
Text properties

Fext Modeling Natural Language Symbols: separate words or belong to words Symbols are not uniformly distributed binomial model: each symbol is generated with a certain probability Dependency of previous symbols *k*-order markovian model: the propability of a symbol depends on the previous k symbols Alternatively, we can take words as symbols

Text
 Modeling Natural Language
 Words distribution inside documents:
 Zipf's Law: <i>i</i>-th most frequent word appears 1/<i>i</i>^θ times of the most frequent word
$f_i = \frac{n}{i^{\theta} H_{ V }(\theta)}$
$H_{_{ V }}(heta)=\sum_{j=1}^{ V }rac{1}{j^{ heta}}$
 where f_i is the number of times the i-most frequent word appears in a text of n words and V is the vocabulary of the text, i.e. the set of different words in the text
 The distribution of words is very skewed: a few hundred words take up 50% of the text (stopwords) Real data fits better with θ between 1.5 and 2.0

Text

- Modeling Natural Language
 - Example word distibution (Zipf's Law)
 - |V|=1000, θ = 2
 - most frequent word: n=300
 - 2nd most frequent: n=76
 - 3rd most frequent: n=33
 - 4th most frequent: n=19

Text

- Modeling Natural Language
 - · Distribution of words in the documents
 - · negative binomial distribution

$$F(k) = \left(\frac{\alpha+k-1}{k}\right)p^{k}(1+p)^{-\alpha-k}$$

- where F(k) is the fraction of documents containing the word k and p, a are parameters that depend on the word and the document collection.
- Number of distinct words (vocabulary) in a text of n words:
 - Heaps' Law: $V = Kn^{\beta}$
- K is between 10 and 100
- β is between 0,4 and 0,6
- example: n=400000, β = 0.5
 - K=25, V=15811
 - K=35, V=22135
- The set of different words of a language is fixed by a constant, but the limit is too high