
 

ΑΝΑΚΤΗΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ 
ΑΝΑΖΗΤΗΣΗ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ 

1 



2 

Παροράματα από το Πανεπιστήμιο της Στουγκάρδης 
 



Introduction to Information Retrieval Introduction to Information Retrieval         

Introduction to 

Information Retrieval 

 

Hinrich Schütze and Christina Lioma 

Lecture 20: Crawling 

1 



Introduction to Information Retrieval Introduction to Information Retrieval         

Overview 

❶  Recap  

❷  A simple crawler 

❸  A real crawler 

2 



Introduction to Information Retrieval Introduction to Information Retrieval         

Outline 

❶  Recap  

❷  A simple crawler 

❸  A real crawler 

3 



Introduction to Information Retrieval Introduction to Information Retrieval         

4 

Search engines rank content pages and ads 

4 



Introduction to Information Retrieval Introduction to Information Retrieval         

5 

Google’s second price auction 

 bid: maximum bid for a click by advertiser 
 CTR: click-through rate: when an ad is displayed, what 

percentage of time do users click on it? CTR is a measure of 
relevance. 

 ad rank: bid × CTR: this trades off (i) how much money the 
advertiser is willing to pay against (ii) how relevant the ad is 

 paid: Second price auction: The advertiser pays the minimum 
amount necessary to maintain their position in the auction 
(plus 1 cent). 5 



Introduction to Information Retrieval Introduction to Information Retrieval         

6 

What’s great about search ads 

 Users only click if they are interested. 

 The advertiser only pays when a user clicks on an ad. 

 Searching for something indicates that you are more likely 
to buy it . . . 

 . . . in contrast to radio and newpaper ads. 

6 



Introduction to Information Retrieval Introduction to Information Retrieval         

7 

Near duplicate detection: Minimum of 
permutation 

 document 1: {sk}        document 2: {sk} 

7 

Roughly: We use                                                    as a test for: are 
d1 and d2 near-duplicates? 



Introduction to Information Retrieval Introduction to Information Retrieval         

8 

Example 

h(x) = x mod 5 
g(x) = (2x + 1) mod 5 
 
 
 
 
 

8 

final sketches 



Introduction to Information Retrieval Introduction to Information Retrieval         

Outline 

❶  Recap  

❷  A simple crawler 

❸  A real crawler 

9 



Introduction to Information Retrieval Introduction to Information Retrieval         

10 

How hard can crawling be? 

 Web search engines must crawl their documents. 

 Getting the content of the documents is easier for many 
other IR systems. 

 E.g., indexing all files on your hard disk: just do a recursive 
descent on your file system 

 Ok: for web IR, getting the content of the documents takes 
longer . . . 

 . . . because of latency. 

 But is that really a design/systems challenge? 

10 



Introduction to Information Retrieval Introduction to Information Retrieval         

11 

Basic crawler operation 

 Initialize queue with URLs of known seed pages 

 Repeat 

 Take URL from queue 

 Fetch and parse page 

 Extract URLs from page 

 Add URLs to queue 

 Fundamental assumption: The web is well linked. 

11 



Introduction to Information Retrieval Introduction to Information Retrieval         

12 

Exercise: What’s wrong with this crawler? 

urlqueue := (some carefully selected set of seed urls) 

while urlqueue is not empty: 

myurl := urlqueue.getlastanddelete() 

mypage := myurl.fetch() 

fetchedurls.add(myurl) 

newurls := mypage.extracturls() 

for myurl in newurls: 

if myurl not in fetchedurls and not in urlqueue: 

urlqueue.add(myurl) 

addtoinvertedindex(mypage) 

12 



Introduction to Information Retrieval Introduction to Information Retrieval         

13 

What’s wrong with the simple crawler 

 Scale: we need to distribute. 

 We can’t index everything: we need to subselect. How? 

 Duplicates: need to integrate duplicate detection 

 Spam and spider traps: need to integrate spam detection 

 Politeness: we need to be “nice” and space out all requests 
for a site over a longer period (hours, days) 

 Freshness: we need to recrawl periodically. 

 Because of the size of the web, we can do frequent recrawls 
only for a small subset. 

 Again, subselection problem or prioritization 

13 



Introduction to Information Retrieval Introduction to Information Retrieval         

14 

Magnitude of the crawling problem 

 To fetch 20,000,000,000 pages in one month . . . 

 . . . we need to fetch almost 8000 pages per second! 

 Actually: many more since many of the pages we attempt to 
crawl will be duplicates, unfetchable, spam etc. 

14 



Introduction to Information Retrieval Introduction to Information Retrieval         

15 

What a crawler must do 

Be robust 

  Be immune to spider traps, duplicates, very large pages, very 

    large websites, dynamic pages etc 

15 

Be polite 

  Don’t hit a site too often 

  Only crawl pages you are allowed to crawl: robots.txt 



Introduction to Information Retrieval Introduction to Information Retrieval         

16 

Robots.txt 

 Protocol for giving crawlers (“robots”) limited access to a 
website, originally from 1994 

 Examples: 

 User-agent: * 

    Disallow: /yoursite/temp/ 

 User-agent: searchengine  

    Disallow: / 

 Important: cache the robots.txt file of each site we are crawling 

16 



Introduction to Information Retrieval Introduction to Information Retrieval         

17 

Example of a robots.txt (nih.gov) 
User-agent: PicoSearch/1.0 
Disallow: /news/information/knight/ 
Disallow: /nidcd/ 
... 
Disallow: /news/research_matters/secure/ 
Disallow: /od/ocpl/wag/ 
User-agent: * 
Disallow: /news/information/knight/ 
Disallow: /nidcd/ 
... 
Disallow: /news/research_matters/secure/ 
Disallow: /od/ocpl/wag/ 
Disallow: /ddir/ 
Disallow: /sdminutes/ 

17 



Introduction to Information Retrieval Introduction to Information Retrieval         

18 

What any crawler should do 

 Be capable of distributed operation 

 Be scalable: need to be able to increase crawl rate by adding 
more machines 

 Fetch pages of higher quality first 

 Continuous operation: get fresh version of already crawled 
pages 

18 



Introduction to Information Retrieval Introduction to Information Retrieval         

Outline 

❶  Recap  

❷  A simple crawler 

❸  A real crawler 

19 



Introduction to Information Retrieval Introduction to Information Retrieval         

20 

URL frontier 

 

20 



Introduction to Information Retrieval Introduction to Information Retrieval         

21 

URL frontier 

 The URL frontier is the data structure that holds and 
manages URLs we’ve seen, but that have not been crawled 
yet. 

 Can include multiple pages from the same host 

 Must avoid trying to fetch them all at the same time 

 Must keep all crawling threads busy 

 

21 



Introduction to Information Retrieval Introduction to Information Retrieval         

22 

Basic crawl architecture 

22 



Introduction to Information Retrieval Introduction to Information Retrieval         

23 

URL normalization 

 Some URLs extracted from a document are relative URLs. 

 E.g., at http://mit.edu, we may have aboutsite.html 

 This is the same as: http://mit.edu/aboutsite.html 

 During parsing, we must normalize (expand) all relative URLs. 

 

23 



Introduction to Information Retrieval Introduction to Information Retrieval         

24 

Content seen 

 For each page fetched: check if the content is already in the 
index 

 Check this using document fingerprints or shingles 

 Skip documents whose content has already been indexed 

24 



Introduction to Information Retrieval Introduction to Information Retrieval         

25 

Distributing the crawler 

 Run multiple crawl threads, potentially at different nodes 

 Usually geographically distributed nodes 

 Partition hosts being crawled into nodes 

25 



Introduction to Information Retrieval Introduction to Information Retrieval         

26 

Google data centers (wazfaring. com) 

 

26 



Introduction to Information Retrieval Introduction to Information Retrieval         

27 

Distributed crawler 

 

27 



Introduction to Information Retrieval Introduction to Information Retrieval         

28 

URL frontier: Two main considerations 

 Politeness: Don’t hit a web server too frequently 

 E.g., insert a time gap between successive requests to the 
same server 

 Freshness: Crawl some pages (e.g., news sites) more often 
than others 

 Not an easy problem: simple priority queue fails. 

28 



Introduction to Information Retrieval Introduction to Information Retrieval         

29 

Mercator URL frontier 

 

29 



Introduction to Information Retrieval Introduction to Information Retrieval         

30 

Mercator URL frontier 

 URLs flow in from the top 
into the frontier. 

30 



Introduction to Information Retrieval Introduction to Information Retrieval         

31 

Mercator URL frontier 

 URLs flow in from the top 
into the frontier. 

 Front queues manage 
prioritization. 

31 



Introduction to Information Retrieval Introduction to Information Retrieval         

32 

Mercator URL frontier 

 URLs flow in from the top 
into the frontier. 

 Front queues manage 
prioritization. 

 Back queues enforce 
politeness. 

32 



Introduction to Information Retrieval Introduction to Information Retrieval         

33 

Mercator URL frontier 

 URLs flow in from the top 
into the frontier. 

 Front queues manage 
prioritization. 

 Back queues enforce 
politeness. 

 Each queue is FIFO. 

33 



Introduction to Information Retrieval Introduction to Information Retrieval         

34 

Mercator URL frontier: Front queues 

 

34 



Introduction to Information Retrieval Introduction to Information Retrieval         

35 

Mercator URL frontier: Front queues 

 Prioritizer assigns to URL 
an integer priority 
between 1 and F. 

35 



Introduction to Information Retrieval Introduction to Information Retrieval         

36 

Mercator URL frontier: Front queues 

 Prioritizer assigns to URL 
an integer priority 
between 1 and F. 

 Then appends URL to 
corresponding queue 

36 



Introduction to Information Retrieval Introduction to Information Retrieval         

37 

Mercator URL frontier: Front queues 

 Prioritizer assigns to URL 
an integer priority 
between 1 and F. 

 Then appends URL to 
corresponding queue 

 Heuristics for assigning 
priority: refresh rate, 
PageRank etc 

37 



Introduction to Information Retrieval Introduction to Information Retrieval         

38 

Mercator URL frontier: Front queues 

 Selection from front 
queues is initiated by 
back queues 

 Pick a front queue from 
which to select next 
URL: Round robin, 
randomly, or more 
sophisticated variant 

 But with a bias in favor 
of high-priority front 
queues 

38 



Introduction to Information Retrieval Introduction to Information Retrieval         

39 

Mercator URL frontier: Back queues 

39 



Introduction to Information Retrieval Introduction to Information Retrieval         

40 

Mercator URL frontier: Back queues 

 

 Invariant 1. Each back 
queue is kept non-
empty while the crawl is 
in progress. 

 Invariant 2. Each back 
queue only contains 
URLs from a single host. 

 Maintain a table from 
hosts to back queues. 

40 



Introduction to Information Retrieval Introduction to Information Retrieval         

41 

Mercator URL frontier: Back queues 

 In the heap: 

 One entry for each back 
queue 

 The entry is the earliest 
time te at which the host 
corresponding to the 
back queue can be hit 
again. 

 The earliest time te is 
determined by (i) last 
access to that host (ii) 
time gap heuristic 

41 



Introduction to Information Retrieval Introduction to Information Retrieval         

42 

Mercator URL frontier: Back queues 

 How fetcher interacts 
with back queue: 

 Repeat (i) extract 
current root q of the 
heap (q is a back queue) 

 and (ii) fetch URL u at 
head of q . . . 

 . . . until we empty the q 
we get. 

 (i.e.: u was the last URL 
in q) 

42 



Introduction to Information Retrieval Introduction to Information Retrieval         

43 

Mercator URL frontier: Back queues 

 When we have emptied 
a back queue q: 

 Repeat (i) pull URLs u 
from front queues and 
(ii) add u to its 
corresponding back 
queue . . . 

 . . . until we get a u 
whose host does not 
have a back queue. 

 Then put u in q and 
create heap entry for it. 

43 



Introduction to Information Retrieval Introduction to Information Retrieval         

44 

Mercator URL frontier 

 URLs flow in from the 
top into the frontier. 

 Front queues manage 
prioritization. 

 Back queues enforce 
politeness. 

 

44 



Introduction to Information Retrieval Introduction to Information Retrieval         

45 

Spider trap 

 Malicious server that generates an infinite sequence of 
linked pages 

 Sophisticated spider traps generate pages that are not easily 
identified as dynamic. 

45 



Introduction to Information Retrieval Introduction to Information Retrieval         

46 

Resources 

 Chapter 20 of IIR 

 Resources at http://ifnlp.org/ir 

 Paper on Mercator by Heydon et al. 

 Robot exclusion standard 

46 




