ΑΝΑΚΤΗΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΑΝΑΖΗΤΗΣΗ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ

Παροράματα από το Πανεπιστήμιο της Στουγκάρδης

Introduction to Information Retrieval

Hinrich Schütze and Christina Lioma Lecture 21: Link Analysis

Outline

- 2 Anchor Text
- **3** Citation Analysis
- 4 PageRank
- **5** HITS: Hubs & Authorities

Outline

- **2** Anchor Text
- **3** Citation Analysis
- 4 PageRank
- **5** HITS: Hubs & Authorities

Outline

- 2 Anchor Text
- **3** Citation Analysis
- 4 PageRank
- **5** HITS: Hubs & Authorities

Assumption 1: A hyperlink is a quality signal.

- Assumption 1: A hyperlink is a quality signal.
 - The hyperlink d₁ → d₂ indicates that d₁'s author deems d₂ high-quality and relevant.

- Assumption 1: A hyperlink is a quality signal.
 - The hyperlink $d_1 \rightarrow d_2$ indicates that d_1 's author deems d_2 high-quality and relevant.
- Assumption 2: The anchor text describes the content of d₂.

- Assumption 1: A hyperlink is a quality signal.
 - The hyperlink $d_1 \rightarrow d_2$ indicates that d_1 's author deems d_2 high-quality and relevant.
- Assumption 2: The anchor text describes the content of d₂.
 - We use anchor text somewhat loosely here for: the text surrounding the hyperlink .

- Assumption 1: A hyperlink is a quality signal.
 - The hyperlink $d_1 \rightarrow d_2$ indicates that d_1 's author deems d_2 high-quality and relevant.
- Assumption 2: The anchor text describes the content of d₂.
 - We use anchor text somewhat loosely here for: the text surrounding the hyperlink .
 - Example: "You can find cheap cars here . "

- Assumption 1: A hyperlink is a quality signal.
 - The hyperlink $d_1 \rightarrow d_2$ indicates that d_1 's author deems d_2 high-quality and relevant.
- Assumption 2: The anchor text describes the content of d₂.
 - We use anchor text somewhat loosely here for: the text surrounding the hyperlink .
 - Example: "You can find cheap cars here . "
 - Anchor text: "You can find cheap here"

 Searching on [text of d₂] + [anchor text → d₂] is often more effective than searching on [text of d₂] only.

- Searching on [text of d₂] + [anchor text → d₂] is often more effective than searching on [text of d₂] only.
- Example: Query IBM

- Searching on [text of d₂] + [anchor text → d₂] is often more effective than searching on [text of d₂] only.
- Example: Query *IBM*
 - Matches IBM's copyright page

- Searching on [text of d₂] + [anchor text → d₂] is often more effective than searching on [text of d₂] only.
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages

- Searching on [text of d₂] + [anchor text → d₂] is often more effective than searching on [text of d₂] only.
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article

- Searching on [text of d₂] + [anchor text → d₂] is often more effective than searching on [text of d₂] only.
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article
 - May not match IBM home page!

- Searching on [text of d₂] + [anchor text → d₂] is often more effective than searching on [text of d₂] only.
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article
 - May not match IBM home page!
 - ... if IBM home page is mostly graphics

- Searching on [text of d₂] + [anchor text → d₂] is often more effective than searching on [text of d₂] only.
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article
 - May not match IBM home page!
 - ... if IBM home page is mostly graphics
- Searching on [anchor text $\rightarrow d_2$] is better for the query *IBM*.

- Searching on [text of d₂] + [anchor text → d₂] is often more effective than searching on [text of d₂] only.
- Example: Query IBM
 - Matches IBM's copyright page
 - Matches many spam pages
 - Matches IBM wikipedia article
 - May not match IBM home page!
 - ... if IBM home page is mostly graphics
- Searching on [anchor text $\rightarrow d_2$] is better for the query *IBM*.
 - In this representation, the page with most occurences of *IBM* is www.ibm.com

Anchor text containing IBM pointing to www.ibm.com

Anchor text containing IBM pointing to www.ibm.com

Indexing anchor text

Indexing anchor text

 Thus: Anchor text is often a better description of a page's content than the page itself.

Indexing anchor text

- Thus: Anchor text is often a better description of a page's content than the page itself.
- Anchor text can be weighted more highly than document text.

(based on Assumption 1&2)

 Assumption 1: A link on the web is a quality signal – the author of the link thinks that the linked-to page is highquality.

- Assumption 1: A link on the web is a quality signal the author of the link thinks that the linked-to page is highquality.
- Assumption 2: The anchor text describes the content of the linked-to page.

- Assumption 1: A link on the web is a quality signal the author of the link thinks that the linked-to page is highquality.
- Assumption 2: The anchor text describes the content of the linked-to page.
- Is assumption 1 true in general?

- Assumption 1: A link on the web is a quality signal the author of the link thinks that the linked-to page is highquality.
- Assumption 2: The anchor text describes the content of the linked-to page.
- Is assumption 1 true in general?
- Is assumption 2 true in general?

Google bombs

Google bombs

 A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007 that fixed many Google bombs.

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007 that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007 that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo
 - Coordinated link creation by those who dislike the Church of Scientology

- A Google bomb is a search with "bad" results due to maliciously manipulated anchor text.
- Google introduced a new weighting function in January 2007 that fixed many Google bombs.
- Still some remnants: [dangerous cult] on Google, Bing, Yahoo
 - Coordinated link creation by those who dislike the Church of Scientology
- Defused Google bombs: [dumb motherf...], [who is a failure?], [evil empire]

Outline

- **2** Anchor Text
- **3** Citation Analysis
- 4 PageRank
- **5** HITS: Hubs & Authorities

Citation analysis: analysis of citations in the scientific literature.

- Citation analysis: analysis of citations in the scientific literature.
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."

- Citation analysis: analysis of citations in the scientific literature.
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- We can view "Miller (2001)" as a hyperlink linking two scientific articles.

- Citation analysis: analysis of citations in the scientific literature.
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- We can view "Miller (2001)" as a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:

- Citation analysis: analysis of citations in the scientific literature.
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- We can view "Miller (2001)" as a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:
 - Measure the similarity of two articles by the overlap of other articles citing them.

- Citation analysis: analysis of citations in the scientific literature.
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- We can view "Miller (2001)" as a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:
 - Measure the similarity of two articles by the overlap of other articles citing them.
 - This is called cocitation similarity.

- Citation analysis: analysis of citations in the scientific literature.
- Example citation: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- We can view "Miller (2001)" as a hyperlink linking two scientific articles.
- One application of these "hyperlinks" in the scientific literature:
 - Measure the similarity of two articles by the overlap of other articles citing them.
 - This is called cocitation similarity.
 - Cocitation similarity on the web: Google's "find pages like this" or "Similar" feature.

 Another application: Citation frequency can be used to measure the impact of an article.

- Another application: Citation frequency can be used to measure the impact of an article.
 - Simplest measure: Each article gets one vote not very accurate.

- Another application: Citation frequency can be used to measure the impact of an article.
 - Simplest measure: Each article gets one vote not very accurate.
- On the web: citation frequency = inlink count

- Another application: Citation frequency can be used to measure the impact of an article.
 - Simplest measure: Each article gets one vote not very accurate.
- On the web: citation frequency = inlink count
 - A high inlink count does not necessarily mean high quality ...

- Another application: Citation frequency can be used to measure the impact of an article.
 - Simplest measure: Each article gets one vote not very accurate.
- On the web: citation frequency = inlink count
 - A high inlink count does not necessarily mean high quality ...
 - ... mainly because of link spam.

- Another application: Citation frequency can be used to measure the impact of an article.
 - Simplest measure: Each article gets one vote not very accurate.
- On the web: citation frequency = inlink count
 - A high inlink count does not necessarily mean high quality ...
 - ... mainly because of link spam.
- Better measure: weighted citation frequency or citation rank

- Another application: Citation frequency can be used to measure the impact of an article.
 - Simplest measure: Each article gets one vote not very accurate.
- On the web: citation frequency = inlink count
 - A high inlink count does not necessarily mean high quality ...
 - ... mainly because of link spam.
- Better measure: weighted citation frequency or citation rank
 - An article's vote is weighted according to its citation impact.

- Another application: Citation frequency can be used to measure the impact of an article.
 - Simplest measure: Each article gets one vote not very accurate.
- On the web: citation frequency = inlink count
 - A high inlink count does not necessarily mean high quality ...
 - ... mainly because of link spam.
- Better measure: weighted citation frequency or citation rank
 - An article's vote is weighted according to its citation impact.
 - Circular? No: can be formalized in a well-defined way.

Better measure: weighted citation frequency or citation rank.

- Better measure: weighted citation frequency or citation rank.
- This is basically PageRank.

- Better measure: weighted citation frequency or citation rank.
- This is basically PageRank.
- PageRank was invented in the context of citation analysis by Pinsker and Narin in the 1960s.

- Better measure: weighted citation frequency or citation rank.
- This is basically PageRank.
- PageRank was invented in the context of citation analysis by Pinsker and Narin in the 1960s.
- Citation analysis is a big deal: The budget and salary of this lecturer are / will be determined by the impact of his publications!

• We can use the same formal representation for

- We can use the same formal representation for
 - citations in the scientific literature

- We can use the same formal representation for
 - citations in the scientific literature
 - hyperlinks on the web

- We can use the same formal representation for
 - citations in the scientific literature
 - hyperlinks on the web
- Appropriately weighted citation frequency is an excellent measure of quality ...

- We can use the same formal representation for
 - citations in the scientific literature
 - hyperlinks on the web
- Appropriately weighted citation frequency is an excellent measure of quality ...
 - ... both for web pages and for scientific publications.

- We can use the same formal representation for
 - citations in the scientific literature
 - hyperlinks on the web
- Appropriately weighted citation frequency is an excellent measure of quality ...
 - ... both for web pages and for scientific publications.
- Next: PageRank algorithm for computing weighted citation frequency on the web.

Outline

- **2** Anchor Text
- **3** Citation Analysis

4 PageRank

5 HITS: Hubs & Authorities

Model behind PageRank: Random walk
Imagine a web surfer doing a random walk on the web

- Imagine a web surfer doing a random walk on the web
 - Start at a random page

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.
- This long-term visit rate is the page's PageRank.

- Imagine a web surfer doing a random walk on the web
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- In the steady state, each page has a long-term visit rate.
- This long-term visit rate is the page's PageRank.
- PageRank = long-term visit rate = steady state probability.

 A Markov chain consists of N states, plus an N × N transition probability matrix P.

- A Markov chain consists of N states, plus an N × N transition probability matrix P.
- state = page

- A Markov chain consists of N states, plus an N × N transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.

- A Markov chain consists of N states, plus an N × N transition probability matrix P.
- state = page
- At each step, we are on exactly one of the pages.
- For 1 ≤ i, j ≥ N, the matrix entry P_{ij} tells us the probability of j being the next page, given we are currently on page i.
- Clearly, for all i, $\sum_{j=1}^{N} P_{ij} = 1$

$$(d_i) \xrightarrow{P_{ij}} (d_j)$$

Example web graph

Link matrix for example

Link matrix for example

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0	0	1	0	0	0	0
d_1	0	1	1	0	0	0	0
<i>d</i> ₂	1	0	1	1	0	0	0
d_3	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d_6	0	0	0	1	1	0	1

Transition probability matrix *P* for example

Transition probability matrix *P* for example

	$d_{\scriptscriptstyle O}$	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
<i>d</i> ₂	0.33	0.00	0.33	0.33	0.00	0.00	0.00
<i>d</i> ₃	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33

Recall: PageRank = long-term visit rate.

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.

- Recall: PageRank = long-term visit rate.
- Long-term visit rate of page d is the probability that a web surfer is at page d at a given point in time.
- Next: what properties must hold of the web graph for the long-term visit rate to be well defined?
- The web graph must correspond to an ergodic Markov chain.
- First a special case: The web graph must not contain dead ends.

The web is full of dead ends.

- The web is full of dead ends.
- Random walk can get stuck in dead ends.

- The web is full of dead ends.
- Random walk can get stuck in dead ends.
- If there are dead ends, long-term visit rates are not well-defined (or non-sensical).

At a dead end, jump to a random web page with prob.
 1/ N.

- At a dead end, jump to a random web page with prob.
 1/ N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).

- At a dead end, jump to a random web page with prob.
 1/ N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.

- At a dead end, jump to a random web page with prob.
 1/ N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.
 - For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225

- At a dead end, jump to a random web page with prob.
 1/ N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.
 - For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225
- 10% is a parameter, the teleportation rate.

- At a dead end, jump to a random web page with prob.
 1/ N.
- At a non-dead end, with probability 10%, jump to a random web page (to each with a probability of 0.1/N).
- With remaining probability (90%), go out on a random hyperlink.
 - For example, if the page has 4 outgoing links: randomly choose one with probability (1-0.10)/4=0.225
- 10% is a parameter, the teleportation rate.
- Note: "jumping" from dead end is independent of teleportation rate.

Result of teleporting

Result of teleporting

With teleporting, we cannot get stuck in a dead end.
Result of teleporting

- With teleporting, we cannot get stuck in a dead end.
- But even without dead ends, a graph may not have welldefined long-term visit rates.

Result of teleporting

- With teleporting, we cannot get stuck in a dead end.
- But even without dead ends, a graph may not have welldefined long-term visit rates.
- More generally, we require that the Markov chain be ergodic.

• A Markov chain is ergodic if it is irreducible and aperiodic.

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.
- Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.

- A Markov chain is ergodic if it is irreducible and aperiodic.
- Irreducibility. Roughly: there is a path from any other page.
- Aperiodicity. Roughly: The pages cannot be partitioned such that the random walker visits the partitions sequentially.
- A non-ergodic Markov chain:

$$\bigcirc \underbrace{\stackrel{1.0}{\underbrace{\qquad}}}_{1.0} \bigcirc$$

 Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.
- Web-graph+teleporting has a steady-state probability distribution.

- Theorem: For any ergodic Markov chain, there is a unique long-term visit rate for each state.
- This is the steady-state probability distribution.
- Over a long time period, we visit each state in proportion to this rate.
- It doesn't matter where we start.
- Teleporting makes the web graph ergodic.
- Web-graph+teleporting has a steady-state probability distribution.
- Each page in the web-graph+teleporting has a PageRank.

• A probability (row) vector $\vec{x} = (x_1, ..., x_N)$ tells us where the random walk is at any point.

- A probability (row) vector $\vec{x} = (x_1, ..., x_N)$ tells us where the random walk is at any point.
- Example: (0 0 0 ... 1 ... 0 0 0
 - 1 2 3 ... *i* ... N-2 N-1 N

- A probability (row) vector $\vec{x} = (x_1, ..., x_N)$ tells us where the random walk is at any point.
- Example: (0 0 0 ... 1 ... 0 0 0 1 2 3 ... *i* ... N-2 N-1 N
- More generally: the random walk is on the page *i* with probability x_i.

- A probability (row) vector $\vec{x} = (x_1, ..., x_N)$ tells us where the random walk is at any point.
- Example: (0 0 0 ... 1 ... 0 0 0 1 2 3 ... i ... N-2 N-1 N
- More generally: the random walk is on the page *i* with probability x_i.
- Example:
 - $0.05 \quad 0.01 \quad 0.0 \quad \dots \quad 0.2 \quad \dots \quad 0.01 \quad 0.05 \quad 0.03 \quad)$

1 2 3 ... *i* ... N-2 N-1 N

- A probability (row) vector $\vec{x} = (x_1, ..., x_N)$ tells us where the random walk is at any point.
- Example: (0 0 0 ... 1 ... 0 0 0 1 2 3 ... i ... N-2 N-1 N
- More generally: the random walk is on the page *i* with probability x_i.
- Example:
 - $0.05 0.01 0.0 \dots 0.2 \dots 0.01 0.05 0.03$

• $\Sigma x_i = 1$

Change in probability vector

• If the probability vector is $\vec{x} = (x_1, ..., x_N)$, at this step, what is it at the next step?

Change in probability vector

- If the probability vector is $\vec{x} = (x_1, ..., x_N)$, at this step, what is it at the next step?
- Recall that row i of the transition probability matrix P tells us where we go next from state i.

Change in probability vector

- If the probability vector is $\vec{x} = (x_1, ..., x_N)$, at this step, what is it at the next step?
- Recall that row i of the transition probability matrix P tells us where we go next from state i.
- So from \vec{x} , our next state is distributed as $\vec{x}P$.

The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the notation for the probability vector \vec{x} .)

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the notation for the probability vector \vec{x} .)
- π is the long-term visit rate (or PageRank) of page *i*.

- The steady state in vector notation is simply a vector $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ of probabilities.
- (We use $\vec{\pi}$ to distinguish it from the notation for the probability vector \vec{x} .)
- π is the long-term visit rate (or PageRank) of page *i*.
- So we can think of PageRank as a very long vector one entry per page.

What is the PageRank / steady state in this example?

	$\begin{vmatrix} x_1 \\ P_t(d_1) \end{vmatrix}$	x ₂ P _t (d ₂)		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
t ₀ t ₁	0.25	0.75		

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	$\begin{vmatrix} x_1 \\ P_t(d_1) \end{vmatrix}$	x ₂ P _t (d ₂)		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
t ₀ t ₁	0.25	0.75	0.25	0.75

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$
$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	$\begin{vmatrix} x_1 \\ P_t(d_1) \end{vmatrix}$	x_2 $P_t(d_2)$		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
t ₀ t ₁	0.25 0.25	0.75 0.75	0.25	0.75

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$
$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	$\begin{vmatrix} x_1 \\ P_t(d_1) \end{vmatrix}$	x ₂ P _t (d ₂)		
			$P_{11} = 0.25$ $P_{21} = 0.25$	$P_{12} = 0.75$ $P_{22} = 0.75$
t_0	0.25	0.75	0.25	0.75
t_1	0.25	0.75	(convergence)	

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$
$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

How do we compute the steady state vector?

How do we compute the steady state vector?

In other words: how do we compute PageRank?
- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.
- $\vec{\pi}$ is the principal left eigenvector for *P* ...

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- ... and if the distribution in this step is \vec{x} , then the distribution in the next step is $\vec{x}P$.
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.
- $\vec{\pi}$ is the principal left eigenvector for *P* ...
- ... that is, $\vec{\pi}$ is the left eigenvector with the largest eigenvalue.

- In other words: how do we compute PageRank?
- Recall: $\vec{\pi} = (\pi_1, \pi_2, ..., \pi_N)$ is the PageRank vector, the vector of steady-state probabilities ...
- But $\vec{\pi}$ is the steady state!
- So: $\vec{\pi} = \vec{\pi} P$
- Solving this matrix equation gives us $\vec{\pi}$.
- $\vec{\pi}$ is the principal left eigenvector for *P* ...
- ... that is, $\vec{\pi}$ is the left eigenvector with the largest eigenvalue.
- All transition probability matrices have largest eigenvalue 1.

Start with any distribution \vec{x} , e.g., uniform distribution

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of *P* until convergence.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of *P* until convergence.
- This is called the power method.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of *P* until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state $\vec{\pi}$.

- Start with any distribution \vec{x} , e.g., uniform distribution
- After one step, we're at $\vec{x}P$.
- After two steps, we're at $\vec{x}P^2$.
- After k steps, we're at $\vec{x}P^k$.
- Algorithm: multiply \vec{x} by increasing powers of *P* until convergence.
- This is called the power method.
- Recall: regardless of where we start, we eventually reach the steady state $\vec{\pi}$.
- Thus: we will eventually (in asymptotia) reach the steady state.

Power method: Example

Power method: Example

What is the PageRank / steady state in this example?

	$x_1 P_t(d_1)$	$x_2 P_t(d_2)$			
			P ₁₁ = 0.1 P ₂₁ = 0.3	$P_{12} = 0.9$ $P_{22} = 0.7$	
t ₀	0	1			= xP
t ₁					$= \overrightarrow{x}P^2$
t ₂					$= \vec{x}P^3$
t ₃					$= \overrightarrow{x} P^4$
					•••
t_{∞}					= xP∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	x_1 P _t (d ₁)	$x_2 P_t(d_2)$			
			P ₁₁ = 0.1 P ₂₁ = 0.3	$P_{12} = 0.9$ $P_{22} = 0.7$	
t ₀	0	1	0.3	0.7	= xP
t ₁					$= \overrightarrow{x}P^2$
t ₂					$= \vec{x}P^3$
t ₃					$= \overrightarrow{x} P^4$
					•••
t∞					= ẋP∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	x_1 $P_t(d_1)$	$x_2 P_t(d_2)$			
			P ₁₁ = 0.1 P ₂₁ = 0.3	$P_{12} = 0.9$ $P_{22} = 0.7$	
t ₀	0	1	0.3	0.7	= xP
t_1	0.3	0.7			$= \overrightarrow{x}P^2$
t ₂					$= \overrightarrow{x} P^3$
t ₃					$= \overrightarrow{x}P^4$
					• • •
t_{∞}					= xP∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	$x_1 P_t(d_1)$	x_2 P _t (d ₂)			
			P ₁₁ = 0.1 P ₂₁ = 0.3	$P_{12} = 0.9$ $P_{22} = 0.7$	
t ₀	0	1	0.3	0.7	= xP
t ₁	0.3	0.7	0.24	0.76	$= \overrightarrow{x}P^2$
t ₂					$= \vec{X}P^3$
t ₃					$= \overrightarrow{x} P^4$
					•••
t∞					= xP∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	$x_1 P_t(d_1)$	$x_2 P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t ₀	0	1	0.3	0.7	= xP
t_1	0.3	0.7	0.24	0.76	$= \overrightarrow{x}P^2$
t ₂	0.24	0.76			$= \vec{X}P^3$
t ₃					$= \overrightarrow{x} P^4$
					•••
t_{∞}					= xP∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$
$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	$x_1 P_t(d_1)$	$x_2 P_t(d_2)$			
			$P_{11} = 0.1$ $P_{21} = 0.3$	$P_{12} = 0.9$ $P_{22} = 0.7$	
t ₀	0	1	0.3	0.7	= xP
t ₁	0.3	0.7	0.24	0.76	$= \overrightarrow{x}P^2$
t ₂	0.24	0.76	0.252	0.748	$= \vec{x}P^3$
t ₃					$= \overrightarrow{x} P^4$
					•••
t_{∞}					= xP∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$

$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	$x_1 P_t(d_1)$	x ₂ P _t (d ₂)			
			P ₁₁ = 0.1 P ₂₁ = 0.3	$P_{12} = 0.9$ $P_{22} = 0.7$	
t ₀	0	1	0.3	0.7	= xP
t ₁	0.3	0.7	0.24	0.76	$= \overrightarrow{x} P^2$
t ₂	0.24	0.76	0.252	0.748	$= \vec{x}P^3$
t ₃	0.252	0.748			$= \vec{x}P^4$
t∞					= xP∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$
$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	$x_1 P_t(d_1)$	x_2 P _t (d ₂)			
			P ₁₁ = 0.1 P ₂₁ = 0.3	$P_{12} = 0.9$ $P_{22} = 0.7$	
t ₀	0	1	0.3	0.7	= xP
t ₁	0.3	0.7	0.24	0.76	$= \vec{x}P^2$
t ₂	0.24	0.76	0.252	0.748	$= \vec{x}P^3$
t ₃	0.252	0.748	0.2496	0.7504	$= \overrightarrow{x} P^4$
t∞					= ẋP∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$
$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	$x_1 P_t(d_1)$	x ₂ P _t (d ₂)			
			P ₁₁ = 0.1 P ₂₁ = 0.3	$P_{12} = 0.9$ $P_{22} = 0.7$	
t ₀	0	1	0.3	0.7	= xP
t ₁	0.3	0.7	0.24	0.76	$= \overrightarrow{x}P^2$
t ₂	0.24	0.76	0.252	0.748	$= \vec{x}P^3$
t ₃	0.252	0.748	0.2496	0.7504	$= \overrightarrow{x} P^4$
					•••
t∞					= xP∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$
$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	x ₁	X ₂			
	$P_t(d_1)$	$P_t(d_2)$			
			P ₁₁ = 0.1	$P_{12} = 0.9$	
			P ₂₁ = 0.3	$P_{22} = 0.7$	
t ₀	0	1	0.3	0.7	= xP
t ₁	0.3	0.7	0.24	0.76	$= \overrightarrow{x}P^2$
t ₂	0.24	0.76	0.252	0.748	$= \overrightarrow{x} P^3$
t ₃	0.252	0.748	0.2496	0.7504	$= \overrightarrow{x} P^4$
					•••
t_∞	0.25	0.75			= xP∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$
$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	x_1 P _t (d ₁)	x_2 $P_t(d_2)$			
			P ₁₁ = 0.1 P ₂₁ = 0.3	$P_{12} = 0.9$ $P_{22} = 0.7$	
t ₀	0	1	0.3	0.7	= xP
t_1	0.3	0.7	0.24	0.76	$= \overrightarrow{x}P^2$
t ₂	0.24	0.76	0.252	0.748	$= \vec{x}P^3$
t ₃	0.252	0.748	0.2496	0.7504	$= \overrightarrow{x} P^4$
					•••
t_∞	0.25	0.75	0.25	0.75	= xP∞

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$
$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	x ₁	X ₂				
	$P_t(d_1)$	$P_t(d_2)$				
			P ₁₁ = 0.1	P ₁₂ = 0.9		
			P ₂₁ = 0.3	$P_{22} = 0.7$		
t ₀	0	1	0.3	0.7	= xP	
t ₁	0.3	0.7	0.24	0.76	$= \vec{x}P^2$	
t ₂	0.24	0.76	0.252	0.748	$= \vec{x}P^3$	
t ₃	0.252	0.748	0.2496	0.7504	$= \vec{x}P^4$	
t∞	0.25	0.75	0.25	0.75	= xP∞	
Pa	geRank vect	or = $\vec{\pi}$ = (π_1)	$(\pi_2) = (0.25)$	0.75)		
P_{t}	$(d_1) = P_{t-1}(d_1)$	$*P_{11} + P_{t-1}($	d_{2}) * P_{21}	-		
P_{t}	$(d_2) = P_{t_1}(d_1)$	$* P_{12} + P_{t-1}$	$d_{2} + P_{22}$			174

Power method: Example

What is the PageRank / steady state in this example?

• The steady state distribution (= the PageRanks) in this example are 0.25 for d_1 and 0.75 for d_2 .

Exercise: Compute PageRank using power method

Exercise: Compute PageRank using power method

Solution
	x_1 $P_t(d_1)$	$x_2 P_t(d_2)$		
			P ₁₁ = 0.7	P ₁₂ = 0.3
			$P_{21} = 0.2$	$P_{22} = 0.8$
t ₀	0	1		
t_1				
t ₂				
t ₃				
t_{∞}				
PageRank vector = $\vec{\pi}$ = (π_1 , π_2) = (0.4, 0.6)				

$$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$$
$$P_{t}(d_{2}) = P_{t-1}(d_{1}) * P_{12} + P_{t-1}(d_{2}) * P_{22}$$

	x_1 $P_t(d_1)$	$x_2 P_t(d_2)$		
			P ₁₁ = 0.7 P ₂₁ = 0.2	$P_{12} = 0.3$ $P_{22} = 0.8$
t ₀	0	1	0.2	0.8
t_1				
t ₂				
t ₃				
t∞				
PageBank vector = $\vec{\pi} = (\pi, \pi) = (0.4, 0.6)$				

	$x_1 P_t(d_1)$	x_2 P _t (d ₂)		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t ₀	0	1	0.2	0.8
t ₁	0.2	0.8		
t ₂				
t ₃				
t_{∞}				
				(\mathbf{C})

	$x_1 P_t(d_1)$	x_2 P _t (d ₂)		
			$P_{11} = 0.7$ $P_{21} = 0.2$	P ₁₂ = 0.3 P ₂₂ = 0.8
t ₀	0	1	0.2	0.8
t ₁	0.2	0.8	0.3	0.7
t ₂				
t ₃				
t_{∞}				
		\rightarrow ,		

	x_1 $P_t(d_1)$	x_2 P _t (d ₂)			
			P ₁₁ = 0.7 P ₂₁ = 0.2	P ₁₂ = 0.3 P ₂₂ = 0.8	
t ₀	0	1	0.2	0.8	
t_1	0.2	0.8	0.3	0.7	
t ₂	0.3	0.7			
t ₃					
t_{∞}					
Da	Deco Decky vector $-\frac{2}{\pi} - (\pi, \pi) - (0, 1, 0, 6)$				

	x_1 $P_t(d_1)$	x_2 P _t (d ₂)		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t ₀	0	1	0.2	0.8
t ₁	0.2	0.8	0.3	0.7
t ₂	0.3	0.7	0.35	0.65
t ₃				
t_{∞}				

	x_1 $P_t(d_1)$	$x_2 P_t(d_2)$		
			P ₁₁ = 0.7 P ₂₁ = 0.2	P ₁₂ = 0.3 P ₂₂ = 0.8
t ₀	0	1	0.2	0.8
t ₁	0.2	0.8	0.3	0.7
t ₂	0.3	0.7	0.35	0.65
t ₃	0.35	0.65		
t_{∞}				

	$x_1 P_t(d_1)$	$x_2 P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t ₀	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t ₂	0.3	0.7	0.35	0.65
t ₃	0.35	0.65	0.375	0.625
t_{∞}				

	x_1 $P_t(d_1)$	$x_2 P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t ₀	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t ₂	0.3	0.7	0.35	0.65
t ₃	0.35	0.65	0.375	0.625
				•
t∞				

	x_1 $P_t(d_1)$	$x_2 P_t(d_2)$		
			$P_{11} = 0.7$ $P_{21} = 0.2$	$P_{12} = 0.3$ $P_{22} = 0.8$
t ₀	0	1	0.2	0.8
t_1	0.2	0.8	0.3	0.7
t ₂	0.3	0.7	0.35	0.65
t ₃	0.35	0.65	0.375	0.625
t∞	0.4	0.6		

	$x_1 P_t(d_1)$	x_2 P _t (d ₂)			
			$P_{11} = 0.7$	$P_{12} = 0.3$	
			$P_{21} = 0.2$	$P_{22} = 0.8$	
t_0	0	1	0.2	0.8	
t ₁	0.2	0.8	0.3	0.7	
t ₂	0.3	0.7	0.35	0.65	
t ₃	0.35	0.65	0.375	0.625	
				•	
t∞	0.4	0.6	0.4	0.6	
PageRank vector = $\vec{\pi} = (\pi_1, \pi_2) = (0.4, 0.6)$					
$P_{t}(d_{1}) = P_{t-1}(d_{1}) * P_{11} + P_{t-1}(d_{2}) * P_{21}$					
<i>P</i> ₊	$(d_2) = P_{t-1}(d_1)$	$*P_{12} + P_{+_{-1}}($	$d_{2}) * P_{22}$		

- Preprocessing
 - Given graph of links, build matrix P

- Preprocessing
 - Given graph of links, build matrix P
 - Apply teleportation

- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute $\vec{\pi}$

- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute $\vec{\pi}$
- $\vec{\pi}_i$ is the PageRank of page *i*.

- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute $\vec{\pi}$
- $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing

- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute $\vec{\pi}$
- $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query

- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute $\vec{\pi}$
- $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank

- Given graph of links, build matrix P
- Apply teleportation
- From modified matrix, compute $\vec{\pi}$
- $\vec{\pi}_i$ is the PageRank of page *i*.
- Query processing
 - Retrieve pages satisfying the query
 - Rank them by their PageRank
 - Return reranked list to the user

Real surfers are not random surfers.

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories – and search!

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories – and search!
 - → Markov model is not a good model of surfing.

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories – and search!
 - \rightarrow Markov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories – and search!
 - \rightarrow Markov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories – and search!
 - \rightarrow Markov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query [video service].

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories – and search!
 - \rightarrow Markov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query [video service].
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both video and service.

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories – and search!
 - \rightarrow Markov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query [video service].
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both video and service.
 - If we rank all Boolean hits according to PageRank, then the Yahoo home page would be top-ranked.

- Real surfers are not random surfers.
 - Examples of nonrandom surfing: back button, short vs. long paths, bookmarks, directories – and search!
 - → Markov model is not a good model of surfing.
 - But it's good enough as a model for our purposes.
- Simple PageRank ranking (as described on previous slide) produces bad results for many pages.
 - Consider the query [video service].
 - The Yahoo home page (i) has a very high PageRank and (ii) contains both video and service.
 - If we rank all Boolean hits according to PageRank, then the Yahoo home page would be top-ranked.
 - Clearly not desireble.

 In practice: rank according to weighted combination of raw text match, anchor text match, PageRank & other factors.

- In practice: rank according to weighted combination of raw text match, anchor text match, PageRank & other factors.
- \rightarrow see lecture on Learning to Rank.

Example web graph

Transition (probability) matrix

Transition (probability) matrix

	d_0	d_1	d_2	d ₃	d_4	d_5	d_6
d_0	0.00	0.00	1.00	0.00	0.00	0.00	0.00
d_1	0.00	0.50	0.50	0.00	0.00	0.00	0.00
<i>d</i> ₂	0.33	0.00	0.33	0.33	0.00	0.00	0.00
<i>d</i> ₃	0.00	0.00	0.00	0.50	0.50	0.00	0.00
d_4	0.00	0.00	0.00	0.00	0.00	0.00	1.00
d_5	0.00	0.00	0.00	0.00	0.00	0.50	0.50
d_6	0.00	0.00	0.00	0.33	0.33	0.00	0.33
Transition matrix with teleporting

Transition matrix with teleporting

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0.02	0.02	0.88	0.02	0.02	0.02	0.02
d_1	0.02	0.45	0.45	0.02	0.02	0.02	0.02
<i>d</i> ₂	0.31	0.02	0.31	0.31	0.02	0.02	0.02
<i>d</i> ₃	0.02	0.02	0.02	0.45	0.45	0.02	0.02
d_4	0.02	0.02	0.02	0.02	0.02	0.02	0.88
d_5	0.02	0.02	0.02	0.02	0.02	0.45	0.45
d_6	0.02	0.02	0.02	0.31	0.31	0.02	0.31

Power method vectors $\vec{x}P^k$

Power method vectors $\vec{x}P^k$

	\overrightarrow{x}	$\overrightarrow{xP^1}$	$\overrightarrow{xP^2}$	$\overrightarrow{xP^3}$	$\overrightarrow{xP^4}$	$\overrightarrow{xP^5}$	$\stackrel{\rightarrow}{xP^6}$	$\overrightarrow{x}P^7$	$\vec{x}P^{8}$	$\overrightarrow{xP^9}$	$\overrightarrow{xP^{10}}$	$\overrightarrow{xP^{11}}$	$\overrightarrow{xP^{12}}$	$\overrightarrow{xP^{13}}$
d_0	0.14	0.06	0.09	0.07	0.07	0.06	0.06	0.06	0.06	0.05	0.05	0.05	0.05	0.05
d_1	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
d2	0.14	0.25	0.18	0.17	0.15	0.14	0.13	0.12	0.12	0.12	0.12	0.11	0.11	0.11
d ₃	0.14	0.16	0.23	0.24	0.24	0.24	0.24	0.25	0.25	0.25	0.25	0.25	0.25	0.25
d_4	0.14	0.12	0.16	0.19	0.19	0.20	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
d_5	0.14	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
d ₆	0.14	0.25	0.23	0.25	0.27	0.28	0.29	0.29	0.30	0.30	0.30	0.30	0.31	0.31

Example web graph

 Frequent claim: PageRank is the most important component of web ranking.

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes ...

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes ...
 - Rumor has it that PageRank in his original form (as presented here) now has a negligible impact on ranking!

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes ...
 - Rumor has it that PageRank in his original form (as presented here) now has a negligible impact on ranking!
 - However, variants of a page's PageRank are still an essential part of ranking.

- Frequent claim: PageRank is the most important component of web ranking.
- The reality:
 - There are several components that are at least as important: e.g., anchor text, phrases, proximity, tiered indexes ...
 - Rumor has it that PageRank in his original form (as presented here) now has a negligible impact on ranking!
 - However, variants of a page's PageRank are still an essential part of ranking.
 - Adressing link spam is difficult and crucial.

Outline

- **2** Anchor Text
- **3** Citation Analysis
- 4 PageRank
- **5** HITS: Hubs & Authorities

Premise: there are two different types of relevance on the web.

- Premise: there are two different types of relevance on the web.
- Relevance type 1: Hubs. A hub page is a good list of links to pages answering the information need.

- Premise: there are two different types of relevance on the web.
- Relevance type 1: Hubs. A hub page is a good list of links to pages answering the information need.
 - E.g, for query [chicago bulls]: Bob's list of recommended resources on the Chicago Bulls sports team

- Premise: there are two different types of relevance on the web.
- Relevance type 1: Hubs. A hub page is a good list of links to pages answering the information need.
 - E.g, for query [chicago bulls]: Bob's list of recommended resources on the Chicago Bulls sports team
- Relevance type 2: Authorities. An authority page is a direct answer to the information need.

- Premise: there are two different types of relevance on the web.
- Relevance type 1: Hubs. A hub page is a good list of links to pages answering the information need.
 - E.g, for query [chicago bulls]: Bob's list of recommended resources on the Chicago Bulls sports team
- Relevance type 2: Authorities. An authority page is a direct answer to the information need.
 - The home page of the Chicago Bulls sports team

- Premise: there are two different types of relevance on the web.
- Relevance type 1: Hubs. A hub page is a good list of links to pages answering the information need.
 - E.g, for query [chicago bulls]: Bob's list of recommended resources on the Chicago Bulls sports team
- Relevance type 2: Authorities. An authority page is a direct answer to the information need.
 - The home page of the Chicago Bulls sports team
 - By definition: Links to authority pages occur repeatedly on hub pages.

- Premise: there are two different types of relevance on the web.
- Relevance type 1: Hubs. A hub page is a good list of links to pages answering the information need.
 - E.g, for query [chicago bulls]: Bob's list of recommended resources on the Chicago Bulls sports team
- Relevance type 2: Authorities. An authority page is a direct answer to the information need.
 - The home page of the Chicago Bulls sports team
 - By definition: Links to authority pages occur repeatedly on hub pages.
- Most approaches to search (including PageRank ranking) don't make the distinction between these two very different types of relevance.

 A good hub page for a topic links to many authority pages for that topic.

- A good hub page for a topic links to many authority pages for that topic.
- A good authority page for a topic is linked to by many hub pages for that topic.

- A good hub page for a topic links to many authority pages for that topic.
- A good authority page for a topic is linked to by many hub pages for that topic.
- Circular definition we will turn this into an iterative computation.

Example for hubs and authorities

Example for hubs and authorities

Do a regular web search first

- Do a regular web search first
- Call the search result the root set

- Do a regular web search first
- Call the search result the root set
- Find all pages that are linked to or link to pages in the root set

- Do a regular web search first
- Call the search result the root set
- Find all pages that are linked to or link to pages in the root set
- Call first larger set the base set

- Do a regular web search first
- Call the search result the root set
- Find all pages that are linked to or link to pages in the root set
- Call first larger set the base set
- Finally, compute hubs and authorities for the base set (which we'll view as a small web graph)

Root set and base set (1)

The root set

Root set and base set (1)

Nodes that root set nodes link to

Root set and base set (1)

Nodes that link to root set nodes

The base set

Root set typically has 200-1000 nodes.

- Root set typically has 200-1000 nodes.
- Base set may have up to 5000 nodes.

- Root set typically has 200-1000 nodes.
- Base set may have up to 5000 nodes.
- Computation of base set, as shown on previous slide:

- Root set typically has 200-1000 nodes.
- Base set may have up to 5000 nodes.
- Computation of base set, as shown on previous slide:
 - Follow outlinks by parsing the pages in the root set

- Root set typically has 200-1000 nodes.
- Base set may have up to 5000 nodes.
- Computation of base set, as shown on previous slide:
 - Follow outlinks by parsing the pages in the root set
 - Find d's inlinks by searching for all pages containing a link to d

Compute for each page d in the base set a hub score h(d) and an authority score a(d)

- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1

- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d)

- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d)
- After convergence:

- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d)
- After convergence:
 - Output pages with highest h scores as top hubs

- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d)
- After convergence:
 - Output pages with highest h scores as top hubs
 - Output pages with highest a scores as top authrities

- Compute for each page d in the base set a hub score h(d) and an authority score a(d)
- Initialization: for all d: h(d) = 1, a(d) = 1
- Iteratively update all h(d), a(d)
- After convergence:
 - Output pages with highest h scores as top hubs
 - Output pages with highest a scores as top authrities
 - So we output two ranked lists

• For all $d: h(d) = \sum_{d \to y} a(y)$

• For all $d: h(d) = \sum_{d \to y} a(y)$

• For all $d: a(d) = \sum_{y \to d} h(y)$

• For all $d: h(d) = \sum_{d \to y} a(y)$

• For all $d: a(d) = \sum_{y \to d} h(y)$

Iterate these two steps until convergence

Scaling

- Scaling
 - To prevent the a() and h() values from getting too big, can scale down after each iteration.

- Scaling
 - To prevent the a() and h() values from getting too big, can scale down after each iteration.
 - Scaling factor doesn't really matter.

- Scaling
 - To prevent the a() and h() values from getting too big, can scale down after each iteration.
 - Scaling factor doesn't really matter.
 - We care about the relative (as opposed to absolute) values of the scores.

- Scaling
 - To prevent the a() and h() values from getting too big, can scale down after each iteration.
 - Scaling factor doesn't really matter.
 - We care about the relative (as opposed to absolute) values of the scores.
- In most cases, the algorithm converges after a few iterations.

Authorities for query [Chicago Bulls]

Authorities for query [Chicago Bulls]

- 0.85 www.nba.com/bulls
- 0.25 www.essex1.com/people/jmiller/bulls.htm "da Bulls"
- 0.20 www.nando.net/SportServer/basketball/nba/chi.html "The Chicago Bulls"
- 0.15 Users.aol.com/rynocub/bulls.htm "The Chicago Bulls Home Page"
- 0.13 www.geocities.com/Colosseum/6095 "Chicago Bulls"

(Ben Shaul et al, WWW8)

The authority page for [Chicago Bulls]

The authority page for [Chicago Bulls]

Hubs for query [Chicago Bulls]

Hubs for query [Chicago Bulls]

- 1.62 www.geocities.com/Colosseum/1778 "Unbelieveabulls!!!!!"
- 1.24 www.webring.org/cgi-bin/webring?ring=chbulls "Chicago Bulls"
- 0.74 www.geocities.com/Hollywood/Lot/3330/Bulls.html "Chicago Bulls"
- 0.52 www.nobull.net/web_position/kw-search-15-M2.html "Excite Search Results: bulls"
- 0.52 www.halcyon.com/wordltd/bball/bulls.html "Chicago Bulls Links"

(Ben Shaul et al, WWW8)

A hub page for [Chicago Bulls]

Portland Trail Blazers Tickets

Washington Wizards Tickets

NBA All-Star Weekend

Event Selections

MLB Baseball Tickets

NFL Football Tickets

NHL Hockey Tickets

PGA Golf Tickets

NBA Basketball Tickets

NASCAR Racing Tickets

NCAA Football Tickets

Sporting Events

NBA Finals Tickets NBA Playoffs Tickets

Secremento Kinge Tickets Sen Antonio Sours Tickets

Toronto Reptors Tickets

Utah Jazz Tickets

All NBA Tickets

A hub page for [Chicago Bulls]

Chicago Bulls

Chicago Bulls Fan Site with Bulls Blog, News, Bulls Forum, Wallpapers and all your basic Chicago Bulls essentials!! http://www.bullscentral.com

Chicago Bulls Blog

The place to be for news and views on the Chicago Bulls and NBA Basketball! http://chi-bulls.blogspot.com

News and Information Links:

Chicago Sun-Times (local newspaper) http://www.suntimes.com/sports/basketbail/bulls/index.html

Chicago Tribune (local newspaper)

http://www.chicagotribune.com/sports/basketball/bulls/

Wikipedia - Chicago Bulls

All about the Chicago Bulls from Wikipedia, the free online encyclopedia. http://en.wikipedia.org/wiki/Chicago_Bulls

Merchandise Links:

Chicago Bulls watches

http://www.sportimewatches.com/NBA_watches/Chicago-Bulls-watches.html

Hub & Authorities: Comments

Hub & Authorities: Comments

HITS can pull together good pages regardless of page content.

Hub & Authorities: Comments

- HITS can pull together good pages regardless of page content.
- Once the base set is assembles, we only do link analysis, no text matching.
- HITS can pull together good pages regardless of page content.
- Once the base set is assembles, we only do link analysis, no text matching.
- Pages in the base set often do not contain any of the query words.

- HITS can pull together good pages regardless of page content.
- Once the base set is assembles, we only do link analysis, no text matching.
- Pages in the base set often do not contain any of the query words.
- In theory, an English query can retrieve Japanese-language pages!

- HITS can pull together good pages regardless of page content.
- Once the base set is assembles, we only do link analysis, no text matching.
- Pages in the base set often do not contain any of the query words.
- In theory, an English query can retrieve Japanese-language pages!
 - If supported by the link structures between English and Japanese pages!

- HITS can pull together good pages regardless of page content.
- Once the base set is assembles, we only do link analysis, no text matching.
- Pages in the base set often do not contain any of the query words.
- In theory, an English query can retrieve Japanese-language pages!
 - If supported by the link structures between English and Japanese pages!
- Danger: topic drift the pages found by following links may not be related to the original query.

 We define an N × N adjacency matrix A. (We called this the link matrix earlier).

- We define an N × N adjacency matrix A. (We called this the link matrix earlier).
- For 1 ≤ i, j ≤ N, the matrix entry A_{ij} tells us whether there is a link from page i to page j (A_{ij} = 1) or not (A_{ij} = 0).

- We define an N × N adjacency matrix A. (We called this the link matrix earlier).
- For 1 ≤ i, j ≤ N, the matrix entry A_{ij} tells us whether there is a link from page i to page j (A_{ij} = 1) or not (A_{ij} = 0).
- Example:

- We define an N × N adjacency matrix A. (We called this the link matrix earlier).
- For 1 ≤ i, j ≤ N, the matrix entry A_{ij} tells us whether there is a link from page i to page j (A_{ij} = 1) or not (A_{ij} = 0).
- Example:

• Define the hub vector $\vec{h} = (h_{1,...,}h_N)$ as the vector of hub scores. *h* is the hub score of page *d*.

- Define the hub vector $\vec{h} = (h_{1, \dots, h_N})$ as the vector of hub scores. *h* is the hub score of page *d*.
- Similarity for \vec{a} , the vector of authority scores

- Define the hub vector $\vec{h} = (h_{1,...,}h_N)$ as the vector of hub scores. *h* is the hub score of page *d*.
- Similarity for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \to y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a} \dots$

- Define the hub vector $\vec{h} = (h_{1,...,}h_N)$ as the vector of hub scores. *h* is the hub score of page *d*.
- Similarity for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \to y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a} \dots$
- ... and we can write $a(d) = \sum_{y \to d} h(y)$ as a $a = A^T h$

- Define the hub vector $\vec{h} = (h_{1,...,}h_N)$ as the vector of hub scores. *h* is the hub score of page *d*.
- Similarity for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \to y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a} \dots$
- ... and we can write $a(d) = \sum_{y \to d} h(y)$ as a $a = A^T h$
- HITS algorithm in matrix notation:

- Define the hub vector $\vec{h} = (h_{1, \dots, h_N})$ as the vector of hub scores. *h* is the hub score of page *d*.
- Similarity for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \to y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a} \dots$
- ... and we can write $a(d) = \sum_{y \to d} h(y)$ as a $a = A^T h$
- HITS algorithm in matrix notation:
 - Compute $\vec{h} = A\vec{a}$

- Define the hub vector $\vec{h} = (h_{1, \dots, h_N})$ as the vector of hub scores. *h* is the hub score of page *d*.
- Similarity for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \to y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a} \dots$
- ... and we can write $a(d) = \sum_{y \to d} h(y)$ as a $a = A^T h$
- HITS algorithm in matrix notation:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$

- Define the hub vector $\vec{h} = (h_{1, \dots, h_N})$ as the vector of hub scores. *h* is the hub score of page *d*.
- Similarity for \vec{a} , the vector of authority scores
- Now we can write $h(d) = \sum_{d \to y} a(y)$ as a matrix operation: $\vec{h} = A\vec{a} \dots$
- ... and we can write $a(d) = \sum_{y \to d} h(y)$ as a $a = A^T h$
- HITS algorithm in matrix notation:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
 - Iterate until convergence

- HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^{T} \vec{h}$

- HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
- By substitution we get: $\vec{h} = AA^T\vec{h}$ and $\vec{a} = A^TA\vec{a}$

- HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
- By substitution we get: $\vec{h} = AA^T\vec{h}$ and $\vec{a} = A^TA\vec{a}$
- Thus, \vec{h} is an eigenvector of AA^T and \vec{a} is an eigenvector of A^TA .

- HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
- By substitution we get: $\vec{h} = AA^T\vec{h}$ and $\vec{a} = A^TA\vec{a}$
- Thus, \vec{h} is an eigenvector of AA^T and \vec{a} is an eigenvector of A^TA .
- So the HITS algorithm is actually a special case of the power merthod and hub and authority scores are eigenvector values.

- HITS algorithm in matrix notation. Iterate:
 - Compute $\vec{h} = A\vec{a}$
 - Compute $\vec{a} = A^T \vec{h}$
- By substitution we get: $\vec{h} = AA^T\vec{h}$ and $\vec{a} = A^TA\vec{a}$
- Thus, \vec{h} is an eigenvector of AA^T and \vec{a} is an eigenvector of A^TA .
- So the HITS algorithm is actually a special case of the power merthod and hub and authority scores are eigenvector values.
- HITS and PageRank both formalize link analysis as eigenvector problems.

Example web graph

Raw matrix A for HITS

	d_0	d_1	d_2	d_3	d_4	d_5	d_6
d_0	0	0	1	0	0	0	0
d_1	0	1	1	0	0	0	0
<i>d</i> ₂	1	0	1	2	0	0	0
<i>d</i> ₃	0	0	0	1	1	0	0
d_4	0	0	0	0	0	0	1
d_5	0	0	0	0	0	1	1
d_6	0	0	0	2	1	0	1

Hub vectors h_0 , $\vec{h}_i = \frac{1}{d_i} A^* a_i$, $i \ge 1$

	\vec{h}_0	\vec{h}_1	\vec{h}_2	\vec{h}_3	\vec{h}_4	\vec{h}_5
d_0	0.14	0.06	0.04	0.04	0.03	0.03
d_1	0.14	0.08	0.05	0.04	0.04	0.04
<i>d</i> ₂	0.14	0.28	0.32	0.33	0.33	0.33
<i>d</i> ₃	0.14	0.14	0.17	0.18	0.18	0.18
d_4	0.14	0.06	0.04	0.04	0.04	0.04
d_5	0.14	0.08	0.05	0.04	0.04	0.04
d_6	0.14	0.30	0.33	0.34	0.35	0.35

Authority vector $\vec{a} = \frac{1}{c_i} A^T * \vec{h}_{i-1}$, $i \ge 1$

	<i>a</i> ₁	\vec{a}_2	\vec{a}_3	\vec{a}_4	\vec{a}_5	₫ ₆	₫ ₇
d_0	0.06	0.09	0.10	0.10	0.10	0.10	0.10
d_1	0.06	0.03	0.01	0.01	0.01	0.01	0.01
<i>d</i> ₂	0.19	0.14	0.13	0.12	0.12	0.12	0.12
<i>d</i> ₃	0.31	0.43	0.46	0.46	0.46	0.47	0.47
d_4	0.13	0.14	0.16	0.16	0.16	0.16	0.16
d_5	0.06	0.03	0.02	0.01	0.01	0.01	0.01
d_6	0.19	0.14	0.13	0.13	0.13	0.13	0.13

Example web graph

• Pages with highest in-degree: d_{2} , d_{3} , d_{6}

- Pages with highest in-degree: d_{2} , d_{3} , d_{6}
- Pages with highest out-degree: d₂, d₆

- Pages with highest in-degree: d_{2} , d_{3} , d_{6}
- Pages with highest out-degree: d₂, d₆
- Pages with highest PageRank: d₆

- Pages with highest in-degree: d_{2} , d_{3} , d_{6}
- Pages with highest out-degree: d₂, d₆
- Pages with highest PageRank: d₆
- Pages with highest in-degree: d₆ (close: d₂)

- Pages with highest in-degree: d_{2} , d_{3} , d_{6}
- Pages with highest out-degree: d₂, d₆
- Pages with highest PageRank: d₆
- Pages with highest in-degree: d₆ (close: d₂)
- Pages with highest authority score: d₃

PageRank vs. HITS: Discussion

PageRank vs. HITS: Discussion

 PageRank can be precomputed, HITS has to be computed at query time.
- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- PageRank and HITS make two different design choices concerning (i) the eigenproblem formalization (ii) the set of pages to apply the formalization to.

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- PageRank and HITS make two different design choices concerning (i) the eigenproblem formalization (ii) the set of pages to apply the formalization to.
- These two are orthogonal.

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- PageRank and HITS make two different design choices concerning (i) the eigenproblem formalization (ii) the set of pages to apply the formalization to.
- These two are orthogonal.
 - We could also apply HITS to the entire web and PageRank to a small base set.

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- PageRank and HITS make two different design choices concerning (i) the eigenproblem formalization (ii) the set of pages to apply the formalization to.
- These two are orthogonal.
 - We could also apply HITS to the entire web and PageRank to a small base set.
- Claim: On the web, a good hub almost always is also a good authority.

- PageRank can be precomputed, HITS has to be computed at query time.
 - HITS is too expensive in most application scenarios.
- PageRank and HITS make two different design choices concerning (i) the eigenproblem formalization (ii) the set of pages to apply the formalization to.
- These two are orthogonal.
 - We could also apply HITS to the entire web and PageRank to a small base set.
- Claim: On the web, a good hub almost always is also a good authority.
- The actual difference between PageRank ranking and HITS ranking is therefore not as large as one might expect.

Exercise

Why is a good hub almost always also a good authority?

Take-away today

- Anchor text: What exactly are links on the web and why are they important for IR?
- Citation analysis: the mathematical foundation of PageRank and link-based ranking
- PageRank: the original algorithm that was used for link-based ranking on the web
- Hubs & Authorities: an alternative link-based ranking algorithm

Resources

- Chapter 21 of IIR
- Resources at http://ifnlp.org/ir
 - American Mathematical Society article on PageRank (popular science style)
 - Jon Kleinberg's home page (main person behind HITS)
 - A Google bomb and its defusing
 - Google's official description of PageRank: PageRank reflects our view of the importance of web pages by considering more than 500 million variables and 2 billion terms. Pages that believe are important pages receive a higher PageRank and are more likely to appear at the top of the search results.