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The web as a directed graph  

 Assumption 1: A hyperlink is a quality signal. 
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The web as a directed graph  

 Assumption 1: A hyperlink is a quality signal. 

 The hyperlink   d1  → d2  indicates that d1‘s  author deems d2  

      high-quality and relevant. 
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      high-quality and relevant. 

 Assumption 2: The anchor text describes the content of d2. 
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 surrounding the hyperlink . 
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The web as a directed graph  

 Assumption 1: A hyperlink is a quality signal. 

 The hyperlink   d1  → d2  indicates that d1‘s  author deems d2  

      high-quality and relevant. 

 Assumption 2: The anchor text describes the content of d2. 

  We use anchor text somewhat loosely here for: the text  

 surrounding the hyperlink . 

  Example: “You can find  cheap cars  ˂a href =http://…˃here ˂/a ˃. ” 
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The web as a directed graph  

 Assumption 1: A hyperlink is a quality signal. 

 The hyperlink   d1  → d2  indicates that d1‘s  author deems d2  

      high-quality and relevant. 

 Assumption 2: The anchor text describes the content of d2. 

  We use anchor text somewhat loosely here for: the text  

 surrounding the hyperlink . 

  Example: “You can find  cheap cars  ˂a href =http://…˃here ˂/a ˃. ” 

 Anchor text: “You can find cheap here” 
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 more effective  than searching on [text of d2] only. 
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 [text of d2] only vs. [text of d2] + [anchor text → d2] 

 Searching  on  [text of d2] + [anchor text → d2] is often 

 more effective  than searching on [text of d2] only. 

 Example: Query IBM 

 Matches IBM’s copyright page  

 Matches many spam pages 

 Matches IBM wikipedia article 
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 [text of d2] only vs. [text of d2] + [anchor text → d2] 

 Searching  on  [text of d2] + [anchor text → d2] is often 

 more effective  than searching on [text of d2] only. 
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 [text of d2] only vs. [text of d2] + [anchor text → d2] 

 Searching  on  [text of d2] + [anchor text → d2] is often 

 more effective  than searching on [text of d2] only. 

 Example: Query IBM 

 Matches IBM’s copyright page  

 Matches many spam pages 

 Matches IBM wikipedia article 

 May not match IBM home page! 

 … if IBM home page is mostly graphics 

 Searching  on [anchor text → d2] is better for the query IBM. 
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 [text of d2] only vs. [text of d2] + [anchor text → d2] 

 Searching  on  [text of d2] + [anchor text → d2] is often 

 more effective  than searching on [text of d2] only. 

 Example: Query IBM 

 Matches IBM’s copyright page  

 Matches many spam pages 

 Matches IBM wikipedia article 

 May not match IBM home page! 

 … if IBM home page is mostly graphics 

 Searching  on [anchor text → d2] is better for the query IBM. 

 In  this representation, the page with most occurences of IBM  is 

 www.ibm.com 
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 Anchor  text  containing  IBM  pointing  to www.ibm.com 
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 Anchor  text  containing  IBM  pointing  to www.ibm.com 
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 Indexing  anchor  text  
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 Indexing  anchor  text  

 

 Thus: Anchor text is often a better description of a page’s 
content than the page itself. 
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 Indexing  anchor  text  

 

 Thus: Anchor text is often a better description of a page’s 
content than the page itself. 

 Anchor text can be weighted more highly than document 
text. 

 (based on Assumption 1&2) 
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 Exercise: Assumptions underlying PageRank  

 

  Assumption 1: A link on the web is a quality signal – the  

 author of the link thinks that the linked-to page is high-
quality. 
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  Assumption 1: A link on the web is a quality signal – the  

 author of the link thinks that the linked-to page is high-
quality. 

  Assumption 2: The anchor text describes the content of 
the linked-to page. 

 

 

 

 

 

 



Introduction to Information Retrieval Introduction to Information Retrieval         

31 

 Exercise: Assumptions underlying PageRank  

 

  Assumption 1: A link on the web is a quality signal – the  

 author of the link thinks that the linked-to page is high-
quality. 

  Assumption 2: The anchor text describes the content of 
the linked-to page. 

 Is assumption 1 true in general? 
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  Assumption 1: A link on the web is a quality signal – the  

 author of the link thinks that the linked-to page is high-
quality. 

  Assumption 2: The anchor text describes the content of 
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 Google bombs 

 A Google bomb is a search with “bad” results due to maliciously 
manipulated anchor text. 
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 A Google bomb is a search with “bad” results due to maliciously 
manipulated anchor text. 

 Google introduced a new weighting function in January 2007 

 that fixed many Google bombs. 
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 Google bombs 

 A Google bomb is a search with “bad” results due to maliciously 
manipulated anchor text. 

 Google introduced a new weighting function in January 2007 

 that fixed many Google bombs. 

 Still some remnants: [dangerous cult] on Google, Bing, Yahoo 

 Coordinated link creation by those who dislike the Church of 
Scientology 
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 Google bombs 

 A Google bomb is a search with “bad” results due to maliciously 
manipulated anchor text. 

 Google introduced a new weighting function in January 2007 

 that fixed many Google bombs. 

 Still some remnants: [dangerous cult] on Google, Bing, Yahoo 

 Coordinated link creation by those who dislike the Church of 
Scientology 

 Defused Google bombs: [dumb motherf…], [who is a failure?], 
[evil empire] 

 

 

 



Introduction to Information Retrieval Introduction to Information Retrieval         

❶  Recap 

❷  Anchor Text 

❸  Citation Analysis  

❹  PageRank 

❺  HITS: Hubs & Authorities 

Outline 



Introduction to Information Retrieval Introduction to Information Retrieval         

40 

Origins of PageRank:  Citation analysis (1)  



Introduction to Information Retrieval Introduction to Information Retrieval         

41 

Origins of PageRank:  Citation analysis (1)  

 Citation analysis: analysis of citations in the scientific literature. 
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Origins of PageRank:  Citation analysis (1)  

 Citation analysis: analysis of citations in the scientific literature. 

 Example citation: “Miller (2001) has shown that physical activity 
alters  the  metabolism of estrogens.” 
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 We can view “Miller (2001)” as a hyperlink linking two scientific 
articles. 
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 Citation analysis: analysis of citations in the scientific literature. 

 Example citation: “Miller (2001) has shown that physical activity 
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 We can view “Miller (2001)” as a hyperlink linking two scientific 
articles. 

 One application of these “hyperlinks” in the scientific literature: 
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Origins of PageRank:  Citation analysis (1)  

 Citation analysis: analysis of citations in the scientific literature. 

 Example citation: “Miller (2001) has shown that physical activity 
alters  the  metabolism of estrogens.” 

 We can view “Miller (2001)” as a hyperlink linking two scientific 
articles. 

 One application of these “hyperlinks” in the scientific literature: 

 Measure the similarity of two articles by the overlap of other 
articles citing them. 
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Origins of PageRank:  Citation analysis (1)  

 Citation analysis: analysis of citations in the scientific literature. 

 Example citation: “Miller (2001) has shown that physical activity 
alters  the  metabolism of estrogens.” 

 We can view “Miller (2001)” as a hyperlink linking two scientific 
articles. 

 One application of these “hyperlinks” in the scientific literature: 

 Measure the similarity of two articles by the overlap of other 
articles citing them. 

 This is called cocitation similarity. 
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Origins of PageRank:  Citation analysis (1)  

 Citation analysis: analysis of citations in the scientific literature. 

 Example citation: “Miller (2001) has shown that physical activity 
alters  the  metabolism of estrogens.” 

 We can view “Miller (2001)” as a hyperlink linking two scientific 
articles. 

 One application of these “hyperlinks” in the scientific literature: 

 Measure the similarity of two articles by the overlap of other 
articles citing them. 

 This is called cocitation similarity. 

 Cocitation similarity on the web: Google’s “find pages like this” or 
“Similar” feature. 
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Origins of PageRank:  Citation analysis (2)  
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Origins of PageRank:  Citation analysis (2)  

 Another application: Citation frequency can be used to measure 
the impact of an article . 
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Origins of PageRank:  Citation analysis (2)  

 Another application: Citation frequency can be used to measure 
the impact of an article . 

 Simplest measure: Each article gets one vote – not very accurate. 
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Origins of PageRank:  Citation analysis (2)  

 Another application: Citation frequency can be used to measure 
the impact of an article . 

 Simplest measure: Each article gets one vote – not very accurate. 

 On the web: citation frequency = inlink count 
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Origins of PageRank:  Citation analysis (2)  

 Another application: Citation frequency can be used to measure 
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Origins of PageRank:  Citation analysis (2)  

 Another application: Citation frequency can be used to measure 
the impact of an article . 

 Simplest measure: Each article gets one vote – not very accurate. 

 On the web: citation frequency = inlink count 

 A high inlink count does not necessarily mean high quality ...   

 ... mainly because of link spam.  
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Origins of PageRank:  Citation analysis (2)  

 Another application: Citation frequency can be used to measure 
the impact of an article . 

 Simplest measure: Each article gets one vote – not very accurate. 

 On the web: citation frequency = inlink count 

 A high inlink count does not necessarily mean high quality ...   

 ... mainly because of link spam.  

 Better measure: weighted citation frequency or citation rank   
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Origins of PageRank:  Citation analysis (2)  

 Another application: Citation frequency can be used to measure 
the impact of an article . 

 Simplest measure: Each article gets one vote – not very accurate. 

 On the web: citation frequency = inlink count 

 A high inlink count does not necessarily mean high quality ...   

 ... mainly because of link spam.  

 Better measure: weighted citation frequency or citation rank   

 An article’s vote is weighted according to its citation impact. 
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Origins of PageRank:  Citation analysis (2)  

 Another application: Citation frequency can be used to measure 
the impact of an article . 

 Simplest measure: Each article gets one vote – not very accurate. 

 On the web: citation frequency = inlink count 

 A high inlink count does not necessarily mean high quality ...   

 ... mainly because of link spam.  

 Better measure: weighted citation frequency or citation rank   

 An article’s vote is weighted according to its citation impact. 

 Circular? No: can be formalized in a well-defined way. 
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Origins of PageRank:  Citation analysis (3)  
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Origins of PageRank:  Citation analysis (3)  

 Better measure:  weighted citation frequency  or citation rank. 
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Origins of PageRank:  Citation analysis (3)  

 Better measure:  weighted citation frequency  or citation rank. 

 This is basically PageRank. 
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Origins of PageRank:  Citation analysis (3)  

 Better measure:  weighted citation frequency  or citation rank. 

 This is basically PageRank. 

 PageRank was invented in the context of citation analysis by 
Pinsker and Narin in the 1960s. 
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Origins of PageRank:  Citation analysis (3)  

 Better measure:  weighted citation frequency  or citation rank. 

 This is basically PageRank. 

 PageRank was invented in the context of citation analysis by 
Pinsker and Narin in the 1960s. 

 Citation analysis is a big deal:  The budget and salary of this 
lecturer are / will be determined by the impact of his 
publications! 
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Origins of PageRank:  Summary  



Introduction to Information Retrieval Introduction to Information Retrieval         

63 

Origins of PageRank:  Summary  

 We can use the same formal representation for  
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Origins of PageRank:  Summary  

 We can use the same formal representation for  

 citations in the scientific literature  
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Origins of PageRank:  Summary  

 We can use the same formal representation for  

 citations in the scientific literature  

 hyperlinks on the web  
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Origins of PageRank:  Summary  

 We can use the same formal representation for  

 citations in the scientific literature  

 hyperlinks on the web  

 Appropriately weighted citation frequency is an excellent 
measure of quality ... 
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Origins of PageRank:  Summary  

 We can use the same formal representation for  

 citations in the scientific literature  

 hyperlinks on the web  

 Appropriately weighted citation frequency is an excellent 
measure of quality ... 

 ... both for web pages and for scientific publications.  
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Origins of PageRank:  Summary  

 We can use the same formal representation for  

 citations in the scientific literature  

 hyperlinks on the web  

 Appropriately weighted citation frequency is an excellent 
measure of quality ... 

 ... both for web pages and for scientific publications.  

 Next: PageRank algorithm for computing weighted citation 
frequency on the web. 
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 Model behind  PageRank:  Random walk  

 Imagine a web surfer doing a random walk on the web 
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 Model behind  PageRank:  Random walk  

 Imagine a web surfer doing a random walk on the web 

 Start at a random page   
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 Model behind  PageRank:  Random walk  

 Imagine a web surfer doing a random walk on the web 

 Start at a random page   

 At each step, go out of the current page along one of the 
links on that page, equiprobably   
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 Model behind  PageRank:  Random walk  

 Imagine a web surfer doing a random walk on the web 

 Start at a random page   

 At each step, go out of the current page along one of the 
links on that page, equiprobably   

 In the steady state, each page has a long-term visit rate.  
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 Model behind  PageRank:  Random walk  

 Imagine a web surfer doing a random walk on the web 

 Start at a random page   

 At each step, go out of the current page along one of the 
links on that page, equiprobably   

 In the steady state, each page has a long-term visit rate.  

 This long-term visit rate is the page’s PageRank. 

 

 



Introduction to Information Retrieval Introduction to Information Retrieval         

76 

 
 Model behind  PageRank:  Random walk  

 Imagine a web surfer doing a random walk on the web 

 Start at a random page   

 At each step, go out of the current page along one of the 
links on that page, equiprobably   

 In the steady state, each page has a long-term visit rate.  

 This long-term visit rate is the page’s PageRank. 

 PageRank  = long-term visit rate = steady state probability. 
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 Formalization of random walk:  Markov chains 
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 Formalization of random walk:  Markov chains 

 A Markov chain consists of N states, plus an  N ×N  
transition probability matrix P.   
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 Formalization of random walk:  Markov chains 

 A Markov chain consists of N states, plus an  N ×N  
transition probability matrix P.   

 state = page 
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 Formalization of random walk:  Markov chains 

 A Markov chain consists of N states, plus an  N ×N  
transition probability matrix P.   

 state = page 

 At each step, we are on exactly one of the pages.  
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 Formalization of random walk:  Markov chains 

 A Markov chain consists of N states, plus an  N ×N  
transition probability matrix P.   

 state = page 

 At each step, we are on exactly one of the pages. 

 For 1 ≤ i, j ≥ N, the matrix entry Pij  tells us the probability of 
j being the next page, given we are currently on page  i.   

 Clearly, for all i,  
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Link  matrix  for example  
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Link  matrix  for example  

d0 d1 d2 d3 d4 d5 d6 

d0 0 0 1 0 0 0 0 

d1 0 1 1 0 0 0 0 

d2 1 0 1 1 0 0 0 

d3 0 0 0 1 1 0 0 

d4 0 0 0 0 0 0 1 

d5 0 0 0 0 0 1 1 

d6 0 0 0 1 1 0 1 
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Transition probability matrix  P  for example  
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Transition probability matrix  P  for example  

d0 d1 d2 d3 d4 d5 d6 

d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00 

d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00 

d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00 

d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50 

d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33 
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 Long-term  visit  rate  
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 Long-term  visit  rate  
 

 Recall: PageRank = long-term visit rate. 
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 Long-term  visit  rate  
 

 Recall: PageRank = long-term visit rate. 

 Long-term visit rate of page d is the probability that a 
web surfer is at page d at a given point in time. 
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 Long-term  visit  rate  
 

 Recall: PageRank = long-term visit rate. 

 Long-term visit rate of page d is the probability that a 
web surfer is at page d at a given point in time. 

 Next: what properties must hold of the web graph for 
the long-term visit rate to be well defined? 
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 Long-term  visit  rate  
 

 Recall: PageRank = long-term visit rate. 

 Long-term visit rate of page d is the probability that a 
web surfer is at page d at a given point in time. 

 Next: what properties must hold of the web graph for 
the long-term visit rate to be well defined? 

 The web graph must correspond to an ergodic Markov 
chain. 
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 Long-term  visit  rate  
 

 Recall: PageRank = long-term visit rate. 

 Long-term visit rate of page d is the probability that a 
web surfer is at page d at a given point in time. 

 Next: what properties must hold of the web graph for 
the long-term visit rate to be well defined? 

 The web graph must correspond to an ergodic Markov 
chain. 

 First a special case: The web graph must not contain 
dead ends.  
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 Dead  ends  
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 Dead  ends  
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 Dead  ends  

 

 The web is full of dead ends. 

 

 

 



Introduction to Information Retrieval Introduction to Information Retrieval         

96 

 Dead  ends  

 

 The web is full of dead ends. 

 Random walk can get stuck in dead ends. 
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 Dead  ends  

 

 The web is full of dead ends. 

 Random walk can get stuck in dead ends. 

 If there are dead ends, long-term visit rates are not 
well-defined (or non-sensical). 
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 Teleporting – to get us of dead ends  
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 Teleporting – to get us of dead ends  
 

 At a dead end, jump to a random web page with prob. 

 1/ N . 
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 Teleporting – to get us of dead ends  
 

 At a dead end, jump to a random web page with prob. 

 1/ N . 

 At a non-dead end, with probability 10%, jump to a random 
web page (to each with a probability of 0.1/N ). 
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 Teleporting – to get us of dead ends  
 

 At a dead end, jump to a random web page with prob. 

 1/ N . 

 At a non-dead end, with probability 10%, jump to a random 
web page (to each with a probability of 0.1/N ). 

 With remaining probability (90%), go out on a random 
hyperlink. 
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 Teleporting – to get us of dead ends  
 

 At a dead end, jump to a random web page with prob. 

 1/ N . 

 At a non-dead end, with probability 10%, jump to a random 
web page (to each with a probability of 0.1/N ). 

 With remaining probability (90%), go out on a random 
hyperlink. 

 For example, if the page has 4 outgoing links: randomly 
choose one with probability (1-0.10)/4=0.225 
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 Teleporting – to get us of dead ends  
 

 At a dead end, jump to a random web page with prob. 

 1/ N . 

 At a non-dead end, with probability 10%, jump to a random 
web page (to each with a probability of 0.1/N ). 

 With remaining probability (90%), go out on a random 
hyperlink. 

 For example, if the page has 4 outgoing links: randomly 
choose one with probability (1-0.10)/4=0.225 

 10% is a parameter, the teleportation rate. 
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 Teleporting – to get us of dead ends  
 

 At a dead end, jump to a random web page with prob. 

 1/ N . 

 At a non-dead end, with probability 10%, jump to a random 
web page (to each with a probability of 0.1/N ). 

 With remaining probability (90%), go out on a random 
hyperlink. 

 For example, if the page has 4 outgoing links: randomly 
choose one with probability (1-0.10)/4=0.225 

 10% is a parameter, the teleportation rate. 

 Note:  “jumping” from dead end is independent of 
teleportation rate. 
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 Result  of  teleporting  
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 Result  of  teleporting  

 

 With teleporting, we cannot get stuck in a dead end. 
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 Result  of  teleporting  

 

 With teleporting, we cannot get stuck in a dead end. 

 But even without dead ends, a graph may not have well-
defined long-term visit rates. 
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 Result  of  teleporting  

 

 With teleporting, we cannot get stuck in a dead end. 

 But even without dead ends, a graph may not have well-
defined long-term visit rates. 

 More generally, we require that the Markov chain be 
ergodic. 
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 Ergodic  Markov  chains  
 

 A Markov chain is ergodic if it is irreducible and aperiodic. 
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 Ergodic  Markov  chains  
 

 A Markov chain is ergodic if it is irreducible and aperiodic. 

 Irreducibility. Roughly: there is a path from any other page.  
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 Ergodic  Markov  chains  
 

 A Markov chain is ergodic if it is irreducible and aperiodic. 

 Irreducibility. Roughly: there is a path from any other page.  

 Aperiodicity. Roughly: The pages cannot be partitioned 
such that the random walker visits the partitions 
sequentially. 
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 Ergodic  Markov  chains  
 

 A Markov chain is ergodic if it is irreducible and aperiodic. 

 Irreducibility. Roughly: there is a path from any other page.  

 Aperiodicity. Roughly: The pages cannot be partitioned 
such that the random walker visits the partitions 
sequentially. 

 A non-ergodic Markov chain: 
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 Ergodic  Markov  chains  
 

 Theorem: For any ergodic Markov chain, there  is a unique 
long-term visit rate for each state.  
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 Ergodic  Markov  chains  
 

 Theorem: For any ergodic Markov chain, there  is a unique 
long-term visit rate for each state.  

 This is the steady-state probability distribution. 
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 Ergodic  Markov  chains  
 

 Theorem: For any ergodic Markov chain, there  is a unique 
long-term visit rate for each state.  

 This is the steady-state probability distribution. 

 Over a long time period, we visit each state in proportion 
to this rate. 
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 Ergodic  Markov  chains  
 

 Theorem: For any ergodic Markov chain, there  is a unique 
long-term visit rate for each state.  

 This is the steady-state probability distribution. 

 Over a long time period, we visit each state in proportion 
to this rate. 

 It doesn’t matter where we start. 
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 Ergodic  Markov  chains  
 

 Theorem: For any ergodic Markov chain, there  is a unique 
long-term visit rate for each state.  

 This is the steady-state probability distribution. 

 Over a long time period, we visit each state in proportion 
to this rate. 

 It doesn’t matter where we start. 

 Teleporting makes the web graph ergodic. 
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 Ergodic  Markov  chains  
 

 Theorem: For any ergodic Markov chain, there  is a unique 
long-term visit rate for each state.  

 This is the steady-state probability distribution. 

 Over a long time period, we visit each state in proportion 
to this rate. 

 It doesn’t matter where we start. 

 Teleporting makes the web graph ergodic. 

        Web-graph+teleporting has a steady-state probability 
distribution.       
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 Ergodic  Markov  chains  
 

 Theorem: For any ergodic Markov chain, there  is a unique 
long-term visit rate for each state.  

 This is the steady-state probability distribution. 

 Over a long time period, we visit each state in proportion 
to this rate. 

 It doesn’t matter where we start. 

 Teleporting makes the web graph ergodic. 

        Web-graph+teleporting has a steady-state probability 
distribution. 

        Each page in the web-graph+teleporting has a 
PageRank. 
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Formalization of “visit”: Probability vector 
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Formalization of “visit”: Probability vector 

 A probability (row) vector x = (x1 , ..., xN) tells us where 
the random walk is at any point. 
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Formalization of “visit”: Probability vector 

 A probability (row) vector x = (x1 , ..., xN) tells us where 
the random walk is at any point. 

 Example: 

 

 

 

 

( 0 0 0 … 1 … 0 0 0 ) 

1 2 3 … i … N-2 N-1 N 
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Formalization of “visit”: Probability vector 

 A probability (row) vector x = (x1 , ..., xN) tells us where 
the random walk is at any point. 

 Example: 

 

 More generally: the random walk is on the page i with 
probability xi.  

 

 

( 0 0 0 … 1 … 0 0 0 ) 

1 2 3 … i … N-2 N-1 N 
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Formalization of “visit”: Probability vector 

 A probability (row) vector x = (x1 , ..., xN) tells us where 
the random walk is at any point. 

 Example: 

 

 More generally: the random walk is on the page i with 
probability xi.  

 Example: 

 

 

 

 

 

( 0 0 0 … 1 … 0 0 0 ) 

1 2 3 … i … N-2 N-1 N 

( 0.05 0.01 0.0 … 0.2 … 0.01 0.05 0.03 ) 

1 2 3 … i … N-2 N-1 N 
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Formalization of “visit”: Probability vector 

 A probability (row) vector x = (x1 , ..., xN) tells us where 
the random walk is at any point. 

 Example: 

 

 More generally: the random walk is on the page i with 
probability xi.  

 Example: 

 

 

  S xi = 1 

 

 

( 0 0 0 … 1 … 0 0 0 ) 

1 2 3 … i … N-2 N-1 N 

( 0.05 0.01 0.0 … 0.2 … 0.01 0.05 0.03 ) 

1 2 3 … i … N-2 N-1 N 
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Change  in  probability  vector 

 If the probability vector is x = (x1 , ..., xN), at this step, what 
is it at the next step? 
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Change  in  probability  vector 

 If the probability vector is x = (x1 , ..., xN), at this step, what 
is it at the next step? 

 Recall that row i  of the transition probability matrix P tells 
us where we go next from state i. 
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Change  in  probability  vector 

 If the probability vector is x = (x1 , ..., xN), at this step, what 
is it at the next step? 

 Recall that row i  of the transition probability matrix P tells 
us where we go next from state i. 

 So from x, our next state is distributed as xP. 
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Steady state in vector notation 
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Steady state in vector notation 

 The steady state in vector notation is simply a vector 

     p = (p1, p2, …, pN) of probabilities. 
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Steady state in vector notation 

 The steady state in vector notation is simply a vector 

     p = (p1, p2, …, pN) of probabilities. 

 (We use p to distinguish it from the notation for the 
probability vector x.) 
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Steady state in vector notation 

 The steady state in vector notation is simply a vector 

     p = (p1, p2, …, pN) of probabilities. 

 (We use p to distinguish it from the notation for the 
probability vector x.) 

 p is the long-term visit rate (or PageRank) of page i. 
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Steady state in vector notation 

 The steady state in vector notation is simply a vector 

     p = (p1, p2, …, pN) of probabilities. 

 (We use p to distinguish it from the notation for the 
probability vector x.) 

 p is the long-term visit rate (or PageRank) of page i. 

 So we can think of PageRank as a very long vector – one 
entry per page. 
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Steady-state distribution: Example 



Introduction to Information Retrieval Introduction to Information Retrieval         

135 

Steady-state distribution: Example 

 What is the PageRank / steady state in this example? 
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Steady-state distribution: Example 
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Steady-state distribution: Example 

x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.25 
P21 = 0.25 

P12 = 0.75 
P22 = 0.75 

t0 

t1 

0.25 
 

0.75 
 

PageRank vector = p = (p1, p2) = (0.25, 0.75) 
 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Steady-state distribution: Example 

x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.25 
P21 = 0.25 

P12 = 0.75 
P22 = 0.75 

t0 

t1 

0.25 
 

0.75 
 

0.25 0.75 

PageRank vector = p = (p1, p2) = (0.25, 0.75) 
 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Steady-state distribution: Example 

x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.25 
P21 = 0.25 

P12 = 0.75 
P22 = 0.75 

t0 

t1 

0.25 
0.25 

0.75 
0.75 

0.25 0.75 

PageRank vector = p = (p1, p2) = (0.25, 0.75) 
 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Steady-state distribution: Example 

x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.25 
P21 = 0.25 

P12 = 0.75 
P22 = 0.75 

t0 

t1 

0.25 
0.25 

0.75 
0.75 

0.25 0.75 

(convergence) 

PageRank vector = p = (p1, p2) = (0.25, 0.75) 
 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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How do we compute the steady state vector? 
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How do we compute the steady state vector? 

 In other words: how do we compute PageRank? 
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How do we compute the steady state vector? 



 In other words: how do we compute PageRank? 

 Recall: p = (p1, p2, …, pN) is the PageRank  vector, the vector of 
steady-state probabilities ... 
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How do we compute the steady state vector? 



 In other words: how do we compute PageRank? 

 Recall: p = (p1, p2, …, pN) is the PageRank  vector, the vector of 
steady-state probabilities ... 

 … and if the distribution in this step is x, then the distribution in 
the next step is xP. 
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How do we compute the steady state vector? 



 In other words: how do we compute PageRank? 

 Recall: p = (p1, p2, …, pN) is the PageRank  vector, the vector of 
steady-state probabilities ... 

 … and if the distribution in this step is x, then the distribution in 
the next step is xP. 

 But p is the steady state! 
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How do we compute the steady state vector? 



 In other words: how do we compute PageRank? 

 Recall: p = (p1, p2, …, pN) is the PageRank  vector, the vector of 
steady-state probabilities ... 

 … and if the distribution in this step is x, then the distribution in 
the next step is xP. 

 But p is the steady state! 

 So: p = p P 
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How do we compute the steady state vector? 



 In other words: how do we compute PageRank? 

 Recall: p = (p1, p2, …, pN) is the PageRank  vector, the vector of 
steady-state probabilities ... 

 … and if the distribution in this step is x, then the distribution in 
the next step is xP. 

 But p is the steady state! 

 So: p = p P 

 Solving this matrix equation gives us p. 
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How do we compute the steady state vector? 



 In other words: how do we compute PageRank? 

 Recall: p = (p1, p2, …, pN) is the PageRank  vector, the vector of 
steady-state probabilities ... 

 … and if the distribution in this step is x, then the distribution in 
the next step is xP. 

 But p is the steady state! 

 So: p = p P 

 Solving this matrix equation gives us p. 

 p is the principal left eigenvector for P … 
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How do we compute the steady state vector? 



 In other words: how do we compute PageRank? 

 Recall: p = (p1, p2, …, pN) is the PageRank  vector, the vector of 
steady-state probabilities ... 

 … and if the distribution in this step is x, then the distribution in 
the next step is xP. 

 But p is the steady state! 

 So: p = p P 

 Solving this matrix equation gives us p. 

 p is the principal left eigenvector for P … 

 … that is, p is the left eigenvector with the largest eigenvalue. 
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How do we compute the steady state vector? 



 In other words: how do we compute PageRank? 

 Recall: p = (p1, p2, …, pN) is the PageRank  vector, the vector of 
steady-state probabilities ... 

 … and if the distribution in this step is x, then the distribution in 
the next step is xP. 

 But p is the steady state! 

 So: p = p P 

 Solving this matrix equation gives us p. 

 p is the principal left eigenvector for P … 

 … that is, p is the left eigenvector with the largest eigenvalue. 

 All transition probability matrices have largest eigenvalue 1. 
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One way of computing the PageRank p   
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One way of computing the PageRank p   

 Start with any distribution x, e.g., uniform distribution 
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One way of computing the PageRank p   

 Start with any distribution x, e.g., uniform distribution 

 After one step, we’re at xP. 
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One way of computing the PageRank p   

 Start with any distribution x, e.g., uniform distribution 

 After one step, we’re at xP. 

 After two steps, we’re at xP2. 

 











Introduction to Information Retrieval Introduction to Information Retrieval         

155 

One way of computing the PageRank p   

 Start with any distribution x, e.g., uniform distribution 

 After one step, we’re at xP. 

 After two steps, we’re at xP2. 

 After k steps, we’re at xPk. 
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One way of computing the PageRank p   

 Start with any distribution x, e.g., uniform distribution 

 After one step, we’re at xP. 

 After two steps, we’re at xP2. 

 After k steps, we’re at xPk. 

 Algorithm: multiply x by increasing powers of P until 
convergence. 
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One way of computing the PageRank p   

 Start with any distribution x, e.g., uniform distribution 

 After one step, we’re at xP. 

 After two steps, we’re at xP2. 

 After k steps, we’re at xPk. 

 Algorithm: multiply x by increasing powers of P until 
convergence. 

 This is called the power method. 
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One way of computing the PageRank p   

 Start with any distribution x, e.g., uniform distribution 

 After one step, we’re at xP. 

 After two steps, we’re at xP2. 

 After k steps, we’re at xPk. 

 Algorithm: multiply x by increasing powers of P until 
convergence. 

 This is called the power method. 

 Recall: regardless of where we start, we eventually reach the 
steady state p. 
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One way of computing the PageRank p   

 Start with any distribution x, e.g., uniform distribution 

 After one step, we’re at xP. 

 After two steps, we’re at xP2. 

 After k steps, we’re at xPk. 

 Algorithm: multiply x by increasing powers of P until 
convergence. 

 This is called the power method. 

 Recall: regardless of where we start, we eventually reach the 
steady state p. 

 Thus: we will eventually (in asymptotia) reach the steady state. 
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Power method: Example 
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Power method: Example 

 What is the PageRank / steady state in this example? 
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Computing PageRank: Power Example 
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Computing PageRank: Power Example 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.1 
P21 = 0.3 

P12 = 0.9 
P22 = 0.7 

t0 0 1 = xP 

t1 = xP2 

t2 = xP3 

t3 = xP4 

. . . 

t∞ = xP∞ 

 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Computing PageRank: Power Example 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.1 
P21 = 0.3 

P12 = 0.9 
P22 = 0.7 

t0 0 1 0.3 0.7 = xP 

t1 = xP2 

t2 = xP3 

t3 = xP4 

. . . 

t∞ = xP∞ 

 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Computing PageRank: Power Example 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.1 
P21 = 0.3 

P12 = 0.9 
P22 = 0.7 

t0 0 1 0.3 0.7 = xP 

t1 0.3 0.7 = xP2 

t2 = xP3 

t3 = xP4 

. . . 

t∞ = xP∞ 

 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Computing PageRank: Power Example 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.1 
P21 = 0.3 

P12 = 0.9 
P22 = 0.7 

t0 0 1 0.3 0.7 = xP 

t1 0.3 0.7 0.24 0.76 = xP2 

t2 = xP3 

t3 = xP4 

. . . 

t∞ = xP∞ 

 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Computing PageRank: Power Example 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.1 
P21 = 0.3 

P12 = 0.9 
P22 = 0.7 

t0 0 1 0.3 0.7 = xP 

t1 0.3 0.7 0.24 0.76 = xP2 

t2 0.24 0.76 = xP3 

t3 = xP4 

. . . 

t∞ = xP∞ 

 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Computing PageRank: Power Example 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.1 
P21 = 0.3 

P12 = 0.9 
P22 = 0.7 

t0 0 1 0.3 0.7 = xP 

t1 0.3 0.7 0.24 0.76 = xP2 

t2 0.24 0.76 0.252 0.748 = xP3 

t3 = xP4 

. . . 

t∞ = xP∞ 

 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Computing PageRank: Power Example 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.1 
P21 = 0.3 

P12 = 0.9 
P22 = 0.7 

t0 0 1 0.3 0.7 = xP 

t1 0.3 0.7 0.24 0.76 = xP2 

t2 0.24 0.76 0.252 0.748 = xP3 

t3 0.252 0.748 = xP4 

. . . 

t∞ = xP∞ 

 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Computing PageRank: Power Example 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.1 
P21 = 0.3 

P12 = 0.9 
P22 = 0.7 

t0 0 1 0.3 0.7 = xP 

t1 0.3 0.7 0.24 0.76 = xP2 

t2 0.24 0.76 0.252 0.748 = xP3 

t3 0.252 0.748 0.2496 0.7504 = xP4 

. . . 

t∞ = xP∞ 

 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Computing PageRank: Power Example 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.1 
P21 = 0.3 

P12 = 0.9 
P22 = 0.7 

t0 0 1 0.3 0.7 = xP 

t1 0.3 0.7 0.24 0.76 = xP2 

t2 0.24 0.76 0.252 0.748 = xP3 

t3 0.252 0.748 0.2496 0.7504 = xP4 

. . . . . . 

t∞ = xP∞ 

 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Computing PageRank: Power Example 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.1 
P21 = 0.3 

P12 = 0.9 
P22 = 0.7 

t0 0 1 0.3 0.7 = xP 

t1 0.3 0.7 0.24 0.76 = xP2 

t2 0.24 0.76 0.252 0.748 = xP3 

t3 0.252 0.748 0.2496 0.7504 = xP4 

. . . . . . 

t∞ 0.25 0.75 = xP∞ 

 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Computing PageRank: Power Example 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.1 
P21 = 0.3 

P12 = 0.9 
P22 = 0.7 

t0 0 1 0.3 0.7 = xP 

t1 0.3 0.7 0.24 0.76 = xP2 

t2 0.24 0.76 0.252 0.748 = xP3 

t3 0.252 0.748 0.2496 0.7504 = xP4 

. . . . . . 

t∞ 0.25 0.75 0.25 0.75 = xP∞ 

 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Computing PageRank: Power Example 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.1 
P21 = 0.3 

P12 = 0.9 
P22 = 0.7 

t0 0 1 0.3 0.7 = xP 

t1 0.3 0.7 0.24 0.76 = xP2 

t2 0.24 0.76 0.252 0.748 = xP3 

t3 0.252 0.748 0.2496 0.7504 = xP4 

. . . . . . 

t∞ 0.25 0.75 0.25 0.75 = xP∞ 

PageRank vector = p = (p1, p2) = (0.25, 0.75) 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Power method: Example 

 What is the PageRank / steady state in this example? 

 

 

 

 

 The steady state distribution (= the PageRanks) in this 
example are 0.25 for d1 and 0.75 for d2. 
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Exercise: Compute PageRank using power method 
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Exercise: Compute PageRank using power method 
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Solution 



Introduction to Information Retrieval Introduction to Information Retrieval         

179 

Solution 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.7 
P21 = 0.2 

P12 = 0.3 
P22 = 0.8 

t0 0 1 

t1 

t2 

t3 

t∞ 

PageRank vector = p = (p1, p2) = (0.4, 0.6) 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Solution 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.7 
P21 = 0.2 

P12 = 0.3 
P22 = 0.8 

t0 0 1 0.2 0.8 

t1 

t2 

t3 

t∞ 

PageRank vector = p = (p1, p2) = (0.4, 0.6) 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Solution 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.7 
P21 = 0.2 

P12 = 0.3 
P22 = 0.8 

t0 0 1 0.2 0.8 

t1 0.2 0.8 

t2 

t3 

t∞ 

PageRank vector = p = (p1, p2) = (0.4, 0.6) 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Solution 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.7 
P21 = 0.2 

P12 = 0.3 
P22 = 0.8 

t0 0 1 0.2 0.8 

t1 0.2 0.8 0.3 0.7 

t2 

t3 

t∞ 

PageRank vector = p = (p1, p2) = (0.4, 0.6) 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Solution 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.7 
P21 = 0.2 

P12 = 0.3 
P22 = 0.8 

t0 0 1 0.2 0.8 

t1 0.2 0.8 0.3 0.7 

t2 0.3 0.7 

t3 

t∞ 

PageRank vector = p = (p1, p2) = (0.4, 0.6) 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Solution 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.7 
P21 = 0.2 

P12 = 0.3 
P22 = 0.8 

t0 0 1 0.2 0.8 

t1 0.2 0.8 0.3 0.7 

t2 0.3 0.7 0.35 0.65 

t3 

t∞ 

PageRank vector = p = (p1, p2) = (0.4, 0.6) 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Solution 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.7 
P21 = 0.2 

P12 = 0.3 
P22 = 0.8 

t0 0 1 0.2 0.8 

t1 0.2 0.8 0.3 0.7 

t2 0.3 0.7 0.35 0.65 

t3 0.35 0.65 

t∞ 

PageRank vector = p = (p1, p2) = (0.4, 0.6) 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Solution 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.7 
P21 = 0.2 

P12 = 0.3 
P22 = 0.8 

t0 0 1 0.2 0.8 

t1 0.2 0.8 0.3 0.7 

t2 0.3 0.7 0.35 0.65 

t3 0.35 0.65 0.375 0.625 

t∞ 

PageRank vector = p = (p1, p2) = (0.4, 0.6) 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 





Introduction to Information Retrieval Introduction to Information Retrieval         

187 

Solution 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.7 
P21 = 0.2 

P12 = 0.3 
P22 = 0.8 

t0 0 1 0.2 0.8 

t1 0.2 0.8 0.3 0.7 

t2 0.3 0.7 0.35 0.65 

t3 0.35 0.65 0.375 0.625 

. . . 

t∞ 

PageRank vector = p = (p1, p2) = (0.4, 0.6) 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Solution 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.7 
P21 = 0.2 

P12 = 0.3 
P22 = 0.8 

t0 0 1 0.2 0.8 

t1 0.2 0.8 0.3 0.7 

t2 0.3 0.7 0.35 0.65 

t3 0.35 0.65 0.375 0.625 

. . . 

t∞ 0.4 0.6 

PageRank vector = p = (p1, p2) = (0.4, 0.6) 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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Solution 
x1 
Pt(d1) 

x2 
Pt(d2) 

P11 = 0.7 
P21 = 0.2 

P12 = 0.3 
P22 = 0.8 

t0 0 1 0.2 0.8 

t1 0.2 0.8 0.3 0.7 

t2 0.3 0.7 0.35 0.65 

t3 0.35 0.65 0.375 0.625 

. . . 

t∞ 0.4 0.6 0.4 0.6 

PageRank vector = p = (p1, p2) = (0.4, 0.6) 
Pt(d1) = Pt-1(d1) * P11 + Pt-1(d2) * P21 

Pt(d2) = Pt-1(d1) * P12 + Pt-1(d2) * P22 
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PageRank summary 



Introduction to Information Retrieval Introduction to Information Retrieval         

191 

PageRank summary 

 Preprocessing 
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PageRank summary 

 Preprocessing 

 Given graph of links, build matrix P 
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PageRank summary 

 Preprocessing 

 Given graph of links, build matrix P 

 Apply teleportation 
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PageRank summary 

 Preprocessing 

 Given graph of links, build matrix P 

 Apply teleportation 

 From modified matrix, compute p 
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PageRank summary 

 Preprocessing 

 Given graph of links, build matrix P 

 Apply teleportation 

 From modified matrix, compute p 

 pi  is the PageRank of page i.      
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PageRank summary 

 Preprocessing 

 Given graph of links, build matrix P 

 Apply teleportation 

 From modified matrix, compute p 

 pi  is the PageRank of page i.      

 Query processing  
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PageRank summary 

 Preprocessing 

 Given graph of links, build matrix P 

 Apply teleportation 

 From modified matrix, compute p 

 pi  is the PageRank of page i.      

 Query processing  

 Retrieve pages satisfying the query 
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PageRank summary 

 Preprocessing 

 Given graph of links, build matrix P 

 Apply teleportation 

 From modified matrix, compute p 

 pi  is the PageRank of page i.      

 Query processing  

 Retrieve pages satisfying the query 

 Rank them by their PageRank 
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PageRank summary 

 Preprocessing 

 Given graph of links, build matrix P 

 Apply teleportation 

 From modified matrix, compute p 

 pi  is the PageRank of page i.      

 Query processing  

 Retrieve pages satisfying the query 

 Rank them by their PageRank 

 Return reranked list to the user 
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PageRank issues  
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PageRank issues  
 Real surfers are not random surfers. 
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PageRank issues  
 Real surfers are not random surfers. 

 Examples of nonrandom surfing: back button, short vs. long paths, 
bookmarks, directories – and search! 
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PageRank issues  
 Real surfers are not random surfers. 

 Examples of nonrandom surfing: back button, short vs. long paths, 
bookmarks, directories – and search! 

 → Markov model is not a good model of surfing. 
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PageRank issues  
 Real surfers are not random surfers. 

 Examples of nonrandom surfing: back button, short vs. long paths, 
bookmarks, directories – and search! 

 → Markov model is not a good model of surfing. 

 But it’s good enough as a model for our purposes. 
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PageRank issues  
 Real surfers are not random surfers. 

 Examples of nonrandom surfing: back button, short vs. long paths, 
bookmarks, directories – and search! 

 → Markov model is not a good model of surfing. 

 But it’s good enough as a model for our purposes. 

 Simple PageRank ranking (as described on previous slide) 
produces bad results for many pages. 
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PageRank issues  
 Real surfers are not random surfers. 

 Examples of nonrandom surfing: back button, short vs. long paths, 
bookmarks, directories – and search! 

 → Markov model is not a good model of surfing. 

 But it’s good enough as a model for our purposes. 

 Simple PageRank ranking (as described on previous slide) 
produces bad results for many pages. 

 Consider the query [video service]. 
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PageRank issues  
 Real surfers are not random surfers. 

 Examples of nonrandom surfing: back button, short vs. long paths, 
bookmarks, directories – and search! 

 → Markov model is not a good model of surfing. 

 But it’s good enough as a model for our purposes. 

 Simple PageRank ranking (as described on previous slide) 
produces bad results for many pages. 

 Consider the query [video service]. 

 The Yahoo home page (i) has a very high PageRank and (ii) contains 
both video and service. 

 

 



Introduction to Information Retrieval Introduction to Information Retrieval         

208 

PageRank issues  
 Real surfers are not random surfers. 

 Examples of nonrandom surfing: back button, short vs. long paths, 
bookmarks, directories – and search! 

 → Markov model is not a good model of surfing. 

 But it’s good enough as a model for our purposes. 

 Simple PageRank ranking (as described on previous slide) 
produces bad results for many pages. 

 Consider the query [video service]. 

 The Yahoo home page (i) has a very high PageRank and (ii) contains 
both video and service. 

 If we rank all Boolean hits according to PageRank, then the Yahoo 
home page would be top-ranked.  
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PageRank issues  
 Real surfers are not random surfers. 

 Examples of nonrandom surfing: back button, short vs. long paths, 
bookmarks, directories – and search! 

 → Markov model is not a good model of surfing. 

 But it’s good enough as a model for our purposes. 

 Simple PageRank ranking (as described on previous slide) 
produces bad results for many pages. 

 Consider the query [video service]. 

 The Yahoo home page (i) has a very high PageRank and (ii) contains 
both video and service. 

 If we rank all Boolean hits according to PageRank, then the Yahoo 
home page would be top-ranked. 

 Clearly not desireble. 
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PageRank issues  
 

 

 

 In practice: rank according to weighted combination of raw text 
match, anchor text match, PageRank & other factors. 
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PageRank issues  
 

 

 

 In practice: rank according to weighted combination of raw text 
match, anchor text match, PageRank & other factors. 

 → see lecture on Learning to Rank.  
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Transition (probability) matrix  
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Transition (probability) matrix  

d0 d1 d2 d3 d4 d5 d6 

d0 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

d1 0.00 0.50 0.50 0.00 0.00 0.00 0.00 

d2 0.33 0.00 0.33 0.33 0.00 0.00 0.00 

d3 0.00 0.00 0.00 0.50 0.50 0.00 0.00 

d4 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

d5 0.00 0.00 0.00 0.00 0.00 0.50 0.50 

d6 0.00 0.00 0.00 0.33 0.33 0.00 0.33 
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Transition  matrix  with teleporting 
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Transition  matrix  with teleporting 

d0 d1 d2 d3 d4 d5 d6 

d0 0.02 0.02 0.88 0.02 0.02 0.02 0.02 

d1 0.02 0.45 0.45 0.02 0.02 0.02 0.02 

d2 0.31 0.02 0.31 0.31 0.02 0.02 0.02 

d3 0.02 0.02 0.02 0.45 0.45 0.02 0.02 

d4 0.02 0.02 0.02 0.02 0.02 0.02 0.88 

d5 0.02 0.02 0.02 0.02 0.02 0.45 0.45 

d6 0.02 0.02 0.02 0.31 0.31 0.02 0.31 
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Power  method  vectors  xPk  
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Power  method  vectors  xPk  

  x  xP1  xP2  xP3  xP4 xP5  xP6  xP7  xP8  xP9  xP10  xP11  xP12  xP13  

d0 0.14 0.06 0.09 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 

d1 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

d2 0.14 0.25 0.18 0.17 0.15 0.14 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 

d3 0.14 0.16 0.23 0.24 0.24 0.24 0.24 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

d4 0.14 0.12 0.16 0.19 0.19 0.20 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 

d5 0.14 0.08 0.06 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

d6 0.14 0.25 0.23 0.25 0.27 0.28 0.29 0.29 0.30 0.30 0.30 0.30 0.31 0.31 
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Example web graph  

PageRank 

d0 0.05 

d1 0.04 

d2 0.11 

d3 0.25 

d4 0.21 

d5 0.04 

d6 0.31 
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How important is PageRank?  
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How important is PageRank?  

 Frequent claim: PageRank is the most important component of 
web ranking. 
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How important is PageRank?  

 Frequent claim: PageRank is the most important component of 
web ranking. 

 The reality: 
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How important is PageRank?  

 Frequent claim: PageRank is the most important component of 
web ranking. 

 The reality: 

 There are several components that are at least as important: e.g., 
anchor text, phrases, proximity, tiered indexes ... 
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How important is PageRank?  

 Frequent claim: PageRank is the most important component of 
web ranking. 

 The reality: 

 There are several components that are at least as important: e.g., 
anchor text, phrases, proximity, tiered indexes ... 

 Rumor has it that PageRank in his original form (as presented here) 
now has a negligible impact on ranking! 
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How important is PageRank?  

 Frequent claim: PageRank is the most important component of 
web ranking. 

 The reality: 

 There are several components that are at least as important: e.g., 
anchor text, phrases, proximity, tiered indexes ... 

 Rumor has it that PageRank in his original form (as presented here) 
now has a negligible impact on ranking! 

 However, variants of a page’s PageRank are still an essential part of 
ranking. 
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How important is PageRank?  

 Frequent claim: PageRank is the most important component of 
web ranking. 

 The reality: 

 There are several components that are at least as important: e.g., 
anchor text, phrases, proximity, tiered indexes ... 

 Rumor has it that PageRank in his original form (as presented here) 
now has a negligible impact on ranking! 

 However, variants of a page’s PageRank are still an essential part of 
ranking. 

 Adressing link spam is difficult and crucial. 
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❶  Recap 

❷  Anchor Text 

❸  Citation Analysis  

❹  PageRank 

❺  HITS: Hubs & Authorities 

Outline 
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Hits – Hyperlink-Induced Topic Search  
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Hits – Hyperlink-Induced Topic Search  

 Premise: there are two different types of relevance on the web. 
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Hits – Hyperlink-Induced Topic Search  

 Premise: there are two different types of relevance on the web. 

 Relevance type 1: Hubs. A hub page is a good list of links to 
pages answering the information need. 
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Hits – Hyperlink-Induced Topic Search  

 Premise: there are two different types of relevance on the web. 

 Relevance type 1: Hubs. A hub page is a good list of links to 
pages answering the information need. 

 E.g, for query [chicago bulls]: Bob’s list of recommended resources 
on the Chicago Bulls sports team 
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Hits – Hyperlink-Induced Topic Search  

 Premise: there are two different types of relevance on the web. 

 Relevance type 1: Hubs. A hub page is a good list of links to 
pages answering the information need. 

 E.g, for query [chicago bulls]: Bob’s list of recommended resources 
on the Chicago Bulls sports team 

 Relevance type 2: Authorities. An authority page is a direct 
answer to the information need. 
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Hits – Hyperlink-Induced Topic Search  

 Premise: there are two different types of relevance on the web. 

 Relevance type 1: Hubs. A hub page is a good list of links to 
pages answering the information need. 

 E.g, for query [chicago bulls]: Bob’s list of recommended resources 
on the Chicago Bulls sports team 

 Relevance type 2: Authorities. An authority page is a direct 
answer to the information need. 

 The home page of the Chicago Bulls sports team 
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Hits – Hyperlink-Induced Topic Search  

 Premise: there are two different types of relevance on the web. 

 Relevance type 1: Hubs. A hub page is a good list of links to 
pages answering the information need. 

 E.g, for query [chicago bulls]: Bob’s list of recommended resources 
on the Chicago Bulls sports team 

 Relevance type 2: Authorities. An authority page is a direct 
answer to the information need. 

 The home page of the Chicago Bulls sports team 

 By definition: Links to authority pages occur repeatedly on hub 
pages. 
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Hits – Hyperlink-Induced Topic Search  

 Premise: there are two different types of relevance on the web. 

 Relevance type 1: Hubs. A hub page is a good list of links to 
pages answering the information need. 

 E.g, for query [chicago bulls]: Bob’s list of recommended resources 
on the Chicago Bulls sports team 

 Relevance type 2: Authorities. An authority page is a direct 
answer to the information need. 

 The home page of the Chicago Bulls sports team 

 By definition: Links to authority pages occur repeatedly on hub 
pages. 

 Most  approaches to search (including PageRank ranking) don’t 
make the distinction between these two very different types of 
relevance. 
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 Hubs  and  authorities :  Definition 
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 Hubs  and  authorities :  Definition 

 A good hub page for a topic links to many authority pages 
for that topic. 
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 Hubs  and  authorities :  Definition 

 A good hub page for a topic links to many authority pages 
for that topic. 

 A good authority page for a topic is linked to by many hub 
pages for that topic. 
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 Hubs  and  authorities :  Definition 

 A good hub page for a topic links to many authority pages 
for that topic. 

 A good authority page for a topic is linked to by many hub 
pages for that topic. 

 Circular definition – we will turn this into an iterative 
computation.  
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Example for hubs and authorities 
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Example for hubs and authorities 
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How  to  compute  hub  and  authority  scores 
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How  to  compute  hub  and  authority  scores 

 Do a regular web search first 
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How  to  compute  hub  and  authority  scores 

 Do a regular web search first 

 Call the search result the root set  
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How  to  compute  hub  and  authority  scores 

 Do a regular web search first 

 Call the search result the root set  

 Find all pages that are linked to or link to pages in the root 
set  

 

 



Introduction to Information Retrieval Introduction to Information Retrieval         

246 

How  to  compute  hub  and  authority  scores 

 Do a regular web search first 

 Call the search result the root set  

 Find all pages that are linked to or link to pages in the root 
set  

 Call first larger set the base set  
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How  to  compute  hub  and  authority  scores 

 Do a regular web search first 

 Call the search result the root set  

 Find all pages that are linked to or link to pages in the root 
set  

 Call first larger set the base set  

 Finally, compute hubs and authorities for the base set 
(which we’ll view as a small web graph)  
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The base set 

root set 

base set 
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Root  set  and  base set (2)   

 Root set typically has 200-1000 nodes. 
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Root  set  and  base set (2)   

 Root set typically has 200-1000 nodes. 

 Base set may have up to 5000 nodes. 
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Root  set  and  base set (2)   

 Root set typically has 200-1000 nodes. 

 Base set may have up to 5000 nodes. 

 Computation of base set, as shown on previous slide:   
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Root  set  and  base set (2)   

 Root set typically has 200-1000 nodes. 

 Base set may have up to 5000 nodes. 

 Computation of base set, as shown on previous slide: 

 Follow outlinks by parsing the pages in the root set    
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Root  set  and  base set (2)   

 Root set typically has 200-1000 nodes. 

 Base set may have up to 5000 nodes. 

 Computation of base set, as shown on previous slide: 

 Follow outlinks by parsing the pages in the root set  

 Find d’s inlinks by searching for all pages containing a link to d   
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Hub  and  authority  scores   

 Compute for each page d in the base set a hub score h(d) and an 
authority score a(d)  
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Hub  and  authority  scores   

 Compute for each page d in the base set a hub score h(d) and an 
authority score a(d)  

 Initialization: for all d: h(d) = 1, a(d) = 1 
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Hub  and  authority  scores   

 Compute for each page d in the base set a hub score h(d) and an 
authority score a(d)  

 Initialization: for all d: h(d) = 1, a(d) = 1 

 Iteratively update all h(d), a(d) 
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Hub  and  authority  scores   

 Compute for each page d in the base set a hub score h(d) and an 
authority score a(d)  

 Initialization: for all d: h(d) = 1, a(d) = 1 

 Iteratively update all h(d), a(d) 

 After convergence: 
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Hub  and  authority  scores   

 Compute for each page d in the base set a hub score h(d) and an 
authority score a(d)  

 Initialization: for all d: h(d) = 1, a(d) = 1 

 Iteratively update all h(d), a(d) 

 After convergence: 

 Output pages with highest h scores as top hubs 
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Hub  and  authority  scores   

 Compute for each page d in the base set a hub score h(d) and an 
authority score a(d)  

 Initialization: for all d: h(d) = 1, a(d) = 1 

 Iteratively update all h(d), a(d) 

 After convergence: 

 Output pages with highest h scores as top hubs 

 Output pages with highest a scores as top authrities 
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Hub  and  authority  scores   

 Compute for each page d in the base set a hub score h(d) and an 
authority score a(d)  

 Initialization: for all d: h(d) = 1, a(d) = 1 

 Iteratively update all h(d), a(d) 

 After convergence: 

 Output pages with highest h scores as top hubs 

 Output pages with highest a scores as top authrities 

 So we output two ranked lists 
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Iterative update   



Introduction to Information Retrieval Introduction to Information Retrieval         

267 

Iterative update   

 For all d: h(d) =     
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Iterative update   

 For all d: h(d) =     

 

 

 

 

 For all d: a(d) =  

 

 

 

 

 

 

 yd
ya )(

 dy
yh )(



Introduction to Information Retrieval Introduction to Information Retrieval         

269 

Iterative update   

 For all d: h(d) =     

 

 

 

 

 For all d: a(d) =  

 

 

 

 

 Iterate these two steps until convergence 
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Details   

 Scaling  

 To prevent the a() and h() values from getting too big, can scale 
down after each iteration. 
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Details   

 Scaling  

 To prevent the a() and h() values from getting too big, can scale 
down after each iteration. 

 Scaling factor doesn’t really matter. 

 We care about the relative (as opposed to absolute) values of the 
scores. 
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Details   

 Scaling  

 To prevent the a() and h() values from getting too big, can scale 
down after each iteration. 

 Scaling factor doesn’t really matter. 

 We care about the relative (as opposed to absolute) values of the 
scores. 

 In most cases, the algorithm converges after a few iterations. 
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Authorities for query [Chicago Bulls]   
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Authorities for query [Chicago Bulls]   

 

 

0.85 www.nba.com/bulls 

0.25 www.essex1.com/people/jmiller/bulls.htm 
“da Bulls” 

0.20 www.nando.net/SportServer/basketball/nba/chi.html 
“The Chicago Bulls” 

0.15 Users.aol.com/rynocub/bulls.htm 
“The Chicago Bulls Home Page ” 

0.13 www.geocities.com/Colosseum/6095 
“Chicago Bulls” 

(Ben Shaul et al, WWW8) 
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The authority page for [Chicago Bulls]   
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The authority page for [Chicago Bulls]   
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Hubs  for query [Chicago Bulls]   
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Hubs  for query [Chicago Bulls]   

 

 

1.62 www.geocities.com/Colosseum/1778 
“Unbelieveabulls!!!!!” 

1.24 www.webring.org/cgi-bin/webring?ring=chbulls 
“Chicago Bulls” 

0.74 www.geocities.com/Hollywood/Lot/3330/Bulls.html 
“Chicago Bulls” 

0.52 www.nobull.net/web_position/kw-search-15-M2.html 
“Excite Search Results: bulls ” 

0.52 www.halcyon.com/wordltd/bball/bulls.html 
“Chicago Bulls Links” 

(Ben Shaul et al, WWW8) 
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A hub page for [Chicago Bulls]   
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A hub page for [Chicago Bulls]   
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Hub & Authorities: Comments   
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Hub & Authorities: Comments   

 HITS can pull together good pages regardless of page content. 
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Hub & Authorities: Comments   

 HITS can pull together good pages regardless of page content. 

 Once the base set is assembles, we only do link analysis, no text 
matching. 
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Hub & Authorities: Comments   

 HITS can pull together good pages regardless of page content. 

 Once the base set is assembles, we only do link analysis, no text 
matching. 

 Pages in the base set often do not contain any of the query 
words. 
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Hub & Authorities: Comments   

 HITS can pull together good pages regardless of page content. 

 Once the base set is assembles, we only do link analysis, no text 
matching. 

 Pages in the base set often do not contain any of the query 
words. 

 In theory, an English query can retrieve Japanese-language 
pages! 

 

 

 

 

 

 



Introduction to Information Retrieval Introduction to Information Retrieval         

289 

Hub & Authorities: Comments   

 HITS can pull together good pages regardless of page content. 

 Once the base set is assembles, we only do link analysis, no text 
matching. 

 Pages in the base set often do not contain any of the query 
words. 

 In theory, an English query can retrieve Japanese-language 
pages! 

 If supported by the link structures between English and Japanese 
pages! 
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Hub & Authorities: Comments   

 HITS can pull together good pages regardless of page content. 

 Once the base set is assembles, we only do link analysis, no text 
matching. 

 Pages in the base set often do not contain any of the query 
words. 

 In theory, an English query can retrieve Japanese-language 
pages! 

 If supported by the link structures between English and Japanese 
pages! 

 Danger: topic drift – the pages found by following links may not 
be related to the original query. 
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Proof of convergence   

 

 

 



Introduction to Information Retrieval Introduction to Information Retrieval         

292 

Proof of convergence   

 We define an N×N adjacency matrix A. (We called this the link 
matrix earlier). 
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Proof of convergence   

 We define an N×N adjacency matrix A. (We called this the link 
matrix earlier). 

 For 1 ≤ i, j ≤ N , the matrix entry Aij tells us whether there is a 
link from page i to page j ( Aij = 1) or not (Aij = 0). 
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Proof of convergence   

 We define an N×N adjacency matrix A. (We called this the link 
matrix earlier). 

 For 1 ≤ i, j ≤ N , the matrix entry Aij tells us whether there is a 
link from page i to page j ( Aij = 1) or not (Aij = 0). 

 Example:  
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Proof of convergence   

 We define an N×N adjacency matrix A. (We called this the link 
matrix earlier). 

 For 1 ≤ i, j ≤ N , the matrix entry Aij tells us whether there is a 
link from page i to page j ( Aij = 1) or not (Aij = 0). 

 Example:  

 

 

 
d1 d2 d3 

d1 0 1 0 

d2 1 1 1 

d3 1 0 0 



Introduction to Information Retrieval Introduction to Information Retrieval         

296 

Write update rules as matrix operations   



Introduction to Information Retrieval Introduction to Information Retrieval         

297 

Write update rules as matrix operations   

 Define the hub vector h = (h1, . . . ,hN) as the vector of hub scores. 
h is the hub score of page d . 





Introduction to Information Retrieval Introduction to Information Retrieval         

298 

Write update rules as matrix operations   

 Define the hub vector h = (h1, . . . ,hN) as the vector of hub scores. 
h is the hub score of page d . 

 Similarity for a , the vector of authority scores 
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Write update rules as matrix operations   

 Define the hub vector h = (h1, . . . ,hN) as the vector of hub scores. 
h is the hub score of page d . 

 Similarity for a , the vector of authority scores 

 Now we can write h(d) =                  as a matrix operation: 

  h = Aa . . .  
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Write update rules as matrix operations   

 Define the hub vector h = (h1, . . . ,hN) as the vector of hub scores. 
h is the hub score of page d . 

 Similarity for a , the vector of authority scores 

 Now we can write h(d) =                  as a matrix operation: 

  h = Aa . . .  

 . . . and we can write a(d) =                  as a a = ATh 

 yd
ya )(

 dy
yh )(










Introduction to Information Retrieval Introduction to Information Retrieval         

301 

Write update rules as matrix operations   

 Define the hub vector h = (h1, . . . ,hN) as the vector of hub scores. 
h is the hub score of page d . 

 Similarity for a , the vector of authority scores 

 Now we can write h(d) =                  as a matrix operation: 

  h = Aa . . .  

 . . . and we can write a(d) =                  as a a = ATh 

 HITS algorithm in matrix notation: 
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Write update rules as matrix operations   

 Define the hub vector h = (h1, . . . ,hN) as the vector of hub scores. 
h is the hub score of page d . 

 Similarity for a , the vector of authority scores 

 Now we can write h(d) =                  as a matrix operation: 

  h = Aa . . .  

 . . . and we can write a(d) =                  as a a = ATh 

 HITS algorithm in matrix notation: 

 Compute h = Aa 
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Write update rules as matrix operations   

 Define the hub vector h = (h1, . . . ,hN) as the vector of hub scores. 
h is the hub score of page d . 

 Similarity for a , the vector of authority scores 

 Now we can write h(d) =                  as a matrix operation: 

  h = Aa . . .  

 . . . and we can write a(d) =                  as a a = ATh 

 HITS algorithm in matrix notation: 

 Compute h = Aa 

 Compute a = AT h 
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Write update rules as matrix operations   

 Define the hub vector h = (h1, . . . ,hN) as the vector of hub scores. 
h is the hub score of page d . 

 Similarity for a , the vector of authority scores 

 Now we can write h(d) =                  as a matrix operation: 

  h = Aa . . .  

 . . . and we can write a(d) =                  as a a = ATh 

 HITS algorithm in matrix notation: 

 Compute h = Aa 

 Compute a = AT h 

 Iterate until convergence 
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HITS as eigenvector problem 

 HITS algorithm in matrix notation. Iterate: 

 Compute h = Aa 

 Compute a = ATh 
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HITS as eigenvector problem 

 HITS algorithm in matrix notation. Iterate: 

 Compute h = Aa 

 Compute a = ATh 

 By substitution we get: h = AATh and a = ATAa 
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HITS as eigenvector problem 

 HITS algorithm in matrix notation. Iterate: 

 Compute h = Aa 

 Compute a = ATh 

 By substitution we get: h = AATh and a = ATAa 

 Thus, h is an eigenvector of AAT and a is an eigenvector of ATA. 
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HITS as eigenvector problem 

 HITS algorithm in matrix notation. Iterate: 

 Compute h = Aa 

 Compute a = ATh 

 By substitution we get: h = AATh and a = ATAa 

 Thus, h is an eigenvector of AAT and a is an eigenvector of ATA. 

 So the HITS algorithm is actually a special case of the power 
merthod and hub and authority scores are eigenvector values. 
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HITS as eigenvector problem 

 HITS algorithm in matrix notation. Iterate: 

 Compute h = Aa 

 Compute a = ATh 

 By substitution we get: h = AATh and a = ATAa 

 Thus, h is an eigenvector of AAT and a is an eigenvector of ATA. 

 So the HITS algorithm is actually a special case of the power 
merthod and hub and authority scores are eigenvector values. 

 HITS and PageRank both formalize link analysis as eigenvector 
problems. 
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Raw matrix A for HITS 

d0 d1 d2 d3 d4 d5 d6 

d0 0 0 1 0 0 0 0 

d1 0 1 1 0 0 0 0 

d2 1 0 1 2 0 0 0 

d3 0 0 0 1 1 0 0 

d4 0 0 0 0 0 0 1 

d5 0 0 0 0 0 1 1 

d6 0 0 0 2 1 0 1 
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Hub vectors h0 , hi =    A*ai , i ≥1 

h0 h1 h2 h3 h4 h5 

d0 0.14 0.06 0.04 0.04 0.03 0.03 

d1 0.14 0.08 0.05 0.04 0.04 0.04 

d2 0.14 0.28 0.32 0.33 0.33 0.33 

d3 0.14 0.14 0.17 0.18 0.18 0.18 

d4 0.14 0.06 0.04 0.04 0.04 0.04 

d5 0.14 0.08 0.05 0.04 0.04 0.04 

d6 0.14 0.30 0.33 0.34 0.35 0.35 



d i

1
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Authority vector a =   AT*hi-1 , i ≥ 1 

a1 a2 a3 a4 a5 a6 a7 

d0 0.06 0.09 0.10 0.10 0.10 0.10 0.10 

d1 0.06 0.03 0.01 0.01 0.01 0.01 0.01 

d2 0.19 0.14 0.13 0.12 0.12 0.12 0.12 

d3 0.31 0.43 0.46 0.46 0.46 0.47 0.47 

d4 0.13 0.14 0.16 0.16 0.16 0.16 0.16 

d5 0.06 0.03 0.02 0.01 0.01 0.01 0.01 

d6 0.19 0.14 0.13 0.13 0.13 0.13 0.13 



     

ci

1
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Example web graph  

a h 

d0 0.10 0.03 

d1 0.01 0.04 

d2 0.12 0.33 

d3 0.47 0.18 

d4 0.16 0.04 

d5 0.01 0.04 

d6 0.13 0.35 
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 Pages with highest in-degree: d6 (close: d2) 
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Top-ranked pages 

 Pages with highest in-degree: d2, d3, d6 

 Pages with highest out-degree: d2, d6 

 Pages with highest PageRank: d6 

 Pages with highest in-degree: d6 (close: d2) 

 Pages with highest authority score: d3 
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PageRank vs. HITS: Discussion 
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PageRank vs. HITS: Discussion 

 PageRank can be precomputed, HITS has to be computed at 
query time. 
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PageRank vs. HITS: Discussion 

 PageRank can be precomputed, HITS has to be computed at 
query time. 

 HITS is too expensive in most application scenarios. 

 PageRank and HITS make two different design choices concerning (i) 
the eigenproblem formalization (ii) the set of pages to apply the 
formalization to. 

 These two are orthogonal. 

 We could also apply HITS to the entire web and PageRank to a 
small base set. 
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PageRank vs. HITS: Discussion 
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the eigenproblem formalization (ii) the set of pages to apply the 
formalization to. 

 These two are orthogonal. 

 We could also apply HITS to the entire web and PageRank to a 
small base set. 

 Claim: On the web, a good hub almost always is also a good authority. 
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PageRank vs. HITS: Discussion 

 PageRank can be precomputed, HITS has to be computed at 
query time. 

 HITS is too expensive in most application scenarios. 

 PageRank and HITS make two different design choices concerning (i) 
the eigenproblem formalization (ii) the set of pages to apply the 
formalization to. 

 These two are orthogonal. 

 We could also apply HITS to the entire web and PageRank to a 
small base set. 

 Claim: On the web, a good hub almost always is also a good authority. 

 The actual difference between PageRank ranking and HITS ranking is 
therefore not as large as one might expect. 
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Exercise 
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Exercise 

 Why is a good hub almost always also a good authority? 
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Take-away today 

 Anchor text: What exactly are links on the web and why are they 
important for IR? 

 Citation analysis: the mathematical foundation of PageRank and 
link-based ranking 

 PageRank: the original algorithm that was used for link-based 
ranking on the web 

 Hubs & Authorities: an alternative link-based ranking algorithm 
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Resources 

 Chapter 21 of IIR 

 Resources at  http://ifnlp.org/ir 

 American Mathematical Society article on PageRank (popular 
science style) 

 Jon Kleinberg’s home page (main person behind HITS) 

 A Google bomb and its defusing 

 Google’s official description of PageRank:  PageRank reflects 
our view of the importance of web pages by considering more 
than 500 million variables and 2 billion terms. Pages that 
believe are important pages receive a higher PageRank and are 
more likely to appear at the top of the search results. 




