

 How do we compute scores in order to pick off top K?

 Two ideas follow

Sec. 7.1.5

Introduction to Information Retrieval Introduction to Information Retrieval

1. Early termination

 When traversing t’s postings, stop early after either

 a fixed number of r docs

 wft,d drops below some threshold

 Take the union of the resulting sets of docs

 One from the postings of each query term

 Compute only the scores for docs in this union

Sec. 7.1.5

Introduction to Information Retrieval Introduction to Information Retrieval

2. idf-ordered terms

 When considering the postings of query terms

 Look at them in order of decreasing idf

 High idf terms likely to contribute most to score

 As we update score contribution from each query
term

 Stop if doc scores relatively unchanged

 Can apply to cosine or some other net scores

Sec. 7.1.5

Introduction to Information Retrieval Introduction to Information Retrieval

Cluster pruning: preprocessing

 Pick N docs at random: call these leaders

 For every other doc, pre-compute nearest
leader

 Docs attached to a leader: its followers;

 Likely: each leader has ~ N followers.

Sec. 7.1.6

Introduction to Information Retrieval Introduction to Information Retrieval

 Cluster pruning: query processing

 Process a query as follows:

 Given query Q, find its nearest leader L.

 Seek K nearest docs from among L’s
followers.

Sec. 7.1.6

Introduction to Information Retrieval Introduction to Information Retrieval

Visualization

Query

Leader Follower

Sec. 7.1.6

Introduction to Information Retrieval Introduction to Information Retrieval

Why use random sampling

 Fast

 Leaders reflect data distribution

Sec. 7.1.6

Introduction to Information Retrieval Introduction to Information Retrieval

General variants

 Have each follower attached to b1=3 (say) nearest
leaders.

 From query, find b2=4 (say) nearest leaders and their
followers.

 Can recurse on leader/follower construction.

Sec. 7.1.6

Introduction to Information Retrieval Introduction to Information Retrieval

Exercises

 To find the nearest leader in step 1, how many cosine
computations do we do?

 Why did we have N in the first place?

 What is the effect of the constants b1, b2 on the
previous slide?

 Devise an example where this is likely to fail – i.e., we
miss one of the K nearest docs.

 Likely under random sampling.

Sec. 7.1.6

Introduction to Information Retrieval Introduction to Information Retrieval

Parametric and zone indexes

 Thus far, a doc has been a sequence of terms

 In fact documents have multiple parts, some with
special semantics:

 Author

 Title

 Date of publication

 Language

 Format

 etc.

 These constitute the metadata about a document

Sec. 6.1

Introduction to Information Retrieval Introduction to Information Retrieval

Fields

 We sometimes wish to search by these metadata

 E.g., find docs authored by William Shakespeare in the
year 1601, containing alas poor Yorick

 Year = 1601 is an example of a field

 Also, author last name = shakespeare, etc.

 Field or parametric index: postings for each field
value

 Sometimes build range trees (e.g., for dates)

 Field query typically treated as conjunction

 (doc must be authored by shakespeare)

Sec. 6.1

Introduction to Information Retrieval Introduction to Information Retrieval

Zone

 A zone is a region of the doc that can contain an
arbitrary amount of text, e.g.,

 Title

 Abstract

 References …

 Build inverted indexes on zones as well to permit
querying

 E.g., “find docs with merchant in the title zone and
matching the query gentle rain”

Sec. 6.1

Introduction to Information Retrieval Introduction to Information Retrieval

Example zone indexes

Encode zones in dictionary vs. postings.

Sec. 6.1

Introduction to Information Retrieval Introduction to Information Retrieval

Tiered indexes

 Break postings up into a hierarchy of lists

 Most important

 …

 Least important

 Can be done by g(d) or another measure

 Inverted index thus broken up into tiers of decreasing
importance

 At query time use top tier unless it fails to yield K
docs

 If so drop to lower tiers

Sec. 7.2.1

Introduction to Information Retrieval Introduction to Information Retrieval

Example tiered index

Sec. 7.2.1

Introduction to Information Retrieval Introduction to Information Retrieval

Query term proximity

 Free text queries: just a set of terms typed into the
query box – common on the web

 Users prefer docs in which query terms occur within
close proximity of each other

 Let w be the smallest window in a doc containing all
query terms, e.g.,

 For the query strained mercy the smallest window in
the doc The quality of mercy is not strained is 4
(words)

 Would like scoring function to take this into account
– how?

Sec. 7.2.2

Introduction to Information Retrieval Introduction to Information Retrieval

Query parsers

 Free text query from user may in fact spawn one or
more queries to the indexes, e.g., query rising
interest rates

 Run the query as a phrase query

 If <K docs contain the phrase rising interest rates, run the
two phrase queries rising interest and interest rates

 If we still have <K docs, run the vector space query rising
interest rates

 Rank matching docs by vector space scoring

 This sequence is issued by a query parser

Sec. 7.2.3

Introduction to Information Retrieval Introduction to Information Retrieval

Aggregate scores

 We’ve seen that score functions can combine cosine,
static quality, proximity, etc.

 How do we know the best combination?

 Some applications – expert-tuned

 Increasingly common: machine-learned

 See May 19th lecture

Sec. 7.2.3

Introduction to Information Retrieval Introduction to Information Retrieval

Putting it all together

Sec. 7.2.4

Introduction to Information Retrieval Introduction to Information Retrieval

Resources

 IIR 7, 6.1

